In the name of ALLAH, the most beneficient, the most merciful

Solved Examples Set 3 (Quantitative Ability)

  1. \( {0.027 \over 90} = ? \)

    1. 0.0003
    2. 0.03
    3. 3
    4. 0.00003
    5. 0.003
    \( {0.027 \over 90} = {27 \over 1000 × 90} = {3 \over 10000} = 0.0003 \)
  2. 40 arithmetic questions, each carrying equal marks, were given in a class test. A boy answered 25 questions correctly. What percentage was this? To pass a test a student must answer at least 45% of the questions correctly. Find the least number of correct answers needed to pass.

    1. 62.5%, 18
    2. 63.5%, 16
    3. 64.5%, 20
    4. 61.0%, 21
    5. 60.0%, 22
    \(x \text{% of } 40 = 25\)
    \(x \text{% } × 40 = 25\)
    \(x = {25 \over 40} × 100 \)
    x = 62.5

    \(x = 45 \text{% of } 40 \)
    \(x = 0.45 × 40 \)
    x = 18
  3. \( {1250 \over 25} × 0.5 = ? \)

    1. 250
    2. 50
    3. 2.5
    4. 25
    5. 125
    \( {1250 \over 25} × 0.5 = 50 × 0.5 = 25 \)
  4. A boy of height 165 cm is replaced by another, which decreases the average height of the group of 34 students, by 1 cm. The height of the new student is

    1. 129 cm
    2. 130 cm
    3. 131 cm
    4. 132 cm
    5. 133 cm
    Total decreased height of 34 students = 1 × 34 = 34 cm
    Height of the replaced student = 165 - 34 = 131 cm
  5. A shopkeeper bought a radio from a wholesaler for $ 250.00. In addition, he paid a sales tax of 15% on the cost price. He then sold the radio for $ 315.00. Calculate the cash profit made by the shopkeeper.

    1. $ 20.00
    2. $ 22.50
    3. $ 25.00
    4. $ 27.50
    5. $ 27.00
    cost price = $ 250
    sales tax = .15 × 250 = $ 37.5
    cash profit = 315 - 250 - 37.5 = $ 27.5
  6. By selling 60 chairs, a man gains an amount equal to selling price of 10 chairs. The profit percentage in the transaction is

    1. 10%
    2. 15%
    3. 16.67%
    4. 20%
    5. 22%
    selling price of 60 chairs = selling price of 10 chairs
    profit of 60 chairs = profit of 10 chairs
    profit of 6 chairs = profit of 1 chair
    profit of 1 chair = profit of 1/6 chair
    profit %age = 1/6 x 100 = 16.67%
  7. A man travelled 120 km to a town. He could have reached the town 4 1⁄2 hours earlier had he increased his speed by 3 km/h. Find the speed at which he travelled.

    1. 6.56 km
    2. 7.57 km
    3. 8.58 km
    4. 9.59 km
    5. 5.55 km
    Let the normal speed \(= x \text{ } \frac{km}{hr}\)
    Time taken when travelled at the normal speed \(= \frac{120}{x}\) hr
    Time taken when travelled at the increased speed \(= \frac{120}{x + 3}\) hr
    $$\frac{120} {x} - \frac{120}{x + 3} = 4.5$$ $$120(x + 3) − 120x = 4.5x(x + 3)$$ $$360 = 4.5x(x + 3)$$ $$720 = 9x(x + 3)$$ $$80 = x(x + 3)$$ $$x^2 + 3x - 80 = 0$$ $$x = \frac{-3 \pm \sqrt{3^2-4 × (-80)}}{2} = \frac{-3 \pm \sqrt{329}}{2}$$ $$= \frac{-3 \pm 18.14}{2} = 7.57 \text{ (ignoring the negative value)}$$
  8. 5873 + 12034 + 1106 = ?

    1. 19016
    2. 20001
    3. 19013
    4. 2018
    5. 19010
    5873 + 12034 + 1106 = 17907 + 1106 = 19013
  9. 5.41 - 3.29 × 1.6 = ?

