In the name of ALLAH, the most beneficient, the most merciful

Solved Examples Set 3 (Quantitative Ability)

  1. A man earned an annual income of $ 245000 in 1990. He was allowed a deduction of $ 15000 relief for each of his three children and a personal relief of $ 30000. If he was charged a tax rate of 4% on first $ 50000 and 6% on his remaining income, calculate the total tax charged.

    1. $ 9200
    2. $ 8700
    3. $ 9500
    4. $ 9400
    5. $ 9000
    Total Income = $ 245000
    Total relief = 3 × 15000 + 30000 = $ 75000
    Rest income = 245000 - 75000 = 170000
    Tax on 1st 50000 = 0.04 × 50000 = $ 2000
    Tax on rest amount 120000 = 0.06 × 120000 = $ 7200
    Total tax = 200 + 7200 = $ 9200
  2. 60% of 37 = ?

    1. 20
    2. 21
    3. 22.2
    4. 22
    5. none
    60% of 37 = 0.6 × 37 = 22.2
  3. A man takes 50 minutes to cover a certain distance at a speed of 6 km/hr. If he walks with a speed of 10 km/hr, he covers the same distance in

    1. 1 hour
    2. 30 minutes
    3. 20 minutes
    4. 10 minutes
    5. 40 minutes
    \( 50 × 6 \over 10 \) = 30 minutes
  4. 42.98 + ? = 107.87

    1. 64.89
    2. 65.89
    3. 64.98
    4. 65.81
    5. 63.89
    ? = 107.87 - 42.98 = 64.89
  5. A girl is 18 years younger than her mother. In 6 years time, the sum of their ages will be 54.How old is the girl now?

    1. 10 years
    2. 11 years
    3. 12 years
    4. 13 years
    5. 14 years
    Let girl's age = x
    then mother's age = x + 18
    After 6 years,
    x + 6 + x + 18 + 6 = 54
    2x + 30 = 54
    2x = 24
    x = 12
  6. A retailer bought a compact disc from a manufacturer for $ 200. In addition to that, he paid a 15% sales tax. If he sold the disc to a customer for $ 260, calculate the cash profit he made.

    1. $ 30.00
    2. $ 35.00
    3. $ 32.50
    4. $ 28.00
    5. $ 30.50
    price of a compact disc with sales tax = 200 + 0.15 × 200
    = 200 + 30 = $ 230
    As the selling price of the disc = $ 260
    Hence, cash profit = 260 - 230 = $ 30
  7. ? × 12 = 75% of 336

    1. 48
    2. 252
    3. 28
    4. 21
    5. 23
    ? × 12 = 75% of 336
    ? × 12 = 0.75 × 336
    ? × 12 = 252
    \(? = \frac{252}{12}\)
    ? = 21
  8. A boy of height 165 cm is replaced by another, which decreases the average height of the group of 34 students, by 1 cm. The height of the new student is

    1. 129 cm
    2. 130 cm
    3. 131 cm
    4. 132 cm
    5. 133 cm
    Total decreased height of 34 students = 1 × 34 = 34 cm
    Height of the replaced student = 165 - 34 = 131 cm
  9. A fruit-seller has 120 oranges. Given that he has 20% more apples than oranges and 40% less oranges than pears, find the number of apples and the number of pears the fruit seller has.

    1. 144, 200
    2. 148, 380
    3. 149, 220
    4. 140, 190
    5. 142, 190
    No. of apples = 120 + 20% of 120 = 120 + 0.2 × 120 = 144

    Let x = No. of pears
    x - 40% of x = 120
    x - 0.4x = 120
    0.6x = 120
    x = \(120 \over 0.6\) = 200
    Hence, no. of pears = 200
  10. A can do a piece of work in 10 days and B can do it in 15 days. The number of days required by them to finish it, working together is

    1. 8
    2. 7
    3. 6
    4. 4
    5. 3
    A's 1 day work = \(1 \over 10\)
    B's 1 day work = \(1 \over 15\)
    Now both A and B's 1 day work = \({1 \over 10} + {1 \over 15}\) = \(3 + 2 \over 30\) = \(1 \over 6\)
    Hence the work by both A and B will be completed in 6 days.
  11. A man travelled 120 km to a town. He could have reached the town 4 1⁄2 hours earlier had he increased his speed by 3 km/h. Find the speed at which he travelled.

    1. 6.56 km
    2. 7.57 km
    3. 8.58 km
    4. 9.59 km
    5. 5.55 km
    Let the normal speed \(= x \text{ } \frac{km}{hr}\)
    Time taken when travelled at the normal speed \(= \frac{120}{x}\) hr
    Time taken when travelled at the increased speed \(= \frac{120}{x + 3}\) hr
    $$\frac{120} {x} - \frac{120}{x + 3} = 4.5$$ $$120(x + 3) − 120x = 4.5x(x + 3)$$ $$360 = 4.5x(x + 3)$$ $$720 = 9x(x + 3)$$ $$80 = x(x + 3)$$ $$x^2 + 3x - 80 = 0$$ $$x = \frac{-3 \pm \sqrt{3^2-4 × (-80)}}{2} = \frac{-3 \pm \sqrt{329}}{2}$$ $$= \frac{-3 \pm 18.14}{2} = 7.57 \text{ (ignoring the negative value)}$$
  12. \( {396 \over 11} \) + 19 = ?

