In the name of ALLAH, the most beneficient, the most merciful

Linear Algebra (MTH501)

Multiple Choice Questions (MCQs)

Objective Questions

  1. If A be the standard matrix of linear transformation \(T : R^n \rightarrow R^m \), then which of the following is true for the mapping from \(R^n \) onto \(R^m \) ?

    1. The columns of A span \( R^n \).
    2. The columns of A span \( R^m \).
    3. The columns of A are linearly independent.
    4. The columns of A are identical.
  2. If u + v = u + w, then:

    1. v + w
    2. v ≠ w
    3. v = w
    4. None of the given
  3. Which of the following Elementary Row operations would perform in order to get \( \begin{pmatrix} 1 & 2 & -5 \\ -4 & 1 & -6 \\ 6 & 3 & -4 \\ \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -5 \\ 0 & 9 & -26 \\ 0 & -9 & 26 \\ \end{pmatrix} \)?

    1. \(R'_2 \rightarrow R_2 - 4R_1, R'_3 \rightarrow R_3 + 6R_1 \)
    2. \(R'_2 \rightarrow R_2 + 4R_1, R'_3 \rightarrow R_3 - 6R_1 \)
    3. \(R'_2 \rightarrow R_1 + 4R_2, R'_3 \rightarrow R_1 - 6R_3 \)
    4. \(R'_2 \rightarrow R_1 - 4R_2, R'_3 \rightarrow R_1 + 6R_3 \)
  4. If the equation: \( \begin{pmatrix} -2 & 3 \\ 5 & 1 \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \end{pmatrix} \) has the solution for all \(b_1, b_2 \in R \), then \( \begin{pmatrix} -2 \\ 5 \\ \end{pmatrix} \) and \( \begin{pmatrix} 3 \\ 1 \\ \end{pmatrix} \) will span ________.

    1. \( R^2 \) space
    2. \( R^3 \) space
    3. R space
    4. Nothing
  5. If one of the eigenvalues of \( \begin{bmatrix} A \end{bmatrix} _{n×n} \) is zero, it implies ________

    1. The solution to \( \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} X \end{bmatrix} = \begin{bmatrix} C \end{bmatrix}\) a system of equations is unique
    2. The determinant of \( \begin{bmatrix} A \end{bmatrix} \) is zero
    3. The solution to \( \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} X \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}\) system of equations is trivial
    4. The determinant of \( \begin{bmatrix} A \end{bmatrix} \) is nonzero
  6. 7x is an algebraic term in which 7 is a ________ and x is a ________.

    1. term, expression
    2. coefficient, variable
    3. variable, coefficient
    4. numerical, alphabet
  7. Gauss-Seidel method is also termed as a method of

    1. Elimination Method
    2. False Position Method
    3. Successive Displacement
    4. Iteration Method
  8. A 3 × 3 identity matrix have three and ________ eigen values.

    1. same
    2. distinct
  9. If \( A = \begin{bmatrix} 2 & 1 \\ 4 & 3 \\ \end{bmatrix} \) and \( B = \begin{bmatrix} 1+1 & 2-1 \\ 2+2 & 4-1 \\ \end{bmatrix} \), then which of the following is true for A and B?

    1. A and B are equal matrices.
    2. A is the transpose of B.
    3. B is the transpose of A.
    4. B is the multiplicative inverse of A.
  10. Which of the following is the coefficient matrix for the system \( \begin{matrix} x_1 - 2x_2 + x_3 = 0 \\ 2x_2 - 7x_3 = 8 \\ -4x_1 + 3x_2 + 9x_3 = -6 \end{matrix} \)

    1. \( \begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & -7 \\ -4 & 3 & 9 \\ \end{bmatrix} \)
    2. \( \begin{bmatrix} 1 & -2 & 0 \\ 0 & 2 & 8 \\ -4 & 3 & -6 \\ \end{bmatrix} \)
    3. \( \begin{bmatrix} 1 & 1 & 0 \\ 0 & -7 & 8 \\ -4 & 9 & -6 \\ \end{bmatrix} \)
    4. \( \begin{bmatrix} 1 & 0 & -4 \\ -2 & 2 & 3 \\ 1 & -7 & 9 \\ \end{bmatrix} \)
  11. Two simultaneous linear equations in two variables have no solution if their corresponding lines are ________.

    1. parallel and distinct
    2. intersecting
    3. coincident
    4. perpendicular
  12. \(9x^2 + 3x + 4 \) is ________.

