In the name of ALLAH, the most beneficient, the most merciful

Solved Examples Set 3 (Quantitative Ability)

  1. A man travelled 120 km to a town. He could have reached the town 4 1⁄2 hours earlier had he increased his speed by 3 km/h. Find the speed at which he travelled.

    1. 6.56 km
    2. 7.57 km
    3. 8.58 km
    4. 9.59 km
    5. 5.55 km
    Let the normal speed \(= x \text{ } \frac{km}{hr}\)
    Time taken when travelled at the normal speed \(= \frac{120}{x}\) hr
    Time taken when travelled at the increased speed \(= \frac{120}{x + 3}\) hr
    $$\frac{120} {x} - \frac{120}{x + 3} = 4.5$$ $$120(x + 3) − 120x = 4.5x(x + 3)$$ $$360 = 4.5x(x + 3)$$ $$720 = 9x(x + 3)$$ $$80 = x(x + 3)$$ $$x^2 + 3x - 80 = 0$$ $$x = \frac{-3 \pm \sqrt{3^2-4 × (-80)}}{2} = \frac{-3 \pm \sqrt{329}}{2}$$ $$= \frac{-3 \pm 18.14}{2} = 7.57 \text{ (ignoring the negative value)}$$
  2. A group of boys were to choose between playing hockey and badminton. The number of boys choosing hockey was three times that of those choosing badminton. Asking 12 boys who chose hockey to play badminton would make the number of players for each game equal. Find the number who chose badminton originally.

    1. 12
    2. 14
    3. 11
    4. 13
    5. 10
    Let no. of boys for badminton = x
    then no. of boys for hockey = 3x
    According to the statement,
    3x - 12 = x + 12 (12 leave hockey, 12 join badminton)
    2x = 24
    x = 12
    Hence, there were 12 boys originally choosing badminton.
  3. If n! = n ⋅ (n − 1) ⋅ (n − 2) ⋅ (n − 3) . . . 2 ⋅ 1, what is the value of \(\frac{(6!)(4!)}{(5!)(3!)}\)

    1. 5/4
    2. 8/5
    3. 10
    4. 24
    5. 1152
    \(\frac{(6!)(4!)}{(5!)(3!)}\) = \(\frac{(6 . 5 . 4 . 3 . 2 . 1)(4 . 3 . 2. 1)}{(5 . 4 . 3 . 2 . 1)(3 . 2 . 1)}\) = \(\frac{6 . 4}{1}\) = 24
  4. 60% of 37 = ?

    1. 20
    2. 21
    3. 22.2
    4. 22
    5. none
    60% of 37 = 0.6 × 37 = 22.2
  5. A boy of height 165 cm is replaced by another, which decreases the average height of the group of 34 students, by 1 cm. The height of the new student is

    1. 129 cm
    2. 130 cm
    3. 131 cm
    4. 132 cm
    5. 133 cm
    Total decreased height of 34 students = 1 × 34 = 34 cm
    Height of the replaced student = 165 - 34 = 131 cm
  6. A basket that contains 2 apples, 3 bananas, 6 oranges, and 4 pears is in the workroom. When Ms. Hutchinson went to the workroom, other workers had already taken 1 banana, 2 oranges, and 1 pear. From the remaining fruit, Ms. Hutchinson randomly took 3 pieces of fruit separately from the basket. If each fruit is equally likely to be chosen, what is the probability that the third piece was an orange if the first two she took were also oranges?

    1. 4/165
    2. 9/11
    3. 4/11
    4. 3/11
    5. 2/9
    Ms. Hutchinson randomly takes the 3 pieces of fruit from the basket, there are 2 apples, 3 -1 = 2 bananas, 6 - 2 = 4 oranges, and 4 - 1 = 3 pears. Assuming that the first 2 pieces of fruit Ms. Hutchinson takes are oranges, there will be 2 apples, 2 bananas, 4 - 2 = 2 oranges, and 3 pears left in the basket when she selects the third piece of fruit. The probability that the third piece of fruit she selects will be an orange is \(\frac{2}{2 + 2 + 2 + 3} = \frac{2}{9}\).
  7. A third-grade class is composed of 16 girls and 12 boys. There are 2 teacher-aides in the class. The ratio of girls to boys to teacher-aides is

    1. 16:12:1
    2. 8:6:2
    3. 8:6:1
    4. 8:3:1
    5. 4:3:1
    Girls to boys to teacher-aides are in proportion 16 to 12 to 2. Reduced to lowest terms, 16:12:2 equals 8:6:1.
  8. A man sells two houses for $ 2 lac each. On one he gained 20% and on the other he lost 20%. His total profit or loss % in the transaction will be

    1. 4% profit
    2. 5% loss
    3. no profit, no loss
    4. 4% loss
    5. 3% loss
    % loss = (% loss X % profit)/100 = (20 X 20)/100 = 4%
  9. A certain number was doubled and the result then multiplied by 3. If the product was 138, find the number.

