In the name of ALLAH, the most beneficient, the most merciful

Solved Examples Set 1 (Quantitative Ability)

  1. A man sells two houses for $ 2 lac each. On one he gained 20% and on the other he lost 20%. His total profit or loss % in the transaction will be

    1. 4% profit
    2. 5% loss
    3. no profit, no loss
    4. 4% loss
    5. 3% loss
    % loss = (% loss X % profit)/100 = (20 X 20)/100 = 4%
  2. A man takes 50 minutes to cover a certain distance at a speed of 6 km/hr. If he walks with a speed of 10 km/hr, he covers the same distance in

    1. 1 hour
    2. 30 minutes
    3. 20 minutes
    4. 10 minutes
    5. 40 minutes
    \( 50 × 6 \over 10 \) = 30 minutes
  3. 5873 + 12034 + 1106 = ?

    1. 19016
    2. 20001
    3. 19013
    4. 2018
    5. 19010
    5873 + 12034 + 1106 = 17907 + 1106 = 19013
  4. If 3x = −9, then 3x3 − 2x + 4 =

    1. -83
    2. -71
    3. -47
    4. -17
    5. 61
    First solving 3x = −9, x = −3. Now plug into 3x3 − 2x + 4:
    3x3 − 2x + 4
    = 3(-3)3 − 2(-2) + 4
    = 3(−27) + 6 + 4
    = −81 + 6 + 4
    = −71
  5. if x% of 60 = 48 then x = ?

    1. 80
    2. 60
    3. 90
    4. 40
    5. 70
    x = \( {48 × 100 \over 60} \) = 80
  6. By selling a fan for $ 475, a person loses 5%. To get a gain of 5%, he should sell the fan for:

    1. $ 500
    2. $ 525
    3. $ 535
    4. $ 575
    5. $ 505
    cost price = 100/(100 - 5) x 475 = $ 500
    sale price = (100 + 5)/100 x 500 = $ 525
  7. 5789 - 2936 + 1089 = ?

    1. 3942
    2. 4041
    3. 2626
    4. 3932
    5. 3940
    5789 - 2936 + 1089 = 6878 - 2936 = 3942
  8. A fruit-seller has 120 oranges. Given that he has 20% more apples than oranges and 40% less oranges than pears, find the number of apples and the number of pears the fruit seller has.

    1. 144, 200
    2. 148, 380
    3. 149, 220
    4. 140, 190
    5. 142, 190
    No. of apples = 120 + 20% of 120 = 120 + 0.2 × 120 = 144

    Let x = No. of pears
    x - 40% of x = 120
    x - 0.4x = 120
    0.6x = 120
    x = \(120 \over 0.6\) = 200
    Hence, no. of pears = 200
  9. \( {1250 \over 25} × 0.5 = ? \)

    1. 250
    2. 50
    3. 2.5
    4. 25
    5. 125
    \( {1250 \over 25} × 0.5 = 50 × 0.5 = 25 \)
  10. 5.41 - 3.29 × 1.6 = ?

    1. 14.6
    2. 0.3392
    3. 0.146
    4. 3.392
    5. 1.46
    5.41 - 3.29 × 1.6 = 5.41 - 5.264 = 0.146
  11. A primary school had an enrollment of 850 pupils in January 1970. In January 1980 the enrollment was 1,120. What was the percentage increase for the enrollment?

    1. 31.76%
    2. 33.50%
    3. 30.65%
    4. 34.76%
    5. 30.55%
    Percentage increase for the enrollment = \(1120 - 850 \over 850\) × 100 = 31.76
  12. A bank exchanges British currency for Singapore currency at the rate of S$ 3.20 to pond 1. Calculate, in Pond, the amount exchanged for S$ 1,600 by a customer who also had to pay an extra 3% commission for this transaction.

    1. Pond 475
    2. Pond 485
    3. Pond 495
    4. Pond 505
    5. Pond 510
    As commission is 3% of 1600 = 0.03 × 1600 = S$ 48
    the rest amount = 1600 - 48 = S$ 1552
    S$ 1 = \(1 \over 3.20\) = Pond 0.3125
    Now S$ 1552 = 1552 × 0.3125 = Pond 485
  13. \( {0.027 \over 90} = ? \)

    1. 0.0003
    2. 0.03
    3. 3
    4. 0.00003
    5. 0.003
    \( {0.027 \over 90} = {27 \over 1000 × 90} = {3 \over 10000} = 0.0003 \)
  14. A man pays 10% of his income for his income tax. If his income tax amounts to $ 1500, what is his income?