    1. an equation
    2. a term
    3. an algebraic expression
    4. quadratic equation
  13. The equation: \( \begin{pmatrix} -2 & 3 \\ 5 & 1 \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ \end{pmatrix} = \begin{pmatrix} -7 \\ 4 \\ \end{pmatrix} \) will have the solution only if ________.

    1. \( \begin{pmatrix} -7 \\ 4 \\ \end{pmatrix} = x \begin{pmatrix} 3 \\ 1 \\ \end{pmatrix} + y \begin{pmatrix} -2 \\ 5 \\ \end{pmatrix} \)
    2. \( \begin{pmatrix} -7 \\ 4 \\ \end{pmatrix} = x \begin{pmatrix} -2 \\ 5 \\ \end{pmatrix} + y \begin{pmatrix} 3 \\ 1 \\ \end{pmatrix} \)
    3. \( \begin{pmatrix} -7 \\ 4 \\ \end{pmatrix} = x \begin{pmatrix} -2 \\ 3 \\ \end{pmatrix} + y \begin{pmatrix} 5 \\ 1 \\ \end{pmatrix} \)
    4. \( \begin{pmatrix} -7 \\ 4 \\ \end{pmatrix} = x \begin{pmatrix} 5 \\ 1 \\ \end{pmatrix} + y \begin{pmatrix} -2 \\ 3 \\ \end{pmatrix} \)
  14. Since every linear transformation \(T : R^n \rightarrow R^m \) is actually matrix transformation, then which of the following is the alternate notation for the transformation?

    1. \(Ax^r \; a \;\; x^r \)
    2. \(Ax^r \; a \;\; T(x^r) \)
    3. \(x^r \; a \;\; Ax^r \)
    4. \(T(x^r) \; a \;\; Ax^r \)
  15. If a homogeneous system \(Ax = 0 \) has a trivial solution, then which of the following is(are) the value(s) of the vector x?

    1. -1
    2. 0
    3. 1
    4. 2
  16. The solution of Ax = b exists if and only if b can be written as a linear combination of ________ of A.

    1. columns
    2. rows
    3. both columns and rows
    4. elements
  17. A sufficient condition for the jacobi's method to converge for the linear system Ax=b

    1. A is diagonally dominant
    2. A-I is diagonally dominant
    3. A is non-singular
    4. None of the given
  18. If \( Ax^r = b^r \) and factorization of A is LU, then which of the following pair of equations can be used to solve \( LUx^r = b^r \) for value of '\( x^r \)'?

    1. \( Ux^r = y^r \) and \( Ly^r = b^r \)
    2. \( Lx^r = y^r \) and \( Uy^r = b^r \)
    3. \( Ub^r = y^r \) and \( Ly^r = x^r \)
    4. \( Lb^r = y^r \) and \( Uy^r = x^r \)
  19. How many Pivot partitions the matrix: \( \begin{pmatrix} 2 & 3 & 1 \\ 4 & 6 & 2 \\ \end{pmatrix} \) will have?

    1. 1
    2. 2
    3. 3
    4. 4
  20. A system of linear equations is said to be homogeneous if the constant terms are all

    1. One
    2. Zero
    3. Both (a) and (b)
    4. None of the above
  21. If a system of equations is solved using the Gauss-Seidel method, then which of the following is NOT true about the matrix M that is derived from the coefficient matrix?

    1. All of its entries below the diagonal must be zero.
    2. All of its entries above the diagonal must be zero.
    3. Its determinant is non-zero.
    4. It is an invertible matrix.
  22. Let a matrix A has both negative and positive eigen values, so in this case origin behaves as a ________ point.

    1. Saddle
    2. Critical
  23. What is Eigen value?

    1. A vector obtained from the coordinates
    2. A matrix determined from the algebraic equations
    3. A scalar associated with a given linear transformation
  24. If x - 2 is a factor of the characteristic polynomial of matrix C then an eigenvalue of C is

    1. 2
    2. -2
    3. 1/2
    4. 0
  25. Let 'Ax = 0' be a homogeneous linear system of 'n' equations and 'n' unknowns. Then, the coefficient matrix 'A' is invertible if and only if this system has ________ solution.

    1. No
    2. trivial
    3. non-trivial
    4. infinite many
  26. Which of the following will be the Linear Combination corresponding to \( \begin{pmatrix} -2 & 3 \\ 5 & 1 \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ \end{pmatrix} \)?

