In the name of ALLAH, the most beneficient, the most merciful

Solved Examples Set 3 (Quantitative Ability)

  1. By selling 60 chairs, a man gains an amount equal to selling price of 10 chairs. The profit percentage in the transaction is

    1. 10%
    2. 15%
    3. 16.67%
    4. 20%
    5. 22%
    selling price of 60 chairs = selling price of 10 chairs
    profit of 60 chairs = profit of 10 chairs
    profit of 6 chairs = profit of 1 chair
    profit of 1 chair = profit of 1/6 chair
    profit %age = 1/6 x 100 = 16.67%
  2. A man walked for 3 hours at 4.5 km/h and cycled for some time at 15 km/h. Altogether, he traveled 21 km. Find the time taken for cycling.

    1. 1/2 hour
    2. 1 hour
    3. 1 1⁄2 hours
    4. 2 hours
    5. 2 1⁄2 hours
    The man walked the distance = 3 x 4.5 = 13.5 km. The distance cycled by the man = 21 - 13.5 = 7.5 km
    As he cyled 15 km in 1 h
    he cycled 1 km in 1/15 h
    Finally, he cycled 7.5 km in 7.5/15 = 1/2 h
  3. 350 × ? = 4200

    1. 12
    2. 24
    3. 15
    4. 30
    5. 16
    \( ? = {4200 \over 350} =12 \)
  4. Which of the following expressions is equivalent to \(\frac{𝑥^2 + 3x + 1}{𝑥 + 1}\)?

    1. x + 2
    2. 𝑥 + 3
    3. 𝑥 + 2 - 1/(𝑥 + 1)
    4. 𝑥 + 3 + 1/(𝑥 + 1)
    5. 𝑥 + 4 + 5/(𝑥 + 1)
    As \(𝑥^2 + 3x + 1 = (𝑥^2 + 3x + 2) -1\)
    and
    \(\frac{𝑥^2 + 3x + 2}{x + 1} = \frac{(𝑥 + 2)(x + 1)}{x + 1} = 𝑥 + 2\)
    Therefore,
    \(\frac{𝑥^2 + 3x + 1}{x + 1} = \frac{𝑥^2 + 3x + 2}{x + 1} - \frac{1}{x + 1} = (𝑥 + 2) - \frac{1}{x + 1}\)
  5. \( {0.027 \over 90} = ? \)

    1. 0.0003
    2. 0.03
    3. 3
    4. 0.00003
    5. 0.003
    \( {0.027 \over 90} = {27 \over 1000 × 90} = {3 \over 10000} = 0.0003 \)
  6. How much would I have to pay for a book which cost $ 72 to product, if the printing company sold it to a bookseller at 20% profit and in return the bookseller sold it to me at a profit of 25%?

    1. $ 104
    2. $ 106
    3. $ 108
    4. $ 110
    5. $ 109
    Cost of the book product = $ 72
    Profit of printing company = 20% of 72 = 0.2 x 72 = 14.4
    Now the cost of the book = 72 +14.4 = $ 86.4
    Profit of the bookseller = 25% of 86.4 = 21.4
    Finally, the cost of the book = 86.4 + 21.4 = $ 108
  7. By selling a fan for $ 475, a person loses 5%. To get a gain of 5%, he should sell the fan for:

    1. $ 500
    2. $ 525
    3. $ 535
    4. $ 575
    5. $ 505
    cost price = 100/(100 - 5) x 475 = $ 500
    sale price = (100 + 5)/100 x 500 = $ 525
  8. A retailer bought a compact disc from a manufacturer for $ 200. In addition to that, he paid a 15% sales tax. If he sold the disc to a customer for $ 260, calculate the cash profit he made.

    1. $ 30.00
    2. $ 35.00
    3. $ 32.50
    4. $ 28.00
    5. $ 30.50
    price of a compact disc with sales tax = 200 + 0.15 × 200
    = 200 + 30 = $ 230
    As the selling price of the disc = $ 260
    Hence, cash profit = 260 - 230 = $ 30
  9. A basket that contains 2 apples, 3 bananas, 6 oranges, and 4 pears is in the workroom. When Ms. Hutchinson went to the workroom, other workers had already taken 1 banana, 2 oranges, and 1 pear. From the remaining fruit, Ms. Hutchinson randomly took 3 pieces of fruit separately from the basket. If each fruit is equally likely to be chosen, what is the probability that the third piece was an orange if the first two she took were also oranges?

