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Lecture 01 

Overview of the Course 

The course of Business Econometrics is designed for students of Business and Economics. It is 

an introductory level course but covers all useful topics. The course is not only suitable for 

students of Business, Commerce, Economics, and useful for Research students. 

The presentation will be bilingual (English and Urdu) and is presented for a wide range of 

audience. It will include the uses software for estimations of the econometric models discussed. 

This includes the use of Microsoft Excel till the mid-term examination and later we plan to 

introduce stata (software for statistics and econometrics developed and supplied by Stata 

Corporation). 

It will be supplemented with lecture notes, websites & learning modules of statistical software. 

The course requires basic knowledge of statistics and probability. Understanding and use of 

calculus will be an added advantage. An average basic background of business and economics is 

also helpful. 

Prescribed Text Books 

• Wooldridge, J. M. (2007), Introductory Econometrics: A Modern Approach, 3rd Edition, 

Thomson-South Western 

• Gujarati, D. N. (2003), Basic Econometrics, 4th ed. (McGraw-Hill: New York) 

• Butt, A. Rauf, “Lest Square Estimation of Econometrics Models”, (National Book 

Foundation, Islamabad) 

Supplementary Readings 

• Green, William H. (2002), Econometric Analysis, 5th Edition, (New York University: New 

York). 

• Salvatore, D. & Reagle, D. (2002), Statistics and Econometrics, 2nd Edition, Schaum’s 

outline series,  (McGraw-Hill: New York).  

• R.C. Hill, W.E. Griffiths and G.G. Judge (1993), Learning and Practicing Econometrics 

(Wiley: London). [More advanced.] 
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Additional Resources 

http://www.wikihow.com/Run-Regression-Analysis-in-Microsoft-Excel 

The above website provides a very good introduction to Use of a tool in Microsoft Excel to run 

regressions with some diagnostic test. 

http://www.ats.ucla.edu/stat/stata/ 

The above website of University of California LA is a great collection of training material and 

modules to learn the statistical software that we intend to use. It provides video tutorials, 

lectures, training and learning material. 

http://data.worldbank.org/data-catalog/world-development-indicators 

The above website of The World Bank Group is a data archive for more than 180 countries. It 

provides macroeconomic and financial data on almost every aspect of the countries in the 

world for more than 60 years. 

What is Econometrics or Business Econometrics? 

Traditional Perception 

• Econometrics is the branch of economics concerned with the use of mathematical 

methods (especially statistics) in describing economic systems. 

• Econometrics is a set of quantitative techniques that are useful for making "economic 

decisions" 

• Econometrics is a set of statistical tools that allows economists to test hypotheses using 

really world data. "Is the value of the US Dollar correlated to Oil Prices?", "Is Fiscal policy 

really effective?", "Does growth in developed countries stimulate growth in the 

developing countries?" 

• The Economist's Dictionary of Economics defines Econometrics as "The setting up of 

mathematical models describing mathematical models describing economic 

relationships (such as that the quantity demanded of a good is dependent positively on 

income and negatively on price), testing the validity of such hypotheses and estimating 

the parameters in order to obtain a measure of the strengths of the influences of the 

different independent variables." 

http://www.wikihow.com/Run-Regression-Analysis-in-Microsoft-Excel
http://www.ats.ucla.edu/stat/stata/
http://data.worldbank.org/data-catalog/world-development-indicators
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• Econometrics is the intersection of economics, mathematics, and statistics. 

Econometrics adds empirical content to economic theory allowing theories to be tested 

and used for forecasting and policy evaluation. 

• Econometrics is the branch of economics concerned with the use of mathematical and 

statistical methods in describing, analyzing, estimating and forecasting economic 

relationships. Examples of Economic relationships or Business relations and interactions 

are:  

o Estimation of the market model (demand and supply) 

o Are oil prices and the value of US dollar correlated? 

o What are the determinants of growth? 

o How are liquidity and profitability related? 

Modern View 

• Econometrics is no more limited to testing, analyzing and estimating economic theory.  

Econometrics is used now in many subjects and disciplines like Finance, Marketing, 

Management, Sociology etc. 

• Also, the advent of modern day computers and development of modern software has 

helped in estimation and analysis of more complex models. So computer programing is 

now an essential component of modern day econometrics.  

• Econometrics is the application of mathematics, statistical methods, and, more recently, 

computer science, to economic data and is described as the branch of economics that 

aims to give empirical content to economic relations. 

• It is no more limited to quantitative research but encompasses qualitative research. So 

we can finally arrive at a simple but modern and comprehensive definition as: 

 

Using the tools of mathematics, statistics and computer sciences, Econometrics analyses 

quantitative or qualitative phenomena (from Economics or other disciplines), based on 

evolution and development of theory, by recording observations based on sampling, 

related by appropriate methods of inference.  

The following flow chart summarizes the above discussion 
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Why should you study Econometrics? 

The following arguments can be presented to convince a student of business and economics to 

study Business Econometrics: 

• Econometrics provides research tools for your subject.  

• Econometrics provides empirical evidence for theoretical statements. Without empirical 

support the statements may have no value. The theories are tested based of different 

models and we can forecast the results and make predictions. 

• Data never speaks for themselves; Econometrics makes Data speak 

• From Idea to forecasting: First we may have an Idea that can be converted to a sound 

theory. To test the theory we need a functional form showing the relationship of the 

variables. After that we can go for specification in which we use mathematical equations 

to reflect the nature of relationship of the variables. The next step may be data 

collection. We then may use the data for estimation, testing, forecasting based on the 

model that we have specified. 

Theory from Economics, 
management, marketing, Finance 

or other disciplines 

Mathematical and 
statistical Tools like 
calculus, regression 

analysis etc. 

Computer Software to use 
mathematical and statistical 

tools. Examples: Microsoft Excel, 
stata, SPSS, SAS etc. 

Econometrics 



Business Econometrics by Dr Sayyid Salman Rizavi 

5 

The Methodology of Business Econometrics 

The methodology of Business Econometrics may be described by the following steps: 

• Creation of a statement of theory or hypothesis 

• Collection of Data 

• Model Specification 

• Model Estimation 

• Performing  Diagnostic Tests 

• Testing the Hypothesis 

• Prediction or Forecasting 

The creation of a statement of problem may be based on the existing theory of business and 

economics. We already know something about the interaction and relationship of variables. For 

example, we know that the quantity demanded may depend on price, income, prices of 

substitutes and complementary goods and some other variables. We collect data on these 

variables and specify our model based on demand theory. We can estimate the model with the 

help of some technique provided by Econometrics. The estimation may not be free form 

problems. Here some additional steps may be performed where we can check the validity of 

the model that we have specified by the use of various diagnostic tests to diagnose any possible 

problems in the estimation. For that, we test various hypothesis regarding the effectiveness 

and validity of the estimators. The ultimate result may be predicting or forecasting outcomes 

like economic and financial events of outcomes. If the technique and model applied is 

appropriate, the forecasts would be better. 

Structure of Data 

Cross-Sectional Data: Sample of entities at a given point in time 

Time Series Data: Observations over time 

Pooled Data / Pooled Cross Sections: Combined Cross Sections from different years 

Panel / longitudinal Data: Time Series of each Cross Section, Same cross sectional units are 

followed over time  
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Example of Cross-Sectional Data 

Monthly Income of a sample of individuals in 2014 

Respondent Income (Rupees) 
Ali 75000 

Faisal 42000 

Iqbal 33000 

Noreen 65000 

Other Examples: GDP across countries, Annual Sales of different companies in 2014 etc. 

Examples of Time Series Data 

Monthly Income of a Person over time 

Year Average Monthly Income in Rupees 
2010 35000 

2011 42000 

2012 47000 

2013 51000 

2014 55000 

Other Examples: Pakistan’s GDP from 1972 to 2012, Annual Sales of General Motors from 1985 

to 2012 etc. 

Time series data also need special attention. For example, many variables follow a time trend 

and we must take care of this while analyzing relationships of variables in time series data. Time 

series econometrics is evolving as a separate subject now. 

Example of Pooled Data / Pooled Cross Sections  

Monthly income of respondents from 2011 to 2013 

Sample year Respondent Income (Rupees monthly average) 
2011 Ali 75000 

2011 Iqbal 42000 

2012 Salma 74000 

2012 Kumail 68000 

2013 Sultan 80000 

2013 Lubna 83000 

Note that individual may change in different years 
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Examples of Panel or longitudinal Data 

Exchange Rate of different countries over time 

Source: Penn World Tables 

Country Year Exchange Rate to US dollar 

Indonesia 2008 9698.96 

Indonesia 2009 10389.9 

Indonesia 2010 9090.43 

Pakistan 2008 70.40803 

Pakistan 2009 81.71289 

Pakistan 2010 85.19382 

Sri Lanka 2008 108.3338 

Sri Lanka 2009 114.9448 

Sri Lanka 2010 113.0661 

Note that Individual entities (countries) do not change over time 

Some Sources of Data 

You can just Google for the following and find economic and financial data 

• World Development Report 

• World Development Indicators 

• International Financial Statistics 

• Penn World Tables 

• US time use Survey 

• Panel Survey of Income Dynamics 

• http://finance.gov.pk  (Ministry of Finance, Pakistan) 

• http://sbp.org.pk (State Bank of Pakistan) 

File types that you may come across 

For downloading and using data, e.g. on the websites like that of the World Bank Group, you 

may come across the following usual files containing data. 

http://finance.gov.pk/
http://sbp.org.pk/
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• Microsoft Excel (.xls or .xlsx) 

• SPSS (.sav) 

• Stata (.dat) 

• .csv (Comma Separated values / character separated values) 

• .xml (extensible markup language) 
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Lecture 02 
The Summation Notation 

The summation operator is heavily used in econometrics. This operator is used to show that 

we are summing up something e.g. an expression. The Greek letter ∑ (sigma) is used to 

indicate summation or addition. Usually ∑ is followed by an expression. Summation 

Notation is an effective and comprehensive way to describe a sum of terms. Let us take 

some examples to grasp the concept. 

Let ‘a’, ‘b’ and ‘k’ denote  constants.  

Let ‘X’, ‘Y’ and ‘i‘ symbolize variables. 

 

In the example on the right, the sum of the column 

of the variable is given as  

 Sum of X = 𝑋1 + 𝑋2 + 𝑋3 + 𝑋4 + 𝑋5 = 

�𝑋𝑖

5

𝑖=1

 

Where 𝑖 is a subscript and changes from 1 to 5 

In general we write summation of X as 

�𝑋𝑖

𝑛

𝑖=1

 

Here 𝑙 is a finite number. 

Another Example: how summation notation makes life easy 

Consider the expression containing different fractions like 

2
3

+
3
4

+
4
5

+
5
6

+
6
7

 

Let 𝑘 = 2, then the expression can be written as 

�
𝑘

𝑘 + 1

6

𝑘=2

 

X Symbol 

2 𝑋1 

4 𝑋2 

6 𝑋3 

8 𝑋4 

10 𝑋5 

30 
�𝑋
5
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To see how, we need to let k=2 first which gives  

2
3

 

If 𝑘 = 3 the expression is  

3
4

 

We will continue till 𝑘 = 6 and sum up all terms which gives: 

2
3

+
3
4

+
4
5

+
5
6

+
6
7

 

Now we need to specify the range of values of 𝑘 which is 2 to 6. We also need to specify the we 

are summing up (not multiplying for instance) which we do by applying the letter ∑ 

The final expression is  

�
𝑘

𝑘 + 1

6

𝑘=2

 

This gives  

2
3

+
3
4

+
4
5

+
5
6

+
6
7

 

This is called expanding the summation expression 

 

Practice Question 2.1: Try expanding the following expression and finding the value 

�
(𝑖 + 1)2

𝑖

5

𝑖=1

 

 

Practice Question 2.2: Try expanding the following expression and finding the value 

�
(2𝑗 + 1)2

10𝑗2

3

𝑗=1

 

 

Practice Question 2.3: Try expanding the following expression and finding the value 



Business Econometrics by Dr Sayyid Salman Rizavi 

11 

�𝑋2
5

𝑖=1

 

Where X assumes the values 5, 6, 7, 8 and 9 

Practice Question 2.4: Try to write the following in summation notation 

1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 + 81 + 100 

 

Practice Question 2.5: Try to write the following in summation notation 

2 +
3
4

+
4
9

+
5

16
+

6
25

+
7

36
 

 

Properties of the Summation Operator 

Property 1 

�𝑎𝒊

𝑻

𝑖=𝟏

= 𝑙𝑎 

 

Sum of ‘a’ = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 

= �𝑎𝑖

5

𝑖=1

 

A Symbol 

2 𝑎1 

2 𝑎2 

2 𝑎3 

2 𝑎4 

2 𝑎5 

10 
�𝑎
5

 

  
�𝑽𝒊

𝟓

𝒊=𝟏

= 2 + 2 + 2 + 2 + 2 = 10 
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In fact it is five times 2 =  5 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑒𝑑 𝑏𝑦 2 =   𝑙𝑎 =  10 

�𝑎𝒊

𝟓

𝑖=𝟏

= 5𝑎 = 𝑙𝑎,  𝑤ℎ𝑒𝑟𝑒 𝑙 = 𝑙𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑙𝑠 

Which can be generalized as 

�𝑎𝒊

𝑻

𝑖=𝟏

= 𝑙𝑎 

IMPORTANT: We usually do not write subscript ‘i‘ with a constant. This was just an example 

Note that ‘a’ is  a constant and all values of it are identical. 

