In the name of ALLAH, the most beneficient, the most merciful

Solved Examples Set 3 (Quantitative Ability)

  1. 72 + 679 + 1439 + 537+ ? = 4036

    1. 1309
    2. 1208
    3. 2308
    4. 2423
    5. 1309
    72 + 679 + 1439 + 537+ ? = 4036
    2727 + ? = 4036
    ? = 4036 - 2727 = 1309
  2. A and B enter into a partnership contributing $ 800 and $ 1000 respectively. At the end of 6 months they admit C, who contributes $ 600. After 3 years they get a profit of $ 966. Find the share of each partner in the profit.

    1. $ 336, $ 420, $ 210
    2. $ 360, $ 400, $ 206
    3. $ 380, $ 390, $ 196
    4. $ 345, $ 405, $ 210
    5. $ 325, $ 400, $ 200
    A shares = 800 × 3 = 2400
    B shares = 1000 × 3 = 3000
    C shares = 600 × 2 1⁄2 = 1500
    Total shares = 2400 + 3000 + 1500 = 6900
    A's profit = \(2400 \over 6900 \) × 966 = $ 336
    B's profit = \(3000 \over 6900 \) × 966 = $ 420
    C's profit = \(1500 \over 6900 \) × 966 = $ 210
  3. A third-grade class is composed of 16 girls and 12 boys. There are 2 teacher-aides in the class. The ratio of girls to boys to teacher-aides is

    1. 16:12:1
    2. 8:6:2
    3. 8:6:1
    4. 8:3:1
    5. 4:3:1
    Girls to boys to teacher-aides are in proportion 16 to 12 to 2. Reduced to lowest terms, 16:12:2 equals 8:6:1.
  4. A man sells two houses for $ 2 lac each. On one he gained 20% and on the other he lost 20%. His total profit or loss % in the transaction will be

    1. 4% profit
    2. 5% loss
    3. no profit, no loss
    4. 4% loss
    5. 3% loss
    % loss = (% loss X % profit)/100 = (20 X 20)/100 = 4%
  5. 42.98 + ? = 107.87

    1. 64.89
    2. 65.89
    3. 64.98
    4. 65.81
    5. 63.89
    ? = 107.87 - 42.98 = 64.89
  6. \( {396 \over 11} \) + 19 = ?

    1. 19.8
    2. 36
    3. 55
    4. 33
    5. 50
    \( {396 \over 11} \) + 19 = 36 + 19 = 55
  7. if x% of 60 = 48 then x = ?

    1. 80
    2. 60
    3. 90
    4. 40
    5. 70
    x = \( {48 × 100 \over 60} \) = 80
  8. If 3x = −9, then 3x3 − 2x + 4 =

    1. -83
    2. -71
    3. -47
    4. -17
    5. 61
    First solving 3x = −9, x = −3. Now plug into 3x3 − 2x + 4:
    3x3 − 2x + 4
    = 3(-3)3 − 2(-2) + 4
    = 3(−27) + 6 + 4
    = −81 + 6 + 4
    = −71
  9. A bank exchanges British currency for Singapore currency at the rate of S$ 3.20 to pond 1. Calculate, in Pond, the amount exchanged for S$ 1,600 by a customer who also had to pay an extra 3% commission for this transaction.

    1. Pond 475
    2. Pond 485
    3. Pond 495
    4. Pond 505
    5. Pond 510
    As commission is 3% of 1600 = 0.03 × 1600 = S$ 48
    the rest amount = 1600 - 48 = S$ 1552
    S$ 1 = \(1 \over 3.20\) = Pond 0.3125
    Now S$ 1552 = 1552 × 0.3125 = Pond 485
  10. By selling 60 chairs, a man gains an amount equal to selling price of 10 chairs. The profit percentage in the transaction is

    1. 10%
    2. 15%
    3. 16.67%
    4. 20%
    5. 22%
    selling price of 60 chairs = selling price of 10 chairs
    profit of 60 chairs = profit of 10 chairs
    profit of 6 chairs = profit of 1 chair
    profit of 1 chair = profit of 1/6 chair
    profit %age = 1/6 x 100 = 16.67%
  11. \( {0.027 \over 90} = ? \)

    1. 0.0003
    2. 0.03
    3. 3
    4. 0.00003
    5. 0.003
    \( {0.027 \over 90} = {27 \over 1000 × 90} = {3 \over 10000} = 0.0003 \)
  12. 40 men can build a wall 4 metres high in 15 days. The number of men required to build a similar wall 5 metres high in 6 days is

