In the name of ALLAH, the most beneficient, the most merciful

Linear Algebra (MTH501)

Multiple Choice Questions (MCQs)

Objective Questions

  1. If T be a transformation, then which of the following is true for its linearity?

    1. \( T(cu^r \, gdv^r) = cT(u^r) gd T(v^r) ; \;\;\;\; \) whre 'c' and 'd' are scalars
    2. \( T(cu^r + dv^r) = cT(u^r) + dT(v^r); \;\;\;\; \) whre 'c' and 'd' are scalars
    3. \( T(cu^r × dv^r) = cT(u^r) × dT(v^r); \;\;\;\; \) whre 'c' and 'd' are scalars
    4. \( T(cu^r + dv^r) = dT(u^r) + cT(v^r); \;\;\;\; \) whre 'c' and 'd' are scalars
  2. If \(v_1^r , v_2^r \) and \(v_3^r \) are in \(R^m \) then which of the following is equivalent to \(\begin{bmatrix} v_1 & v_2 & v_3 \\ \end{bmatrix} \begin{bmatrix} 2 \\ -7 \\ 5 \\ \end{bmatrix} \)

    1. \(2v_1^r - 7v_2^r + 5v_3^r \)
    2. \(5v_1^r - 7v_2^r + 2v_3^r \)
    3. \(5v_1^r + 2v_2^r - 7v_3^r \)
    4. \(2v_1^r + 5v_2^r - 7v_3^r \)
  3. Which one of the following is a null matrix?

    1. \( \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \)
    2. \( \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \)
  4. If the equation: \( \begin{pmatrix} -2 & 3 \\ 5 & 1 \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \end{pmatrix} \) has the solution for all \(b_1, b_2 \in R \), then \( \begin{pmatrix} -2 \\ 5 \\ \end{pmatrix} \) and \( \begin{pmatrix} 3 \\ 1 \\ \end{pmatrix} \) will span ________.

    1. \( R^2 \) space
    2. \( R^3 \) space
    3. R space
    4. Nothing
  5. If λ + 2 is a factor of the characteristic polynomial of matrix C, then which of the following is the Eigenvalue of C?

    1. 2
    2. -2
    3. \(1 \over 2\)
    4. 0
  6. If the determinant of the matrix \( A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 2 \\ 3 & 4 & 5 \\ \end{bmatrix} \) is -1 and the matrix B is obtained by adding 2 times of the second row in the first row of the matrix A, then which of the following is true for the matrix B?

    1. Its determinant is -1.
    2. Its determinant is 1.
    3. Its determinant can not be evaluated.
    4. The information is not sufficient to calculate the determinant.
  7. Which of the following is true for the matrix \( \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\\ \end{bmatrix} \)?

    1. It is a null matrix.
    2. It is a scalar matrix.
    3. It is a diagonal matrix.
    4. It is an identity matrix.
  8. If the equation: \( \begin{pmatrix} -2 & 3 \\ 5 & 1 \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \end{pmatrix} \) has the solution for all \(b_1, b_2 \in R \), then \( \begin{pmatrix} b_1 \\ b_2 \\ \end{pmatrix} \in \) ________.

    1. Span\( \begin{Bmatrix} \begin{pmatrix} -2 \\ 3 \\ \end{pmatrix} , \begin{pmatrix} 5 \\ 1 \\ \end{pmatrix} \end{Bmatrix} \)
    2. Span\( \begin{Bmatrix} \begin{pmatrix} -2 \\ 1 \\ \end{pmatrix} , \begin{pmatrix} 5 \\ 3 \\ \end{pmatrix} \end{Bmatrix} \)
    3. Span\( \begin{Bmatrix} \begin{pmatrix} 3 \\ -2 \\ \end{pmatrix} , \begin{pmatrix} 1 \\ 5 \\ \end{pmatrix} \end{Bmatrix} \)
    4. Span\( \begin{Bmatrix} \begin{pmatrix} -2 \\ 5 \\ \end{pmatrix} , \begin{pmatrix} 3 \\ 1 \\ \end{pmatrix} \end{Bmatrix} \)
  9. \(9x^2 + 3x + 4 \) is ________.

    1. an equation
    2. a term
    3. an algebraic expression
    4. quadratic equation
  10. Let A be n × n matrix, then A is invertible if and only if

    1. det A is not zero
    2. det A is zero
  11. If \( A = \begin{bmatrix} 2 & 1 \\ 4 & 3 \\ \end{bmatrix} \) and \( B = \begin{bmatrix} 1+1 & 2-1 \\ 2+2 & 4-1 \\ \end{bmatrix} \), then which of the following is true for A and B?