When ∑ is multiplied by a constant we can write ‘n’ instead of ∑ 

 

Property 2 

�𝑘𝑋𝑖

𝑛

𝑖=1

= 𝑘�𝑋𝑖

𝑛

𝑖=1

 

Let   k = 5 

X 5X 

1 5 

2 10 

3 15 

4 20 

5 25 

Total: 15 Total: 75 

In column 2, 

5 + 10 + 15 + 20 + 25 = 75 = � 5𝑋𝑖

5

𝑖=1

 

This can also be computed as 



Business Econometrics by Dr Sayyid Salman Rizavi 

13 

5 x 15 = 75 = 5�𝑋𝑖

5

𝑖=1

 

Hence A constant value can be factored out of the summation operator and we can write 

�𝑘𝑋𝑖

𝑛

𝑖=1

= 𝑘�𝑋𝑖

𝑛

𝑖=1

 

Property 3 

�(𝑋𝑖

𝑛

𝑖=1

+ 𝑌𝑖) = �𝑋𝑖

𝑛

𝑖=1

+ �𝑌𝑖

𝑛

𝑖=1

 

X Y X + Y 

1 5 6 

2 12 14 

3 18 21 

4 22 26 

5 27 32 

Total: 15 Total: 84 Total: 99 

�𝑿𝒊𝟐
𝟓

𝒊=𝟏

≠  (�𝑋𝑖

5

𝑖=1

)2 

In column 3 

�(𝑋𝑖 + 𝑌𝑖)
5

𝑖=1

= 6 + 14 + 21 + 26 + 32 = 99 

Which can also be computed as:  

�𝑋𝑖 + �𝑌𝑖

5

𝑖=1

5

𝑖=1

= 15 + 84 = 99 

 

Extension: Combining property 2 & 3 we can also write 
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�(𝑎𝑋𝑖

𝑛

𝑖=1

+ 𝑏𝑌𝑖) = 𝑎�𝑋𝑖

𝑛

𝑖=1

+ 𝑏�𝑌𝑖

𝑛

𝑖=1

 

�(𝑎𝑋𝑖

𝑛

𝑖=1

+ 𝑏) = �(𝑎𝑋𝑖)
𝑛

𝑖=1

+ �𝑏
𝑛

𝑖=1

= 𝑎�𝑋𝑖

𝑛

𝑖=1

+ 𝑙𝑏 

 

What can NOT be done in the Summation Notation? 

The summation algebra is not just identical to normal algebra. Some things that may seem 

obvious is normal algebra may not apply to summation algebra. Remember that the following 

expressions are NOT equal 

 

�(𝑋𝑖

𝑛

𝑖=1

/𝑌𝑖) ≠�𝑋𝑖 ÷
𝑛

𝑖=1

�𝑌𝑖

𝑛

𝑖=1

 

Also  

�(𝑋𝑖

𝑛

𝑖=1

𝑌𝑖) ≠�𝑋𝑖 
𝑛

𝑖=1

.�𝑌𝑖

𝑛

𝑖=1

 

and 

�𝑋𝑖2
𝑛

𝑖=1

≠  (�𝑋𝑖

𝑛

𝑖=1

)2 

 

Practice Question 2.6: Construct a table to prove the first  and second inequality discussed 

above. 

 

Application of Summation algebra 

We can prove the following useful expression that may be used later. 

Different forms of ∑(𝑿 − 𝑿�)(𝒀 − 𝒀�) 
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Subscripts (‘i') are omitted/ignored for simplicity 

�(𝑋 − 𝑋�)(𝑌 − 𝑌�) =  �𝑋𝑌 −
 ∑𝑋∑𝑌

𝑙
       =   �𝑋𝑌 − 𝑙 𝑋� 𝑌� 

�(𝑋 − 𝑋�)(𝑌 − 𝑌�) =  �[𝑋𝑌 − 𝑋�𝑌 − 𝑋𝑌� + 𝑋�𝑌�] 

=  �𝑋𝑌 − 𝑋��𝑌 − 𝑌��𝑋 + 𝑙𝑋�𝑌� 

=  �𝑋𝑌 −
∑𝑋
𝑙
�𝑌 −

∑𝑌
𝑙
�𝑋 + 𝑙

∑𝑋
𝑙
∑𝑌
𝑙

 

= �𝑋𝑌 −
∑𝑋∑𝑌

𝑙
−  

∑𝑋∑𝑌
𝑙

+  
∑𝑋∑𝑌

𝑙
 

= �𝑋𝑌 −  
∑𝑋∑𝑌

𝑙
 

Also ∑𝑋𝑌 −  ∑𝑋∑𝑌
𝑛

=  ∑𝑋𝑌 −  𝑙 ∑𝑋
𝑛

∑𝑌
𝑛

=  ∑𝑋𝑌 − 𝑙 𝑋� 𝑌�   

Different forms of ∑(𝑿 − 𝑿�)𝟐 

Subscripts (‘i') are omitted/ignored for simplicity 

�(𝑋 − 𝑋�)2 =  �𝑋2 −
 (∑𝑋)2

𝑙
        

  

�(𝑋 − 𝑋�)2 =  �[𝑋2 + 𝑋�2 − 2𝑋𝑋�] 

=  �𝑋2 + 𝑙𝑋�2 − 2𝑋��𝑋 

=  �𝑋2 + 𝑙 
(∑𝑋)2

𝑙2
− 2

∑𝑋
𝑙
�𝑋 

=  �𝑋2 +  
(∑𝑋)2

𝑙
− 2

(∑𝑋)2

𝑙
 

=  �𝑋2 −  
(∑𝑋)2

𝑙
 

Double Summation 

Double Summation or nested summation also can be used 
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Example: 

��𝑋𝑖𝑗 =
2

𝑗=1

3

𝑖=1

𝑋11 + 𝑋12 +  𝑋21 +  𝑋22 +  𝑋31 +  𝑋32 

Example:  

��𝑋𝑖𝑌𝑗 =
2

𝑗=1

3

𝑖=1

𝑋1𝑌1 + 𝑋1𝑌2 + 𝑋2𝑌1 + 𝑋2𝑌2 + 𝑋3𝑌1 + 𝑋3𝑌2 

Linear Functions 

Most of you would be familiar to straight lines or linear functions. A variable may be a linear 

function of another if its plot produces a straight line. A linear function may be written as 

𝑌 = 𝑎 + 𝑏𝑋 

a = intercept (the point where the line intersects the y-axis) 

b = slope, rate of change, derivative 

As         𝑌 = 𝑎 + 𝑏𝑋 

∆𝑌 = 𝑏∆𝑋 

𝑏 = ∆𝑌 
∆𝑋 

 = marginal effect 

Function: Each domain value (X) represents a unique range value (Y) 

Linear function: A function whose graph forms a straight line OR for which the rate of change 

‘b’ is constant. Linear function can be with our without intercept. A straight line that is shown 

without intercept, when plotted, shows a line passing through the origin. Assuming linear 

relationship makes the models easy to solve. 

Consider the following table 

X Y 

1 7 

2 9 

3 11 

4 13 
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5 15 

 

As the linear equation is written as 𝑌 = 𝑎 + 𝑏𝑋, we need the values of a and b for this equation 

We can compute it from the first two rows as  

𝑏 = ∆𝑌 
∆𝑋 

=  9−7 
2−1 

= 2 
1 

= 2 

Note that this ratio is the same for if we use row 2 and row 3 or any other two consecutive 

rows. 

As 𝑌 = 𝑎 + 𝑏𝑋 we can get the value of 𝑎 as 𝑎 = 𝑌 − 𝑏𝑋 and compute it from any row in the 

given table. Here 𝑎 = 7 − 2(1) = 5 so the equation for the table above can be written as 

𝑌 = 5 + 2𝑋 

 

 

 

6
8

1
0

1
2

1
4

1
6

y

1 2 3 4 5
x

Intercept 
a = 5 

Slope 

b = ∆𝒀 
∆𝑋 

= 𝟐
𝟏

= 2 

∆𝒀=2 

∆𝑿=1 
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Simple examples of Linear Functions 

Linear Demand Functions 

The Demand Function: 𝑄𝑑 = 𝑓(𝑃,  𝑌,  𝑃𝑠,𝑃𝑐 ,𝐴) 

Where 𝑄𝑑 = 𝑄𝑢𝑎𝑙𝑡𝑖𝑡𝑦 𝐷𝑒𝑚𝑎𝑙𝑑𝑒𝑑 

𝑃 = 𝑃𝑟𝑖𝑐𝑒, 𝑌 = 𝑖𝑙𝑐𝑜𝑚𝑒,  𝑃𝑠 = 𝑃𝑟𝑖𝑐𝑒 𝑜𝑓 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒,𝑃𝑐 = 𝑃𝑟𝑖𝑐𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑎𝑙𝑡𝑎𝑟𝑦 𝑔𝑜𝑜𝑑 

𝐴 = 𝐴𝑑𝑣𝑒𝑟𝑡𝑖𝑠𝑒𝑚𝑒𝑙𝑡 𝐸𝑥𝑝𝑒𝑙𝑑𝑖𝑡𝑢𝑟𝑒 

 

Expression in terms of linear equation 

𝑄𝑑 = a + b P + c Y + d 𝑃𝑠 + 𝑒 𝑃𝑐 + 𝑓 𝐴 

Simple Demand Function 

𝑄𝑑 = a + b P  ,  Ceteris Paribus 

We estimate the parameters ‘a’ and ‘b’ from data. (Sometimes with the help of regression 

analysis) 

What do we expect?  The sign of ‘b’ is negative for ‘normal’ goods, sign of b is positive for 

‘Giffen’ goods 

Practice Question 2.7:  

Assume 𝑄𝑑 = 50 − 2 P  ,  Ceteris Paribus 

Activity: Assume valued of P (price) to be 1, 2, 3, 4 and 5 

               Compute 𝑄𝑑 and plot the ‘Demand Curve’ 

 

NOTE: Here we have used a linear equation as a specification of a demand function, however 

Demand function may be non-linear in reality. 

 

Simple examples of using Linear Equations 

Example: 
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Some times we can ‘linearize’ equations 

Simple linear regression: linear in variable functional form 𝑌 =  𝛽0 + 𝛽1𝑋 

Marginal effect = 𝛽1 

Elasticity = ε = β1 (X/Y) 

Double log functional form 

𝑙𝑙𝑌 =  𝛽0 + 𝛽1𝑙𝑙𝑋 

Can be written as  

𝑌∗ =  𝛽0 + 𝛽1𝑋∗  where 𝑌∗ = 𝑙𝑙𝑌,𝑋∗ = 𝑙𝑙𝑋 

Marginal effect: m = β2(Y/X) 

Elasticity: ε = β1  

Example: 

Linear-Log functional form 

𝑌 =  𝛽0 + 𝛽1𝑙𝑙𝑋 

Can be written as  

𝑌 =  𝛽0 + 𝛽1𝑋∗where 𝑋∗ = 𝑙𝑙𝑋 

Marginal effect =  𝛽1
𝑋

 

Elasticity = ε =  𝛽1
𝑌

 

Log-Linear functional form 

𝑙𝑙𝑌 =  𝛽0 + 𝛽1𝑋 

Can be written as  

𝑌∗ =  𝛽0 + 𝛽1𝑋  where 𝑌∗ = 𝑙𝑙𝑌 

Marginal effect: m =  𝛽1𝑌 

Elasticity: ε = 𝛽1𝑋  

Example:  

Cobb-Douglas Production Function 
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𝑌 = 𝐴𝐿𝛼𝐾𝛽 

Taking log on both sides, 

ln𝑌 = ln𝐴 +  𝛼 ln 𝐿 +  𝛽 ln𝐾 

Can be written as 

𝑌∗ = 𝑎 + 𝛼𝐿∗ + 𝛽𝐾∗ 

where 𝐿∗ = ln 𝐿, 𝐾∗ = ln𝐾 and 𝑌∗ = ln𝑌 

Which can be estimated as a linear equation 

The equation is not linear but we can estimate it by transformation 
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Lecture 03 
Quadratic Function 

A quadratic function is a function of the form 

𝑓(𝑥) = 𝑌 = 𝑎𝑋2 + 𝑏𝑋 + 𝑐    𝑤ℎ𝑒𝑟𝑒 𝑎 ≠ 0 

a, b and c are called coefficients 

The graph forms a parabola. Each graph has either a maxima or minima 

A line divides the graph in two parts creating symmetry 

Examples: 

– 𝑌 = 2𝑋2 + 3𝑋 + 10 

– 𝑌 = 3𝑋2 − 5𝑋 + 5 

– 𝑌 = 10𝑋2 + 2𝑋 

– 𝑌 = 5𝑋2 

In the diagram: 

• Axis of Symmetry: x = 0 

• Here a = 1, b = 0, c = 0 

 

Example:  
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Form: 𝑌 = 𝑎𝑋2 + 𝑏𝑋 + 𝑐  

When a is positive, the graph concaves downward 

When a is negative, the graph concaves upward (see the graph) 

When c is positive,  the graph moves up 

When c is negative, the graph moves down. 
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Quadratic Function in econometrics 

Let us consider some quadratic functions. The practical examples discussed here can be of 

inverted-U-shaped functions and U-shaped functions 

Inverted U relationships 

Liquidity and profitability 

The profitability has many determinants including liquidity. For the liquidity of a firm, we use 

indicators like current ratio and quick ratio. Normally a range of 1 to 2 is fine for current ratio. 

