In the name of ALLAH, the most beneficient, the most merciful

Solved Examples Set 3 (Quantitative Ability)

  1. The closest approximation of \(\frac{69.28 Γ— .004}{.03}\) is

    1. 0.092
    2. 0.92
    3. 9.2
    4. 92
    5. 920
    This problem is most easily completed by rearranging and approximating as follows:
    (69.28 x .004)/.03 ≅ 69 x .1 = 6.9
    which is the only reasonably close answer to 9.2
  2. Matthew’s age (π‘š) is three years more than twice Rita’s age (π‘Ÿ). Which equation shows the relationship between their ages?

    1. π‘š = π‘Ÿ βˆ’ 32
    2. π‘š = π‘Ÿ + 32
    3. π‘š = 2(π‘Ÿ + 3)
    4. π‘š = 2π‘Ÿ βˆ’ 3
    5. π‘š = 2π‘Ÿ + 3
    As Matthew's age (π‘š) is three more years (+3) than twice Rita's age (2π‘Ÿ). Therefore, π‘š = 2π‘Ÿ + 3.
  3. \( {π‘₯ - 8 \over 24} = {3 \over 4} \)
    What is the value of π‘₯ in the equation?

    1. 10
    2. 20
    3. 26
    4. 31
    5. 40
    By cross multiplying, 4(π‘₯ – 8) =3 Γ— 24. Thus, 4π‘₯ – 32 = 72, and so 4π‘₯ = 104 and π‘₯ = 26.
  4. 12% of ________ = 48

    1. 250
    2. 100
    3. 400
    4. 200
    5. 300
    \(12 \text{% of } x = 48\)
    \(0.12x = 48\)
    \(x = \frac{48}{0.12} = 400\)
  5. By selling a fan for $ 475, a person loses 5%. To get a gain of 5%, he should sell the fan for:

    1. $ 500
    2. $ 525
    3. $ 535
    4. $ 575
    5. $ 505
    cost price = 100/(100 - 5) x 475 = $ 500
    sale price = (100 + 5)/100 x 500 = $ 525
  6. 1015 / 0.05 / 40 = ?

    1. 50.75
    2. 507.5
    3. 506
    4. 2056
    5. 5075
    1015 / 0.05 / 40 = 20300 / 40 = 507.5
  7. ? Γ— 12 = 75% of 336

    1. 48
    2. 252
    3. 28
    4. 21
    5. 23
    ? Γ— 12 = 75% of 336
    ? Γ— 12 = 0.75 Γ— 336
    ? Γ— 12 = 252
    \(? = \frac{252}{12}\)
    ? = 21
  8. A rectangular room is 6 m long, 5 m wide and 4 m high. The total volume of the room in cubic meters is

    1. 24
    2. 30
    3. 120
    4. 240
    5. 140
    Total volume = length Γ— width Γ— height = 6 Γ— 5 Γ— 4 = 120
  9. A man pays 10% of his income for his income tax. If his income tax amounts to $ 1500, what is his income?

    1. $ 13000
    2. $ 15000
    3. $ 17000
    4. $ 19000
    5. $ 11000
    Let x = income
    10% of x = $ 1500
    0.1x = $ 1500
    x = \(1500 \over 0.1\) = $ 15000
  10. A girl is 18 years younger than her mother. In 6 years time, the sum of their ages will be 54.How old is the girl now?

    1. 10 years
    2. 11 years
    3. 12 years
    4. 13 years
    5. 14 years
    Let girl's age = x
    then mother's age = x + 18
    After 6 years,
    x + 6 + x + 18 + 6 = 54
    2x + 30 = 54
    2x = 24
    x = 12
  11. Which of the following expressions is equivalent to \(\frac{π‘₯^2 + 3x + 1}{π‘₯ + 1}\)?

    1. x + 2
    2. π‘₯ + 3
    3. π‘₯ + 2 - 1/(π‘₯ + 1)
    4. π‘₯ + 3 + 1/(π‘₯ + 1)
    5. π‘₯ + 4 + 5/(π‘₯ + 1)
    As \(π‘₯^2 + 3x + 1 = (π‘₯^2 + 3x + 2) -1\)
    and
    \(\frac{π‘₯^2 + 3x + 2}{x + 1} = \frac{(π‘₯ + 2)(x + 1)}{x + 1} = π‘₯ + 2\)
    Therefore,
    \(\frac{π‘₯^2 + 3x + 1}{x + 1} = \frac{π‘₯^2 + 3x + 2}{x + 1} - \frac{1}{x + 1} = (π‘₯ + 2) - \frac{1}{x + 1}\)
  12. \( {396 \over 11} \) + 19 = ?

