In the name of ALLAH, the most beneficient, the most merciful

Solved Examples Set 3 (Quantitative Ability)

  1. ?% of 60 = 24

    1. 40
    2. 48
    3. 45
    4. 42
    5. 38
    ?% × 60 = 24
    \(? = {24 \over 60} × 100 \) = 40
  2. A man travelled 120 km to a town. He could have reached the town 4 1⁄2 hours earlier had he increased his speed by 3 km/h. Find the speed at which he travelled.

    1. 6.56 km
    2. 7.57 km
    3. 8.58 km
    4. 9.59 km
    5. 5.55 km
    Let the normal speed \(= x \text{ } \frac{km}{hr}\)
    Time taken when travelled at the normal speed \(= \frac{120}{x}\) hr
    Time taken when travelled at the increased speed \(= \frac{120}{x + 3}\) hr
    $$\frac{120} {x} - \frac{120}{x + 3} = 4.5$$ $$120(x + 3) − 120x = 4.5x(x + 3)$$ $$360 = 4.5x(x + 3)$$ $$720 = 9x(x + 3)$$ $$80 = x(x + 3)$$ $$x^2 + 3x - 80 = 0$$ $$x = \frac{-3 \pm \sqrt{3^2-4 × (-80)}}{2} = \frac{-3 \pm \sqrt{329}}{2}$$ $$= \frac{-3 \pm 18.14}{2} = 7.57 \text{ (ignoring the negative value)}$$
  3. Which set of ordered pairs represents a function?

    1. {(−5,5),(4,8),(−5,−6)}
    2. {(−1,−1),(−1,6),(−1,−10)}
    3. {(−3,7),(2,5),(−7,7)}
    4. {(2,3),(−2,4),(−2,−5)}
    5. {(2,3),(3,2),(2,5)}
    For a set of ordered pairs to be a function, no single 𝑥-coordinate can be mapped to two distinct 𝑦-coordinates. This is not the case for option A, where 𝑥=−5 is mapped to both 𝑦=5 and 𝑦=−6. Similarly, in options B (𝑥=−1), D (𝑥=−2), and E (𝑥=2), an 𝑥 value is mapped to two different 𝑦 values.
  4. 10 men can complete a job in 14 days. How long will it take 4 men to finish the same job if they work at the same rate?

    1. 33 days
    2. 35 days
    3. 37 days
    4. 39 days
    5. 31 days
    \(14 × 10 \over 4 \) = 35 days
  5. A can do a piece of work in 10 days and B can do it in 15 days. The number of days required by them to finish it, working together is

    1. 8
    2. 7
    3. 6
    4. 4
    5. 3
    A's 1 day work = \(1 \over 10\)
    B's 1 day work = \(1 \over 15\)
    Now both A and B's 1 day work = \({1 \over 10} + {1 \over 15}\) = \(3 + 2 \over 30\) = \(1 \over 6\)
    Hence the work by both A and B will be completed in 6 days.
  6. A man bought a flat for $ 820000. He borrowed 55% of this money from a bank. How much money did he borrow from the bank?

    1. $ 451000
    2. $ 452000
    3. $ 453000
    4. $ 454000
    5. $ 450000
    55% of 820000 = 0.55 × 820000 = $ 451000
  7. \(\frac{\frac{7}{10} × 14 × 5 × \frac{1}{28}}{\frac{10}{17} × \frac{3}{5} × \frac{1}{6} × 17} = \)

    1. 4/7
    2. 1
    3. 7/4
    4. 2
    5. 17/4

  8. A man saves $ 500, which is 15% of his annual income. How much does he earn in one year?

    1. $ 3542.5
    2. $ 3333.33
    3. $ 3132.3
    4. $ 3075.75
    5. $ 4444.4
    Let annual income = x
    15% of x = 500
    x = \(500 \over 15\) × 100 = \(10000 \over 3\) = 3333.33
  9. By selling a fan for $ 475, a person loses 5%. To get a gain of 5%, he should sell the fan for:

    1. $ 500
    2. $ 525
    3. $ 535
    4. $ 575
    5. $ 505
    cost price = 100/(100 - 5) x 475 = $ 500
    sale price = (100 + 5)/100 x 500 = $ 525
  10. If 4a + 2 = 10, then 8a + 4 =

    1. 5
    2. 16
    3. 20
    4. 24
    5. 28
    One may answer this question by solving
    4a + 2 = 10
    4a = 8
    a= 2
    Now, plugging in 2 for a:
    8a + 4 = 8(2) + 4 = 20
    A faster way of solving this is to see the relationship between the quantity 4a + 2 (which equals 10) and 8a + 4. Since 8a + 4 is twice 4a + 2, the answer must be twice 10, or 20.
  11. A person's net income is $ 1373.70 and he pays an income tax of 5%. His gross income in dollars must be

