In the name of ALLAH, the most beneficient, the most merciful

Solved Examples Set 1 (Quantitative Ability)

  1. A can do a piece of work in 10 days and B can do it in 15 days. The number of days required by them to finish it, working together is

    1. 8
    2. 7
    3. 6
    4. 4
    5. 3
    A's 1 day work = \(1 \over 10\)
    B's 1 day work = \(1 \over 15\)
    Now both A and B's 1 day work = \({1 \over 10} + {1 \over 15}\) = \(3 + 2 \over 30\) = \(1 \over 6\)
    Hence the work by both A and B will be completed in 6 days.
  2. A shopkeeper sold two articles for $ 48 each. He made a 25% profit on one article and a loss of 20% on the other. What was his net gain or loss on the sale of the two articles?

    1. loss of $ 1.40
    2. gain of $ 2.40
    3. loss of $ 2.40
    4. gain of $ 1.40
    5. gain of $ 2.60
    25% profit at selling price $ 48 = 48 x .25 = $ 12
    20% loss at selling price $ 48 = 48 x 0.2 = $ 9.6
    gain = profit - loss = 12 - 9.6 = $ 2.4
  3. The amount of hot cocoa powder remaining in a can is 6 1⁄4 tablespoons. A single serving consists of 1 3⁄4 tablespoons of the powder. What is the total number of servings of the powder remaining in the can?

    1. 3 1⁄2
    2. 3 4⁄7
    3. 4 3⁄7
    4. 4 1⁄2
    5. 6
    As \(6\frac{1}{4} = \frac{25}{4}\) and \(1\frac{3}{4} = \frac{7}{4}\). Therefore,
    \(\frac{6\frac{1}{4} \text{ tsp}}{1\frac{3}{4} \text{ } \frac{tsp}{ serving}} = \frac{\frac{25}{4}}{\frac{7}{4}} \text{ servings} = \frac{25}{7} \text{ servings} = 3\frac{4}{7} \text{ servings}\)
  4. A bank exchanges British currency for Singapore currency at the rate of S$ 3.20 to pond 1. Calculate, in Pond, the amount exchanged for S$ 1,600 by a customer who also had to pay an extra 3% commission for this transaction.

    1. Pond 475
    2. Pond 485
    3. Pond 495
    4. Pond 505
    5. Pond 510
    As commission is 3% of 1600 = 0.03 × 1600 = S$ 48
    the rest amount = 1600 - 48 = S$ 1552
    S$ 1 = \(1 \over 3.20\) = Pond 0.3125
    Now S$ 1552 = 1552 × 0.3125 = Pond 485
  5. A man was 32 years old when his daughter was born. He is now five times as old as his daughter. How old is his daughter now?

    1. 7 years
    2. 8 years
    3. 9 years
    4. 10 years
    5. 6 years
    Let's assume the daughter is d years old now. That means that the man is now (32 + d) years old, so that
    (32 + d) = 5d
    32 = 4d
    d = 8
  6. If n! = n ⋅ (n − 1) ⋅ (n − 2) ⋅ (n − 3) . . . 2 ⋅ 1, what is the value of \(\frac{(6!)(4!)}{(5!)(3!)}\)

    1. 5/4
    2. 8/5
    3. 10
    4. 24
    5. 1152
    \(\frac{(6!)(4!)}{(5!)(3!)}\) = \(\frac{(6 . 5 . 4 . 3 . 2 . 1)(4 . 3 . 2. 1)}{(5 . 4 . 3 . 2 . 1)(3 . 2 . 1)}\) = \(\frac{6 . 4}{1}\) = 24
  7. \(25 \text{% of }{4 \over 4\text{%}} \text{ of }{1 \over 25} = ?\)

    1. 1
    2. 3
    3. 0
    4. 67
    5. 25
    \(25 \text{% of }{4 \over 4\text{%}} \text{ of }{1 \over 25}\)
    \(= 25 \text{% } × {4 \over 4\text{%}} × {1 \over 25} \)
    \(= 0.25 × {4 \over 0.04} × {1 \over 25}\)
    \(= {25 \over 25}\)
    = 1
  8. In the series 8, 9, 12, 17, 24 . . . the next number would be

    1. 29
    2. 30
    3. 33
    4. 35
    5. 41
    In the series, 8, 9, 12, 17, 24 . . .
    9 − 8 = 1
    12 − 9 = 3
    17 − 12 = 5
    24 − 17 = 7
    Hence, the difference between the next term and 24 must be 9 or
    x − 24 = 9, and
    x = 33
    Hence, the next term in the series must be 33
  9. A shop owner blends three types of coffees, A, B and C, in the ratio 3:5:7. Given that type A coffee costs $ 70 per kg, type B coffee costs $ 100 per kg and type C coffee costs $ 130 per kg, calculate the cost per kg of the blended mixture.