    1. 19.8
    2. 36
    3. 55
    4. 33
    5. 50
    \( {396 \over 11} \) + 19 = 36 + 19 = 55
  13. In the series 8, 9, 12, 17, 24 . . . the next number would be

    1. 29
    2. 30
    3. 33
    4. 35
    5. 41
    In the series, 8, 9, 12, 17, 24 . . .
    9 − 8 = 1
    12 − 9 = 3
    17 − 12 = 5
    24 − 17 = 7
    Hence, the difference between the next term and 24 must be 9 or
    x − 24 = 9, and
    x = 33
    Hence, the next term in the series must be 33
  14. 15 men can complete a job in 10 days. How long will it take 8 men to finish the same job if they work at the same rate?

    1. 14 3⁄4 days
    2. 16 3⁄4 days
    3. 18 3⁄4 days
    4. 20 3⁄4 days
    5. 22 3⁄4 days
    \( 15 × 10 \over 8 \) = 18 3⁄4 days
  15. A train takes 50 minutes for a journey if it runs at 48 km/hr. The rate at which the train must run to reduce the time to 40 minutes will be

    1. 50 km/hr
    2. 55 km/hr
    3. 60 km/hr
    4. 57 km/hr
    5. 65 km/hr
    \(50 × 48 \over 40\) = 60 \(km \over hr\)
  16. Which of the following expressions is equivalent to \(\frac{𝑥^2 + 3x + 1}{𝑥 + 1}\)?

    1. x + 2
    2. 𝑥 + 3
    3. 𝑥 + 2 - 1/(𝑥 + 1)
    4. 𝑥 + 3 + 1/(𝑥 + 1)
    5. 𝑥 + 4 + 5/(𝑥 + 1)
    As \(𝑥^2 + 3x + 1 = (𝑥^2 + 3x + 2) -1\)
    and
    \(\frac{𝑥^2 + 3x + 2}{x + 1} = \frac{(𝑥 + 2)(x + 1)}{x + 1} = 𝑥 + 2\)
    Therefore,
    \(\frac{𝑥^2 + 3x + 1}{x + 1} = \frac{𝑥^2 + 3x + 2}{x + 1} - \frac{1}{x + 1} = (𝑥 + 2) - \frac{1}{x + 1}\)
  17. A primary school had an enrollment of 850 pupils in January 1970. In January 1980 the enrollment was 1,120. What was the percentage increase for the enrollment?

    1. 31.76%
    2. 33.50%
    3. 30.65%
    4. 34.76%
    5. 30.55%
    Percentage increase for the enrollment = \(1120 - 850 \over 850\) × 100 = 31.76
  18. A bank increased the rate of interest which it paid to depositors from 3.5% to 4% per annum. Find how much more interest a man would receive if he deposited $ 64000 in the bank for 6 months at the new interest rate

    1. $ 160
    2. $ 180
    3. $ 200
    4. $ 220
    5. $ 150
    If the interest rate is 3.5% then interest amount is
    3.5% of 6400 = 0.035 × 6400 = $ 2240
    If the interest rate is 4% then interest amount is
    4% of 6400 = 0.04 × 6400 = $ 2560
    Now the difference of both interests = 2560 - 2240 = $ 320 per annum
    Interest for half year (6 months) = \(320 \over 2\) = $ 160
  19. A basket that contains 2 apples, 3 bananas, 6 oranges, and 4 pears is in the workroom. When Ms. Hutchinson went to the workroom, other workers had already taken 1 banana, 2 oranges, and 1 pear. From the remaining fruit, Ms. Hutchinson randomly took 3 pieces of fruit separately from the basket. If each fruit is equally likely to be chosen, what is the probability that the third piece was an orange if the first two she took were also oranges?

    1. 4/165
    2. 9/11
    3. 4/11
    4. 3/11
    5. 2/9
    Ms. Hutchinson randomly takes the 3 pieces of fruit from the basket, there are 2 apples, 3 -1 = 2 bananas, 6 - 2 = 4 oranges, and 4 - 1 = 3 pears. Assuming that the first 2 pieces of fruit Ms. Hutchinson takes are oranges, there will be 2 apples, 2 bananas, 4 - 2 = 2 oranges, and 3 pears left in the basket when she selects the third piece of fruit. The probability that the third piece of fruit she selects will be an orange is \(\frac{2}{2 + 2 + 2 + 3} = \frac{2}{9}\).
  20. A boy scored 90 marks for his mathematics test. This was 20% more than what he had scored for the geography test. How much did he score in geography?

    1. 71 marks
    2. 73 marks
    3. 75 marks
    4. 77 marks
    5. 78 marks
    20% of x + x = 90
    0.2x + x = 90
    1.2x = 90
    x = \(90 \over 1.2\)
    x = 75

Solved Examples Set 1
Solved Examples Set 2
Solved Examples Set 3