This means that if the liquidity ratio is less than 1 then the firm has inadequate resources to 

meet her obligations. This may negatively affect profitability so, at this stage, an increase in 

liquidity may increase profits. However, if a current ratio of above 2 (excess liquidity) is 

observed, this means that the funds are not placed properly and are not contributing to profit. 

At this stage, and increase in liquidity may negatively affect profitability. 

So, initially, increase in liquidity increases profit but later on an increase in liquidity may 

decrease profits. This can be dealt by showing the relationship as an inverted-U shape. 

Competition and Innovation 

Initially increase in competition is good and gives rise to innovation and modification in the 

products. But too much competition may decrease the possibility of innovation because too 

much competition gets the prices to a minimum level (break-even point in economics). With 

just a normal profit, the firms had no incentive to be innovative because they get the same 

price for the product. 

Kuznets Curve (income per capita & income inequality) Kuznets curve represents graphically 

the hypothesis of Simon Kuznets that with economic development, initially, economic 

inequality occurs naturally, and then decreases it after a certain average income is attained. 

This means that initially inequality increases with development but later, it decreases with 

further development. 
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Calmfors–Driffill Hypothesis  

Inverted U relationships: Calmfors–Driffill hypothesis: Trade union size is a proxy for collective 

bargaining power. The following text is taken from Wikipedia.org 

“The Calmfors–Driffill hypothesis is a macroeconomic theory in labor economics that states that 

there is a non-linear relationship between the degree of collective bargaining in an economy 

and the level of unemployment. Specifically, it states that the relationship is roughly that of an 

'inverted U': as trade union size increases from nil, unemployment increases, and then falls as 

unions begin to exercise monopoly power. It was advanced by Lars Calmfors and John Driffill.” 

(Source: Wikipedia.org) 
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U shaped quadratic relationships 

Economic Development and Fertility 

As economic development takes place, fertility declines however with more economic 

development, countries may provide incentives for childbearing. When the cost of childbearing 

declines, fertility rates may start rising again. If the above is believed, it may be depicted by a 

quadratic form of equation. 

Marginal Cost and Average Cost Curves 

Both the marginal and average cost curves that are based on the Cost theory have a U-shape. 

This means that first marginal and average cost decline with increase in production but after a 

point they start rising when the production increases. The minimum point for both curves is 

different but the marginal cost curve intersects the average cost curve from the minimum 

average cost as seen in the following figure. 

 

 

 

 

 

 

 

 

Exponential & Logarithmic Functions 

Brief Description 

• Exponential function are functions in which constant base ‘a’ is raised to a variable 

exponent x 

𝑌 =  𝑎𝑥 𝑤ℎ𝑒𝑟𝑒 𝑎 > 0 𝑎𝑙𝑑 𝑎 ≠ 1 

• ‘a’ is the base and x is the exponent. 

• The base can be any value including the value of e=2.7172828 

Output 

Costs 

MC 

AVC 

AC 
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• ‘e’ is the base of natural logarithm (Euler’s constant) 

𝑌 =  𝑎𝑥 then 𝑙𝑜𝑔𝑎 𝑌 = 𝑥 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 log  𝑡𝑜 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 ′𝑎′ 

And if 

𝑌 =  𝑒𝑥 then 𝑙𝑜𝑔𝑒 𝑌 = ln𝑌 = 𝑥 (called natural logarithm) 

• Some times the exponent can be an expression 

Exponential & Logarithmic Functions 

Examples: Exponential Growth 

At every instance, the rate of growth of the quantity is proportional to the quantity (population 

growth may be an example) 

𝑃(𝑡) = 2𝑒3𝑡 

Continuous Compound Interest 

𝐶 = 𝑃𝑒𝑟𝑡 

C = compounded balance after t years 

P = Principal amount, t = number of years 

r = rate of interest 

Logarithmic equation 

Equations of the type 𝑙𝑙𝒀 =  𝜷𝟎 + 𝜷𝟏𝑙𝑙𝑿 provide elasticity 

Simple Derivative 

The concept of differentiation 

Consider 𝑌 = 𝑓(𝑥) 

The Rate of Change is defined as  =  ∆𝑌
∆𝑋

 

Derivative is the instantaneous rate of change of the dependent variable due to a very small 

change in the independent variable. The slope of the tangent line approximates the slope of the 

function at the point of tangency. The secant line approaches the tangent line by the definition 

of derivative (see the next slide) 
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For normal comprehension, derivative, slope of a function, marginal function (like MC as the 

derivative of TC) can be thought to be identical 

𝑑𝑦
𝑑𝑥

= 𝑦́ = 𝑓́(𝑥) = lim∆𝑥→∞
𝑓(𝑥+∆𝑥)−𝑓(𝑥)

𝑓(𝑥)
 

Some Important things to note 

Expression Read  as Meaning 

𝑓́(𝑥) ‘f prime x’ Derivative of ‘f’ with respect to x 

𝑑𝑦
 

‘dee why dee ecks’ Derivative of y with respect to x 

𝑦́ y prime Derivative of y 

𝑑
𝑑𝑥

𝑓(𝑥) 
‘dee by dee ecks of f 

of x’ 

       

The derivative of the function of x 

′𝑑𝑥′ 𝑑𝑜𝑒𝑠 𝑙𝑜𝑡 𝑚𝑒𝑎𝑙 𝑑 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑑 𝑏𝑦 𝑥  (same for ‘dy’) 

‘𝑑𝑦
𝑑𝑥

’  does not mean  𝑑𝑦 ÷ 𝑑𝑥 

 
c 

a 

b 

x + ∆x 

f(x) 

x 

f(x + ∆x) 

Secant line 

Tangent line 
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Rules of differentiation 

The Power Rule 

𝐼𝑓 𝑦 = 𝑎 𝑥𝑛,   
𝑑𝑦
𝑑𝑥

= 𝑎𝑙𝑥𝑛−1 

Example 

𝑦 = 10𝑥3 

𝑑𝑦
𝑑𝑥

=  𝑦́ = 10 (3)𝑥3−1 = 30 𝑥2 

Example 

𝑦 = 5𝑥2 

𝑑𝑦
𝑑𝑥

=  𝑦́ = 5 (2)𝑥2−1 = 10 𝑥 

Example 

𝑦 = 10
𝑥2

= 10𝑥−2  (write as the format 𝑎 𝑥𝑛) 

𝑑𝑦
𝑑𝑥

=  𝑦́ = 10 (−2)𝑥−2−1 = −20 𝑥−3 

=  
20
𝑥3

 

The Constant Function Rule 

𝐼𝑓 𝑦 = 𝑘 𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑎 𝑐𝑜𝑙𝑠𝑡𝑎𝑙𝑡,   
𝑑𝑦
𝑑𝑥

= 0 

Derivative is ‘rate of change’ and there is no change in a constant 

This can be derived from the power rule!  

The above can be written as 𝑦 = 𝑘 = 𝑘𝑥0 𝑠𝑜 𝑦́ = 𝑘 (0)𝑥0−1 = 0 

Example 

𝑦 = 10,  𝑦́ = 0 

What is 𝑦 = 𝑥? 

𝑦 = 𝑥 = 1. 𝑥1 
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𝑑𝑦
𝑑𝑥

=  𝑦́ = (1)(1)𝑥1−1 = 1𝑥0 = 1 

Hence If 𝑦 = 𝑥 𝑡ℎ𝑒𝑙 𝑑𝑦
𝑑𝑥

= 1 

The Sum-Difference Rule 

𝐼𝑓 𝑦 = 𝑓(𝑥) ± 𝑔(𝑥),   
𝑑𝑦
𝑑𝑥

= 𝑓́(𝑥) ± 𝑔́(𝑥) 

Example 

𝑦 = 10𝑥3 + 5𝑥2 

𝑑𝑦
𝑑𝑥

=  𝑦́ = 10 (3)𝑥3−1 + 5 (2)𝑥2−1 

= 30 𝑥2 + 10 𝑥 

Example 

The above can be extended to more than two terms 

𝑦 = 2𝑥3 − 3𝑥2 − 10𝑥 + 5 

𝑑𝑦
𝑑𝑥

=  𝑦́ =
𝑑
𝑑𝑥

(2𝑥3) −
𝑑
𝑑𝑥

(3𝑥2) −
𝑑
𝑑𝑥

(10𝑥) +
𝑑
𝑑𝑥

(5) 

= 6𝑥2 − 6𝑥 − 10(1) + 0 

= 6𝑥2 − 6𝑥 − 10 

The Product Rule 

𝐼𝑓 𝑦 = 𝑓(𝑥) .𝑔(𝑥),   
𝑑𝑦
𝑑𝑥

= 𝑔(𝑥). 𝑓́(𝑥) + 𝑓(𝑥). 𝑔́(𝑥) 

The derivative of the product of two functions is equal to the second function times the 

derivative of the first plus the first function times the derivative of the second. 

Example 

𝑦 = (10 − 𝑥)(5 + 𝑥) 

𝐻𝑒𝑟𝑒 𝑓(𝑥) = 10 − 𝑥,  𝑎𝑙𝑑 𝑔(𝑥) = 5 + 𝑥 

𝑑𝑦
𝑑𝑥

= (5 + 𝑥)
𝑑
𝑑𝑥

(10 − 𝑥) + (10 − 𝑥)
𝑑
𝑑𝑥

(5 + 𝑥) 

= (5 + 𝑥)(−1) + (10 − 𝑥)(1) 
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= −5 − 𝑥 + 10 − 𝑥 

𝑑𝑦
𝑑𝑥

= 5 − 2𝑥 

Verification: 𝑦 = (10 − 𝑥)(5 + 𝑥) = 50 + 5𝑥 − 𝑥2 

𝑤ℎ𝑖𝑐ℎ 𝑔𝑖𝑣𝑒𝑠 𝑦́ = 5 − 2𝑥 (𝑠𝑎𝑚𝑒 𝑎𝑠 𝑎𝑏𝑜𝑣𝑒) 

The Quotient Rule 

𝐼𝑓 𝑦 =
𝑓(𝑥)
𝑔(𝑥)

,   
𝑑𝑦
𝑑𝑥

=
𝑔(𝑥). 𝑓́(𝑥) − 𝑓(𝑥). 𝑔́(𝑥) 

(𝑔(𝑥))2
 

(𝑔(𝑥))2 can be written as 𝑔2(𝑥) 

Example 

𝑦 =
10 − 𝑥
5 + 𝑥

 

𝐻𝑒𝑟𝑒 𝑓(𝑥) = 10 − 𝑥,  𝑎𝑙𝑑 𝑔(𝑥) = 5 + 𝑥 

𝑑𝑦
𝑑𝑥

=
(5 + 𝑥) 𝑑

𝑑𝑥 (10 − 𝑥) − (10 − 𝑥) 𝑑
𝑑𝑥 (5 + 𝑥) 

(5 + 𝑥)2
 

=
(5 + 𝑥)(−1) − (10 − 𝑥)(1) 

(5 + 𝑥)2
 

=
−5 − 𝑥 − 10 − 𝑥 

(5 + 𝑥)2
=
−15 − 2𝑥 
(5 + 𝑥)2

 

The Chain Rule: functions involving different variables 

𝑙𝑒𝑡 𝑦 = 𝑓�𝑔(𝑥)� 𝑤ℎ𝑒𝑟𝑒 𝑧 = 𝑔(𝑥)  𝑡ℎ𝑒𝑙 𝑑𝑦
𝑑𝑥

= 𝑑𝑦
𝑑𝑧

𝑑𝑧
𝑑𝑥

 

Remember: on the RHS dz does not cancel dz, (dy/dz) is ONE symbol 

Example:  𝑦 = (5𝑥2 + 2𝑥 + 10)3 (we can make use of the chain rule) 

𝑙𝑒𝑡 𝑧 = 5𝑥2 + 2𝑥 + 10 𝑡ℎ𝑒𝑙 
𝑑𝑧
𝑑𝑥

= 5𝑥 + 2 

𝑦 𝑐𝑎𝑙 𝑏𝑒 𝑤𝑟𝑖𝑡𝑡𝑒𝑙 𝑎𝑠     𝑦 = 𝑧3 𝑡ℎ𝑒𝑙 
𝑑𝑦
𝑑𝑧

= 3𝑧2 

Using the chain rule 𝑑𝑦
𝑑𝑥

= 𝑑𝑦
𝑑𝑧

𝑑𝑧
𝑑𝑥
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𝑑𝑦
𝑑𝑥

= (3𝑧2)(5𝑥 + 2) = 3(5𝑥2 + 2𝑥 + 10)2 (5𝑥 + 2) 

NOTE: we can directly apply power rule to such problems 

𝑑𝑦
𝑑𝑥

= 3(5𝑥2 + 2𝑥 + 10)3−1(𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑙𝑙𝑒𝑟 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑙) 

= 3(5𝑥2 + 2𝑥 + 10)2 (5𝑥 + 2) 

Some Application of Simple Derivatives 

Remember:  

• Derivative is rate of change or slope or marginal function 

Example: Finding Marginal functions 

If total cost  𝐶 =  1
3
𝑄3 − 2𝑄2 + 120 𝑄 + 1000 

Then Marginal cost is the derivative of total cost 

𝑀𝐶 =  
𝑑
𝑑𝑥 �

1
3
𝑄3 − 2𝑄2 + 120 𝑄 + 1000� 

𝑀𝐶 =  
1
3

(3)𝑄3−1 − 2(2)𝑄2−1 + 120(1) + 0 

𝑀𝐶 =  𝑄2 − 4𝑄 + 120 

Example: Applying the chain rule 

If total cost  𝑅 = 𝑓(𝑄)  𝑎𝑙𝑑   𝑄 = 𝑔(𝐿) 

𝑑𝑅
𝑑𝐿

=
𝑑𝑅
𝑑𝑄

.
𝑑𝑄
𝑑𝐿

 

= 𝑀𝑅.  𝑀𝑃𝑃𝐿 = 𝑀𝑅𝑃𝐿 

Example: finding elasticity 

𝑄𝑑 = 100 − 2𝑃 

 (we will learn how to get the values of the above coefficients through regression) 

𝑃𝑟𝑖𝑐𝑒 = 𝑃 = 10,  Using the above information, 𝑄𝑑 =  100 − 2(10) = 80 

Example: finding elasticity 
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𝑄𝑑 = 100 − 2𝑃 gives 
𝑑𝑄
𝑑𝑃

= −2 

Price Elasticity of Demand = 𝐸𝑝 =  𝑑𝑄
𝑑𝑝

. 𝑃
𝑄

 

= (derivative of Q w. r. t.  P) times (P/Q) 

= (−2) �
10

115�
= −0.1739 

Which means that for every one percent change in price, quantity demanded decreases by 

0.1739 units 

 

Higher Order Derivatives 

What are higher order derivatives? 