    1. 19.8
    2. 36
    3. 55
    4. 33
    5. 50
    \( {396 \over 11} \) + 19 = 36 + 19 = 55
  13. A fruit-seller has 120 oranges. Given that he has 20% more apples than oranges and 40% less oranges than pears, find the number of apples and the number of pears the fruit seller has.

    1. 144, 200
    2. 148, 380
    3. 149, 220
    4. 140, 190
    5. 142, 190
    No. of apples = 120 + 20% of 120 = 120 + 0.2 Γ— 120 = 144

    Let x = No. of pears
    x - 40% of x = 120
    x - 0.4x = 120
    0.6x = 120
    x = \(120 \over 0.6\) = 200
    Hence, no. of pears = 200
  14. Rashid's salary was reduced by 20%. In order to restore his salary at the original amount, it must be raised by

    1. 20%
    2. 22.50%
    3. 25%
    4. 26%
    5. 27%
    Let Rashid's Salary 100
    20% reduced salary is 80
    As the reduced amount is 20
    So what percentage of the present sallary is required to be equal to 20?
    ?% of 80 = 20
    ? = \(20 \over 80\) Γ— 100 = 25%
  15. A man travelled 120 km to a town. He could have reached the town 4 1⁄2 hours earlier had he increased his speed by 3 km/h. Find the speed at which he travelled.

    1. 6.56 km
    2. 7.57 km
    3. 8.58 km
    4. 9.59 km
    5. 5.55 km
    Let the normal speed \(= x \text{ } \frac{km}{hr}\)
    Time taken when travelled at the normal speed \(= \frac{120}{x}\) hr
    Time taken when travelled at the increased speed \(= \frac{120}{x + 3}\) hr
    $$\frac{120} {x} - \frac{120}{x + 3} = 4.5$$ $$120(x + 3) βˆ’ 120x = 4.5x(x + 3)$$ $$360 = 4.5x(x + 3)$$ $$720 = 9x(x + 3)$$ $$80 = x(x + 3)$$ $$x^2 + 3x - 80 = 0$$ $$x = \frac{-3 \pm \sqrt{3^2-4 Γ— (-80)}}{2} = \frac{-3 \pm \sqrt{329}}{2}$$ $$= \frac{-3 \pm 18.14}{2} = 7.57 \text{ (ignoring the negative value)}$$
  16. At a book fair, a book was reduced in price from $ 75 to $ 60. If the first price gives a 50% profit, find the percentage profit of the book sold at the reduced price.

    1. 20%
    2. 30%
    3. 40%
    4. 50%
    5. 10%
    As $ 75 (first price) gives a profit = 50%
    $ 1 gives a profit = (50/75)%
    $ 60 (reduced price) gives profit = (50/75 x 60)% = 40%
  17. 60% of 37 = ?

    1. 20
    2. 21
    3. 22.2
    4. 22
    5. none
    60% of 37 = 0.6 Γ— 37 = 22.2
  18. A certain solution is to be prepared by combining chemicals X, Y and Z in the ratio 18:3:2. How many liters of the solution can be prepared by using 36 liters of X?

    1. 46 liters
    2. 47 liters
    3. 45 liters
    4. 49 liters
    5. 44 liters
    As total ratio is 18 +3 + 2 = 23
    Let total solution is x liters
    Then \(18 \over 23\) x = 36
    x = \(36 Γ— 23 \over 18\) = 46 liters
  19. A bank exchanges British currency for Singapore currency at the rate of S$ 3.20 to pond 1. Calculate, in Pond, the amount exchanged for S$ 1,600 by a customer who also had to pay an extra 3% commission for this transaction.

    1. Pond 475
    2. Pond 485
    3. Pond 495
    4. Pond 505
    5. Pond 510
    As commission is 3% of 1600 = 0.03 Γ— 1600 = S$ 48
    the rest amount = 1600 - 48 = S$ 1552
    S$ 1 = \(1 \over 3.20\) = Pond 0.3125
    Now S$ 1552 = 1552 Γ— 0.3125 = Pond 485
  20. A group of boys were to choose between playing hockey and badminton. The number of boys choosing hockey was three times that of those choosing badminton. Asking 12 boys who chose hockey to play badminton would make the number of players for each game equal. Find the number who chose badminton originally.

    1. 12
    2. 14
    3. 11
    4. 13
    5. 10
    Let no. of boys for badminton = x
    then no. of boys for hockey = 3x
    According to the statement,
    3x - 12 = x + 12 (12 leave hockey, 12 join badminton)
    2x = 24
    x = 12
    Hence, there were 12 boys originally choosing badminton.

Solved Examples Set 1
Solved Examples Set 2
Solved Examples Set 3