In the name of ALLAH, the most beneficient, the most merciful

Solved Examples Set 1 (Quantitative Ability)

  1. If n! = n ⋅ (n − 1) ⋅ (n − 2) ⋅ (n − 3) . . . 2 ⋅ 1, what is the value of \(\frac{(6!)(4!)}{(5!)(3!)}\)

    1. 5/4
    2. 8/5
    3. 10
    4. 24
    5. 1152
    \(\frac{(6!)(4!)}{(5!)(3!)}\) = \(\frac{(6 . 5 . 4 . 3 . 2 . 1)(4 . 3 . 2. 1)}{(5 . 4 . 3 . 2 . 1)(3 . 2 . 1)}\) = \(\frac{6 . 4}{1}\) = 24
  2. A shopkeeper bought a radio from a wholesaler for $ 250.00. In addition, he paid a sales tax of 15% on the cost price. He then sold the radio for $ 315.00. Calculate the cash profit made by the shopkeeper.

    1. $ 20.00
    2. $ 22.50
    3. $ 25.00
    4. $ 27.50
    5. $ 27.00
    cost price = $ 250
    sales tax = .15 × 250 = $ 37.5
    cash profit = 315 - 250 - 37.5 = $ 27.5
  3. On a trip to visit friends, a family drives 65 miles per hour for 208 miles of the trip. If the entire trip was 348 miles and took 6 hours, what was the average speed, in miles per hour, for the rest of the trip?

    1. 44
    2. 50
    3. 51
    4. 58
    5. 60
    As the first part of the trip took \(\frac{208 \text{ miles}}{65 \text{ } \frac{miles}{hour}} = 3.2 \text{ hours},\) so the remaining 140 miles (348 - 208) took 2.8 hours (6 - 3.2). The average speed for the rest of the trip was \(\frac {140 \text{ miles}}{2.8 \text{ hours}} = 50 \) miles per hour.
  4. 12% of ________ = 48

    1. 250
    2. 100
    3. 400
    4. 200
    5. 300
    \(12 \text{% of } x = 48\)
    \(0.12x = 48\)
    \(x = \frac{48}{0.12} = 400\)
  5. If 3x = −9, then 3x3 − 2x + 4 =

    1. -83
    2. -71
    3. -47
    4. -17
    5. 61
    First solving 3x = −9, x = −3. Now plug into 3x3 − 2x + 4:
    3x3 − 2x + 4
    = 3(-3)3 − 2(-2) + 4
    = 3(−27) + 6 + 4
    = −81 + 6 + 4
    = −71
  6. 8 : ? :: 1 : 4

    1. 24
    2. 16
    3. 0
    4. 32
    5. 20
    ? × 1 = 8 × 4
    ? = 32
  7. 5.41 - 3.29 × 1.6 = ?

    1. 14.6
    2. 0.3392
    3. 0.146
    4. 3.392
    5. 1.46
    5.41 - 3.29 × 1.6 = 5.41 - 5.264 = 0.146
  8. 5873 + 12034 + 1106 = ?

    1. 19016
    2. 20001
    3. 19013
    4. 2018
    5. 19010
    5873 + 12034 + 1106 = 17907 + 1106 = 19013
  9. 72 + 679 + 1439 + 537+ ? = 4036

    1. 1309
    2. 1208
    3. 2308
    4. 2423
    5. 1309
    72 + 679 + 1439 + 537+ ? = 4036
    2727 + ? = 4036
    ? = 4036 - 2727 = 1309
  10. A primary school had an enrollment of 850 pupils in January 1970. In January 1980 the enrollment was 1,120. What was the percentage increase for the enrollment?