The derivative of a derivative is called second order derivative. The third order derivative is the 

derivative of the second order derivative. This may continue and are called Higher Order 

Derivative. 

Meaning of the second order derivative: It show the rate of change of the rate of change. 

Example:             𝒚 = 𝟏𝟎𝒙𝟑 

𝑦′ = 10 (3)𝑥3−1 = 30 𝑥2 

𝑦′′ =
𝑑
𝑑𝑥

(30 𝑥2) = 60𝑥 

𝑦′′′ =
𝑑
𝑑𝑥

(60𝑥) = 60 

And so on 
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Lecture 04 
Partial Derivatives 

Multivariate Functions 

Functions of more than one variable are called multivariate functions. 

Examples: 

• Quantity Demanded is a function of Price, Income, Prices of other goods and some other 

variables 

𝑄𝑑 = 𝑓 (𝑃,  𝐼,  𝑃𝑜,𝑂) 

• Profitability depends on liquidity, capital structure, government regulations, prices of 

raw material etc. 

𝜋 = 𝑓 (𝐿𝑄,  𝐶𝑆,  𝐺𝑅,  𝑃𝑅) 

Partial Derivatives: Rate of change of the dependent variable with respect to change in one of 

the independent variables while the other independent variables are assumed to be constant 

(are held) 

Partial Derivatives 

Symbols 

The mathematical symbol  𝜕 (partial or partial dee or del) is used to denote partial derivatives. 

𝜕𝑧
𝜕𝑥

 

The above symbol is read as ‘partial derivative of z with respect to x’ (other variables are 

treated as constants) 

Another symbol can also be used:  𝑍𝑥 𝑜𝑟 𝑍1 

 

For second order derivatives we can use the following symbols: 

𝜕2𝑧
𝜕𝑥2

 

Or       𝑍𝑥𝑥 ,         𝑍𝑥𝑦  ,    𝑍11   ,     𝑍12     etc. 
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Partial Differentiation 

Method to partially differentiate functions 

• You have as many ‘first order partial derivatives’ as number of independent variables 

• When we differentiate a variable with respect to any one independent variable, we 

treat all other variables as if they were constants. 

• All the usual rules of differentiation are applicable. 

• Higher Order Derivatives may be of two types 

o Direct Partial Derivative: differentiate twice w.r.t. the same variable (2nd order 

direct partial) 

o Cross Partial Derivatives: differentiate w.r.t. one variable and then w.r.t. another 

variable (2nd order cross partial) 

o Cross partial Derivatives are always equal (symmetry of second derivatives OR 

equality of mixed partial) 

Partial Differentiation: Examples 

Example: 

𝑍 = 𝑓(𝑥,  𝑦) = 2𝑥2 + 3𝑦2 + 5𝑥𝑦 + 20 

• Three type of terms in the expression: That contain only x, That contain only y, That 

contain both x and y 

𝜕𝑧
𝜕𝑥

=  
𝜕
𝜕𝑥

(2𝑥2 + 3𝑦2 + 5𝑥𝑦 + 20) 

𝜕𝑧
𝜕𝑥

=  
𝜕
𝜕𝑥

(2𝑥2) +
𝜕
𝜕𝑥

(3𝑦2) +
𝜕
𝜕𝑥

(5𝑥𝑦) +
𝜕
𝜕𝑥

(20) 

Now treat y as a constant while differentiating w.r.t. x 

Remember: Derivative of a constant is zero, In case of coefficient do as in the power rule 

𝜕𝑧
𝜕𝑥

= 4𝑥 + 0 + 5𝑦 (1) + 0 = 4𝑥 + 5𝑦 

Here y is treated as a constant so 3𝑦2 is a constant and its derivative is zero 
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And y is treated as a constant so 5𝑦 is a constant coefficient which is multiplied by the 

derivative of x i.e. by 1 

𝑍 = 𝑓(𝑥,  𝑦) = 2𝑥2 + 3𝑦2 + 5𝑥𝑦 + 20 

Now let us differentiate w.r.t. y, treating x as a constant 

𝜕𝑧
𝜕𝑦

=  
𝜕
𝜕𝑦

(2𝑥2 + 3𝑦2 + 5𝑥𝑦 + 20) 

𝜕𝑧
𝜕𝑦

=  
𝜕
𝜕𝑦

(2𝑥2) +
𝜕
𝜕𝑦

(3𝑦2) +
𝜕
𝜕𝑦

(5𝑥𝑦) +
𝜕
𝜕𝑦

(20) 

Now treat x as a constant while differentiating w.r.t. y 

𝜕𝑧
𝜕𝑦

= 0 + 6𝑦 + 5𝑥 (1) + 0 = 6𝑦 + 5𝑥 = 5𝑥 + 6𝑦 

Here 

x is treated as a constant so 2𝑥2 is a constant and its derivative is zero 

x is treated as a constant so 5𝑥 is a constant coefficient which is multiplied by the derivative 

of y i.e. by 1 

 

Example:   𝑍 = 𝑓�𝑥,  𝑦� = 2𝑥2𝑦2 + 5𝑥3𝑦4 

𝜕𝑧
𝜕𝑥

=  𝑍𝑥 =  
𝜕
𝜕𝑥

(2𝑥2𝑦2 + 5𝑥3𝑦4) 

𝜕𝑧
𝜕𝑥

= 𝑍𝑥 =
𝜕
𝜕𝑥

(2𝑥2𝑦2) +
𝜕
𝜕𝑥

(5𝑥3𝑦4) 

𝑍𝑥 = 2𝑦2.
𝜕
𝜕𝑥

(𝑥2) + 5𝑦4.
𝜕
𝜕𝑥

(𝑥3) 

Here 2𝑦2 is presently a constant so we factor it out and differentiate the variable part 

 

𝑍𝑥 = 2𝑦2(2𝑥) + 5𝑦4(3𝑥2) 

𝑍𝑥 = 4𝑥𝑦2 + 15𝑥2𝑦4 

𝑍 = 𝑓(𝑥,  𝑦) = 2𝑥2𝑦2 + 5𝑥3𝑦4 
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𝜕𝑧
𝜕𝑦

=  𝑍𝑦 =  
𝜕
𝜕𝑦

(2𝑥2𝑦2 + 5𝑥3𝑦4) 

𝜕𝑧
𝜕𝑦

= 𝑍𝑦 =
𝜕
𝜕𝑦

(2𝑥2𝑦2) +
𝜕
𝜕𝑦

(5𝑥3𝑦4) 

𝑍𝑦 = 2𝑥2.
𝜕
𝜕𝑦

(𝑦2) + 5𝑥3.
𝜕
𝜕𝑥

(𝑦4) 

𝑍𝑦 = 2𝑥2(2𝑦) + 5𝑥3(4𝑦3) 

Here 2𝑥2 is presently a constant so we factor it out and differentiate the variable part 

𝑍𝑦 = 4𝑥2𝑦 + 20𝑥3𝑦3 

 

Example : Second Order Direct Partial Derivatives 

Consider the previous example 

𝑍 = 𝑓(𝑥,  𝑦) = 2𝑥2 + 3𝑦2 + 5𝑥𝑦 + 20 

𝜕𝑧
𝜕𝑥

= 𝑍𝑥 = 4𝑥 + 5𝑦 

Differentiating again w.r.t. x 

𝜕
𝜕𝑥 �

𝜕𝑧
𝜕𝑥�

= 𝑍𝑥𝑥 = 4(1) + 0 = 4 

Similarly 

𝜕𝑧
𝜕𝑦

= 𝑍𝑦 = 5𝑥 + 6𝑦 

Differentiating again w.r.t. y 

𝜕
𝜕𝑦 �

𝜕𝑧
𝜕𝑦�

= 𝑍𝑦𝑦 = 0 + 6(1) = 6 

Both are called ‘Second order DIRECT partial derivatives’ 

𝑍 = 𝑓(𝑥,  𝑦) = 2𝑥2 + 3𝑦2 + 5𝑥𝑦 + 20 

𝜕𝑧
𝜕𝑥

= 𝑍𝑥 = 4𝑥 + 5𝑦 

After differentiating w.r.t. x first, we Differentiate w.r.t. y 
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𝜕
𝜕𝑦 �

𝜕𝑧
𝜕𝑥�

= 𝑍𝑥𝑦 = 0 + 5(1) = 5 

Similarly 

𝜕𝑧
𝜕𝑦

= 𝑍𝑦 = 5𝑥 + 6𝑦 

Now Differentiating again w.r.t. x 

𝜕
𝜕𝑥 �

𝜕𝑧
𝜕𝑦�

= 𝑍𝑦𝑥 = 5(1) + 0 = 5 

Both are called ‘Second order Cross partial derivatives’ 

Note that 𝑍𝑥𝑦 = 𝑍𝑦𝑥 

Now let us find the second order direct partial derivatives 

𝑍 = 𝑓(𝑥,  𝑦) = 2𝑥2𝑦2 + 5𝑥3𝑦4 

 𝑍𝑥 =  
𝜕
𝜕𝑥

(2𝑥2𝑦2 + 5𝑥3𝑦4) = 4𝑥𝑦2 + 15𝑥2𝑦4 

Differentiating again w.r.t. x    

𝑍𝑥𝑥 =
𝜕
𝜕𝑥

(4𝑥𝑦2 + 15𝑥2𝑦4) 

𝑍𝑥𝑥 = 4𝑦2 + 30𝑥𝑦4 

Similarly 

𝑍𝑦 =  
𝜕
𝜕𝑦

(2𝑥2𝑦2 + 5𝑥3𝑦4) = 4𝑥2𝑦 + 20𝑥3𝑦3 

Differentiating again w.r.t. y 

𝑍𝑦𝑦 =
𝜕
𝜕𝑦

(4𝑥2𝑦 + 20𝑥3𝑦3) 

𝑍𝑦𝑦 = 4𝑥2 + 60𝑥3𝑦2 

 

𝑍 = 𝑓(𝑥,  𝑦) = 2𝑥2𝑦2 + 5𝑥3𝑦4 

 𝑍𝑥 =  
𝜕
𝜕𝑥

(2𝑥2𝑦2 + 5𝑥3𝑦4) = 4𝑥𝑦2 + 15𝑥2𝑦4 
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Now Differentiating w.r.t. y    

𝑍𝑥𝑦 =
𝜕
𝜕𝑦

(4𝑥𝑦2 + 15𝑥2𝑦4) 

𝑍𝑥𝑦 = 8𝑥𝑦 + 60𝑥2𝑦3 

Similarly 

𝑍𝑦 =  
𝜕
𝜕𝑦

(2𝑥2𝑦2 + 5𝑥3𝑦4) = 4𝑥2𝑦 + 20𝑥3𝑦3 

Now Differentiating  w.r.t. x 

𝑍𝑦𝑥 =
𝜕
𝜕𝑥

(4𝑥𝑦2 + 15𝑥2𝑦4) 

𝑍𝑦𝑥 = 8𝑥𝑦 + 60𝑥2𝑦3 

𝑍𝑥𝑦 = 𝑍𝑦𝑥 

An example with Chain Rule & Summation Algebra 

 

Example :      𝑍 = ∑(𝑦 − 𝑎 − 𝑏𝑥)2 

This time let ‘a’ and ‘b’ act as the unknowns (you can think of them as variables)  

Differentiating w.r.t. ‘a’ 

𝑍𝑎 = 2�(𝑦 − 𝑎 − 𝑏𝑥)(0 − 1 − 0) 

Here Chain Rule is applied and we multiply the derivative of the inner expression. Here ‘a’ is 

the variable.  

𝑍𝑎 = −2�(𝑦 − 𝑎 − 𝑏𝑥) 

𝑍𝑎 = −2(�𝑦− 𝑙𝑎 − 𝑏�𝑥) 

Similarly 

𝑍𝑏 = 2�(𝑦 − 𝑎 − 𝑏𝑥)(0 − 0 − 𝑥(1)) 

Here b is the variable and its derivative is ‘1’ 
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Simple Optimization:Maxima and Minima 

 

Finding Minima and Maxima 

Note that the slope (derivative) of minima or maxima is zero so we can find the point by setting 

the first derivative equal to zero. This is called First Order Condition of Optimization 

Also note that the derivative of the derivative (2nd order derivative) is positive in case of a 

minima and negative in case of a maxima.  

