In the name of ALLAH, the most beneficient, the most merciful

Solved Examples Set 1 (Quantitative Ability)

  1. A rectangular room is 6 m long, 5 m wide and 4 m high. The total volume of the room in cubic meters is

    1. 24
    2. 30
    3. 120
    4. 240
    5. 140
    Total volume = length × width × height = 6 × 5 × 4 = 120
  2. A single discount equivalent to a discount series of 20%, 10% and 25% is

    1. 55%
    2. 54%
    3. 46%
    4. 42%
    5. 50%
    If 3 succesive discounts are a%, b% and c%
    then single discount = a + b + c – (\(ab \over 100 \) + \(bc \over 100\) + \(ca \over 100 \) – \(abc \over 10000 \))
    a = 20, b = 10, c = 25, solving we get, 46%.
  3. A certain number was doubled and the result then multiplied by 3. If the product was 138, find the number.

    1. 21
    2. 23
    3. 25
    4. 27
    5. 19
    Let x be the number
    the number is doubled, 2x
    the result is multiplied by 3, 3 × 2x = 6x
    6x = 138
    x = \(138 \over 6\) = 23
  4. 10 men can complete a job in 14 days. How long will it take 4 men to finish the same job if they work at the same rate?

    1. 33 days
    2. 35 days
    3. 37 days
    4. 39 days
    5. 31 days
    \(14 × 10 \over 4 \) = 35 days
  5. A man sells two houses for $ 2 lac each. On one he gained 20% and on the other he lost 20%. His total profit or loss % in the transaction will be

    1. 4% profit
    2. 5% loss
    3. no profit, no loss
    4. 4% loss
    5. 3% loss
    % loss = (% loss X % profit)/100 = (20 X 20)/100 = 4%
  6. ? × 12 = 75% of 336

    1. 48
    2. 252
    3. 28
    4. 21
    5. 23
    ? × 12 = 75% of 336
    ? × 12 = 0.75 × 336
    ? × 12 = 252
    \(? = \frac{252}{12}\)
    ? = 21
  7. 40 arithmetic questions, each carrying equal marks, were given in a class test. A boy answered 25 questions correctly. What percentage was this? To pass a test a student must answer at least 45% of the questions correctly. Find the least number of correct answers needed to pass.

    1. 62.5%, 18
    2. 63.5%, 16
    3. 64.5%, 20
    4. 61.0%, 21
    5. 60.0%, 22
    \(x \text{% of } 40 = 25\)
    \(x \text{% } × 40 = 25\)
    \(x = {25 \over 40} × 100 \)
    x = 62.5

    \(x = 45 \text{% of } 40 \)
    \(x = 0.45 × 40 \)
    x = 18
  8. By selling 60 chairs, a man gains an amount equal to selling price of 10 chairs. The profit percentage in the transaction is

    1. 10%
    2. 15%
    3. 16.67%
    4. 20%
    5. 22%
    selling price of 60 chairs = selling price of 10 chairs
    profit of 60 chairs = profit of 10 chairs
    profit of 6 chairs = profit of 1 chair
    profit of 1 chair = profit of 1/6 chair
    profit %age = 1/6 x 100 = 16.67%
  9. A man walked for 3 hours at 4.5 km/h and cycled for some time at 15 km/h. Altogether, he traveled 21 km. Find the time taken for cycling.

    1. 1/2 hour
    2. 1 hour
    3. 1 1⁄2 hours
    4. 2 hours
    5. 2 1⁄2 hours
    The man walked the distance = 3 x 4.5 = 13.5 km. The distance cycled by the man = 21 - 13.5 = 7.5 km
    As he cyled 15 km in 1 h
    he cycled 1 km in 1/15 h
    Finally, he cycled 7.5 km in 7.5/15 = 1/2 h
  10. A bank increased the rate of interest which it paid to depositors from 3.5% to 4% per annum. Find how much more interest a man would receive if he deposited $ 64000 in the bank for 6 months at the new interest rate

    1. $ 160
    2. $ 180
    3. $ 200
    4. $ 220
    5. $ 150
    If the interest rate is 3.5% then interest amount is
    3.5% of 6400 = 0.035 × 6400 = $ 2240
    If the interest rate is 4% then interest amount is
    4% of 6400 = 0.04 × 6400 = $ 2560
    Now the difference of both interests = 2560 - 2240 = $ 320 per annum
    Interest for half year (6 months) = \(320 \over 2\) = $ 160
  11. 15 men can complete a job in 10 days. How long will it take 8 men to finish the same job if they work at the same rate?

