In the name of ALLAH, the most beneficient, the most merciful

Solved Examples Set 3 (Quantitative Ability)

  1. After spending 88% of his income, a man had $ 2160 left. Find his income.

    1. $ 18000
    2. $ 19000
    3. $ 20000
    4. $ 22000
    5. $ 17000
    Let income = x
    x = 88% of x + 2160
    x - 0.88x = 2160
    0.12x = 2160
    x = \(216000 \over 12\) = 18000
  2. 40 arithmetic questions, each carrying equal marks, were given in a class test. A boy answered 25 questions correctly. What percentage was this? To pass a test a student must answer at least 45% of the questions correctly. Find the least number of correct answers needed to pass.

    1. 62.5%, 18
    2. 63.5%, 16
    3. 64.5%, 20
    4. 61.0%, 21
    5. 60.0%, 22
    \(x \text{% of } 40 = 25\)
    \(x \text{% } × 40 = 25\)
    \(x = {25 \over 40} × 100 \)
    x = 62.5

    \(x = 45 \text{% of } 40 \)
    \(x = 0.45 × 40 \)
    x = 18
  3. By selling a fan for $ 475, a person loses 5%. To get a gain of 5%, he should sell the fan for:

    1. $ 500
    2. $ 525
    3. $ 535
    4. $ 575
    5. $ 505
    cost price = 100/(100 - 5) x 475 = $ 500
    sale price = (100 + 5)/100 x 500 = $ 525
  4. A rectangular room is 6 m long, 5 m wide and 4 m high. The total volume of the room in cubic meters is

    1. 24
    2. 30
    3. 120
    4. 240
    5. 140
    Total volume = length × width × height = 6 × 5 × 4 = 120
  5. A girl is 18 years younger than her mother. In 6 years time, the sum of their ages will be 54.How old is the girl now?

    1. 10 years
    2. 11 years
    3. 12 years
    4. 13 years
    5. 14 years
    Let girl's age = x
    then mother's age = x + 18
    After 6 years,
    x + 6 + x + 18 + 6 = 54
    2x + 30 = 54
    2x = 24
    x = 12
  6. \( {1250 \over 25} × 0.5 = ? \)

    1. 250
    2. 50
    3. 2.5
    4. 25
    5. 125
    \( {1250 \over 25} × 0.5 = 50 × 0.5 = 25 \)
  7. Which set of ordered pairs represents a function?

    1. {(−5,5),(4,8),(−5,−6)}
    2. {(−1,−1),(−1,6),(−1,−10)}
    3. {(−3,7),(2,5),(−7,7)}
    4. {(2,3),(−2,4),(−2,−5)}
    5. {(2,3),(3,2),(2,5)}
    For a set of ordered pairs to be a function, no single 𝑥-coordinate can be mapped to two distinct 𝑦-coordinates. This is not the case for option A, where 𝑥=−5 is mapped to both 𝑦=5 and 𝑦=−6. Similarly, in options B (𝑥=−1), D (𝑥=−2), and E (𝑥=2), an 𝑥 value is mapped to two different 𝑦 values.
  8. 5873 + 12034 + 1106 = ?

    1. 19016
    2. 20001
    3. 19013
    4. 2018
    5. 19010
    5873 + 12034 + 1106 = 17907 + 1106 = 19013
  9. A man travelled 120 km to a town. He could have reached the town 4 1⁄2 hours earlier had he increased his speed by 3 km/h. Find the speed at which he travelled.

    1. 6.56 km
    2. 7.57 km
    3. 8.58 km
    4. 9.59 km
    5. 5.55 km
    Let the normal speed \(= x \text{ } \frac{km}{hr}\)
    Time taken when travelled at the normal speed \(= \frac{120}{x}\) hr
    Time taken when travelled at the increased speed \(= \frac{120}{x + 3}\) hr
    $$\frac{120} {x} - \frac{120}{x + 3} = 4.5$$ $$120(x + 3) − 120x = 4.5x(x + 3)$$ $$360 = 4.5x(x + 3)$$ $$720 = 9x(x + 3)$$ $$80 = x(x + 3)$$ $$x^2 + 3x - 80 = 0$$ $$x = \frac{-3 \pm \sqrt{3^2-4 × (-80)}}{2} = \frac{-3 \pm \sqrt{329}}{2}$$ $$= \frac{-3 \pm 18.14}{2} = 7.57 \text{ (ignoring the negative value)}$$
  10. if x% of 60 = 48 then x = ?