    1. 31.76%
    2. 33.50%
    3. 30.65%
    4. 34.76%
    5. 30.55%
    Percentage increase for the enrollment = \(1120 - 850 \over 850\) × 100 = 31.76
  11. In the series 8, 9, 12, 17, 24 . . . the next number would be

    1. 29
    2. 30
    3. 33
    4. 35
    5. 41
    In the series, 8, 9, 12, 17, 24 . . .
    9 − 8 = 1
    12 − 9 = 3
    17 − 12 = 5
    24 − 17 = 7
    Hence, the difference between the next term and 24 must be 9 or
    x − 24 = 9, and
    x = 33
    Hence, the next term in the series must be 33
  12. A man walked for 3 hours at 4.5 km/h and cycled for some time at 15 km/h. Altogether, he traveled 21 km. Find the time taken for cycling.

    1. 1/2 hour
    2. 1 hour
    3. 1 1⁄2 hours
    4. 2 hours
    5. 2 1⁄2 hours
    The man walked the distance = 3 x 4.5 = 13.5 km. The distance cycled by the man = 21 - 13.5 = 7.5 km
    As he cyled 15 km in 1 h
    he cycled 1 km in 1/15 h
    Finally, he cycled 7.5 km in 7.5/15 = 1/2 h
  13. A single discount equivalent to a discount series of 20%, 10% and 25% is

    1. 55%
    2. 54%
    3. 46%
    4. 42%
    5. 50%
    If 3 succesive discounts are a%, b% and c%
    then single discount = a + b + c – (\(ab \over 100 \) + \(bc \over 100\) + \(ca \over 100 \) – \(abc \over 10000 \))
    a = 20, b = 10, c = 25, solving we get, 46%.
  14. A boy scored 90 marks for his mathematics test. This was 20% more than what he had scored for the geography test. How much did he score in geography?

    1. 71 marks
    2. 73 marks
    3. 75 marks
    4. 77 marks
    5. 78 marks
    20% of x + x = 90
    0.2x + x = 90
    1.2x = 90
    x = \(90 \over 1.2\)
    x = 75
  15. A fruit-seller has 120 oranges. Given that he has 20% more apples than oranges and 40% less oranges than pears, find the number of apples and the number of pears the fruit seller has.

    1. 144, 200
    2. 148, 380
    3. 149, 220
    4. 140, 190
    5. 142, 190
    No. of apples = 120 + 20% of 120 = 120 + 0.2 × 120 = 144

    Let x = No. of pears
    x - 40% of x = 120
    x - 0.4x = 120
    0.6x = 120
    x = \(120 \over 0.6\) = 200
    Hence, no. of pears = 200
  16. A boy of height 165 cm is replaced by another, which decreases the average height of the group of 34 students, by 1 cm. The height of the new student is

    1. 129 cm
    2. 130 cm
    3. 131 cm
    4. 132 cm
    5. 133 cm
    Total decreased height of 34 students = 1 × 34 = 34 cm
    Height of the replaced student = 165 - 34 = 131 cm
  17. A certain number was doubled and the result then multiplied by 3. If the product was 138, find the number.

    1. 21
    2. 23
    3. 25
    4. 27
    5. 19
    Let x be the number
    the number is doubled, 2x
    the result is multiplied by 3, 3 × 2x = 6x
    6x = 138
    x = \(138 \over 6\) = 23
  18. \( {2244 \over 0.88} = ? × 1122 \)

    1. 20.02
    2. 20.2
    3. 19.3
    4. 2.27
    5. 3.27
    \( {2244 \over 0.88} = ? × 1122 \)
    \(? = {2550 \over 1122} = 2.27 \)
  19. 1.02 - 0.20 + ? = 0.842

    1. 0.222
    2. 232
    3. 2
    4. 0.022
    5. 0.012
    1.02 - 0.20 + ? = 0.842
    0.82 + ? = 0.842
    ? = 0.842 - 0.82 = 0.022
  20. if x% of 60 = 48 then x = ?

    1. 80
    2. 60
    3. 90
    4. 40
    5. 70
    x = \( {48 × 100 \over 60} \) = 80

Solved Examples Set 1
Solved Examples Set 2
Solved Examples Set 3