    1. 14 3⁄4 days
    2. 16 3⁄4 days
    3. 18 3⁄4 days
    4. 20 3⁄4 days
    5. 22 3⁄4 days
    \( 15 × 10 \over 8 \) = 18 3⁄4 days
  12. If n! = n ⋅ (n − 1) ⋅ (n − 2) ⋅ (n − 3) . . . 2 ⋅ 1, what is the value of \(\frac{(6!)(4!)}{(5!)(3!)}\)

    1. 5/4
    2. 8/5
    3. 10
    4. 24
    5. 1152
    \(\frac{(6!)(4!)}{(5!)(3!)}\) = \(\frac{(6 . 5 . 4 . 3 . 2 . 1)(4 . 3 . 2. 1)}{(5 . 4 . 3 . 2 . 1)(3 . 2 . 1)}\) = \(\frac{6 . 4}{1}\) = 24
  13. \( {63.84 \over ?} \) = 21

    1. 3.04
    2. 3.4
    3. 30.4
    4. 300.4
    5. 0.304
    ? = \( 63.84 \over 21 \) = 3.04
  14. Which of the following expressions is equivalent to \(\frac{𝑥^2 + 3x + 1}{𝑥 + 1}\)?

    1. x + 2
    2. 𝑥 + 3
    3. 𝑥 + 2 - 1/(𝑥 + 1)
    4. 𝑥 + 3 + 1/(𝑥 + 1)
    5. 𝑥 + 4 + 5/(𝑥 + 1)
    As \(𝑥^2 + 3x + 1 = (𝑥^2 + 3x + 2) -1\)
    and
    \(\frac{𝑥^2 + 3x + 2}{x + 1} = \frac{(𝑥 + 2)(x + 1)}{x + 1} = 𝑥 + 2\)
    Therefore,
    \(\frac{𝑥^2 + 3x + 1}{x + 1} = \frac{𝑥^2 + 3x + 2}{x + 1} - \frac{1}{x + 1} = (𝑥 + 2) - \frac{1}{x + 1}\)
  15. \( {5.76 \over 1.6} - 2.4 = ? \)

    1. 1.2
    2. 2.4
    3. 7.2
    4. 0.12
    5. 0.012
    \( {5.76 \over 1.6} - 2.4 = \) 3.6 - 2.4 =1.2
  16. 1.02 - 0.20 + ? = 0.842

    1. 0.222
    2. 232
    3. 2
    4. 0.022
    5. 0.012
    1.02 - 0.20 + ? = 0.842
    0.82 + ? = 0.842
    ? = 0.842 - 0.82 = 0.022
  17. A group of laborers accepted to do a piece of work in 20 days. 8 of them did not turn up for the work and the remaining did the work in 24 days. The original number of laborers was

    1. 47
    2. 48
    3. 49
    4. 50
    5. 51
    x laborers do work in 20 days and x-8 laborers do same work in 24 days. As the no. of laborers decrease, the no. of days increased then it becomes as
    x : x - 8 :: 24 : 20
    product of interiors = product of exteriors
    24x - 192 = 20x
    4x = 192
    x = 48
  18. If 3x = −9, then 3x3 − 2x + 4 =

    1. -83
    2. -71
    3. -47
    4. -17
    5. 61
    First solving 3x = −9, x = −3. Now plug into 3x3 − 2x + 4:
    3x3 − 2x + 4
    = 3(-3)3 − 2(-2) + 4
    = 3(−27) + 6 + 4
    = −81 + 6 + 4
    = −71
  19. \( {396 \over 11} \) + 19 = ?

    1. 19.8
    2. 36
    3. 55
    4. 33
    5. 50
    \( {396 \over 11} \) + 19 = 36 + 19 = 55
  20. A man pays 10% of his income for his income tax. If his income tax amounts to $ 1500, what is his income?

    1. $ 13000
    2. $ 15000
    3. $ 17000
    4. $ 19000
    5. $ 11000
    Let x = income
    10% of x = $ 1500
    0.1x = $ 1500
    x = \(1500 \over 0.1\) = $ 15000

Solved Examples Set 1
Solved Examples Set 2
Solved Examples Set 3