    1. 1446
    2. 1118.96
    3. 1308.29
    4. 1438.25
    5. 1211.21
    Let gross income in dollars = x
    then according to the statement,
    x = 5% of x + 1373.70
    x - 0.05x = 1373.70
    0.95x = 1373.70
    x = \(137370 \over 95\) = 1446

  12. In the figure above, AB is one edge of a cube. If AB equals 5, what is the surface area of the cube?

    1. 25
    2. 100
    3. 125
    4. 150
    5. 300
    Since one edge of the cube is 5, all edges equal 5. Therefore, the area of one face of the cube is:
    5 × 5 = 25
    Since a cube has 6 equal faces, its surface area will be:
    6 × 25 = 150
  13. 42.98 + ? = 107.87

    1. 64.89
    2. 65.89
    3. 64.98
    4. 65.81
    5. 63.89
    ? = 107.87 - 42.98 = 64.89
  14. 8 : ? :: 1 : 4

    1. 24
    2. 16
    3. 0
    4. 32
    5. 20
    ? × 1 = 8 × 4
    ? = 32
  15. A shopkeeper sold two articles for $ 48 each. He made a 25% profit on one article and a loss of 20% on the other. What was his net gain or loss on the sale of the two articles?

    1. loss of $ 1.40
    2. gain of $ 2.40
    3. loss of $ 2.40
    4. gain of $ 1.40
    5. gain of $ 2.60
    25% profit at selling price $ 48 = 48 x .25 = $ 12
    20% loss at selling price $ 48 = 48 x 0.2 = $ 9.6
    gain = profit - loss = 12 - 9.6 = $ 2.4
  16. \( {𝑥 - 8 \over 24} = {3 \over 4} \)
    What is the value of 𝑥 in the equation?

    1. 10
    2. 20
    3. 26
    4. 31
    5. 40
    By cross multiplying, 4(𝑥 – 8) =3 × 24. Thus, 4𝑥 – 32 = 72, and so 4𝑥 = 104 and 𝑥 = 26.
  17. A car traveled 100 km with half the distance at 40 km/h and the other half at 80 km/h. Find the average speed of the car for the whole journey.

    1. 53 km/hr
    2. 53.33 km/hr
    3. 54 1⁄4 km/hr
    4. 55 km/hr
    5. 56 km/hr
    The time, car took for the first half, \(50 \over 40 \) = 1.25 hrs
    and for the second half \(50 \over 80 \) = 0.625 hrs
    Total time = 1.25 + 0.625 = 1.875 hrs
    Average speed = \(100 \over 1.875 \) = 53.3 \(km \over hr\)
  18. A basket that contains 2 apples, 3 bananas, 6 oranges, and 4 pears is in the workroom. When Ms. Hutchinson went to the workroom, other workers had already taken 1 banana, 2 oranges, and 1 pear. From the remaining fruit, Ms. Hutchinson randomly took 3 pieces of fruit separately from the basket. If each fruit is equally likely to be chosen, what is the probability that the third piece was an orange if the first two she took were also oranges?

    1. 4/165
    2. 9/11
    3. 4/11
    4. 3/11
    5. 2/9
    Ms. Hutchinson randomly takes the 3 pieces of fruit from the basket, there are 2 apples, 3 -1 = 2 bananas, 6 - 2 = 4 oranges, and 4 - 1 = 3 pears. Assuming that the first 2 pieces of fruit Ms. Hutchinson takes are oranges, there will be 2 apples, 2 bananas, 4 - 2 = 2 oranges, and 3 pears left in the basket when she selects the third piece of fruit. The probability that the third piece of fruit she selects will be an orange is \(\frac{2}{2 + 2 + 2 + 3} = \frac{2}{9}\).
  19. A man was 32 years old when his daughter was born. He is now five times as old as his daughter. How old is his daughter now?

    1. 7 years
    2. 8 years
    3. 9 years
    4. 10 years
    5. 6 years
    Let's assume the daughter is d years old now. That means that the man is now (32 + d) years old, so that
    (32 + d) = 5d
    32 = 4d
    d = 8
  20. After spending 88% of his income, a man had $ 2160 left. Find his income.

    1. $ 18000
    2. $ 19000
    3. $ 20000
    4. $ 22000
    5. $ 17000
    Let income = x
    x = 88% of x + 2160
    x - 0.88x = 2160
    0.12x = 2160
    x = \(216000 \over 12\) = 18000

Solved Examples Set 1
Solved Examples Set 2
Solved Examples Set 3