    1. \( \begin{pmatrix} -2 \\ 3 \\ \end{pmatrix} x + \begin{pmatrix} 5 \\ 1 \\ \end{pmatrix} y \)
    2. \( \begin{pmatrix} 3 \\ 1 \\ \end{pmatrix} x + \begin{pmatrix} -2 \\ 5 \\ \end{pmatrix} y \)
    3. \( \begin{pmatrix} 5 \\ 1 \\ \end{pmatrix} x + \begin{pmatrix} -2 \\ 3 \\ \end{pmatrix} y \)
    4. \( \begin{pmatrix} -2 \\ 5 \\ \end{pmatrix} x + \begin{pmatrix} 3 \\ 1 \\ \end{pmatrix} y \)
  27. Let V be a five-dimensional vector space, and let S be a subset of V which spans V. Then S

    1. Must be linearly dependent
    2. Must be a basis for V
    3. Must have infinitely many elements
    4. Must have at most five elements
  28. If T be a transformation, then which of the following is true for its linearity?

    1. \( T(cu^r \, gdv^r) = cT(u^r) gd T(v^r) ; \;\;\;\; \) whre 'c' and 'd' are scalars
    2. \( T(cu^r + dv^r) = cT(u^r) + dT(v^r); \;\;\;\; \) whre 'c' and 'd' are scalars
    3. \( T(cu^r × dv^r) = cT(u^r) × dT(v^r); \;\;\;\; \) whre 'c' and 'd' are scalars
    4. \( T(cu^r + dv^r) = dT(u^r) + cT(v^r); \;\;\;\; \) whre 'c' and 'd' are scalars
  29. If \( A = \begin{bmatrix} 2 & 3 & 5 \\ 0 & 3 & 6 \\ 0 & 0 & 4 \\ \end{bmatrix} \), then which of the following is the value of det(A)?

    1. 6
    2. 18
    3. 24
    4. 36
  30. Which one of the following is a null matrix?

    1. \( \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \)
    2. \( \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \)
  31. The Invertible Matrix Theorem applies only to ________ matrices.

    1. Rectangular
    2. Square
    3. Identity
    4. Scalar
  32. Which of the following is true for the matrix \( \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\\ \end{bmatrix} \)?

    1. It is a null matrix.
    2. It is a scalar matrix.
    3. It is a diagonal matrix.
    4. It is an identity matrix.
  33. If the determinant of the matrix \( A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 2 \\ 3 & 4 & 5 \\ \end{bmatrix} \) is -1 and the matrix B is obtained by adding 2 times of the second row in the first row of the matrix A, then which of the following is true for the matrix B?

    1. Its determinant is -1.
    2. Its determinant is 1.
    3. Its determinant can not be evaluated.
    4. The information is not sufficient to calculate the determinant.
  34. If \( v_1^r = (2, 1), v_2^r = (3, 4) \) and \( v_3^r = (7, 8) \) then which of the following is true?

    1. \( \{v_1^r, v_2^r, v_3^r\} \) is linearly dependent.
    2. \( \{v_1^r, v_2^r, v_3^r\} \) is linearly independent.
    3. The vector equation has trivial solution.
    4. \( v_1^r = {2 \over 3} v_2^r \)
  35. If the equation: \( \begin{pmatrix} -2 & 3 \\ 5 & 1 \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \end{pmatrix} \) has the solution for all \(b_1, b_2 \in R \), then \( \begin{pmatrix} b_1 \\ b_2 \\ \end{pmatrix} \in \) ________.

    1. Span\( \begin{Bmatrix} \begin{pmatrix} -2 \\ 3 \\ \end{pmatrix} , \begin{pmatrix} 5 \\ 1 \\ \end{pmatrix} \end{Bmatrix} \)
    2. Span\( \begin{Bmatrix} \begin{pmatrix} -2 \\ 1 \\ \end{pmatrix} , \begin{pmatrix} 5 \\ 3 \\ \end{pmatrix} \end{Bmatrix} \)
    3. Span\( \begin{Bmatrix} \begin{pmatrix} 3 \\ -2 \\ \end{pmatrix} , \begin{pmatrix} 1 \\ 5 \\ \end{pmatrix} \end{Bmatrix} \)
    4. Span\( \begin{Bmatrix} \begin{pmatrix} -2 \\ 5 \\ \end{pmatrix} , \begin{pmatrix} 3 \\ 1 \\ \end{pmatrix} \end{Bmatrix} \)
  36. Which of the following will be the Matrix Product corresponding to Linear Combination: \( \begin{pmatrix} -2 \\ 5 \\ \end{pmatrix} x + \begin{pmatrix} 3 \\ 1 \\ \end{pmatrix} y \)?

