In the name of ALLAH, the most beneficient, the most merciful

Solved Examples Set 1 (Quantitative Ability)

  1. A can do a piece of work in 10 days and B can do it in 15 days. The number of days required by them to finish it, working together is

    1. 8
    2. 7
    3. 6
    4. 4
    5. 3
    A's 1 day work = \(1 \over 10\)
    B's 1 day work = \(1 \over 15\)
    Now both A and B's 1 day work = \({1 \over 10} + {1 \over 15}\) = \(3 + 2 \over 30\) = \(1 \over 6\)
    Hence the work by both A and B will be completed in 6 days.
  2. A man earned an annual income of $ 245000 in 1990. He was allowed a deduction of $ 15000 relief for each of his three children and a personal relief of $ 30000. If he was charged a tax rate of 4% on first $ 50000 and 6% on his remaining income, calculate the total tax charged.

    1. $ 9200
    2. $ 8700
    3. $ 9500
    4. $ 9400
    5. $ 9000
    Total Income = $ 245000
    Total relief = 3 × 15000 + 30000 = $ 75000
    Rest income = 245000 - 75000 = 170000
    Tax on 1st 50000 = 0.04 × 50000 = $ 2000
    Tax on rest amount 120000 = 0.06 × 120000 = $ 7200
    Total tax = 200 + 7200 = $ 9200
  3. If 4a + 2 = 10, then 8a + 4 =

    1. 5
    2. 16
    3. 20
    4. 24
    5. 28
    One may answer this question by solving
    4a + 2 = 10
    4a = 8
    a= 2
    Now, plugging in 2 for a:
    8a + 4 = 8(2) + 4 = 20
    A faster way of solving this is to see the relationship between the quantity 4a + 2 (which equals 10) and 8a + 4. Since 8a + 4 is twice 4a + 2, the answer must be twice 10, or 20.
  4. A shopkeeper sold two articles for $ 48 each. He made a 25% profit on one article and a loss of 20% on the other. What was his net gain or loss on the sale of the two articles?

    1. loss of $ 1.40
    2. gain of $ 2.40
    3. loss of $ 2.40
    4. gain of $ 1.40
    5. gain of $ 2.60
    25% profit at selling price $ 48 = 48 x .25 = $ 12
    20% loss at selling price $ 48 = 48 x 0.2 = $ 9.6
    gain = profit - loss = 12 - 9.6 = $ 2.4
  5. A and B can reap a field in 30 days, working together. After 20 days, however, B is called away and A takes 20 days more to complete the work. B alone could do the whole work in

    1. 48 days
    2. 50 days
    3. 56 days
    4. 60 days
    5. 64 days
    (A + B)'s 20 day's work = \(1 \over 30 \) × 20 = \(2 \over 3 \)
    Remaining work = 1 - \(2 \over 3 \) = \(1 \over 3 \)
    Now, \(1 \over 3 \) work is done by A in 20 days.
    Therefore, the whole work will be done by B in 20 × 3 = 60 days.
  6. Which of the following expressions is equivalent to \(\frac{𝑥^2 + 3x + 1}{𝑥 + 1}\)?

    1. x + 2
    2. 𝑥 + 3
    3. 𝑥 + 2 - 1/(𝑥 + 1)
    4. 𝑥 + 3 + 1/(𝑥 + 1)
    5. 𝑥 + 4 + 5/(𝑥 + 1)
    As \(𝑥^2 + 3x + 1 = (𝑥^2 + 3x + 2) -1\)
    and
    \(\frac{𝑥^2 + 3x + 2}{x + 1} = \frac{(𝑥 + 2)(x + 1)}{x + 1} = 𝑥 + 2\)
    Therefore,
    \(\frac{𝑥^2 + 3x + 1}{x + 1} = \frac{𝑥^2 + 3x + 2}{x + 1} - \frac{1}{x + 1} = (𝑥 + 2) - \frac{1}{x + 1}\)
  7. A man sells two houses for $ 2 lac each. On one he gained 20% and on the other he lost 20%. His total profit or loss % in the transaction will be

    1. 4% profit
    2. 5% loss
    3. no profit, no loss
    4. 4% loss
    5. 3% loss
    % loss = (% loss X % profit)/100 = (20 X 20)/100 = 4%
  8. If 3x = −9, then 3x3 − 2x + 4 =

    1. -83
    2. -71
    3. -47
    4. -17
    5. 61
    First solving 3x = −9, x = −3. Now plug into 3x3 − 2x + 4:
    3x3 − 2x + 4
    = 3(-3)3 − 2(-2) + 4
    = 3(−27) + 6 + 4
    = −81 + 6 + 4
    = −71
  9. A man is 5 times as old as his son. 2 years ago the sum of the squares of their ages was 1114. Find the present age of son.

