In the name of ALLAH, the most beneficient, the most merciful

Solved Examples Set 1 (Quantitative Ability)

  1. A shop owner blends three types of coffees, A, B and C, in the ratio 3:5:7. Given that type A coffee costs $ 70 per kg, type B coffee costs $ 100 per kg and type C coffee costs $ 130 per kg, calculate the cost per kg of the blended mixture.

    1. $ 106
    2. $ 108
    3. $ 109
    4. $ 110
    5. $ 105
    Cost per kg = 70 x 1/5 + 100 x 1/3 + 130 x 7/15 = $ 108 per kg
  2. The amount of hot cocoa powder remaining in a can is 6 1⁄4 tablespoons. A single serving consists of 1 3⁄4 tablespoons of the powder. What is the total number of servings of the powder remaining in the can?

    1. 3 1⁄2
    2. 3 4⁄7
    3. 4 3⁄7
    4. 4 1⁄2
    5. 6
    As \(6\frac{1}{4} = \frac{25}{4}\) and \(1\frac{3}{4} = \frac{7}{4}\). Therefore,
    \(\frac{6\frac{1}{4} \text{ tsp}}{1\frac{3}{4} \text{ } \frac{tsp}{ serving}} = \frac{\frac{25}{4}}{\frac{7}{4}} \text{ servings} = \frac{25}{7} \text{ servings} = 3\frac{4}{7} \text{ servings}\)
  3. How much would I have to pay for a book which cost $ 72 to product, if the printing company sold it to a bookseller at 20% profit and in return the bookseller sold it to me at a profit of 25%?

    1. $ 104
    2. $ 106
    3. $ 108
    4. $ 110
    5. $ 109
    Cost of the book product = $ 72
    Profit of printing company = 20% of 72 = 0.2 x 72 = 14.4
    Now the cost of the book = 72 +14.4 = $ 86.4
    Profit of the bookseller = 25% of 86.4 = 21.4
    Finally, the cost of the book = 86.4 + 21.4 = $ 108
  4. 42.98 + ? = 107.87

    1. 64.89
    2. 65.89
    3. 64.98
    4. 65.81
    5. 63.89
    ? = 107.87 - 42.98 = 64.89
  5. 5.41 - 3.29 × 1.6 = ?

    1. 14.6
    2. 0.3392
    3. 0.146
    4. 3.392
    5. 1.46
    5.41 - 3.29 × 1.6 = 5.41 - 5.264 = 0.146

  6. In the figure above, AB is one edge of a cube. If AB equals 5, what is the surface area of the cube?

    1. 25
    2. 100
    3. 125
    4. 150
    5. 300
    Since one edge of the cube is 5, all edges equal 5. Therefore, the area of one face of the cube is:
    5 × 5 = 25
    Since a cube has 6 equal faces, its surface area will be:
    6 × 25 = 150
  7. \( {1250 \over 25} × 0.5 = ? \)

    1. 250
    2. 50
    3. 2.5
    4. 25
    5. 125
    \( {1250 \over 25} × 0.5 = 50 × 0.5 = 25 \)
  8. If n! = n ⋅ (n − 1) ⋅ (n − 2) ⋅ (n − 3) . . . 2 ⋅ 1, what is the value of \(\frac{(6!)(4!)}{(5!)(3!)}\)

    1. 5/4
    2. 8/5
    3. 10
    4. 24
    5. 1152
    \(\frac{(6!)(4!)}{(5!)(3!)}\) = \(\frac{(6 . 5 . 4 . 3 . 2 . 1)(4 . 3 . 2. 1)}{(5 . 4 . 3 . 2 . 1)(3 . 2 . 1)}\) = \(\frac{6 . 4}{1}\) = 24
  9. A man walked for 3 hours at 4.5 km/h and cycled for some time at 15 km/h. Altogether, he traveled 21 km. Find the time taken for cycling.

    1. 1/2 hour
    2. 1 hour
    3. 1 1⁄2 hours
    4. 2 hours
    5. 2 1⁄2 hours
    The man walked the distance = 3 x 4.5 = 13.5 km. The distance cycled by the man = 21 - 13.5 = 7.5 km
    As he cyled 15 km in 1 h
    he cycled 1 km in 1/15 h
    Finally, he cycled 7.5 km in 7.5/15 = 1/2 h
  10. A shopkeeper bought a radio from a wholesaler for $ 250.00. In addition, he paid a sales tax of 15% on the cost price. He then sold the radio for $ 315.00. Calculate the cash profit made by the shopkeeper.

