In the name of ALLAH, the most beneficient, the most merciful

Solved Examples Set 1 (Quantitative Ability)

  1. By selling 60 chairs, a man gains an amount equal to selling price of 10 chairs. The profit percentage in the transaction is

    1. 10%
    2. 15%
    3. 16.67%
    4. 20%
    5. 22%
    selling price of 60 chairs = selling price of 10 chairs
    profit of 60 chairs = profit of 10 chairs
    profit of 6 chairs = profit of 1 chair
    profit of 1 chair = profit of 1/6 chair
    profit %age = 1/6 x 100 = 16.67%
  2. Rashid buys three books for $ 16 each and four books for $ 23 each, what will be the average price of books

    1. $ 18
    2. $ 20
    3. $ 22
    4. $ 24
    5. $ 16
    Price of 3 books = 3 × 16 = $ 48
    Price of 4 books = 4 × 23 = $ 92
    Total price = $ 140
    Total books = 3 + 4 = 7
    Average price of books = \(140 \over 7 \) = $ 20
  3. After spending 88% of his income, a man had $ 2160 left. Find his income.

    1. $ 18000
    2. $ 19000
    3. $ 20000
    4. $ 22000
    5. $ 17000
    Let income = x
    x = 88% of x + 2160
    x - 0.88x = 2160
    0.12x = 2160
    x = \(216000 \over 12\) = 18000
  4. A man travelled 120 km to a town. He could have reached the town 4 1⁄2 hours earlier had he increased his speed by 3 km/h. Find the speed at which he travelled.

    1. 6.56 km
    2. 7.57 km
    3. 8.58 km
    4. 9.59 km
    5. 5.55 km
    Let the normal speed \(= x \text{ } \frac{km}{hr}\)
    Time taken when travelled at the normal speed \(= \frac{120}{x}\) hr
    Time taken when travelled at the increased speed \(= \frac{120}{x + 3}\) hr
    $$\frac{120} {x} - \frac{120}{x + 3} = 4.5$$ $$120(x + 3) − 120x = 4.5x(x + 3)$$ $$360 = 4.5x(x + 3)$$ $$720 = 9x(x + 3)$$ $$80 = x(x + 3)$$ $$x^2 + 3x - 80 = 0$$ $$x = \frac{-3 \pm \sqrt{3^2-4 × (-80)}}{2} = \frac{-3 \pm \sqrt{329}}{2}$$ $$= \frac{-3 \pm 18.14}{2} = 7.57 \text{ (ignoring the negative value)}$$
  5. ?% of 60 = 24

    1. 40
    2. 48
    3. 45
    4. 42
    5. 38
    ?% × 60 = 24
    \(? = {24 \over 60} × 100 \) = 40
  6. ? × 12 = 75% of 336

    1. 48
    2. 252
    3. 28
    4. 21
    5. 23
    ? × 12 = 75% of 336
    ? × 12 = 0.75 × 336
    ? × 12 = 252
    \(? = \frac{252}{12}\)
    ? = 21
  7. Which of the following expressions is equivalent to \(\frac{𝑥^2 + 3x + 1}{𝑥 + 1}\)?

    1. x + 2
    2. 𝑥 + 3
    3. 𝑥 + 2 - 1/(𝑥 + 1)
    4. 𝑥 + 3 + 1/(𝑥 + 1)
    5. 𝑥 + 4 + 5/(𝑥 + 1)
    As \(𝑥^2 + 3x + 1 = (𝑥^2 + 3x + 2) -1\)
    and
    \(\frac{𝑥^2 + 3x + 2}{x + 1} = \frac{(𝑥 + 2)(x + 1)}{x + 1} = 𝑥 + 2\)
    Therefore,
    \(\frac{𝑥^2 + 3x + 1}{x + 1} = \frac{𝑥^2 + 3x + 2}{x + 1} - \frac{1}{x + 1} = (𝑥 + 2) - \frac{1}{x + 1}\)
  8. Matthew’s age (𝑚) is three years more than twice Rita’s age (𝑟). Which equation shows the relationship between their ages?

    1. 𝑚 = 𝑟 − 32
    2. 𝑚 = 𝑟 + 32
    3. 𝑚 = 2(𝑟 + 3)
    4. 𝑚 = 2𝑟 − 3
    5. 𝑚 = 2𝑟 + 3
    As Matthew's age (𝑚) is three more years (+3) than twice Rita's age (2𝑟). Therefore, 𝑚 = 2𝑟 + 3.
  9. 10 men can complete a job in 14 days. How long will it take 4 men to finish the same job if they work at the same rate?

    1. 33 days
    2. 35 days
    3. 37 days
    4. 39 days
    5. 31 days
    \(14 × 10 \over 4 \) = 35 days
  10. 40 arithmetic questions, each carrying equal marks, were given in a class test. A boy answered 25 questions correctly. What percentage was this? To pass a test a student must answer at least 45% of the questions correctly. Find the least number of correct answers needed to pass.

