In the name of ALLAH, the most beneficient, the most merciful

Linear Algebra (MTH501)

Question (select most suitable option)

  If the equation: \( \begin{pmatrix} -2 & 3 \\ 5 & 1 \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \end{pmatrix} \) has the solution for all \(b_1, b_2 \in R \), then \( \begin{pmatrix} b_1 \\ b_2 \\ \end{pmatrix} \in \) ________.
Span\( \begin{Bmatrix} \begin{pmatrix} -2 \\ 3 \\ \end{pmatrix} , \begin{pmatrix} 5 \\ 1 \\ \end{pmatrix} \end{Bmatrix} \)
Span\( \begin{Bmatrix} \begin{pmatrix} -2 \\ 1 \\ \end{pmatrix} , \begin{pmatrix} 5 \\ 3 \\ \end{pmatrix} \end{Bmatrix} \)
Span\( \begin{Bmatrix} \begin{pmatrix} 3 \\ -2 \\ \end{pmatrix} , \begin{pmatrix} 1 \\ 5 \\ \end{pmatrix} \end{Bmatrix} \)
Span\( \begin{Bmatrix} \begin{pmatrix} -2 \\ 5 \\ \end{pmatrix} , \begin{pmatrix} 3 \\ 1 \\ \end{pmatrix} \end{Bmatrix} \)