    1. $ 20.00
    2. $ 22.50
    3. $ 25.00
    4. $ 27.50
    5. $ 27.00
    cost price = $ 250
    sales tax = .15 × 250 = $ 37.5
    cash profit = 315 - 250 - 37.5 = $ 27.5
  11. A man is 5 times as old as his son. 2 years ago the sum of the squares of their ages was 1114. Find the present age of son.

    1. 7 years
    2. 9 years
    3. 8 years
    4. 8 1/2 years
    5. 6 years
    Let son's age = x, then
    father's age = 5x
    As before 2 years ago the sum of the squares of their ages was 1114, the equation becomes as
    \((x - 2)^2 + (5x - 2)^2 = 1114 \)
    By simplifying the equation, we have
    \(13x^2 -12x -553 = 0\)
    Now solving the equation, we have
    \(13x^2 - 12x - 553 = 0\)
    \(13x^2 - 91x + 79x -553 = 0\)
    13x(x - 7) + 79(x - 7) = 0
    (x - 7)(13x + 79) = 0
    x = 7 and x = -6.077
    As age could not be negative, hence the present age of the son is 7 years.
  12. A third-grade class is composed of 16 girls and 12 boys. There are 2 teacher-aides in the class. The ratio of girls to boys to teacher-aides is

    1. 16:12:1
    2. 8:6:2
    3. 8:6:1
    4. 8:3:1
    5. 4:3:1
    Girls to boys to teacher-aides are in proportion 16 to 12 to 2. Reduced to lowest terms, 16:12:2 equals 8:6:1.
  13. 5873 + 12034 + 1106 = ?

    1. 19016
    2. 20001
    3. 19013
    4. 2018
    5. 19010
    5873 + 12034 + 1106 = 17907 + 1106 = 19013
  14. A certain solution is to be prepared by combining chemicals X, Y and Z in the ratio 18:3:2. How many liters of the solution can be prepared by using 36 liters of X?

    1. 46 liters
    2. 47 liters
    3. 45 liters
    4. 49 liters
    5. 44 liters
    As total ratio is 18 +3 + 2 = 23
    Let total solution is x liters
    Then \(18 \over 23\) x = 36
    x = \(36 × 23 \over 18\) = 46 liters
  15. \(25 \text{% of }{4 \over 4\text{%}} \text{ of }{1 \over 25} = ?\)

    1. 1
    2. 3
    3. 0
    4. 67
    5. 25
    \(25 \text{% of }{4 \over 4\text{%}} \text{ of }{1 \over 25}\)
    \(= 25 \text{% } × {4 \over 4\text{%}} × {1 \over 25} \)
    \(= 0.25 × {4 \over 0.04} × {1 \over 25}\)
    \(= {25 \over 25}\)
    = 1
  16. A man bought a flat for $ 820000. He borrowed 55% of this money from a bank. How much money did he borrow from the bank?

    1. $ 451000
    2. $ 452000
    3. $ 453000
    4. $ 454000
    5. $ 450000
    55% of 820000 = 0.55 × 820000 = $ 451000
  17. 1015 / 0.05 / 40 = ?

    1. 50.75
    2. 507.5
    3. 506
    4. 2056
    5. 5075
    1015 / 0.05 / 40 = 20300 / 40 = 507.5
  18. A man pays 10% of his income for his income tax. If his income tax amounts to $ 1500, what is his income?

    1. $ 13000
    2. $ 15000
    3. $ 17000
    4. $ 19000
    5. $ 11000
    Let x = income
    10% of x = $ 1500
    0.1x = $ 1500
    x = \(1500 \over 0.1\) = $ 15000
  19. Rashid buys three books for $ 16 each and four books for $ 23 each, what will be the average price of books

    1. $ 18
    2. $ 20
    3. $ 22
    4. $ 24
    5. $ 16
    Price of 3 books = 3 × 16 = $ 48
    Price of 4 books = 4 × 23 = $ 92
    Total price = $ 140
    Total books = 3 + 4 = 7
    Average price of books = \(140 \over 7 \) = $ 20
  20. Matthew’s age (𝑚) is three years more than twice Rita’s age (𝑟). Which equation shows the relationship between their ages?

    1. 𝑚 = 𝑟 − 32
    2. 𝑚 = 𝑟 + 32
    3. 𝑚 = 2(𝑟 + 3)
    4. 𝑚 = 2𝑟 − 3
    5. 𝑚 = 2𝑟 + 3
    As Matthew's age (𝑚) is three more years (+3) than twice Rita's age (2𝑟). Therefore, 𝑚 = 2𝑟 + 3.

Solved Examples Set 1
Solved Examples Set 2
Solved Examples Set 3