    1. 14.6
    2. 0.3392
    3. 0.146
    4. 3.392
    5. 1.46
    5.41 - 3.29 × 1.6 = 5.41 - 5.264 = 0.146
  10. \( {63.84 \over ?} \) = 21

    1. 3.04
    2. 3.4
    3. 30.4
    4. 300.4
    5. 0.304
    ? = \( 63.84 \over 21 \) = 3.04
  11. A shopkeeper buys 300 identical articles at a total cost of $ 1500. He fixes the selling price of each article at 20% above the cost price and sells 260 articles at the price. As for the remaining articles, he sells them at 50% of the selling price. Calculate the shopkeeper's total profit.

    1. $ 180
    2. $ 185
    3. $ 200
    4. $ 190
    5. $ 170
    cost price of each item = \( 1500 \over 300 \) = $ 5
    selling price at 20% above the cost price = 5 + 5 × .2 = $ 6
    selling price of 260 items = 260 × 6 = $ 1560
    selling price of remaining 40 items = 40 × 6 × .5 = $ 120
    Total profit = 1560 + 120 - 1500 = $ 180
  12. 42.98 + ? = 107.87

    1. 64.89
    2. 65.89
    3. 64.98
    4. 65.81
    5. 63.89
    ? = 107.87 - 42.98 = 64.89
  13. A shop owner blends three types of coffees, A, B and C, in the ratio 3:5:7. Given that type A coffee costs $ 70 per kg, type B coffee costs $ 100 per kg and type C coffee costs $ 130 per kg, calculate the cost per kg of the blended mixture.

    1. $ 106
    2. $ 108
    3. $ 109
    4. $ 110
    5. $ 105
    Cost per kg = 70 x 1/5 + 100 x 1/3 + 130 x 7/15 = $ 108 per kg
  14. In the series 8, 9, 12, 17, 24 . . . the next number would be

    1. 29
    2. 30
    3. 33
    4. 35
    5. 41
    In the series, 8, 9, 12, 17, 24 . . .
    9 − 8 = 1
    12 − 9 = 3
    17 − 12 = 5
    24 − 17 = 7
    Hence, the difference between the next term and 24 must be 9 or
    x − 24 = 9, and
    x = 33
    Hence, the next term in the series must be 33
  15. A man was 32 years old when his daughter was born. He is now five times as old as his daughter. How old is his daughter now?

    1. 7 years
    2. 8 years
    3. 9 years
    4. 10 years
    5. 6 years
    Let's assume the daughter is d years old now. That means that the man is now (32 + d) years old, so that
    (32 + d) = 5d
    32 = 4d
    d = 8
  16. 10 men can complete a job in 14 days. How long will it take 4 men to finish the same job if they work at the same rate?

    1. 33 days
    2. 35 days
    3. 37 days
    4. 39 days
    5. 31 days
    \(14 × 10 \over 4 \) = 35 days
  17. ? × 12 = 75% of 336

    1. 48
    2. 252
    3. 28
    4. 21
    5. 23
    ? × 12 = 75% of 336
    ? × 12 = 0.75 × 336
    ? × 12 = 252
    \(? = \frac{252}{12}\)
    ? = 21
  18. A person's net income is $ 1373.70 and he pays an income tax of 5%. His gross income in dollars must be

    1. 1446
    2. 1118.96
    3. 1308.29
    4. 1438.25
    5. 1211.21
    Let gross income in dollars = x
    then according to the statement,
    x = 5% of x + 1373.70
    x - 0.05x = 1373.70
    0.95x = 1373.70
    x = \(137370 \over 95\) = 1446
  19. How much would I have to pay for a book which cost $ 72 to product, if the printing company sold it to a bookseller at 20% profit and in return the bookseller sold it to me at a profit of 25%?

    1. $ 104
    2. $ 106
    3. $ 108
    4. $ 110
    5. $ 109
    Cost of the book product = $ 72
    Profit of printing company = 20% of 72 = 0.2 x 72 = 14.4
    Now the cost of the book = 72 +14.4 = $ 86.4
    Profit of the bookseller = 25% of 86.4 = 21.4
    Finally, the cost of the book = 86.4 + 21.4 = $ 108
  20. A man saves $ 500, which is 15% of his annual income. How much does he earn in one year?

    1. $ 3542.5
    2. $ 3333.33
    3. $ 3132.3
    4. $ 3075.75
    5. $ 4444.4
    Let annual income = x
    15% of x = 500
    x = \(500 \over 15\) × 100 = \(10000 \over 3\) = 3333.33

Solved Examples Set 1
Solved Examples Set 2
Solved Examples Set 3