In the name of ALLAH, the most beneficient, the most merciful

Solved Examples Set 3 (Quantitative Ability)

  1. 10 men can complete a job in 14 days. How long will it take 4 men to finish the same job if they work at the same rate?

    1. 33 days
    2. 35 days
    3. 37 days
    4. 39 days
    5. 31 days
    \(14 × 10 \over 4 \) = 35 days
  2. If n! = n ⋅ (n − 1) ⋅ (n − 2) ⋅ (n − 3) . . . 2 ⋅ 1, what is the value of \(\frac{(6!)(4!)}{(5!)(3!)}\)

    1. 5/4
    2. 8/5
    3. 10
    4. 24
    5. 1152
    \(\frac{(6!)(4!)}{(5!)(3!)}\) = \(\frac{(6 . 5 . 4 . 3 . 2 . 1)(4 . 3 . 2. 1)}{(5 . 4 . 3 . 2 . 1)(3 . 2 . 1)}\) = \(\frac{6 . 4}{1}\) = 24
  3. If 4a + 2 = 10, then 8a + 4 =

    1. 5
    2. 16
    3. 20
    4. 24
    5. 28
    One may answer this question by solving
    4a + 2 = 10
    4a = 8
    a= 2
    Now, plugging in 2 for a:
    8a + 4 = 8(2) + 4 = 20
    A faster way of solving this is to see the relationship between the quantity 4a + 2 (which equals 10) and 8a + 4. Since 8a + 4 is twice 4a + 2, the answer must be twice 10, or 20.
  4. \(25 \text{% of }{4 \over 4\text{%}} \text{ of }{1 \over 25} = ?\)

    1. 1
    2. 3
    3. 0
    4. 67
    5. 25
    \(25 \text{% of }{4 \over 4\text{%}} \text{ of }{1 \over 25}\)
    \(= 25 \text{% } × {4 \over 4\text{%}} × {1 \over 25} \)
    \(= 0.25 × {4 \over 0.04} × {1 \over 25}\)
    \(= {25 \over 25}\)
    = 1
  5. A retailer bought a compact disc from a manufacturer for $ 200. In addition to that, he paid a 15% sales tax. If he sold the disc to a customer for $ 260, calculate the cash profit he made.

    1. $ 30.00
    2. $ 35.00
    3. $ 32.50
    4. $ 28.00
    5. $ 30.50
    price of a compact disc with sales tax = 200 + 0.15 × 200
    = 200 + 30 = $ 230
    As the selling price of the disc = $ 260
    Hence, cash profit = 260 - 230 = $ 30
  6. 5.41 - 3.29 × 1.6 = ?

    1. 14.6
    2. 0.3392
    3. 0.146
    4. 3.392
    5. 1.46
    5.41 - 3.29 × 1.6 = 5.41 - 5.264 = 0.146
  7. Rashid buys three books for $ 16 each and four books for $ 23 each, what will be the average price of books

    1. $ 18
    2. $ 20
    3. $ 22
    4. $ 24
    5. $ 16
    Price of 3 books = 3 × 16 = $ 48
    Price of 4 books = 4 × 23 = $ 92
    Total price = $ 140
    Total books = 3 + 4 = 7
    Average price of books = \(140 \over 7 \) = $ 20
  8. A person's net income is $ 1373.70 and he pays an income tax of 5%. His gross income in dollars must be

    1. 1446
    2. 1118.96
    3. 1308.29
    4. 1438.25
    5. 1211.21
    Let gross income in dollars = x
    then according to the statement,
    x = 5% of x + 1373.70
    x - 0.05x = 1373.70
    0.95x = 1373.70
    x = \(137370 \over 95\) = 1446
  9. Matthew’s age (𝑚) is three years more than twice Rita’s age (𝑟). Which equation shows the relationship between their ages?

    1. 𝑚 = 𝑟 − 32
    2. 𝑚 = 𝑟 + 32
    3. 𝑚 = 2(𝑟 + 3)
    4. 𝑚 = 2𝑟 − 3
    5. 𝑚 = 2𝑟 + 3
    As Matthew's age (𝑚) is three more years (+3) than twice Rita's age (2𝑟). Therefore, 𝑚 = 2𝑟 + 3.
  10. A man travelled 120 km to a town. He could have reached the town 4 1⁄2 hours earlier had he increased his speed by 3 km/h. Find the speed at which he travelled.

    1. 6.56 km
    2. 7.57 km
    3. 8.58 km
    4. 9.59 km
    5. 5.55 km
    Let the normal speed \(= x \text{ } \frac{km}{hr}\)
    Time taken when travelled at the normal speed \(= \frac{120}{x}\) hr
    Time taken when travelled at the increased speed \(= \frac{120}{x + 3}\) hr
    $$\frac{120} {x} - \frac{120}{x + 3} = 4.5$$ $$120(x + 3) − 120x = 4.5x(x + 3)$$ $$360 = 4.5x(x + 3)$$ $$720 = 9x(x + 3)$$ $$80 = x(x + 3)$$ $$x^2 + 3x - 80 = 0$$ $$x = \frac{-3 \pm \sqrt{3^2-4 × (-80)}}{2} = \frac{-3 \pm \sqrt{329}}{2}$$ $$= \frac{-3 \pm 18.14}{2} = 7.57 \text{ (ignoring the negative value)}$$
  11. A and B enter into a partnership contributing $ 800 and $ 1000 respectively. At the end of 6 months they admit C, who contributes $ 600. After 3 years they get a profit of $ 966. Find the share of each partner in the profit.

