In the name of ALLAH, the most beneficient, the most merciful

Solved Examples Set 3 (Quantitative Ability)

  1. At a book fair, a book was reduced in price from $ 75 to $ 60. If the first price gives a 50% profit, find the percentage profit of the book sold at the reduced price.

    1. 20%
    2. 30%
    3. 40%
    4. 50%
    5. 10%
    As $ 75 (first price) gives a profit = 50%
    $ 1 gives a profit = (50/75)%
    $ 60 (reduced price) gives profit = (50/75 x 60)% = 40%
  2. After spending 88% of his income, a man had $ 2160 left. Find his income.

    1. $ 18000
    2. $ 19000
    3. $ 20000
    4. $ 22000
    5. $ 17000
    Let income = x
    x = 88% of x + 2160
    x - 0.88x = 2160
    0.12x = 2160
    x = \(216000 \over 12\) = 18000
  3. A man bought a flat for $ 820000. He borrowed 55% of this money from a bank. How much money did he borrow from the bank?

    1. $ 451000
    2. $ 452000
    3. $ 453000
    4. $ 454000
    5. $ 450000
    55% of 820000 = 0.55 × 820000 = $ 451000
  4. A shopkeeper buys 300 identical articles at a total cost of $ 1500. He fixes the selling price of each article at 20% above the cost price and sells 260 articles at the price. As for the remaining articles, he sells them at 50% of the selling price. Calculate the shopkeeper's total profit.

    1. $ 180
    2. $ 185
    3. $ 200
    4. $ 190
    5. $ 170
    cost price of each item = \( 1500 \over 300 \) = $ 5
    selling price at 20% above the cost price = 5 + 5 × .2 = $ 6
    selling price of 260 items = 260 × 6 = $ 1560
    selling price of remaining 40 items = 40 × 6 × .5 = $ 120
    Total profit = 1560 + 120 - 1500 = $ 180
  5. A girl is 18 years younger than her mother. In 6 years time, the sum of their ages will be 54.How old is the girl now?

    1. 10 years
    2. 11 years
    3. 12 years
    4. 13 years
    5. 14 years
    Let girl's age = x
    then mother's age = x + 18
    After 6 years,
    x + 6 + x + 18 + 6 = 54
    2x + 30 = 54
    2x = 24
    x = 12
  6. if x% of 60 = 48 then x = ?

    1. 80
    2. 60
    3. 90
    4. 40
    5. 70
    x = \( {48 × 100 \over 60} \) = 80
  7. \( {396 \over 11} \) + 19 = ?

    1. 19.8
    2. 36
    3. 55
    4. 33
    5. 50
    \( {396 \over 11} \) + 19 = 36 + 19 = 55
  8. A man travelled 120 km to a town. He could have reached the town 4 1⁄2 hours earlier had he increased his speed by 3 km/h. Find the speed at which he travelled.

    1. 6.56 km
    2. 7.57 km
    3. 8.58 km
    4. 9.59 km
    5. 5.55 km
    Let the normal speed \(= x \text{ } \frac{km}{hr}\)
    Time taken when travelled at the normal speed \(= \frac{120}{x}\) hr
    Time taken when travelled at the increased speed \(= \frac{120}{x + 3}\) hr
    $$\frac{120} {x} - \frac{120}{x + 3} = 4.5$$ $$120(x + 3) − 120x = 4.5x(x + 3)$$ $$360 = 4.5x(x + 3)$$ $$720 = 9x(x + 3)$$ $$80 = x(x + 3)$$ $$x^2 + 3x - 80 = 0$$ $$x = \frac{-3 \pm \sqrt{3^2-4 × (-80)}}{2} = \frac{-3 \pm \sqrt{329}}{2}$$ $$= \frac{-3 \pm 18.14}{2} = 7.57 \text{ (ignoring the negative value)}$$
  9. A man is 5 times as old as his son. 2 years ago the sum of the squares of their ages was 1114. Find the present age of son.

    1. 7 years
    2. 9 years
    3. 8 years
    4. 8 1/2 years
    5. 6 years
    Let son's age = x, then
    father's age = 5x
    As before 2 years ago the sum of the squares of their ages was 1114, the equation becomes as
    \((x - 2)^2 + (5x - 2)^2 = 1114 \)
    By simplifying the equation, we have
    \(13x^2 -12x -553 = 0\)
    Now solving the equation, we have
    \(13x^2 - 12x - 553 = 0\)
    \(13x^2 - 91x + 79x -553 = 0\)
    13x(x - 7) + 79(x - 7) = 0
    (x - 7)(13x + 79) = 0
    x = 7 and x = -6.077
    As age could not be negative, hence the present age of the son is 7 years.
  10. A boy scored 90 marks for his mathematics test. This was 20% more than what he had scored for the geography test. How much did he score in geography?