    1. 62.5%, 18
    2. 63.5%, 16
    3. 64.5%, 20
    4. 61.0%, 21
    5. 60.0%, 22
    \(x \text{% of } 40 = 25\)
    \(x \text{% } × 40 = 25\)
    \(x = {25 \over 40} × 100 \)
    x = 62.5

    \(x = 45 \text{% of } 40 \)
    \(x = 0.45 × 40 \)
    x = 18
  11. \( {2244 \over 0.88} = ? × 1122 \)

    1. 20.02
    2. 20.2
    3. 19.3
    4. 2.27
    5. 3.27
    \( {2244 \over 0.88} = ? × 1122 \)
    \(? = {2550 \over 1122} = 2.27 \)
  12. If n! = n ⋅ (n − 1) ⋅ (n − 2) ⋅ (n − 3) . . . 2 ⋅ 1, what is the value of \(\frac{(6!)(4!)}{(5!)(3!)}\)

    1. 5/4
    2. 8/5
    3. 10
    4. 24
    5. 1152
    \(\frac{(6!)(4!)}{(5!)(3!)}\) = \(\frac{(6 . 5 . 4 . 3 . 2 . 1)(4 . 3 . 2. 1)}{(5 . 4 . 3 . 2 . 1)(3 . 2 . 1)}\) = \(\frac{6 . 4}{1}\) = 24
  13. If 4a + 2 = 10, then 8a + 4 =

    1. 5
    2. 16
    3. 20
    4. 24
    5. 28
    One may answer this question by solving
    4a + 2 = 10
    4a = 8
    a= 2
    Now, plugging in 2 for a:
    8a + 4 = 8(2) + 4 = 20
    A faster way of solving this is to see the relationship between the quantity 4a + 2 (which equals 10) and 8a + 4. Since 8a + 4 is twice 4a + 2, the answer must be twice 10, or 20.
  14. Which set of ordered pairs represents a function?

    1. {(−5,5),(4,8),(−5,−6)}
    2. {(−1,−1),(−1,6),(−1,−10)}
    3. {(−3,7),(2,5),(−7,7)}
    4. {(2,3),(−2,4),(−2,−5)}
    5. {(2,3),(3,2),(2,5)}
    For a set of ordered pairs to be a function, no single 𝑥-coordinate can be mapped to two distinct 𝑦-coordinates. This is not the case for option A, where 𝑥=−5 is mapped to both 𝑦=5 and 𝑦=−6. Similarly, in options B (𝑥=−1), D (𝑥=−2), and E (𝑥=2), an 𝑥 value is mapped to two different 𝑦 values.
  15. if a > b and b > c then:

    1. a = c
    2. a > c
    3. c > a
    4. a < c
    5. none
    As a > b > c so a > c
  16. The closest approximation of \(\frac{69.28 × .004}{.03}\) is

    1. 0.092
    2. 0.92
    3. 9.2
    4. 92
    5. 920
    This problem is most easily completed by rearranging and approximating as follows:
    (69.28 x .004)/.03 ≅ 69 x .1 = 6.9
    which is the only reasonably close answer to 9.2
  17. 42.98 + ? = 107.87

    1. 64.89
    2. 65.89
    3. 64.98
    4. 65.81
    5. 63.89
    ? = 107.87 - 42.98 = 64.89
  18. \( {396 \over 11} \) + 19 = ?

    1. 19.8
    2. 36
    3. 55
    4. 33
    5. 50
    \( {396 \over 11} \) + 19 = 36 + 19 = 55

  19. In the figure above, AB is one edge of a cube. If AB equals 5, what is the surface area of the cube?

    1. 25
    2. 100
    3. 125
    4. 150
    5. 300
    Since one edge of the cube is 5, all edges equal 5. Therefore, the area of one face of the cube is:
    5 × 5 = 25
    Since a cube has 6 equal faces, its surface area will be:
    6 × 25 = 150
  20. A bank increased the rate of interest which it paid to depositors from 3.5% to 4% per annum. Find how much more interest a man would receive if he deposited $ 64000 in the bank for 6 months at the new interest rate

    1. $ 160
    2. $ 180
    3. $ 200
    4. $ 220
    5. $ 150
    If the interest rate is 3.5% then interest amount is
    3.5% of 6400 = 0.035 × 6400 = $ 2240
    If the interest rate is 4% then interest amount is
    4% of 6400 = 0.04 × 6400 = $ 2560
    Now the difference of both interests = 2560 - 2240 = $ 320 per annum
    Interest for half year (6 months) = \(320 \over 2\) = $ 160

Solved Examples Set 1
Solved Examples Set 2
Solved Examples Set 3