    1. $ 336, $ 420, $ 210
    2. $ 360, $ 400, $ 206
    3. $ 380, $ 390, $ 196
    4. $ 345, $ 405, $ 210
    5. $ 325, $ 400, $ 200
    A shares = 800 × 3 = 2400
    B shares = 1000 × 3 = 3000
    C shares = 600 × 2 1⁄2 = 1500
    Total shares = 2400 + 3000 + 1500 = 6900
    A's profit = \(2400 \over 6900 \) × 966 = $ 336
    B's profit = \(3000 \over 6900 \) × 966 = $ 420
    C's profit = \(1500 \over 6900 \) × 966 = $ 210
  12. \( {396 \over 11} \) + 19 = ?

    1. 19.8
    2. 36
    3. 55
    4. 33
    5. 50
    \( {396 \over 11} \) + 19 = 36 + 19 = 55
  13. 72 + 679 + 1439 + 537+ ? = 4036

    1. 1309
    2. 1208
    3. 2308
    4. 2423
    5. 1309
    72 + 679 + 1439 + 537+ ? = 4036
    2727 + ? = 4036
    ? = 4036 - 2727 = 1309
  14. 15 men can complete a job in 10 days. How long will it take 8 men to finish the same job if they work at the same rate?

    1. 14 3⁄4 days
    2. 16 3⁄4 days
    3. 18 3⁄4 days
    4. 20 3⁄4 days
    5. 22 3⁄4 days
    \( 15 × 10 \over 8 \) = 18 3⁄4 days
  15. Rashid's salary was reduced by 20%. In order to restore his salary at the original amount, it must be raised by

    1. 20%
    2. 22.50%
    3. 25%
    4. 26%
    5. 27%
    Let Rashid's Salary 100
    20% reduced salary is 80
    As the reduced amount is 20
    So what percentage of the present sallary is required to be equal to 20?
    ?% of 80 = 20
    ? = \(20 \over 80\) × 100 = 25%
  16. if a > b and b > c then:

    1. a = c
    2. a > c
    3. c > a
    4. a < c
    5. none
    As a > b > c so a > c
  17. A shopkeeper sold two articles for $ 48 each. He made a 25% profit on one article and a loss of 20% on the other. What was his net gain or loss on the sale of the two articles?

    1. loss of $ 1.40
    2. gain of $ 2.40
    3. loss of $ 2.40
    4. gain of $ 1.40
    5. gain of $ 2.60
    25% profit at selling price $ 48 = 48 x .25 = $ 12
    20% loss at selling price $ 48 = 48 x 0.2 = $ 9.6
    gain = profit - loss = 12 - 9.6 = $ 2.4
  18. if x% of 60 = 48 then x = ?

    1. 80
    2. 60
    3. 90
    4. 40
    5. 70
    x = \( {48 × 100 \over 60} \) = 80
  19. \( {𝑥 - 8 \over 24} = {3 \over 4} \)
    What is the value of 𝑥 in the equation?

    1. 10
    2. 20
    3. 26
    4. 31
    5. 40
    By cross multiplying, 4(𝑥 – 8) =3 × 24. Thus, 4𝑥 – 32 = 72, and so 4𝑥 = 104 and 𝑥 = 26.
  20. A basket that contains 2 apples, 3 bananas, 6 oranges, and 4 pears is in the workroom. When Ms. Hutchinson went to the workroom, other workers had already taken 1 banana, 2 oranges, and 1 pear. From the remaining fruit, Ms. Hutchinson randomly took 3 pieces of fruit separately from the basket. If each fruit is equally likely to be chosen, what is the probability that the third piece was an orange if the first two she took were also oranges?

    1. 4/165
    2. 9/11
    3. 4/11
    4. 3/11
    5. 2/9
    Ms. Hutchinson randomly takes the 3 pieces of fruit from the basket, there are 2 apples, 3 -1 = 2 bananas, 6 - 2 = 4 oranges, and 4 - 1 = 3 pears. Assuming that the first 2 pieces of fruit Ms. Hutchinson takes are oranges, there will be 2 apples, 2 bananas, 4 - 2 = 2 oranges, and 3 pears left in the basket when she selects the third piece of fruit. The probability that the third piece of fruit she selects will be an orange is \(\frac{2}{2 + 2 + 2 + 3} = \frac{2}{9}\).

Solved Examples Set 1
Solved Examples Set 2
Solved Examples Set 3