This is called Second Order Condition for Optimization 

So, to optimize a function of one variable, we can use two conditions 

1. First Derivative = 0 (if 𝑦 = 𝑓(𝑥),  𝑓́(𝑥) = 0 

2. Second Derivative > 0 for minimization &  is < 0 for maximization 

(𝑓́(𝑥) > 0 𝑖𝑙 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑚𝑖𝑙𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑙, 𝑓́(𝑥) < 0 in case of maximization. 
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Example: 

𝐼𝑓 𝑦 = 40𝑥 − 2𝑥2 

For maximization or minimization the first derivative should be set equal to zero 

𝑑𝑦
𝑑𝑥

= 𝑦′ = 40 − 4𝑥 = 0 

40 = 4𝑥 

𝑥̅ =
40
4

= 10 

To know if it is a maxima or minima, we need to differentiate again 

𝑑2𝑦
𝑑𝑥2

= 𝑦′′ =  
𝑑
𝑑𝑥

(40 − 4𝑥) = −4 < 0 

As the second derivative is less than zero the function is maximized at 𝑥 = 10,   

𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑎𝑚 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠 𝑌𝑚𝑎𝑥 = 40(10) − 2(10)2 = 200  

Example: 

Consider the following profit function where Q is the output 

π = 100 Q − 120 − 2Q2 

Frist Order Condition is 

π′ = 100 − 4Q = 0 

4Q = 100 

𝑄� = 25 

Second Order Condition is 

π′′ =  
d

dx
(100 − 4Q) =  − 4 < 0  

Hence the profit function is maximized at Q = 4 

πMAX = 100 (25) − 120 − 2 (25)2 = 2500 − 120 − 2(625) 

πMAX = 1130 
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Lecture 05 
Multivariate Optimization 

Local Minimum 

Consider the following diagram 

• Point ‘O’ is a local minimum FROM ALL DIRECTIONS 

• At point ‘O’, derivative of z w.r.t.  x   or w.r.t.   y both are zero OR the slope of the 

tangents parallel to x-axis or the one parallel to y-axis at point ‘O’ are both zero i.e.  

𝑍𝑥 = 0 𝐴𝑁𝐷 𝑍𝑦 = 0 (𝐹𝑖𝑟𝑠𝑡 𝑂𝑟𝑑𝑒𝑟 𝐶𝑜𝑙𝑑𝑖𝑡𝑖𝑜𝑙) 

 

 

Local Minimum: Second order condition 

Now consider the point ‘O’ again 

When we move the tangents parallel to x-axis or y-axis, there is a positive change in the 

derivative (derivative of the derivative is positive) 

𝑍𝑥𝑥 > 0     &     𝑍𝑦𝑦 > 0 

This gives us the Second Order Condition for minimization 

(Both second order derivatives are positive) 
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Local Maximum 

Consider the following diagram 

Point ‘a’ is a local maximum FROM ALL DIRECTIONS 

At point ‘a’, derivative of z w.r.t.  x   or w.r.t.   y both are zero OR the slope of the tangents 

parallel to x-axis or the one parallel to y-axis at point ‘a’ are both zero i.e.  

𝑍𝑥 = 0 𝐴𝑁𝐷 𝑍𝑦 = 0 (𝐹𝑖𝑟𝑠𝑡 𝑂𝑟𝑑𝑒𝑟 𝐶𝑜𝑙𝑑𝑖𝑡𝑖𝑜𝑙) 
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Local Maximum: Second order condition 

Now consider the point ‘a’ again 

When we move the tangents parallel to x-axis or y-axis, there is a negative change in the 

derivative (derivative of the derivative is negative) 

𝑍𝑥𝑥 < 0     &     𝑍𝑦𝑦 < 0 

This gives us the Second Order Condition for maximization 

(both second order derivatives are negative) 

 

 

Saddle Point: Second order derivatives have different signs 

Consider the point ‘O’ in the following diagram 

• A tangent at this point has a zero slope (first derivative is zero i.e. the first condition is 

met) 

• If we shift the tangent in the direction of the x-axis, the slope of the tangent (derivative 

of the derivative) increases so this is a local minima form one direction (x-axis)   𝑍𝑥𝑥 >

0     

• But is we shift the tangent at point ‘O’ in the direction of the y-axis, its slope will 

decrease i.e.      𝑍𝑦𝑦 < 0 
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A third condition: ruling out point of inflection 

 When evaluated at the critical point(s), the product of the second order partials must exceed 

the product of the cross partials.  This condition rules out critical points that are neither points 

of maximum or minimum, but are points of inflection.  A point of inflection is a where certain 

conditions of optima are met, but the function is not actually a maximum or minimum. 

 

𝑍𝑥𝑥.𝑍𝑦𝑦 > 𝒁𝒙𝒚𝟐  

�
𝑍𝑥𝑥 𝑍𝑥𝑦
𝑍𝑦𝑥 𝑍𝑦𝑦

� > 0 

We call the above a Hessian determinant or simply Hessian which shows that 

𝑍𝑥𝑥.𝑍𝑦𝑦 − 𝒁𝒙𝒚𝟐 > 𝟎 

Or 

𝑍𝑥𝑥.𝑍𝑦𝑦 > 𝒁𝒙𝒚𝟐  

Example: Maximization 

Consider the following profit function where x & y are the levels of output 

𝜋 = 80𝑥 − 2𝑥2 − 𝑥𝑦 − 3𝑦2 + 100𝑦 

𝜋𝑥 = 80 − 4𝑥 − 𝑦 = 0 
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𝜋𝑦 = −𝑥 − 6𝑦 + 100 = 0 

Solving the above two equations simultaneously gives the critical values 

𝑥̅ = 16.52    𝑎𝑙𝑑   𝑦� = 13.91 

Second order condition 

𝜋𝑥𝑥 = −4 < 0 

𝜋𝑦𝑦 = −6 < 0 

Which confirms that profit is maximized from the principle direction at the critical points 

Third condition 

𝜋𝑥𝑥.𝜋𝑦𝑦 = (−4)(−6) = 24 𝐴𝑁𝐷     𝝅𝒙𝒚𝟐 = (−𝟏)𝟐 = 𝟏 

𝐻𝑒𝑙𝑐𝑒 𝜋𝑥𝑥.𝜋𝑦𝑦 > 𝝅𝒙𝒚𝟐  

The profit function is maximized from all directions at the critical point. Maximum profit can be 

found by substituting the critical points in the profit function. 

Example: Minimization 

Consider the following marginal cost function where x and y are the level of output 

𝑀𝐶 = 5𝑥2 − 8𝑥 − 2𝑥𝑦 − 6𝑦 + 4𝑦2 + 100𝑦 

𝑀𝐶𝑥 = 10𝑥 − 8 − 2𝑦 = 0 

𝑀𝐶𝑦 = −2𝑥 − 6 + 8𝑦 = 0 

Solving the above two equations simultaneously gives the critical values 

𝑥̅ = 1    𝑎𝑙𝑑   𝑦� = 1 

Second order condition 

𝑀𝐶𝑥𝑥 = 10 > 0 

𝑀𝐶𝑦𝑦 = 8 > 0 

Which confirms that MC is minimized from the principle direction at the critical points 

Third condition 

𝑀𝐶𝑥𝑥.𝑀𝐶𝑦𝑦 = (10)(8) = 80 𝐴𝑁𝐷     𝑴𝑪𝒙𝒚𝟐 = (−𝟐)𝟐 = 𝟒 

𝐻𝑒𝑙𝑐𝑒 𝑀𝐶𝑥𝑥 .𝑀𝐶𝑦𝑦 > 𝑴𝑪𝒙𝒚𝟐  
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The function is minimized from all directions at the critical point. Minimum MC can be found by 

substituting the critical points in the MC function. 

 

Review of Probability 

Probability: This is only a ‘Review’ 

Random Experiment 

Any process of observation or measurement that has more than one possible outcome and we 

are not certain about which outcome will materialize 

Examples: Tossing a coin, throwing a pair of dice, drawing a card form deck of cards 

Sample Space/Population 

The set of all possible outcomes of an experiment 

Example: when you toss a coin, S = {H, T} 

Example: When you toss two coins, S = {HH, HT, TH, TT} 

Sample Point 

Each member of the sample space is a sample point 

Event 

Event is a particular collection of outcomes (a subset of the sample space) 

Example: Event ‘A’ is occurrence of one head and one tail in the experiment of tossing two 

coins A = {HT, TH} 

Mutually Exclusive Events: Occurrence of one event prevents the occurrence of the other 

event at the same time  

Example: when we toss two coins, occurrence of two heads means that other three cannot 

occur at the same time 

Example: when we toss a single coin, occurrence of a head means that the tail did not occur or 

can not occur at the same time 

Equally Likely Events: if one event is as likely to occur as the other 
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Example: head and tail have the same possibility or chance of occurring 

Collectively Exhaustive Events: if they exhaust all possible outcomes of an experiment 

Example: Event is the sample space.  A = Occurrence of a head or tail while tossing a single coin 

Stochastic or Random Variable  

A variable whose value is determined by the outcome of an experiment 

Example: Let X = Number of heads in an experiment of tossing two coins, then X can have 

values of 0, 1, or 2 as the possibilities are no head, one head or two heads 

 A random variable can be discrete (can take only whole numbers and finite values) or 

continuous  (can take any values between and interval either whole numbers or fractions e.g. 

height of an individual). 

Classical Definition of Probability:  

Probability of an event ‘A’ =  P(A) = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠

 

Example: Total number of outcomes in tossing two coins is 4 {HT, HH, TH, TT} 

Probability of getting exactly one head =  2
4

= 0.5 

Probability Distribution 

The possible values that a random variable can take with the number of occurrences 

(frequency) of those values. 

Example: Probability Distribution of discrete random variable  

Let X = Number of heads in an experiment of tossing two coins, the X can have values of 0, 1, or 

2 as the possibilities are no head, one head or two heads as shown in table with the 

probabilities. 

Probability Mass Function or simply Probability Function 

𝑓(𝑋 = 𝑥𝑖) = 𝑃(𝑋 = 𝑥𝑖)     𝑖 = 1,2, …. 

= 0 𝑖𝑓 𝑋 ≠  𝑥𝑖  

0 ≤ 𝑓(𝑥𝑖) ≤ 1 
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�𝑓(𝑥𝑖)
𝑥

= 1 

X 𝑷[𝑿 = 𝒙𝒊] 

0 ¼=0.25 

1 2/4=0.5 

2 ¼=0.25 

Total 1 

 

Probability Density Function (PDF) 

Probability Distribution of a continuous random variable e.g. X = height of person measured in 

inches 

• X is a continuous random variable 

• Probability of continuous random variable is always computed for a range not for a 

single value 

• PDF is 

𝑃(𝑥1 < 𝑋 < 𝑥2) =  � 𝑓(𝑥) 𝑑𝑥

𝑥2

𝑥1

 

This calculates the probability as the area under a curve between a range (𝑥1 to 𝑥2) 

Number of Heads 

1/4 

1/2 

            0           1           2             

f(x) 
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Cumulative Distribution Function (CDF) 

𝐹(𝑋) = 𝑃[𝑋 ≤ 𝑥] 

 

Important Probability Distributions 

Some important probability distributions are Normal Distribution, t distribution, Chi square 

distribution and the F-distribution 

Normal Distribution 

It is the most important probability distribution for a continuous random variable. It has a 

Height in inches 

f(x) 

  

𝑥1 𝑥2 
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Bell shaped curve (highest point at mean value) where 

𝑋~𝑁(𝜇𝑥,𝝈𝒙𝟐),  −∞ < 𝑋 <  ∞ 

Change in 𝜇 shifts the curve to right or left where change in 𝜎 increases of decreases the spread 

of the curve. The function may be written as  

 

 

This gives a bell shaped curve with different centers and spreads depending on the values of 𝝁 

and 𝝈 

Mathematical Constants 

π=3.14159 

2)(
2
1

2
1)( σ

µ

πσ

−
−

⋅=
x

exf

 

  

𝜇 + 3𝜎 𝜇 − 3𝜎 𝜇
 

𝜇 𝜇
+  

𝜇 − 2𝜎 𝜇 + 2𝜎 

68% of data 

95% of data 
99.7% of data 
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e=2.71828 

22 )(
2
1)

1
0(

2
1

2
1

2)1(
1)(

ZZ

eeZp
−

−
−

⋅=⋅=
ππ

 

The probabilities or areas under standard normal curve are already calculated and available in 

the shape of tables (the Z-table) 

Standard Normal Distribution 

If Z = X−X�

σ
,  then µz = 0 and σz = 1. The distribution of Z is a ‘Standard’ normal distribution 

Z~N(0,1) 

Student’s t-distribution 

t-distribution is a probability distribution of a continuous random variable when the sample size 

is small and the population variance is not known. Its curve is symmetric and bell shaped but 

flatter than normal distribution. The mean is zero but the variance is larger (heavier tails) than 

the variance of standard normal distribution (which is unity). It has only one parameter i.e. the 

degree of freedom. As the degree of freedom (or the number of observations) increases, the 

distribution approaches the normal distribution. 

 

Chi-Square (𝛘𝟐) distribution 

The Chi-square distribution has the following shape. 

The square of a standard normal variable is distributed as a Chi-square probability distribution 

with one degree of freedom. Sampling distribution of samples means when the mean and 
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variance is known as the Normal Distribution but when the variance is not known it is the t-

distribution. If we need the sampling distribution of the sample variance we have the Chi-

square distribution 

𝑍2 = 𝛘2(1) 

You can say that Normal distribution and t-distributions are related to means but the Chi-

square and F-distributions are related to variances. 