    1. \( \begin{pmatrix} 1 & -3 \\ -5 & -2 \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ \end{pmatrix} \)
    2. \( \begin{pmatrix} -2 & 5 \\ 3 & 1 \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ \end{pmatrix} \)
    3. \( \begin{pmatrix} -2 & 3 \\ 5 & 1 \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ \end{pmatrix} \)
    4. \( \begin{pmatrix} 3 & -2 \\ 1 & 5 \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ \end{pmatrix} \)
  37. If \( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & k & 1 \\ \end{bmatrix} \), then which of the following is true for the matrix?

    1. det(A) = 1
    2. det(A) = k - 1
    3. det(A) = k
    4. det(A) = k + 1
  38. If \(v_1^r , v_2^r \) and \(v_3^r \) are in \(R^m \) then which of the following is equivalent to \(\begin{bmatrix} v_1 & v_2 & v_3 \\ \end{bmatrix} \begin{bmatrix} 2 \\ -7 \\ 5 \\ \end{bmatrix} \)

    1. \(2v_1^r - 7v_2^r + 5v_3^r \)
    2. \(5v_1^r - 7v_2^r + 2v_3^r \)
    3. \(5v_1^r + 2v_2^r - 7v_3^r \)
    4. \(2v_1^r + 5v_2^r - 7v_3^r \)
  39. A homogeneous linear system always has the trivial solution: there are only two possibilities for its solutions:

    1. The system has only the trivial solution
    2. The system has infinitely many solutionsnin addition to trivial solution
    3. Both (a) and (b)
    4. None of the above
  40. If \(M = \begin{bmatrix} 3 \\ \end{bmatrix} \) then Which of the following is the determinant of the matrix M?

    1. 1
    2. [1]
    3. 3
    4. [3]
  41. If λ is an eigenvector of A, then every nonzero vector x such that Ax = λx is called an ________ of A corresponding to ________.

    1. Eigenvalue, λ
    2. Eigenvector, λ
    3. Eigenvalue, A
    4. Eigenvector, A
  42. If \(v_1 = (2, 2, 2), v_2 = (0, 0, 3) \) and \(v_3 = (0, 1, 1) \) span \( R^3 \), then which of the following is true for any arbitrary \(b^r = (b_1, b_2, b_3) \in R^3 \) ?

    1. \( (0, 1, 1) = k_1 (b_1, b_2, b_3) + k_2 (2, 2, 2) + k_3 (0, 0, 3) \)
    2. \( (b_1, b_2, b_3) = k_1 (2, 2, 2) + k_2 (0, 0, 3) + k_3 (0, 1, 1) \)
    3. \( (0, 0, 3) = k_1 (2, 2, 2) + k_2 (b_1, b_2, b_3) + k_3 (0, 1, 1) \)
    4. \( (0, 1, 1) = k_1 (2, 2, 2) + k_2 (0, 0, 3) + k_3 (b_1, b_2, b_3) \)
  43. Let A be n × n matrix, then A is invertible if and only if

    1. det A is not zero
    2. det A is zero
  44. Which of the following is the most appropriate operation(s) for the linear transformation

    1. Scalar multiplication
    2. Vector addition and scalar multiplication
    3. Vector addition
    4. Vector and scalar multiplications
  45. An n × n matrix A is said to be diagonalizable if and only if A has n ________ eigenvectors.

    1. Linearly dependent
    2. Linearly Independent
  46. If AB = I = BA for matrices A, B and I, where I is an identity matrix, then

    1. B is inverse of A
    2. A is inverse of B
    3. A(-1) = B, B(-1) = A,
    4. All of the given
  47. If \( X =\begin{bmatrix} M \\ N \\ \end{bmatrix} \) and \( Y= \begin{bmatrix} Q & P \\ \end{bmatrix} \) (Whare \(\mathbf{M, N, Q}\) and \(\mathbf{P}\) are saqure sub-matrices of same size), then Which of the following is possible?