    1. 71 marks
    2. 73 marks
    3. 75 marks
    4. 77 marks
    5. 78 marks
    20% of x + x = 90
    0.2x + x = 90
    1.2x = 90
    x = \(90 \over 1.2\)
    x = 75
  11. 72 + 679 + 1439 + 537+ ? = 4036

    1. 1309
    2. 1208
    3. 2308
    4. 2423
    5. 1309
    72 + 679 + 1439 + 537+ ? = 4036
    2727 + ? = 4036
    ? = 4036 - 2727 = 1309
  12. A man was 32 years old when his daughter was born. He is now five times as old as his daughter. How old is his daughter now?

    1. 7 years
    2. 8 years
    3. 9 years
    4. 10 years
    5. 6 years
    Let's assume the daughter is d years old now. That means that the man is now (32 + d) years old, so that
    (32 + d) = 5d
    32 = 4d
    d = 8
  13. \( {𝑥 - 8 \over 24} = {3 \over 4} \)
    What is the value of 𝑥 in the equation?

    1. 10
    2. 20
    3. 26
    4. 31
    5. 40
    By cross multiplying, 4(𝑥 – 8) =3 × 24. Thus, 4𝑥 – 32 = 72, and so 4𝑥 = 104 and 𝑥 = 26.
  14. A boy of height 165 cm is replaced by another, which decreases the average height of the group of 34 students, by 1 cm. The height of the new student is

    1. 129 cm
    2. 130 cm
    3. 131 cm
    4. 132 cm
    5. 133 cm
    Total decreased height of 34 students = 1 × 34 = 34 cm
    Height of the replaced student = 165 - 34 = 131 cm
  15. By selling 60 chairs, a man gains an amount equal to selling price of 10 chairs. The profit percentage in the transaction is

    1. 10%
    2. 15%
    3. 16.67%
    4. 20%
    5. 22%
    selling price of 60 chairs = selling price of 10 chairs
    profit of 60 chairs = profit of 10 chairs
    profit of 6 chairs = profit of 1 chair
    profit of 1 chair = profit of 1/6 chair
    profit %age = 1/6 x 100 = 16.67%
  16. A man saves $ 500, which is 15% of his annual income. How much does he earn in one year?

    1. $ 3542.5
    2. $ 3333.33
    3. $ 3132.3
    4. $ 3075.75
    5. $ 4444.4
    Let annual income = x
    15% of x = 500
    x = \(500 \over 15\) × 100 = \(10000 \over 3\) = 3333.33
  17. A shop owner blends three types of coffees, A, B and C, in the ratio 3:5:7. Given that type A coffee costs $ 70 per kg, type B coffee costs $ 100 per kg and type C coffee costs $ 130 per kg, calculate the cost per kg of the blended mixture.

    1. $ 106
    2. $ 108
    3. $ 109
    4. $ 110
    5. $ 105
    Cost per kg = 70 x 1/5 + 100 x 1/3 + 130 x 7/15 = $ 108 per kg
  18. A man walked for 3 hours at 4.5 km/h and cycled for some time at 15 km/h. Altogether, he traveled 21 km. Find the time taken for cycling.

    1. 1/2 hour
    2. 1 hour
    3. 1 1⁄2 hours
    4. 2 hours
    5. 2 1⁄2 hours
    The man walked the distance = 3 x 4.5 = 13.5 km. The distance cycled by the man = 21 - 13.5 = 7.5 km
    As he cyled 15 km in 1 h
    he cycled 1 km in 1/15 h
    Finally, he cycled 7.5 km in 7.5/15 = 1/2 h
  19. A man pays 10% of his income for his income tax. If his income tax amounts to $ 1500, what is his income?

    1. $ 13000
    2. $ 15000
    3. $ 17000
    4. $ 19000
    5. $ 11000
    Let x = income
    10% of x = $ 1500
    0.1x = $ 1500
    x = \(1500 \over 0.1\) = $ 15000
  20. A bank increased the rate of interest which it paid to depositors from 3.5% to 4% per annum. Find how much more interest a man would receive if he deposited $ 64000 in the bank for 6 months at the new interest rate

    1. $ 160
    2. $ 180
    3. $ 200
    4. $ 220
    5. $ 150
    If the interest rate is 3.5% then interest amount is
    3.5% of 6400 = 0.035 × 6400 = $ 2240
    If the interest rate is 4% then interest amount is
    4% of 6400 = 0.04 × 6400 = $ 2560
    Now the difference of both interests = 2560 - 2240 = $ 320 per annum
    Interest for half year (6 months) = \(320 \over 2\) = $ 160

Solved Examples Set 1
Solved Examples Set 2
Solved Examples Set 3