    1. 21
    2. 23
    3. 25
    4. 27
    5. 19
    Let x be the number
    the number is doubled, 2x
    the result is multiplied by 3, 3 × 2x = 6x
    6x = 138
    x = \(138 \over 6\) = 23
  10. In the series 8, 9, 12, 17, 24 . . . the next number would be

    1. 29
    2. 30
    3. 33
    4. 35
    5. 41
    In the series, 8, 9, 12, 17, 24 . . .
    9 − 8 = 1
    12 − 9 = 3
    17 − 12 = 5
    24 − 17 = 7
    Hence, the difference between the next term and 24 must be 9 or
    x − 24 = 9, and
    x = 33
    Hence, the next term in the series must be 33
  11. At a book fair, a book was reduced in price from $ 75 to $ 60. If the first price gives a 50% profit, find the percentage profit of the book sold at the reduced price.

    1. 20%
    2. 30%
    3. 40%
    4. 50%
    5. 10%
    As $ 75 (first price) gives a profit = 50%
    $ 1 gives a profit = (50/75)%
    $ 60 (reduced price) gives profit = (50/75 x 60)% = 40%
  12. A boy scored 90 marks for his mathematics test. This was 20% more than what he had scored for the geography test. How much did he score in geography?

    1. 71 marks
    2. 73 marks
    3. 75 marks
    4. 77 marks
    5. 78 marks
    20% of x + x = 90
    0.2x + x = 90
    1.2x = 90
    x = \(90 \over 1.2\)
    x = 75
  13. ? × 12 = 75% of 336

    1. 48
    2. 252
    3. 28
    4. 21
    5. 23
    ? × 12 = 75% of 336
    ? × 12 = 0.75 × 336
    ? × 12 = 252
    \(? = \frac{252}{12}\)
    ? = 21
  14. Matthew’s age (𝑚) is three years more than twice Rita’s age (𝑟). Which equation shows the relationship between their ages?

    1. 𝑚 = 𝑟 − 32
    2. 𝑚 = 𝑟 + 32
    3. 𝑚 = 2(𝑟 + 3)
    4. 𝑚 = 2𝑟 − 3
    5. 𝑚 = 2𝑟 + 3
    As Matthew's age (𝑚) is three more years (+3) than twice Rita's age (2𝑟). Therefore, 𝑚 = 2𝑟 + 3.
  15. 40 arithmetic questions, each carrying equal marks, were given in a class test. A boy answered 25 questions correctly. What percentage was this? To pass a test a student must answer at least 45% of the questions correctly. Find the least number of correct answers needed to pass.

    1. 62.5%, 18
    2. 63.5%, 16
    3. 64.5%, 20
    4. 61.0%, 21
    5. 60.0%, 22
    \(x \text{% of } 40 = 25\)
    \(x \text{% } × 40 = 25\)
    \(x = {25 \over 40} × 100 \)
    x = 62.5

    \(x = 45 \text{% of } 40 \)
    \(x = 0.45 × 40 \)
    x = 18
  16. A shopkeeper sold two articles for $ 48 each. He made a 25% profit on one article and a loss of 20% on the other. What was his net gain or loss on the sale of the two articles?

    1. loss of $ 1.40
    2. gain of $ 2.40
    3. loss of $ 2.40
    4. gain of $ 1.40
    5. gain of $ 2.60
    25% profit at selling price $ 48 = 48 x .25 = $ 12
    20% loss at selling price $ 48 = 48 x 0.2 = $ 9.6
    gain = profit - loss = 12 - 9.6 = $ 2.4
  17. 12% of ________ = 48

    1. 250
    2. 100
    3. 400
    4. 200
    5. 300
    \(12 \text{% of } x = 48\)
    \(0.12x = 48\)
    \(x = \frac{48}{0.12} = 400\)
  18. 42.98 + ? = 107.87

    1. 64.89
    2. 65.89
    3. 64.98
    4. 65.81
    5. 63.89
    ? = 107.87 - 42.98 = 64.89
  19. After spending 88% of his income, a man had $ 2160 left. Find his income.

    1. $ 18000
    2. $ 19000
    3. $ 20000
    4. $ 22000
    5. $ 17000
    Let income = x
    x = 88% of x + 2160
    x - 0.88x = 2160
    0.12x = 2160
    x = \(216000 \over 12\) = 18000
  20. Which of the following expressions is equivalent to \(\frac{𝑥^2 + 3x + 1}{𝑥 + 1}\)?

    1. x + 2
    2. 𝑥 + 3
    3. 𝑥 + 2 - 1/(𝑥 + 1)
    4. 𝑥 + 3 + 1/(𝑥 + 1)
    5. 𝑥 + 4 + 5/(𝑥 + 1)
    As \(𝑥^2 + 3x + 1 = (𝑥^2 + 3x + 2) -1\)
    and
    \(\frac{𝑥^2 + 3x + 2}{x + 1} = \frac{(𝑥 + 2)(x + 1)}{x + 1} = 𝑥 + 2\)
    Therefore,
    \(\frac{𝑥^2 + 3x + 1}{x + 1} = \frac{𝑥^2 + 3x + 2}{x + 1} - \frac{1}{x + 1} = (𝑥 + 2) - \frac{1}{x + 1}\)

Solved Examples Set 1
Solved Examples Set 2
Solved Examples Set 3