    1. 7 years
    2. 9 years
    3. 8 years
    4. 8 1/2 years
    5. 6 years
    Let son's age = x, then
    father's age = 5x
    As before 2 years ago the sum of the squares of their ages was 1114, the equation becomes as
    \((x - 2)^2 + (5x - 2)^2 = 1114 \)
    By simplifying the equation, we have
    \(13x^2 -12x -553 = 0\)
    Now solving the equation, we have
    \(13x^2 - 12x - 553 = 0\)
    \(13x^2 - 91x + 79x -553 = 0\)
    13x(x - 7) + 79(x - 7) = 0
    (x - 7)(13x + 79) = 0
    x = 7 and x = -6.077
    As age could not be negative, hence the present age of the son is 7 years.
  10. 8 : ? :: 1 : 4

    1. 24
    2. 16
    3. 0
    4. 32
    5. 20
    ? × 1 = 8 × 4
    ? = 32
  11. \( {63.84 \over ?} \) = 21

    1. 3.04
    2. 3.4
    3. 30.4
    4. 300.4
    5. 0.304
    ? = \( 63.84 \over 21 \) = 3.04
  12. ?% of 60 = 24

    1. 40
    2. 48
    3. 45
    4. 42
    5. 38
    ?% × 60 = 24
    \(? = {24 \over 60} × 100 \) = 40
  13. A certain number was doubled and the result then multiplied by 3. If the product was 138, find the number.

    1. 21
    2. 23
    3. 25
    4. 27
    5. 19
    Let x be the number
    the number is doubled, 2x
    the result is multiplied by 3, 3 × 2x = 6x
    6x = 138
    x = \(138 \over 6\) = 23
  14. A train takes 50 minutes for a journey if it runs at 48 km/hr. The rate at which the train must run to reduce the time to 40 minutes will be

    1. 50 km/hr
    2. 55 km/hr
    3. 60 km/hr
    4. 57 km/hr
    5. 65 km/hr
    \(50 × 48 \over 40\) = 60 \(km \over hr\)
  15. A man bought a flat for $ 820000. He borrowed 55% of this money from a bank. How much money did he borrow from the bank?

    1. $ 451000
    2. $ 452000
    3. $ 453000
    4. $ 454000
    5. $ 450000
    55% of 820000 = 0.55 × 820000 = $ 451000
  16. \( {2244 \over 0.88} = ? × 1122 \)

    1. 20.02
    2. 20.2
    3. 19.3
    4. 2.27
    5. 3.27
    \( {2244 \over 0.88} = ? × 1122 \)
    \(? = {2550 \over 1122} = 2.27 \)
  17. 5789 - 2936 + 1089 = ?

    1. 3942
    2. 4041
    3. 2626
    4. 3932
    5. 3940
    5789 - 2936 + 1089 = 6878 - 2936 = 3942
  18. A man pays 10% of his income for his income tax. If his income tax amounts to $ 1500, what is his income?

    1. $ 13000
    2. $ 15000
    3. $ 17000
    4. $ 19000
    5. $ 11000
    Let x = income
    10% of x = $ 1500
    0.1x = $ 1500
    x = \(1500 \over 0.1\) = $ 15000
  19. 42.98 + ? = 107.87

    1. 64.89
    2. 65.89
    3. 64.98
    4. 65.81
    5. 63.89
    ? = 107.87 - 42.98 = 64.89
  20. A boy of height 165 cm is replaced by another, which decreases the average height of the group of 34 students, by 1 cm. The height of the new student is

    1. 129 cm
    2. 130 cm
    3. 131 cm
    4. 132 cm
    5. 133 cm
    Total decreased height of 34 students = 1 × 34 = 34 cm
    Height of the replaced student = 165 - 34 = 131 cm

Solved Examples Set 1
Solved Examples Set 2
Solved Examples Set 3