    1. A and B are equal matrices.
    2. A is the transpose of B.
    3. B is the transpose of A.
    4. B is the multiplicative inverse of A.
  12. If a system of equations is solved using the Gauss-Seidel method, then which of the following is NOT true about the matrix M that is derived from the coefficient matrix?

    1. All of its entries below the diagonal must be zero.
    2. All of its entries above the diagonal must be zero.
    3. Its determinant is non-zero.
    4. It is an invertible matrix.
  13. A homogeneous linear system always has the trivial solution: there are only two possibilities for its solutions:

    1. The system has only the trivial solution
    2. The system has infinitely many solutionsnin addition to trivial solution
    3. Both (a) and (b)
    4. None of the above
  14. If \(v_1 = (2, 2, 2), v_2 = (0, 0, 3) \) and \(v_3 = (0, 1, 1) \) span \( R^3 \), then which of the following is true for any arbitrary \(b^r = (b_1, b_2, b_3) \in R^3 \) ?

    1. \( (0, 1, 1) = k_1 (b_1, b_2, b_3) + k_2 (2, 2, 2) + k_3 (0, 0, 3) \)
    2. \( (b_1, b_2, b_3) = k_1 (2, 2, 2) + k_2 (0, 0, 3) + k_3 (0, 1, 1) \)
    3. \( (0, 0, 3) = k_1 (2, 2, 2) + k_2 (b_1, b_2, b_3) + k_3 (0, 1, 1) \)
    4. \( (0, 1, 1) = k_1 (2, 2, 2) + k_2 (0, 0, 3) + k_3 (b_1, b_2, b_3) \)
  15. In A is a square matrix, then the minor of entry ith row and jth column is to be the determinant of the sub matrix that remains when the ith row and jth column of A are

    1. added
    2. deleted
    3. multiplied
    4. divided
  16. If \( A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} \), then which of the following is true for A?

    1. det(A) = 1
    2. det(A) = - 1
    3. det(A) = 0
    4. det(A) = ±1
  17. If \( v_1^r = (2, 1), v_2^r = (3, 4) \) and \( v_3^r = (7, 8) \) then which of the following is true?

    1. \( \{v_1^r, v_2^r, v_3^r\} \) is linearly dependent.
    2. \( \{v_1^r, v_2^r, v_3^r\} \) is linearly independent.
    3. The vector equation has trivial solution.
    4. \( v_1^r = {2 \over 3} v_2^r \)
  18. Which of the following is true about the existence of free variables (parameter) in a system of linear equations?

    1. They guarantee the Consistency.
    2. They guarantee the Inconsistency.
    3. They do not guarantee the Consistency.
    4. None of the given.
  19. The solution of Ax = b exists if and only if b can be written as a linear combination of ________ of A.

    1. columns
    2. rows
    3. both columns and rows
    4. elements
  20. The Elementary Row operations: \(R'_2 \rightarrow R_2 + 4R_1 \) and \(R'_3 \rightarrow R_3 - 6R_1 \) are performed on to get \( \begin{pmatrix} 1 & 2 & -5 \\ -4 & 1 & -6 \\ 6 & 3 & -4 \end{pmatrix} \sim \) ________?

    1. \( \begin{pmatrix} 1 & 2 & -5 \\ 0 & -9 & -26 \\ 0 & -9 & 26 \end{pmatrix} \)
    2. \( \begin{pmatrix} 1 & 2 & -5 \\ 0 & 9 & 26 \\ 0 & -9 & -26 \end{pmatrix} \)
    3. \( \begin{pmatrix} 1 & 2 & -5 \\ 0 & 9 & -26 \\ 0 & -9 & 26 \end{pmatrix} \)
    4. \( \begin{pmatrix} 1 & 2 & -5 \\ 0 & -9 & 26 \\ 0 & 9 & -26 \end{pmatrix} \)
  21. If the determinant of the matrix \( A = \begin{bmatrix} 4 & 3 & 5 \\ 3 & 1 & 1 \\ 5 & 7 & 7 \\ \end{bmatrix} \) is 32 and the matrix B is obtained by multiplying any row of A with an integer value 4, then which of the following is true for the matrix B?