Properties: 

• Chi-square takes only positive values (zero to infinity) 

• It is skewed (depending on the d.f.) unlike the normal distribution 

• As the d.f. increases, the distribution approaches the normal distribution 

• Its mean is k (=d.f.) and variance is 2k (variance is twice the mean) 

 

 

F-distribution 

This is a variance ration distribution. (ratio of sample variances of two independent samples.). 

This is also equal to ratios of two Chi-squares. It has two parameters k1 and k2 (degrees of 

freedom in both samples i.e. numerator and denominator of F= 𝑺𝟏
𝟐 
𝑺𝟐
𝟐 

) 

Uses 
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• Testing equality of variances 

• Tests in Regression models like Goodness of fit test 

Properties 

• Skewed to the right between zero and infinity 

• Approaches normal distribution as d.f. increases 
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Lecture 06 
The Simple Regression Model 

The Basic Concept 

Regression is a statistical measure to determine the (strength of) relationship between a 

dependent variable (explained variable, response variable or regressand) and a list of 

independent variables (explanatory variables, predictor variables or regressors). It is a process 

of estimating the relationship among variables. It looks into the dependence of the regressand 

on the regressors). It is not the correlation but we want to know how and how much the 

dependent variable changes in response to changes in the dependent variable(s). We need, 

sometimes, to predict the values of the dependent variable with the help of the values of the 

regressors. 

Consider the Demand Function. Demand theory suggests that the quantity demanded depend 

on various variables like price, income of the consumer, taste, prices of other variables etc. We 

want to know how the quantity demanded may change due to changes in some of the 

independent variables like price. 

Usually we denote the dependent variable by Y and the regressors as X (or X1, X2 etc. in case of 

multiple regressors). In regression analysis, we try to explain the variable Y in terms of the 

variable X. Remember that the variable X may not be the only factor effecting Y. Also the 

relationship may not be exact e.g. for the same Y we may have different X values and for the 

same X value we may have different Y values. One row shows a pair of X and Y. We handle this 

by looking on the averages and try to know how the values of the variable Y change in response 

to changes in the variable X, on the average. 

Before performing regression, we also need to have an idea about the nature of the functional 

relationship of the variable. The relationship may be linear, quadratic, exponential etc. There 

are many regression models and we select the model that closely approximates the relationship 

among the variables. We can have an idea about the type of relationship by looking into, what 

we call, a scatter diagram. 
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Scatter Diagram 

Scatter diagram shows the pairs of actual observations. We usually plot the dependent variable 

against an explanatory variable to see if we can observe a pattern. If the pattern shows a linear 

relation, we use a linear regression model. 

 

The above diagram shows that the expenditure on food is a direct (increasing) function of the 

income levels. The dots showing the plots of the pairs of observation resemble a linear shape 

(straight line). The points do not lie exactly on a straight line but are scattered around a 

hypothetical straight line. In the diagram below, the annual sales seem to be inversely related 

to the price of the commodity. This is because the dots of pairs of observation seem to be 

scattered around a (hypothetical) straight line that is negatively sloped. 
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Remember that straight lines are show by equations of the type 𝑌 = 𝑎 + 𝑏 𝑋  where 𝑎 is the y-

intercept (the point where the straight line intersects the Y-axis) and 𝑏 is the slope of the line 

(the change in the variable Y due to one unit change in the variable X or ∆𝑌
∆𝑋

). 

In simple regression, we try to estimate the best (explained later) values of 𝑎 and 𝑏 by applying 

appropriate techniques. One of the techniques is called Ordinary Least Square (OLS). 

Simple Regression Line by OLS 

• The relationship seems to be ‘linear’ that can be captured with the equation of a 

straight line (Y = a + b X) 

• We may need to predict Y if the value of X is given 

• We capture the relation by writing a ‘simple regression equation’ 

𝑌 = 𝑎 + 𝑏 𝑋 + 𝑒   OR 𝑌 =  𝛽0 +  𝛽1𝑋 + 𝑒 

Residual: Note that we have added 𝑒 which is called an error term or residual. We add this 

because the actual values do not exactly lie on a straight line but maybe scattered around it. To 

account for this difference, we capture it in the residual 𝑒. When we estimate the parameters 

‘a’ and ‘b’, they do not provide exact estimates of the value of the dependent variable. The 

difference is called error term or residual 

𝒀𝒊 =  𝜷𝟎 +  𝜷𝟏𝑿𝒊 + 𝑻𝒊  (with subscripts)  

Subscript: The subscript 𝑖 shows that the variable may have multiple observations (as you learnt 

in summation algebra). 𝜷𝟎  𝑽𝑻𝑻  𝜷𝟏 are written instead of 𝑎 and 𝑏 so that we follow the 

tradition of regression analysis. 
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In both the diagrams above and below, we have imposed a straight line on the scatter diagram 

to show how the points are scattered around the straight line and if we move along the straight 

line, we approximate the relation of Y and X. A good technique applied on an appropriate 

situation may well approximate the relationship (with smaller values of  ) 

 

 

 

 

 

 

 

 

 

 

 

Regression Explained 

Population Regression Equation is an assumed equation that may have possibly been estimated 

from a population. We will use samples to get the values of the parameters 𝜷𝟎  𝑽𝑻𝑻  𝜷𝟏as all 

the population may not be available or observed. 

𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏𝑿𝒊 + 𝑻𝒊 

Here 

Yi  = Dependent Variable or Explained Variable. 𝜷𝟎  𝑽𝑻𝑻  𝜷𝟏  are Parameters the we need to 

estimate. X is the Independent Variable OR Explanatory Variable 
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Regression equation estimation 

𝒀𝒊 =  𝜷𝟎 +  𝜷𝟏𝑿𝒊 + 𝑻𝒊is the population regression equation 

Let a and b be the estimated values of 𝜷𝟎 and 𝜷𝟏 respectively 

We estimate a and b from a sample. The ‘estimated value’ of Y based on the estimated 

regression equation is 

𝒀� = 𝑽 + 𝒃 𝑿 where 𝒀� is the estimated value or ‘Trend Value’ 

Then 𝑻𝒊 = 𝒀 −  𝒀� 
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Regression equation estimation 

It is good to have low values of errors (residuals). Negative and Positive Errors cancel each 

other and we want to ‘Magnify’ larger errors so we focus on the ‘Square of Errors’ and try to 

minimize their sum. In least square estimation, we minimize the ‘Sum of Squared Residuals’ or 

‘Sum of Square of Errors’ . 

We try to estimate the parameters a and b for which we have the minimum possible ‘Sum of 

Square of Residuals’. 

Other values of ‘a’ and ‘b’ may provide larger SSR. 

• Finding the values of ‘a’ and ‘b’ in the regression equation is a minimization problem 

𝑀𝑖𝑙�𝑻𝒊𝟐
𝑻

𝒊=𝟏

 

NOTE: We will ignore the subscript ‘i’ for convenience 

Remember that 

• 𝑒 = 𝑌 −  𝑌�  

• 𝑌� = 𝑎 + 𝑏𝑋 

Also Remember that 

• For ‘Optimization’ we take the first derivative and set it equal to zero 

Important:  Here although X and Y are variables but for this minimization problem only we will 

consider ‘a’ and ‘b’ to be the unknowns as we are trying to estimate the values of ‘a’ and ‘b’ 

The above minimization becomes 
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𝑀𝑖𝑙�𝑻𝒊𝟐
𝑻

𝒊=𝟏

= �(𝒀 − 𝑌�)𝟐 =
𝑻

𝒊=𝟏

�(𝒀 − 𝑽 − 𝒃𝑿)𝟐
𝑻

𝒊=𝟏

 

Where ‘a’ and ‘b’ are the unknowns we focus on. 

Let Z denote our expression so that we need to minimize 

𝑀𝑖𝑙 𝑍 = �(𝒀 − 𝑽 − 𝒃𝑿)𝟐
𝑻

𝒊=𝟏

 

Ignoring subscripts and partially differentiating Z w.r.t. ‘a’ and setting equal to zero 

𝑍𝑎 =   �(𝑌 − 𝑎 − 𝑏𝑋)2−1.
𝜕
𝜕𝑎

(𝑌 − 𝑎 − 𝑏𝑋) = 0 

Chain rule is used for differentiation 

�(𝑌 − 𝑎 − 𝑏𝑋)(−1) = 0 

�(𝑌 − 𝑎 − 𝑏𝑋) = 0 

�𝑌 − 𝑙𝑎 − 𝑏�𝑋 = 0 

Summation Algebra is used when we multiply the Summation symbol 

�𝑌 = 𝑙𝑎 + 𝑏�𝑋  

This is called the first normal equation 

Ignoring subscripts and partially differentiating Z w.r.t. ‘b’ and setting equal to zero 

𝑍𝑏 =   �(𝑌 − 𝑎 − 𝑏𝑋)2−1.
𝜕
𝜕𝑎

(𝑌 − 𝑎 − 𝑏𝑋) = 0 

Chain rule is used for differentiation 

�(𝑌 − 𝑎 − 𝑏𝑋)(−𝑋) = 0 

This time ‘b’ is the unknown and X is the coefficient of ‘b’. 

The derivative of ‘b’ is 1 and X will be retained as its coefficient 

�(𝑌 − 𝑎 − 𝑏𝑋)(𝑋) = 0 
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�(𝑋)(𝑌 − 𝑎 − 𝑏𝑋) = 0 

�𝑋𝑌 − 𝑎�𝑋 − 𝑏�𝑋2 = 0 

Summation Algebra is used when we multiply the Summation symbol 

�𝑋𝑌 = 𝑎�𝑋 + 𝑏 �𝑋2 

This is called the second normal equation 

In summary, to estimate a linear regression line 𝒀𝒊 =  𝜷𝟎 +  𝜷𝟏𝑿𝒊 + 𝑻𝒊  

Where ‘a’ is a sample estimate of 𝜷𝟎 and ‘b’ is a sample estimate of 𝜷𝟏,  

We minimized the Sum of Squared Residuals 

𝑀𝑖𝑙 𝑍 = �(𝒀 − 𝑽 − 𝒃𝑿)𝟐
𝑻

𝒊=𝟏

 

As a result we got two normal equations 

�𝑌 = 𝑙𝑎 + 𝑏�𝑋  

�𝑋𝑌 = 𝑎�𝑋 + 𝑏 �𝑋2 

To find the values of ‘a’ and ‘b’ we need some observations of X and Y. We can solve the normal 

equations and find the values of ‘a’ and ‘b’. Solving these equations gives the values of 

parameters 𝑎 and 𝑏. 

Finding the values of parameters directly 

Instead of solving two normal equations, we can derive expressions to directly find the values 

of 𝑎 and 𝑏.  

�𝑌 = 𝑙𝑎 + 𝑏�𝑋               … … … … … (1) 

�𝑋𝑌 = 𝑎�𝑋 + 𝑏 �𝑋2            … … … (2) 

Dividing equation (1) by n, 

∑𝑌 
𝑙

= 𝑎 + 𝑏 
∑𝑋 
𝑙

 𝑤ℎ𝑖𝑐ℎ 𝑔𝑖𝑣𝑒𝑠   𝑎 =
∑𝑌 
𝑙

− 𝑏 
∑𝑋 
𝑙
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We can also write this as 

𝑎 =  𝑌� − 𝑏𝑋� 

Substituting this value of ‘a’ in equation (2) 

�𝑋𝑌 = �
∑𝑌 
𝑙

− 𝑏 
∑𝑋 
𝑙
��𝑋 + 𝑏 �𝑋2 

�𝑋𝑌 =
∑𝑌 ∑𝑋 

𝑙
− 𝑏 

∑𝑋 ∑𝑋 
𝑙

+ 𝑏 �𝑋2 

�𝑋𝑌 −
∑𝑌 ∑𝑋 

𝑙
= 𝑏( �𝑋2 −

∑𝑋 ∑𝑋 
𝑙

) 

𝑏 =
∑𝑋𝑌 − ∑𝑋 ∑𝑌 

𝑙

∑𝑋2 − (∑𝑋) 2
𝑙

=  
𝑙∑𝑋𝑌 − ∑𝑋 ∑𝑌 
𝑙∑𝑋2 − (∑𝑋) 2

 

𝑏 =
∑𝑋𝑌 − ∑𝑋 ∑𝑌 

𝑙

∑𝑋2 − (∑𝑋) 2
𝑙

=  
𝑙∑𝑋𝑌 − ∑𝑋 ∑𝑌 
𝑙∑𝑋2 − (∑𝑋) 2

 

&    𝑎 =  𝑌� − 𝑏𝑋� 

Example:  

Consider the following example where X = Income in thousand rupees and Y = expenditure on 

food items (thousand rupees)   

Observation # X Y XY X2 
1 25 20 500 625 
2 30 24 720 900 
3 35 32 1120 1225 
4 40 33 1320 1600 
5 45 36 1620 2025 
Totals 175 145 5280 6375 
 �𝑋 �𝑌 �𝑋𝑌 �𝑋2 

The normal equations are 

�𝑌 = 𝑙𝑎 + 𝑏�𝑋      &     �𝑋𝑌 = 𝑎�𝑋 + 𝑏 �𝑋2 
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Substituting values in the normal equations gives us: 

145 = 5𝑎 + 𝑏 (175)   & 

     5280 = a(175) + b(6375) 

OR 

145 = 5𝑎 + 175 𝑏 

     5280 = 175 a + 6375 b 

Solving them simultaneously gives us: 

a =  0.3 and  b = 0.82 

We can write the regression line as 

𝑌 = 0.3 + 0.82 𝑋 

Interpretation 

The value of a is the Y-intercept and the value of b is the slope of the line (rate of change of Y 

w.r.t. X or derivative of Y w.r.t. X) 

Alternative Method 

The values of a and b can also be found by substituting in any one of the expressions that we 

derived. 