    1. $ 106
    2. $ 108
    3. $ 109
    4. $ 110
    5. $ 105
    Cost per kg = 70 x 1/5 + 100 x 1/3 + 130 x 7/15 = $ 108 per kg
  10. 40 men can build a wall 4 metres high in 15 days. The number of men required to build a similar wall 5 metres high in 6 days is

    1. 115
    2. 125
    3. 105
    4. 135
    5. 130
    \( 40 × 15 × 5 \over 6 × 4 \) = 125 men
  11. If 4a + 2 = 10, then 8a + 4 =

    1. 5
    2. 16
    3. 20
    4. 24
    5. 28
    One may answer this question by solving
    4a + 2 = 10
    4a = 8
    a= 2
    Now, plugging in 2 for a:
    8a + 4 = 8(2) + 4 = 20
    A faster way of solving this is to see the relationship between the quantity 4a + 2 (which equals 10) and 8a + 4. Since 8a + 4 is twice 4a + 2, the answer must be twice 10, or 20.
  12. Which set of ordered pairs represents a function?

    1. {(−5,5),(4,8),(−5,−6)}
    2. {(−1,−1),(−1,6),(−1,−10)}
    3. {(−3,7),(2,5),(−7,7)}
    4. {(2,3),(−2,4),(−2,−5)}
    5. {(2,3),(3,2),(2,5)}
    For a set of ordered pairs to be a function, no single 𝑥-coordinate can be mapped to two distinct 𝑦-coordinates. This is not the case for option A, where 𝑥=−5 is mapped to both 𝑦=5 and 𝑦=−6. Similarly, in options B (𝑥=−1), D (𝑥=−2), and E (𝑥=2), an 𝑥 value is mapped to two different 𝑦 values.
  13. The closest approximation of \(\frac{69.28 × .004}{.03}\) is

    1. 0.092
    2. 0.92
    3. 9.2
    4. 92
    5. 920
    This problem is most easily completed by rearranging and approximating as follows:
    (69.28 x .004)/.03 ≅ 69 x .1 = 6.9
    which is the only reasonably close answer to 9.2
  14. 60% of 37 = ?

    1. 20
    2. 21
    3. 22.2
    4. 22
    5. none
    60% of 37 = 0.6 × 37 = 22.2
  15. 5873 + 12034 + 1106 = ?

    1. 19016
    2. 20001
    3. 19013
    4. 2018
    5. 19010
    5873 + 12034 + 1106 = 17907 + 1106 = 19013
  16. A basket that contains 2 apples, 3 bananas, 6 oranges, and 4 pears is in the workroom. When Ms. Hutchinson went to the workroom, other workers had already taken 1 banana, 2 oranges, and 1 pear. From the remaining fruit, Ms. Hutchinson randomly took 3 pieces of fruit separately from the basket. If each fruit is equally likely to be chosen, what is the probability that the third piece was an orange if the first two she took were also oranges?

    1. 4/165
    2. 9/11
    3. 4/11
    4. 3/11
    5. 2/9
    Ms. Hutchinson randomly takes the 3 pieces of fruit from the basket, there are 2 apples, 3 -1 = 2 bananas, 6 - 2 = 4 oranges, and 4 - 1 = 3 pears. Assuming that the first 2 pieces of fruit Ms. Hutchinson takes are oranges, there will be 2 apples, 2 bananas, 4 - 2 = 2 oranges, and 3 pears left in the basket when she selects the third piece of fruit. The probability that the third piece of fruit she selects will be an orange is \(\frac{2}{2 + 2 + 2 + 3} = \frac{2}{9}\).
  17. 1015 / 0.05 / 40 = ?

    1. 50.75
    2. 507.5
    3. 506
    4. 2056
    5. 5075
    1015 / 0.05 / 40 = 20300 / 40 = 507.5
  18. On a trip to visit friends, a family drives 65 miles per hour for 208 miles of the trip. If the entire trip was 348 miles and took 6 hours, what was the average speed, in miles per hour, for the rest of the trip?

    1. 44
    2. 50
    3. 51
    4. 58
    5. 60
    As the first part of the trip took \(\frac{208 \text{ miles}}{65 \text{ } \frac{miles}{hour}} = 3.2 \text{ hours},\) so the remaining 140 miles (348 - 208) took 2.8 hours (6 - 3.2). The average speed for the rest of the trip was \(\frac {140 \text{ miles}}{2.8 \text{ hours}} = 50 \) miles per hour.
  19. A primary school had an enrollment of 850 pupils in January 1970. In January 1980 the enrollment was 1,120. What was the percentage increase for the enrollment?

    1. 31.76%
    2. 33.50%
    3. 30.65%
    4. 34.76%
    5. 30.55%
    Percentage increase for the enrollment = \(1120 - 850 \over 850\) × 100 = 31.76
  20. ?% of 60 = 24

    1. 40
    2. 48
    3. 45
    4. 42
    5. 38
    ?% × 60 = 24
    \(? = {24 \over 60} × 100 \) = 40

Solved Examples Set 1
Solved Examples Set 2
Solved Examples Set 3