    1. Its determinant is 18.
    2. Its determinant is -32.
    3. Its determinant is 128.
    4. The information is not sufficient to calculate the determinant.
  22. If \( A = \begin{bmatrix} 2 & 3 & 5 \\ 0 & 3 & 6 \\ 0 & 0 & 4 \\ \end{bmatrix} \), then which of the following is the value of det(A)?

    1. 6
    2. 18
    3. 24
    4. 36
  23. If a homogeneous system \(Ax = 0 \) has a trivial solution, then which of the following is(are) the value(s) of the vector x?

    1. -1
    2. 0
    3. 1
    4. 2
  24. Let 'Ax = 0' be a homogeneous linear system of 'n' equations and 'n' unknowns. Then, the coefficient matrix 'A' is invertible if and only if this system has ________ solution.

    1. No
    2. trivial
    3. non-trivial
    4. infinite many
  25. Let A be the matrix of order 2x3 and B be the matrix of order 3x5, then which of the following is the order of the matrix AB?

    1. 2x3
    2. 3x5
    3. 3x3
    4. 2x5
  26. If \( X =\begin{bmatrix} M \\ N \\ \end{bmatrix} \) and \( Y= \begin{bmatrix} Q & P \\ \end{bmatrix} \) (Whare \(\mathbf{M, N, Q}\) and \(\mathbf{P}\) are saqure sub-matrices of same size), then Which of the following is possible?

    1. The product \(\mathbf{XY}\) and \(\mathbf{YX}\) both are not defined
    2. The product \(\mathbf{XY}\) and \(\mathbf{YX}\) both are defined
    3. The product \(\mathbf{XY}\) is defied but \(\mathbf{YX}\) is not defined
    4. None of the given
  27. Which of the following Elementary Row operations would perform in order to get \( \begin{pmatrix} 1 & 2 & -5 \\ -4 & 1 & -6 \\ 6 & 3 & -4 \\ \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -5 \\ 0 & 9 & -26 \\ 0 & -9 & 26 \\ \end{pmatrix} \)?

    1. \(R'_2 \rightarrow R_2 - 4R_1, R'_3 \rightarrow R_3 + 6R_1 \)
    2. \(R'_2 \rightarrow R_2 + 4R_1, R'_3 \rightarrow R_3 - 6R_1 \)
    3. \(R'_2 \rightarrow R_1 + 4R_2, R'_3 \rightarrow R_1 - 6R_3 \)
    4. \(R'_2 \rightarrow R_1 - 4R_2, R'_3 \rightarrow R_1 + 6R_3 \)
  28. The equation: \( \begin{pmatrix} -2 & 3 \\ 5 & 1 \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ \end{pmatrix} = \begin{pmatrix} -7 \\ 4 \\ \end{pmatrix} \) will have the solution only if ________.

    1. \( \begin{pmatrix} -7 \\ 4 \\ \end{pmatrix} = x \begin{pmatrix} 3 \\ 1 \\ \end{pmatrix} + y \begin{pmatrix} -2 \\ 5 \\ \end{pmatrix} \)
    2. \( \begin{pmatrix} -7 \\ 4 \\ \end{pmatrix} = x \begin{pmatrix} -2 \\ 5 \\ \end{pmatrix} + y \begin{pmatrix} 3 \\ 1 \\ \end{pmatrix} \)
    3. \( \begin{pmatrix} -7 \\ 4 \\ \end{pmatrix} = x \begin{pmatrix} -2 \\ 3 \\ \end{pmatrix} + y \begin{pmatrix} 5 \\ 1 \\ \end{pmatrix} \)
    4. \( \begin{pmatrix} -7 \\ 4 \\ \end{pmatrix} = x \begin{pmatrix} 5 \\ 1 \\ \end{pmatrix} + y \begin{pmatrix} -2 \\ 3 \\ \end{pmatrix} \)
  29. Why inverse of the matrix A= [1 2] is NOT possible?

    1. Because it is a saquare matrix.
    2. Because it is a zero matrix.
    3. Because it is an identity matrix,
    4. Because it is rectahular matrix.
  30. What is Eigen value?

    1. A vector obtained from the coordinates
    2. A matrix determined from the algebraic equations
    3. A scalar associated with a given linear transformation
  31. A sufficient condition for the jacobi's method to converge for the linear system Ax=b

    1. A is diagonally dominant
    2. A-I is diagonally dominant
    3. A is non-singular
    4. None of the given
  32. If \( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & k & 1 \\ \end{bmatrix} \), then which of the following is true for the matrix?