𝑏 =  
𝑙∑𝑋𝑌 − ∑𝑋 ∑𝑌 
𝑙∑𝑋2 − (∑𝑋) 2

 

𝑏 =  
5(5280) − (175)(145)

5(6375) − (175)2
 

𝑏 = 0.82 

𝑎 =  𝑌� − 𝑏𝑋� 

𝑎 = �
145

5 � − 0.82 �
175

5 � 

𝑎 = 0.3  

‘b’ is called the slope coefficient. 

b = 0.82 means that a one unit change in X (income level) brings 0.82 unit changes in Y 

(expenditure of food), on the average.  
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OR Change if 1000 rupees (one unit is in thousands) increase in income may increase the 

expenditure on food items by 820 rupees. 

Trend Values and Errors:  

We can substitute the values of X in the estimated regression equation and find Trend Values 

Observation 

# 

X Y 𝑻𝑻𝑻𝑻 𝑽𝑽𝑽𝑽𝑻 

𝒀� 

Residual or 

Error 

𝑻 = 𝒀 −  𝒀� 

Square of Residuals 

𝑻𝟐 

1 25 20 20.8 -0.8 0.64 
2 30 24 24.9 -0.9 0.81 
3 35 32 29 3.0 9 
4 40 33 33.1 -0.1 0.01 
5 45 36 37.2 -1.2 1.44 

Totals 175 145 145 Zero 11.9 
 �𝑋 �𝑌 �𝑌� = �𝑌 �𝑒 �𝑒2 

 

The First trend value is computed as Y = 0.3 + 0.82 (25) = 20.8 and so on. If you change the 

values of a and b and compute new squares of errors, the new value would be larger than the 

value here (Least Square of errors)  

The Error Term 

We assume that error are normally distributed with zero mean and constant variance 

𝑒~𝑁(0,𝜎2) 

As you must have noticed while estimating regression parameters, 

�𝑻𝒊

𝑻

𝒊=𝟏

= 𝟎 

Also, you can verify easily that 

�𝑻𝒊𝑿𝒊

𝑻

𝒊=𝟏

= 𝟎 
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And as we got the regression equation by minimization process, 

�𝑻𝒊𝟐
𝑻

𝒊=𝟏

 𝑖𝑠 𝑚𝑖𝑙𝑖𝑚𝑢𝑚 

Nature of the Error Term 

• Error Term may represent the influence the variables NOT included in the model. 

(Missing Variables) 

• Even if we are able to include all variables or determinants of the dependent variable, 

there will remain randomness in the error as human behavior is not rational and 

predictable to the extent of 100% 

• e may represent ‘Measurement Error’; When data is collected we may round some 

values or observe values in ranges or some variables are not accurately measured 

Assumptions of OLS estimators 

Gauss-Markov assumptions 

1. Linear in Parameters 

2. Random Sampling of n observations 

3. Sample variation in explanatory variable (X i). are not all the same value 

4. Zero conditional mean: The error e has an expected value of 0, given any values of the 

explanatory variable 

5. Homoskedasticity:  The error has the same variance given any value (in subsets) of the 

explanatory variable. 

BLUE: Best Linear Unbiased Estimators 

Under the Gauss-Markov Assumptions the OLS estimators are Best, Linear and Unbiased in the 

Model 𝑌 = 𝛽0 + 𝛽1𝑋 + 𝑒 where a and b are sample estimates of 𝛽0𝑎𝑙𝑑 𝛽1 respectively. 

Linear: The model is linear in parameters. However variables can have powers not equal to one. 

• Y = a + b X is linear but Y = a +b2 X is not 

• Y = a + b X + c X2 is fine 
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• Y = a + ln(bX) is not OLS 

• Y = a + b ln(X) is OLS 

In fact ‘linear’ means that we can express the slope coefficient as a linear function of Y 

Unbiased: A parameter is unbiased if the average value of the estimator in repeated samples is 

equal to the true population parameter. 

In our case 𝐸�𝑏𝑗� =  𝛽1𝑗 

Best / Efficient: A parameter is best if its variance is less than any other estimator of the 

parameter 

𝑉𝑎𝑟 (𝑏) ≤ 𝑉𝑎𝑟 �𝑏�� 

𝑤ℎ𝑒𝑟𝑒 𝑏� is any other unbiased estimatro of 𝛽1 

We will learn later how to compute Var (b) 

 

  Exercise 

1. Prove that the above expression for ‘b’ can also be written as 

𝑏 =
∑(𝑋 − 𝑋�)(𝑌 − 𝑌�)

∑(𝑋 − 𝑋�)2
=  

𝐶𝑜𝑣(𝑋,𝑌)
𝑉𝑎𝑟(𝑋)

 

2. Estimate a linear regression Y on X from the following data. Find the trend values and 

compute the errors 

X = 1, 5, 6, 9 , 9, 10, 9, 11, 10, 12 

Y= 45, 42, 41, 37, 36, 31, 33, 36, 29, 27 

3. For the data and results of question 2, See if the following is true 

�𝑻𝒊

𝑻

𝒊=𝟏

= 𝟎 𝑽𝑻𝑻 �𝑻𝒊𝑿𝒊

𝑻

𝒊=𝟏

= 𝟎 
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Lecture 07 
Estimation and Testing in Regression Analysis 

 

Example:  

Consider the following example where X = Income in thousand rupees and Y = expenditure on 

food items (thousand rupees)   

Sr. # X Y XY X
2
 𝑻𝑻𝑻𝑻 𝑽𝑽𝑽𝑽𝑽 

𝒀� 

Error 

𝒆 = 𝒀 −  𝒀� 

Square of 

Residuals 

𝒆𝟐 

1 25 20 500 625 20.8 -0.8 0.64 
2 30 24 720 900 24.9 -0.9 0.81 
3 35 32 1120 1225 29 3.0 9 
4 40 33 1320 1600 33.1 -0.1 0.01 
5 45 36 1620 2025 37.2 -1.2 1.44 

Totals 175 145 5280 6375 145 Zero 11.9 
 �𝑋 �𝑌 �𝑋𝑋 �𝑋2 �𝑌�

= �𝑌 

�𝑒 = 0 �𝑒2 

 

𝑏 =  
𝑙∑𝑋𝑌 − ∑𝑋 ∑𝑌 
𝑙∑𝑋2 − (∑𝑋) 2

=  
5(5280) − (175)(145)

5(6375) − (175)2
= 0.82 

𝑎 =  𝑌� − 𝑏𝑋� = �
145

5 � − 0.82 �
175

5 � = 0.3 

Interpretation of Regression Coefficients 

The Intercept ‘a’ (usually also denoted by 𝜷𝟎) 

This is the y-intercept of the straight line and indicates the value of Y when X is zero; Usually the 

base or the initial value 

Examples: (Assuming linear relationships) 

• Autonomous Consumption in the Keynesian Consumption function  
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• Autonomous Investment in the Investment function 

 

The Slope Coefficient ‘b’ (Usually denoted also by 𝜷𝟏) 

In linear regression lines, it shows the average unit change in the dependent variable due to 

one unit change in the independent variable. In a linear equation, It can also be called the 

derivative of the dependent variable w.r.t. the independent variable. 

The slope coefficient b is an unbiased estimate of the population regression coefficient β1 

Standard Error of Estimate/Standard Error of Regression 

The standard error of the estimate is a measure of the accuracy of predictions.  

It is the standard deviation of errors and defined as 

𝝈�𝑻 = � ∑𝑻𝒊𝟐

𝑵 − 𝒌
 

Where N = Number of observations 

k =  number of restrictions imposed which is equal to number of parameters 

𝑁 − 𝑘 = 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 

  

a 
 

X 

Y 

n 

m ∆𝑌 

∆𝑋 

𝑏 =
∆𝑌
∆𝑋
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Standard Error of ‘b’ (for regression with one independent variable) 

𝑠𝑒(𝑏) =  
𝝈�𝑻

�∑(𝑋 − 𝑋�)2
 

Or 

𝑠𝑒(𝑏) =  
𝝈�𝑻

�∑𝑋2 − (∑𝑋)2
𝑁

 

In the current example 

𝝈�𝑻 = � ∑𝑻𝒊𝟐

𝑵 − 𝒌
 

𝝈�𝑻 = �𝟏𝟏.𝟗
𝟓 − 𝟐

= �𝟏𝟏.𝟗
𝟑

 

𝝈�𝑻 = 𝟏.𝟗𝟗𝟏𝟔 

Also  

𝑠𝑒(𝑏) =  
𝝈�𝑻

�∑𝑋2 − (∑𝑋)2
𝑁

 

=
1.9916

�6375 − (175)2
5

=
1.9916

15.81139
 

= 0.12596 

Testing for the significance of slope coefficient: Individual variable significance test 

The Procedure is as follows:  

H0:      b =  0 

𝐻1:      b ≠ 0 

𝛼 = 0.05  (𝑜𝑟 0.01) 

Level of significance: Probability of type I error (rejecting a true hypothesis 

𝑇𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 
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𝑡 =  
𝑏

𝑠𝑒(𝑏)
 

If you do not fully understand all this then you need to revise the topic ‘Test of Hypothesis’ in 

your basic statistics course. 

𝑅𝑒𝑔𝑖𝑜𝑙 𝑜𝑓 𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑙 

|𝑡| >  𝑡𝛼
2 ,𝑛−𝑘 

As this is a two tailed test so we search for the value if t in the table of t-distribution 

corresponding to 𝛼/2 and n-k 

In this example 

𝑡 =  
𝑏

𝑠𝑒(𝑏)
=  

0.82
0.12596

= 6.51 

Looking into the table of t-distribution 

𝑡𝛼
2 ,𝑛−𝑘 = 𝑡0.025,3 = 3.182 

As |𝑡| >  𝑡𝛼
2,𝑛−𝑘 

6.51 > 3.182 

So we reject H0 and conclude that ‘b’ is significant and the variable X has a significant impact on 

the variable Y 

Reading the value of t-distribution 

You can download statistical tables from the internet 

e.g. http://wps.aw.com/wps/media/objects/15/15512/stat_tables.pdf 

To read the value of  𝑡0.025,3 look in the column below t0.025 (for 2 tailed test 0.5 is divided in 

two parts so we look at 0.025 or 2.5%) and 3 degrees of freedom. You get the value 3.182. You 

may find slightly different tables so read the instruction provided with the table. 

 

 

Reading the value of 𝑡0.025,3  in Microsoft Excel (2007 or later) 
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Type in any cell and press ENTER 

= T.INV.2T(0.05,3)   

The cell will display the value 3.182 

This formula has two parameters. The first one is the level of significance and the second is the 

d.f. (N – K) 

 

 

 

 

 

 

 

 

 

The Coefficient of Determination: Explanatory power of the model 

The proportion of variation in Y that is explained by X 

𝑅2 =
𝐸𝑥𝑝𝑙𝑎𝑖𝑙𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑙
𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑙

=  
∑(𝑌� − 𝑌�)2

∑(𝑌 − 𝑌�)2
 

Where 

Total Variation  

=Explained Variation +Unexplained variation 

So the above can be written as 

𝑅2 =
𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑙 − 𝑈𝑙𝑒𝑥𝑝𝑙𝑎𝑖𝑙𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑙

𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑙
 

= 1 −
𝑈𝑙𝑒𝑥𝑝𝑙𝑎𝑖𝑙𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑙

𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑙
= 1 −

∑𝑻𝟐

∑(𝑌 − 𝑌�)2
 

Which also can be transformed as 
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𝑅2 = 1 −
𝑵∑𝑻𝟐

𝑁∑𝑌2 − (∑𝑌)2
  

In our current example 

𝑅2 = 1 −
𝑵∑𝑻𝟐

𝑁∑𝑌2 − (∑𝑌)2
 

𝑅2 = 1 −
5(11.9)

5(4385) − (145)2
 

𝑅2 = 0.934 

Interpretation 

The explanatory power of the model is 93.4% 

Or 

With the simple regression model, The variations in X can explain 93.4% of variation in Y 

Note: The coefficient of determination is equal to the square of the correlation coefficient only 

in case of the simple regression line with one independent variable. 

The Goodness of Fit Test: Using the F-distribution 

The Procedure is as follows:  

𝐻0:      𝑇ℎ𝑒 𝐹𝑖𝑡 𝑖𝑠 𝑙𝑜𝑡 𝑔𝑜𝑜𝑑 

𝐻0:      𝑇ℎ𝑒 𝑓𝑖𝑡 𝑖𝑠 𝑔𝑜𝑜𝑑 

𝛼 = 0.05  (𝑜𝑟 0.01) 

𝑇𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 

𝐹 =  
𝑅2

(1 − 𝑅2)
𝑁 − 𝑘
𝑘 − 1

 

Where 

𝑅2 = 1 −
∑𝑻𝟐

∑(𝑌 − 𝑌�)2
= 1 −

𝑵∑𝑻𝟐

𝑁∑𝑌2 − (∑𝑌)2
 

Note: the Coefficient of Determination 𝑅2 is equal to the square of the correlation coefficient 

only in case of simple regression line (one independent variable) 
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𝑅𝑒𝑔𝑖𝑜𝑙 𝑜𝑓 𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑙 

𝐹 >  𝐹𝛼, 𝑘−1,𝑁−𝑘 

In our current example 

𝐹 =  
𝑅2

(1 − 𝑅2)
𝑁 − 𝑘
𝑘 − 1

 

=  
0.934

1 − 0.934
(
3
1

) = 42.4 

Looking into the table of F-distribution 

𝐹𝛼, 𝑘−1,𝑁−𝑘 = 𝐹0.05, 1,3 = 10.13 

As 

𝐹 >  𝐹𝛼, 𝑘−1,𝑁−𝑘 

42.4 > 10.13 

So we reject H0 and conclude that The Fit is Good . 