    1. 80
    2. 60
    3. 90
    4. 40
    5. 70
    x = \( {48 × 100 \over 60} \) = 80
  11. A boy of height 165 cm is replaced by another, which decreases the average height of the group of 34 students, by 1 cm. The height of the new student is

    1. 129 cm
    2. 130 cm
    3. 131 cm
    4. 132 cm
    5. 133 cm
    Total decreased height of 34 students = 1 × 34 = 34 cm
    Height of the replaced student = 165 - 34 = 131 cm
  12. A bank increased the rate of interest which it paid to depositors from 3.5% to 4% per annum. Find how much more interest a man would receive if he deposited $ 64000 in the bank for 6 months at the new interest rate

    1. $ 160
    2. $ 180
    3. $ 200
    4. $ 220
    5. $ 150
    If the interest rate is 3.5% then interest amount is
    3.5% of 6400 = 0.035 × 6400 = $ 2240
    If the interest rate is 4% then interest amount is
    4% of 6400 = 0.04 × 6400 = $ 2560
    Now the difference of both interests = 2560 - 2240 = $ 320 per annum
    Interest for half year (6 months) = \(320 \over 2\) = $ 160
  13. A man saves $ 500, which is 15% of his annual income. How much does he earn in one year?

    1. $ 3542.5
    2. $ 3333.33
    3. $ 3132.3
    4. $ 3075.75
    5. $ 4444.4
    Let annual income = x
    15% of x = 500
    x = \(500 \over 15\) × 100 = \(10000 \over 3\) = 3333.33
  14. A boy scored 90 marks for his mathematics test. This was 20% more than what he had scored for the geography test. How much did he score in geography?

    1. 71 marks
    2. 73 marks
    3. 75 marks
    4. 77 marks
    5. 78 marks
    20% of x + x = 90
    0.2x + x = 90
    1.2x = 90
    x = \(90 \over 1.2\)
    x = 75
  15. The amount of hot cocoa powder remaining in a can is 6 1⁄4 tablespoons. A single serving consists of 1 3⁄4 tablespoons of the powder. What is the total number of servings of the powder remaining in the can?

    1. 3 1⁄2
    2. 3 4⁄7
    3. 4 3⁄7
    4. 4 1⁄2
    5. 6
    As \(6\frac{1}{4} = \frac{25}{4}\) and \(1\frac{3}{4} = \frac{7}{4}\). Therefore,
    \(\frac{6\frac{1}{4} \text{ tsp}}{1\frac{3}{4} \text{ } \frac{tsp}{ serving}} = \frac{\frac{25}{4}}{\frac{7}{4}} \text{ servings} = \frac{25}{7} \text{ servings} = 3\frac{4}{7} \text{ servings}\)
  16. A certain solution is to be prepared by combining chemicals X, Y and Z in the ratio 18:3:2. How many liters of the solution can be prepared by using 36 liters of X?

    1. 46 liters
    2. 47 liters
    3. 45 liters
    4. 49 liters
    5. 44 liters
    As total ratio is 18 +3 + 2 = 23
    Let total solution is x liters
    Then \(18 \over 23\) x = 36
    x = \(36 × 23 \over 18\) = 46 liters
  17. If 4a + 2 = 10, then 8a + 4 =

    1. 5
    2. 16
    3. 20
    4. 24
    5. 28
    One may answer this question by solving
    4a + 2 = 10
    4a = 8
    a= 2
    Now, plugging in 2 for a:
    8a + 4 = 8(2) + 4 = 20
    A faster way of solving this is to see the relationship between the quantity 4a + 2 (which equals 10) and 8a + 4. Since 8a + 4 is twice 4a + 2, the answer must be twice 10, or 20.
  18. Rashid's salary was reduced by 20%. In order to restore his salary at the original amount, it must be raised by

    1. 20%
    2. 22.50%
    3. 25%
    4. 26%
    5. 27%
    Let Rashid's Salary 100
    20% reduced salary is 80
    As the reduced amount is 20
    So what percentage of the present sallary is required to be equal to 20?
    ?% of 80 = 20
    ? = \(20 \over 80\) × 100 = 25%
  19. A train takes 50 minutes for a journey if it runs at 48 km/hr. The rate at which the train must run to reduce the time to 40 minutes will be

    1. 50 km/hr
    2. 55 km/hr
    3. 60 km/hr
    4. 57 km/hr
    5. 65 km/hr
    \(50 × 48 \over 40\) = 60 \(km \over hr\)
  20. In the series 8, 9, 12, 17, 24 . . . the next number would be

    1. 29
    2. 30
    3. 33
    4. 35
    5. 41
    In the series, 8, 9, 12, 17, 24 . . .
    9 − 8 = 1
    12 − 9 = 3
    17 − 12 = 5
    24 − 17 = 7
    Hence, the difference between the next term and 24 must be 9 or
    x − 24 = 9, and
    x = 33
    Hence, the next term in the series must be 33

Solved Examples Set 1
Solved Examples Set 2
Solved Examples Set 3