    1. det(A) = 1
    2. det(A) = k - 1
    3. det(A) = k
    4. det(A) = k + 1
  33. Which of the following is the simplified form of \(-1 \begin{bmatrix} -1 & 2 \\ \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ \end{bmatrix} \)

    1. \( \begin{bmatrix} 3 & -1 \\ \end{bmatrix} \)
    2. \( \begin{bmatrix} -3 & 1 \\ \end{bmatrix} \)
    3. \( \begin{bmatrix} 3 & 1 \\ \end{bmatrix} \)
    4. \( \begin{bmatrix} -3 & -1 \\ \end{bmatrix} \)
  34. A system of linear equations is said to be homogeneous if it can be written in the form ________.

    1. AX=B
    2. AX=0
  35. If x - 2 is a factor of the characteristic polynomial of matrix C then an eigenvalue of C is

    1. 2
    2. -2
    3. 1/2
    4. 0
  36. 7x is an algebraic term in which 7 is a ________ and x is a ________.

    1. term, expression
    2. coefficient, variable
    3. variable, coefficient
    4. numerical, alphabet
  37. An n × n matrix A is said to be diagonalizable if and only if A has n ________ eigenvectors.

    1. Linearly dependent
    2. Linearly Independent
  38. Which of the following is the coefficient matrix for the system \( \begin{matrix} x_1 - 2x_2 + x_3 = 0 \\ 2x_2 - 7x_3 = 8 \\ -4x_1 + 3x_2 + 9x_3 = -6 \end{matrix} \)

    1. \( \begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & -7 \\ -4 & 3 & 9 \\ \end{bmatrix} \)
    2. \( \begin{bmatrix} 1 & -2 & 0 \\ 0 & 2 & 8 \\ -4 & 3 & -6 \\ \end{bmatrix} \)
    3. \( \begin{bmatrix} 1 & 1 & 0 \\ 0 & -7 & 8 \\ -4 & 9 & -6 \\ \end{bmatrix} \)
    4. \( \begin{bmatrix} 1 & 0 & -4 \\ -2 & 2 & 3 \\ 1 & -7 & 9 \\ \end{bmatrix} \)
  39. Two simultaneous linear equations in two variables have no solution if their corresponding lines are ________.

    1. parallel and distinct
    2. intersecting
    3. coincident
    4. perpendicular
  40. Which of the following will be the Matrix Product corresponding to Linear Combination: \( \begin{pmatrix} -2 \\ 5 \\ \end{pmatrix} x + \begin{pmatrix} 3 \\ 1 \\ \end{pmatrix} y \)?

    1. \( \begin{pmatrix} 1 & -3 \\ -5 & -2 \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ \end{pmatrix} \)
    2. \( \begin{pmatrix} -2 & 5 \\ 3 & 1 \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ \end{pmatrix} \)
    3. \( \begin{pmatrix} -2 & 3 \\ 5 & 1 \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ \end{pmatrix} \)
    4. \( \begin{pmatrix} 3 & -2 \\ 1 & 5 \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ \end{pmatrix} \)
  41. A square matrix A is said to be diagonal if A is similar to a matrix

    1. Column matrix
    2. Zero matrix
    3. Diagonal matrix
    4. None of the given
  42. If \(M = \begin{bmatrix} 3 \\ \end{bmatrix} \) then Which of the following is the determinant of the matrix M?

    1. 1
    2. [1]
    3. 3
    4. [3]
  43. Let V be a five-dimensional vector space, and let S be a subset of V which spans V. Then S

    1. Must be linearly dependent
    2. Must be a basis for V
    3. Must have infinitely many elements
    4. Must have at most five elements
  44. What is the maximum possiblle number of pivots in a 6 × 6 matrix?

    1. 0
    2. 2
    3. 4
    4. 6
  45. How many Pivot partitions the matrix: \( \begin{pmatrix} 2 & 3 & 1 \\ 4 & 6 & 2 \\ \end{pmatrix} \) will have?

    1. 1
    2. 2
    3. 3
    4. 4
  46. Which of the following is the most appropriate operation(s) for the linear transformation

    1. Scalar multiplication
    2. Vector addition and scalar multiplication
    3. Vector addition
    4. Vector and scalar multiplications
  47. A 3 × 3 identity matrix have three and ________ eigen values.