    1. 4/165
    2. 9/11
    3. 4/11
    4. 3/11
    5. 2/9
    Ms. Hutchinson randomly takes the 3 pieces of fruit from the basket, there are 2 apples, 3 -1 = 2 bananas, 6 - 2 = 4 oranges, and 4 - 1 = 3 pears. Assuming that the first 2 pieces of fruit Ms. Hutchinson takes are oranges, there will be 2 apples, 2 bananas, 4 - 2 = 2 oranges, and 3 pears left in the basket when she selects the third piece of fruit. The probability that the third piece of fruit she selects will be an orange is \(\frac{2}{2 + 2 + 2 + 3} = \frac{2}{9}\).
  10. If n! = n ⋅ (n − 1) ⋅ (n − 2) ⋅ (n − 3) . . . 2 ⋅ 1, what is the value of \(\frac{(6!)(4!)}{(5!)(3!)}\)

    1. 5/4
    2. 8/5
    3. 10
    4. 24
    5. 1152
    \(\frac{(6!)(4!)}{(5!)(3!)}\) = \(\frac{(6 . 5 . 4 . 3 . 2 . 1)(4 . 3 . 2. 1)}{(5 . 4 . 3 . 2 . 1)(3 . 2 . 1)}\) = \(\frac{6 . 4}{1}\) = 24
  11. If 4a + 2 = 10, then 8a + 4 =

    1. 5
    2. 16
    3. 20
    4. 24
    5. 28
    One may answer this question by solving
    4a + 2 = 10
    4a = 8
    a= 2
    Now, plugging in 2 for a:
    8a + 4 = 8(2) + 4 = 20
    A faster way of solving this is to see the relationship between the quantity 4a + 2 (which equals 10) and 8a + 4. Since 8a + 4 is twice 4a + 2, the answer must be twice 10, or 20.
  12. A and B can reap a field in 30 days, working together. After 20 days, however, B is called away and A takes 20 days more to complete the work. B alone could do the whole work in

    1. 48 days
    2. 50 days
    3. 56 days
    4. 60 days
    5. 64 days
    (A + B)'s 20 day's work = \(1 \over 30 \) × 20 = \(2 \over 3 \)
    Remaining work = 1 - \(2 \over 3 \) = \(1 \over 3 \)
    Now, \(1 \over 3 \) work is done by A in 20 days.
    Therefore, the whole work will be done by B in 20 × 3 = 60 days.
  13. A group of laborers accepted to do a piece of work in 20 days. 8 of them did not turn up for the work and the remaining did the work in 24 days. The original number of laborers was

    1. 47
    2. 48
    3. 49
    4. 50
    5. 51
    x laborers do work in 20 days and x-8 laborers do same work in 24 days. As the no. of laborers decrease, the no. of days increased then it becomes as
    x : x - 8 :: 24 : 20
    product of interiors = product of exteriors
    24x - 192 = 20x
    4x = 192
    x = 48
  14. A man was 32 years old when his daughter was born. He is now five times as old as his daughter. How old is his daughter now?

    1. 7 years
    2. 8 years
    3. 9 years
    4. 10 years
    5. 6 years
    Let's assume the daughter is d years old now. That means that the man is now (32 + d) years old, so that
    (32 + d) = 5d
    32 = 4d
    d = 8
  15. 42.98 + ? = 107.87

    1. 64.89
    2. 65.89
    3. 64.98
    4. 65.81
    5. 63.89
    ? = 107.87 - 42.98 = 64.89
  16. A rectangular room is 6 m long, 5 m wide and 4 m high. The total volume of the room in cubic meters is

    1. 24
    2. 30
    3. 120
    4. 240
    5. 140
    Total volume = length × width × height = 6 × 5 × 4 = 120
  17. A shopkeeper bought a radio from a wholesaler for $ 250.00. In addition, he paid a sales tax of 15% on the cost price. He then sold the radio for $ 315.00. Calculate the cash profit made by the shopkeeper.

    1. $ 20.00
    2. $ 22.50
    3. $ 25.00
    4. $ 27.50
    5. $ 27.00
    cost price = $ 250
    sales tax = .15 × 250 = $ 37.5
    cash profit = 315 - 250 - 37.5 = $ 27.5
  18. A boy of height 165 cm is replaced by another, which decreases the average height of the group of 34 students, by 1 cm. The height of the new student is

    1. 129 cm
    2. 130 cm
    3. 131 cm
    4. 132 cm
    5. 133 cm
    Total decreased height of 34 students = 1 × 34 = 34 cm
    Height of the replaced student = 165 - 34 = 131 cm
  19. if a > b and b > c then:

    1. a = c
    2. a > c
    3. c > a
    4. a < c
    5. none
    As a > b > c so a > c
  20. Which of the following is the largest?

    1. half of 30% of 280
    2. one-third of 70% of 160
    3. twice 50% of 30
    4. three times 40% of 40
    5. 60% of 60
    Let us calculate the value of each:
    A. 0.5 × 0.3 × 280 = 42
    B. 0.33 × 0.7 × 160 = 36.96
    C. 2 × 0.5 × 30 = 30
    D. 3 × 0.4 × 40 = 48
    E. 0.6 × 60 = 36

Solved Examples Set 1
Solved Examples Set 2
Solved Examples Set 3