    1. 115
    2. 125
    3. 105
    4. 135
    5. 130
    \( 40 × 15 × 5 \over 6 × 4 \) = 125 men
  13. A bank increased the rate of interest which it paid to depositors from 3.5% to 4% per annum. Find how much more interest a man would receive if he deposited $ 64000 in the bank for 6 months at the new interest rate

    1. $ 160
    2. $ 180
    3. $ 200
    4. $ 220
    5. $ 150
    If the interest rate is 3.5% then interest amount is
    3.5% of 6400 = 0.035 × 6400 = $ 2240
    If the interest rate is 4% then interest amount is
    4% of 6400 = 0.04 × 6400 = $ 2560
    Now the difference of both interests = 2560 - 2240 = $ 320 per annum
    Interest for half year (6 months) = \(320 \over 2\) = $ 160
  14. A man bought a flat for $ 820000. He borrowed 55% of this money from a bank. How much money did he borrow from the bank?

    1. $ 451000
    2. $ 452000
    3. $ 453000
    4. $ 454000
    5. $ 450000
    55% of 820000 = 0.55 × 820000 = $ 451000
  15. A retailer bought a compact disc from a manufacturer for $ 200. In addition to that, he paid a 15% sales tax. If he sold the disc to a customer for $ 260, calculate the cash profit he made.

    1. $ 30.00
    2. $ 35.00
    3. $ 32.50
    4. $ 28.00
    5. $ 30.50
    price of a compact disc with sales tax = 200 + 0.15 × 200
    = 200 + 30 = $ 230
    As the selling price of the disc = $ 260
    Hence, cash profit = 260 - 230 = $ 30
  16. A primary school had an enrollment of 850 pupils in January 1970. In January 1980 the enrollment was 1,120. What was the percentage increase for the enrollment?

    1. 31.76%
    2. 33.50%
    3. 30.65%
    4. 34.76%
    5. 30.55%
    Percentage increase for the enrollment = \(1120 - 850 \over 850\) × 100 = 31.76
  17. Which expression is equivalent to \(\frac{6𝑥^2 + 4𝑥}{2𝑥}\)?

    1. 7x
    2. 5x2
    3. 3x + 2
    4. 6x2 + 2
    5. 3x2 + 2x
    As \(\frac{6𝑥^2}{2𝑥} = 3𝑥,\) and \(\frac{4𝑥}{2𝑥} = 2,\) so then \(\frac{6𝑥^2 + 4𝑥}{2𝑥} = 3𝑥 + 2\)
  18. The amount of hot cocoa powder remaining in a can is 6 1⁄4 tablespoons. A single serving consists of 1 3⁄4 tablespoons of the powder. What is the total number of servings of the powder remaining in the can?

    1. 3 1⁄2
    2. 3 4⁄7
    3. 4 3⁄7
    4. 4 1⁄2
    5. 6
    As \(6\frac{1}{4} = \frac{25}{4}\) and \(1\frac{3}{4} = \frac{7}{4}\). Therefore,
    \(\frac{6\frac{1}{4} \text{ tsp}}{1\frac{3}{4} \text{ } \frac{tsp}{ serving}} = \frac{\frac{25}{4}}{\frac{7}{4}} \text{ servings} = \frac{25}{7} \text{ servings} = 3\frac{4}{7} \text{ servings}\)
  19. A shopkeeper buys 300 identical articles at a total cost of $ 1500. He fixes the selling price of each article at 20% above the cost price and sells 260 articles at the price. As for the remaining articles, he sells them at 50% of the selling price. Calculate the shopkeeper's total profit.

    1. $ 180
    2. $ 185
    3. $ 200
    4. $ 190
    5. $ 170
    cost price of each item = \( 1500 \over 300 \) = $ 5
    selling price at 20% above the cost price = 5 + 5 × .2 = $ 6
    selling price of 260 items = 260 × 6 = $ 1560
    selling price of remaining 40 items = 40 × 6 × .5 = $ 120
    Total profit = 1560 + 120 - 1500 = $ 180
  20. A certain solution is to be prepared by combining chemicals X, Y and Z in the ratio 18:3:2. How many liters of the solution can be prepared by using 36 liters of X?

    1. 46 liters
    2. 47 liters
    3. 45 liters
    4. 49 liters
    5. 44 liters
    As total ratio is 18 +3 + 2 = 23
    Let total solution is x liters
    Then \(18 \over 23\) x = 36
    x = \(36 × 23 \over 18\) = 46 liters

Solved Examples Set 1
Solved Examples Set 2
Solved Examples Set 3