    1. same
    2. distinct
  48. If one of the eigenvalues of \( \begin{bmatrix} A \end{bmatrix} _{n×n} \) is zero, it implies ________

    1. The solution to \( \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} X \end{bmatrix} = \begin{bmatrix} C \end{bmatrix}\) a system of equations is unique
    2. The determinant of \( \begin{bmatrix} A \end{bmatrix} \) is zero
    3. The solution to \( \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} X \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}\) system of equations is trivial
    4. The determinant of \( \begin{bmatrix} A \end{bmatrix} \) is nonzero
  49. Let A and B be the square matrices. Then A and B are invertible with \(B = A^{-1} \) and \(A = B^{-1} \) if and only if \(AB = BA \) equals to a (an) ________ matrix.

    1. Singular
    2. Square
    3. Identity
    4. Rectangular
  50. If λ is an eigenvector of A, then every nonzero vector x such that Ax = λx is called an ________ of A corresponding to ________.

    1. Eigenvalue, λ
    2. Eigenvector, λ
    3. Eigenvalue, A
    4. Eigenvector, A
  51. The Invertible Matrix Theorem applies only to ________ matrices.

    1. Rectangular
    2. Square
    3. Identity
    4. Scalar
  52. Since every linear transformation \(T : R^n \rightarrow R^m \) is actually matrix transformation, then which of the following is the alternate notation for the transformation?

    1. \(Ax^r \; a \;\; x^r \)
    2. \(Ax^r \; a \;\; T(x^r) \)
    3. \(x^r \; a \;\; Ax^r \)
    4. \(T(x^r) \; a \;\; Ax^r \)
  53. Which of the following will be the Linear Combination corresponding to \( \begin{pmatrix} -2 & 3 \\ 5 & 1 \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ \end{pmatrix} \)?

    1. \( \begin{pmatrix} -2 \\ 3 \\ \end{pmatrix} x + \begin{pmatrix} 5 \\ 1 \\ \end{pmatrix} y \)
    2. \( \begin{pmatrix} 3 \\ 1 \\ \end{pmatrix} x + \begin{pmatrix} -2 \\ 5 \\ \end{pmatrix} y \)
    3. \( \begin{pmatrix} 5 \\ 1 \\ \end{pmatrix} x + \begin{pmatrix} -2 \\ 3 \\ \end{pmatrix} y \)
    4. \( \begin{pmatrix} -2 \\ 5 \\ \end{pmatrix} x + \begin{pmatrix} 3 \\ 1 \\ \end{pmatrix} y \)
  54. An \(n × n\) real matrix is invertible if and only if the span of the rows of A is \( R^n \)

    1. True
    2. False
  55. Gauss-Seidel method is also termed as a method of

    1. Elimination Method
    2. False Position Method
    3. Successive Displacement
    4. Iteration Method
  56. Let a matrix A has both negative and positive eigen values, so in this case origin behaves as a ________ point.

    1. Saddle
    2. Critical
  57. A system of linear equations is said to be homogeneous if the constant terms are all

    1. One
    2. Zero
    3. Both (a) and (b)
    4. None of the above
  58. If AB = I = BA for matrices A, B and I, where I is an identity matrix, then

    1. B is inverse of A
    2. A is inverse of B
    3. A(-1) = B, B(-1) = A,
    4. All of the given
  59. If \( Ax^r = b^r \) and factorization of A is LU, then which of the following pair of equations can be used to solve \( LUx^r = b^r \) for value of '\( x^r \)'?

    1. \( Ux^r = y^r \) and \( Ly^r = b^r \)
    2. \( Lx^r = y^r \) and \( Uy^r = b^r \)
    3. \( Ub^r = y^r \) and \( Ly^r = x^r \)
    4. \( Lb^r = y^r \) and \( Uy^r = x^r \)
  60. If x + 2 is a factor of the characteristic polynomial of matrix C then an eigenvalue of C is

    1. 2
    2. -2
    3. 1/2
    4. 0
  61. If u + v = u + w, then:

    1. v + w
    2. v ≠ w
    3. v = w
    4. None of the given
  62. If A be the standard matrix of linear transformation \(T : R^n \rightarrow R^m \), then which of the following is true for the mapping from \(R^n \) onto \(R^m \) ?

    1. The columns of A span \( R^n \).
    2. The columns of A span \( R^m \).
    3. The columns of A are linearly independent.
    4. The columns of A are identical.