    1. The product \(\mathbf{XY}\) and \(\mathbf{YX}\) both are not defined
    2. The product \(\mathbf{XY}\) and \(\mathbf{YX}\) both are defined
    3. The product \(\mathbf{XY}\) is defied but \(\mathbf{YX}\) is not defined
    4. None of the given
  48. The Elementary Row operations: \(R'_2 \rightarrow R_2 + 4R_1 \) and \(R'_3 \rightarrow R_3 - 6R_1 \) are performed on to get \( \begin{pmatrix} 1 & 2 & -5 \\ -4 & 1 & -6 \\ 6 & 3 & -4 \end{pmatrix} \sim \) ________?

    1. \( \begin{pmatrix} 1 & 2 & -5 \\ 0 & -9 & -26 \\ 0 & -9 & 26 \end{pmatrix} \)
    2. \( \begin{pmatrix} 1 & 2 & -5 \\ 0 & 9 & 26 \\ 0 & -9 & -26 \end{pmatrix} \)
    3. \( \begin{pmatrix} 1 & 2 & -5 \\ 0 & 9 & -26 \\ 0 & -9 & 26 \end{pmatrix} \)
    4. \( \begin{pmatrix} 1 & 2 & -5 \\ 0 & -9 & 26 \\ 0 & 9 & -26 \end{pmatrix} \)
  49. A system of linear equations is said to be homogeneous if it can be written in the form ________.

    1. AX=B
    2. AX=0
  50. Why inverse of the matrix A= [1 2] is NOT possible?

    1. Because it is a saquare matrix.
    2. Because it is a zero matrix.
    3. Because it is an identity matrix,
    4. Because it is rectahular matrix.
  51. A square matrix A is said to be diagonal if A is similar to a matrix

    1. Column matrix
    2. Zero matrix
    3. Diagonal matrix
    4. None of the given
  52. Let A be the matrix of order 2x3 and B be the matrix of order 3x5, then which of the following is the order of the matrix AB?

    1. 2x3
    2. 3x5
    3. 3x3
    4. 2x5
  53. In A is a square matrix, then the minor of entry ith row and jth column is to be the determinant of the sub matrix that remains when the ith row and jth column of A are

    1. added
    2. deleted
    3. multiplied
    4. divided
  54. If x + 2 is a factor of the characteristic polynomial of matrix C then an eigenvalue of C is

    1. 2
    2. -2
    3. 1/2
    4. 0
  55. Which of the following is the simplified form of \(-1 \begin{bmatrix} -1 & 2 \\ \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ \end{bmatrix} \)

    1. \( \begin{bmatrix} 3 & -1 \\ \end{bmatrix} \)
    2. \( \begin{bmatrix} -3 & 1 \\ \end{bmatrix} \)
    3. \( \begin{bmatrix} 3 & 1 \\ \end{bmatrix} \)
    4. \( \begin{bmatrix} -3 & -1 \\ \end{bmatrix} \)
  56. What is the maximum possiblle number of pivots in a 6 × 6 matrix?

    1. 0
    2. 2
    3. 4
    4. 6
  57. If the determinant of the matrix \( A = \begin{bmatrix} 4 & 3 & 5 \\ 3 & 1 & 1 \\ 5 & 7 & 7 \\ \end{bmatrix} \) is 32 and the matrix B is obtained by multiplying any row of A with an integer value 4, then which of the following is true for the matrix B?

    1. Its determinant is 18.
    2. Its determinant is -32.
    3. Its determinant is 128.
    4. The information is not sufficient to calculate the determinant.
  58. If \( A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} \), then which of the following is true for A?

    1. det(A) = 1
    2. det(A) = - 1
    3. det(A) = 0
    4. det(A) = ±1
  59. Let A and B be the square matrices. Then A and B are invertible with \(B = A^{-1} \) and \(A = B^{-1} \) if and only if \(AB = BA \) equals to a (an) ________ matrix.

    1. Singular
    2. Square
    3. Identity
    4. Rectangular
  60. An \(n × n\) real matrix is invertible if and only if the span of the rows of A is \( R^n \)

    1. True
    2. False
  61. If λ + 2 is a factor of the characteristic polynomial of matrix C, then which of the following is the Eigenvalue of C?

    1. 2
    2. -2
    3. \(1 \over 2\)
    4. 0
  62. Which of the following is true about the existence of free variables (parameter) in a system of linear equations?

    1. They guarantee the Consistency.
    2. They guarantee the Inconsistency.
    3. They do not guarantee the Consistency.
    4. None of the given.