    1. $ 13000
    2. $ 15000
    3. $ 17000
    4. $ 19000
    5. $ 11000
    Let x = income
    10% of x = $ 1500
    0.1x = $ 1500
    x = \(1500 \over 0.1\) = $ 15000
  15. A man earned an annual income of $ 245000 in 1990. He was allowed a deduction of $ 15000 relief for each of his three children and a personal relief of $ 30000. If he was charged a tax rate of 4% on first $ 50000 and 6% on his remaining income, calculate the total tax charged.

    1. $ 9200
    2. $ 8700
    3. $ 9500
    4. $ 9400
    5. $ 9000
    Total Income = $ 245000
    Total relief = 3 × 15000 + 30000 = $ 75000
    Rest income = 245000 - 75000 = 170000
    Tax on 1st 50000 = 0.04 × 50000 = $ 2000
    Tax on rest amount 120000 = 0.06 × 120000 = $ 7200
    Total tax = 200 + 7200 = $ 9200
  16. A and B enter into a partnership contributing $ 800 and $ 1000 respectively. At the end of 6 months they admit C, who contributes $ 600. After 3 years they get a profit of $ 966. Find the share of each partner in the profit.

    1. $ 336, $ 420, $ 210
    2. $ 360, $ 400, $ 206
    3. $ 380, $ 390, $ 196
    4. $ 345, $ 405, $ 210
    5. $ 325, $ 400, $ 200
    A shares = 800 × 3 = 2400
    B shares = 1000 × 3 = 3000
    C shares = 600 × 2 1⁄2 = 1500
    Total shares = 2400 + 3000 + 1500 = 6900
    A's profit = \(2400 \over 6900 \) × 966 = $ 336
    B's profit = \(3000 \over 6900 \) × 966 = $ 420
    C's profit = \(1500 \over 6900 \) × 966 = $ 210
  17. Rashid buys three books for $ 16 each and four books for $ 23 each, what will be the average price of books

    1. $ 18
    2. $ 20
    3. $ 22
    4. $ 24
    5. $ 16
    Price of 3 books = 3 × 16 = $ 48
    Price of 4 books = 4 × 23 = $ 92
    Total price = $ 140
    Total books = 3 + 4 = 7
    Average price of books = \(140 \over 7 \) = $ 20
  18. A man travelled 120 km to a town. He could have reached the town 4 1⁄2 hours earlier had he increased his speed by 3 km/h. Find the speed at which he travelled.

    1. 6.56 km
    2. 7.57 km
    3. 8.58 km
    4. 9.59 km
    5. 5.55 km
    Let the normal speed \(= x \text{ } \frac{km}{hr}\)
    Time taken when travelled at the normal speed \(= \frac{120}{x}\) hr
    Time taken when travelled at the increased speed \(= \frac{120}{x + 3}\) hr
    $$\frac{120} {x} - \frac{120}{x + 3} = 4.5$$ $$120(x + 3) − 120x = 4.5x(x + 3)$$ $$360 = 4.5x(x + 3)$$ $$720 = 9x(x + 3)$$ $$80 = x(x + 3)$$ $$x^2 + 3x - 80 = 0$$ $$x = \frac{-3 \pm \sqrt{3^2-4 × (-80)}}{2} = \frac{-3 \pm \sqrt{329}}{2}$$ $$= \frac{-3 \pm 18.14}{2} = 7.57 \text{ (ignoring the negative value)}$$
  19. A shopkeeper sold two articles for $ 48 each. He made a 25% profit on one article and a loss of 20% on the other. What was his net gain or loss on the sale of the two articles?

    1. loss of $ 1.40
    2. gain of $ 2.40
    3. loss of $ 2.40
    4. gain of $ 1.40
    5. gain of $ 2.60
    25% profit at selling price $ 48 = 48 x .25 = $ 12
    20% loss at selling price $ 48 = 48 x 0.2 = $ 9.6
    gain = profit - loss = 12 - 9.6 = $ 2.4
  20. \( {63.84 \over ?} \) = 21

    1. 3.04
    2. 3.4
    3. 30.4
    4. 300.4
    5. 0.304
    ? = \( 63.84 \over 21 \) = 3.04

Solved Examples Set 1
Solved Examples Set 2
Solved Examples Set 3