Reading the value of F-distribution 

See table VI from  http://wps.aw.com/wps/media/objects/15/15512/stat_tables.pdf 

 

To read the value of 𝐹0.05, 1,3look in the column below 1 (k-1) and 3 (N-k) and look for the value 

for 0.05 (𝛼). The value is 10.13. 

Reading the value of𝑭𝟎.𝟎𝟓, 𝟏,𝟑in Microsoft Excel (2007 or later) 

 

http://wps.aw.com/wps/media/objects/15/15512/stat_tables.pdf
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Type in any cell and press ENTER 

= F.INV.RT(0.05,1,3)      The cell will display the value 10.13 

This formula has three parameters. The level of significance, k-1 & N-k 

Using basic Microsoft Excel Formulas: intercept and slope 

We will use basic formulas here. An additional tool called DATA ANALYSIS tool pack will be 

discussed later. Intercept and slope: To Estimate Y = a + b X + e,  We can find the values of  the 

parameter ‘a’ (intercept) and parameter ‘b’ (slope) in Microsoft Excel. 

Value of ‘a’ 

= intercept (Cell range of Values of Y, Cell range of Values of X) 

Value of ‘b’ 

= slope (Cell range of Values of Y, Cell range of Values of X) 

 

 

 

The cells are showing the formulas. When you will press ENTER after writing these formulas, 

the values will be displayed as 0.3 and 0.82 

Using basic Microsoft Excel Formulas: the LINEST formula 
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Remember that We will use basic formulas here. An additional tool called DATA ANALYSIS tool 

pack will be discussed later.     Syntax:  LINEST(known_y's, [known_x's], [const], [stats]) 

Steps:  

• This is an array command so we select the cells D3 to E7 (2 columns and five rows to 

display results) 

• When the cells are selected then type = LINEST(B3:B7,C3:C7,TRUE,TRUE) 

• Press and hold Ctrl + SHIFT and press ENTER (Ctrl + SHIFT + ENTER) 

The results are displayed in the cells that you had selected like this 

value of 'b' value of 'a' 

standard Error of 'b' standard error of 'a' 

R-squared standard error of estimate 

F-statistic N-k 

Regression Sum of Squares Residual SS = Sum of square of errors 

 

This example is for simple regression line. For details see Microsoft Help on LINEST 

Understanding the LINEST formula 

LINEST(known_y's, [known_x's], [const], [stats]) 

The range of Y values  B3:B7 

The range of X values  C3:C7 

If TRUE then the constant intercept ‘a’ is calculated normally. If FALSE then ‘a’ is set equal to 

zero 

If TRUE then additional statistics are displayed in an array  (D3 to E7) 

STEP 1 

First Enter your data in cells B3 to C7 (you can add title Y and X in cells B2 and C2 respectively 



Business Econometrics by Dr Sayyid Salman Rizavi 

76 

 

 

STEP 2 

Now, whatever the number N, select any two columns and five rows to display the result in an 

array (10 different statistics will be displayed) 

 

STEP 3 

While the cells remain selected, type the following then hold the Ctrl and SHIFT keys and press 

ENTER. We do this so that the result is displayed in the selected array. 
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Results 

Hold Ctrl and SHIFT keys and press ENTER, the results will be as follows 

 

The results may be read in the following order 

 

For example   a = 0.3,   b = 0.82,   F = 42.37815126 etc. 

Note: The value of t could be calculated  
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Understanding the TREND formula 

You may compute all the trend values without calculating the regression coefficients by using 

this formula 

 

Note the $ sings; they are inserted around the letter so that the reference does not change 

when you extend the formula to other cells by dragging 

 

Drag the formula to get other trend values 
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Lecture 08 
Examples Using Microsoft Excel 

This is only to demonstrate the procedure of OLS. In Future you would be using the Data 

Analysis Tool to perform regressions. Prerequisite: The student must be familiar with Microsoft 

Excel.  

Model Exam Question 

Consider the following data. You may open Microsoft Excel and enter the Data and create the 

required sums 

• Calculate the values of parameters ‘a’ and ‘b’ for the regression Y=a + b X + e using the 

formulas you have learnt.  

• Calculate the standard error of estimate and standard error of b. 

• Calculate t-values and draw your conclusions regarding the individual variable 

significance 

• Calculate the Coefficient of determination 

• Calculate the F-statistic and draw your conclusion regarding the goodness of fit 

• Use the LINEST Excel formula and verify all your results 

NOTE: Interpret your results at each step, write formulas using equation editor (you can write 

formulas / Sums in Microsoft Word and paste in Excel sheet if you feel easy like that) 
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= A4*B4 

= A4*A4 OR  =A4^2 

= TREND($A$4:$A$13,$B$4:$B$13,B4) 

= A4 – F4 

= Sum(A4:A13) 

Consider P as X and Q as Y so we do not need to change the usual formula 

Calculate the following in Excel by entering formulas 

𝑏 =  
𝑙∑𝑋𝑌 − ∑𝑋 ∑𝑌 
𝑙∑𝑋2 − (∑𝑋) 2

 

= (10 ∗ (𝐶14) − (𝐵14) ∗ (𝐴14))/(10 ∗ (𝐷14) − (𝐵14)^2) 

= −0.84737 

𝑎 =  𝑌� − 𝑏𝑋� 

= (𝐴14/10) −  𝐾6 ∗ (𝐵14/10) 

= 340.8812 
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Verification 

Instead of calculating by formula, you can use the SLOPE and INTERCEPT Excel Formula as well 

=SLOPE(A4:A13,B4:B13) 

And for the intercept 

=INTERCEPT(A4:A13,B4:B13) 

The regression Equation may now be written as 

𝑌 = 340.8812 − 0.84737 𝑋 

Interpretation of ‘b’ (the slope coefficient): For every on unit change in X, there may be, on the 

average, 0.84737 unit change in Y in the inverse direction. 

Computations in Microsoft Excel 

Standard Error of Estimate 

𝝈�𝑻 = � ∑𝑻𝒊𝟐

𝑵 − 𝒌
= 𝟏𝟎.𝟔𝟑𝟗𝟏𝟔 

Also  

𝑠𝑒(𝑏) =  
𝝈�𝑻

�∑𝑋2 − (∑𝑋)2
𝑁

 

= 0.08668 

 

Cell H14 contains the value of ∑𝑒2 

 

Cell D14 contains the value of ∑𝑋2 
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Cell B14 contains the value of ∑𝑋 

Individual Variable Significance Test 

𝐻0:      b =  0 

𝐻1:      b ≠ 0 

𝛼 = 0.05  (𝑜𝑟 0.01) 

𝑇𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 

𝑡 =  
𝑏

𝑠𝑒(𝑏)
= −9.77614 

If the value of ‘b’ was calculated in Cell K6 and If Standard Error of b was calculated in Cell K14 

 

𝑅𝑒𝑔𝑖𝑜𝑙 𝑜𝑓 𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑙 

|𝑡| >  𝑡𝛼
2 ,𝑛−𝑘 

𝑡𝛼
2 ,𝑛−𝑘 = 2.306 

 

As the absolute value of ‘t-statistic’ (9.77614) is greater than the value in the table so we reject 

𝐻1R and conclude that ‘b’ is significant. 

The Goodness of Fit Test: Using the F-distribution 

The Procedure is as follows:  

𝐻0:      𝑇ℎ𝑒 𝐹𝑖𝑡 𝑖𝑠 𝑙𝑜𝑡 𝑔𝑜𝑜𝑑 

𝐻0:      𝑇ℎ𝑒 𝑓𝑖𝑡 𝑖𝑠 𝑔𝑜𝑜𝑑 

𝛼 = 0.05 
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𝑇𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 (F) 

𝑅2 = 1 −
𝑵∑𝑻𝟐

𝑁∑𝑌2 − (∑𝑌)2
= 0.9228 

 

Cell H14 contains the value of ∑𝑒2 

Cell E14 contains the value of ∑𝑌2 

A14 contains the value of ∑𝑌 

Which gives F 

𝐹 =  
𝑅2

(1 − 𝑅2)
𝑁 − 𝑘
𝑘 − 1

= 95.573 

 

𝑘 − 1=1 

We calculated the value of 𝑅2in Cell M6 

𝑁 − 𝑘 = 10 − 2 = 8 

𝑅𝑒𝑔𝑖𝑜𝑙 𝑜𝑓 𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑙 

𝐹 >  𝐹𝛼, 𝑘−1,𝑁−𝑘 

or 

𝐹 > 5.3177 

 

As 95.573 > 5.3177, We reject H0 and conclude that the FIT IS GOOD 

Verifying the results with the LINEST formula 

Remember that We will use basic formulas here. An additional tool called DATA ANALYSIS tool 

pack will be discussed later. 
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Syntax:  LINEST(known_y's, [known_x's], [const], [stats]) 

The results are displayed in the cells that you Select like this 

value of 'b' value of 'a' 

standard Error of 'b' standard error of 'a' 

R-squared standard error of estimate 

F-statistic N-k 

Regression Sum of Squares Residual SS =Sum of square of errors 

 

Select Cells D18:D22 

• Start Typing =LINEST(A4:A13,B4:B13,TRUE,TRUE) 

• hold Ctrl + SHIFT and press ENTER (Ctrl + SHIFT + ENTER) 

 

 

The results are displayed and all the value are identical to our calculations. The value of t could 

be calculated by dividing the value of ‘b’ by the lower cell that contains the value of the 

standard error of b 

Change of Unit of Measurement 

Sometimes we change the unit of measurement for larger or smaller values. This makes the 

calculation easy and also makes the meaning of the coefficients useful. (Multiplying or dividing 

by a factor can be an example) 

Examples:  

• Population can be recorded or displayed in Millions 
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• Prices may be displayed in thousand rupees if required 

In fact we are dividing the values of Population by 1000000  (one million) and the values of 

Prices by 1000 

We can call this a linear transformation. A linear transformation preserves linear relationships 

between variables. Therefore, the correlation between x and y would not change. 

Change of Unit of Measurement 

 

Transformation of models and Use of OLS 

Some times we need to estimate models that are not linear but we can transform them and 

use OLS to estimate them. 

Non Linear Transformation:  

Nonlinear transformation changes (increases or decreases) linear relationships between 

variables. Correlation between variables changes.  
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Examples:  

Taking logs of natural logs 

Taking the square or square root or reciprocals of a variable 

Cobb Douglas Production Function 

𝑄 = 𝐴 𝐿𝛼𝐾𝛽 

Reducing to one variable (to make example of simple regression) 

𝑄 = 𝐴𝐾𝛽 

Taking log on both sides 

ln𝑄 = ln𝐴 + 𝛽 ln𝐾 

Let 𝑌 = ln𝑄,  𝛼 = ln𝐴 𝑎𝑙𝑑 𝑋 = ln𝐾,  then the above can be written as 

𝑌 = 𝛼 + 𝛽𝑋  

That can be estimated by OLS 

Transformation of models and Use of OLS 

Non Linear Transformation:  Nonlinear transformation changes (increases or decreases) linear 

relationships between variables. Correlations between variables change.  

Method Transformation Regression equation 

Standard linear regression Not required y = b
0
 + b

1
x 

Exponential model or log-linear 

functional form 

Dependent variable = log(y) log(y) = b
0
 + b

1
x 

Logarithmic model or Linear-Log 

functional form 

Independent variable = log(x) y= b
0
 + b

1
log(x) 

Double log functional form Dependent variable = log(y), 

Independent variable = log(x) 

log(y)= b
0
 + b

1
log(x) 

Cobb Douglas Production Function 

(like double log form) 

 𝑌 = 𝐴 𝐿𝛼𝐾𝛽  ln𝑌 = ln𝐴 + 𝛼 ln 𝐿 +

𝛽 ln𝐾 
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Interpretation of different functional forms using OLS 

Model Interpretation Marginal 

Effect 

Elasticity 

Linear in variable 

𝑌 = 𝑎 + 𝑏𝑏 

One unit change in X will cause, on the 

average, ‘b’ units of change in Y 

b 𝑏
𝑋
𝑌

 

Double log form 

 (log-log) 

𝑙𝑙 𝑌 = 𝑎 + 𝑏 𝑙𝑙𝑙 

One percent change in X will cause, on the 

average, ‘b’ % change in Y 
𝑏
𝑌
𝑋

 b 

Level-Log 

𝑌 = 𝑎 + 𝑏 𝑙𝑙 𝑋 

One percent change in X is expected to 

change Y by 100
𝑏

 units 

𝑏
𝑋

 
𝑏
𝑌

 

Log-Level form 

𝑙𝑙𝑙 = 𝑎 + 𝑏 𝑋 

When X changes by one unit, Y will change 

by approximately (b*100)% 

𝑏𝑏 𝑏𝑏 

For interpretation, we assume that Gauss Markov assumption hold and parameters are 

significant 

Marginal effect of X is defined as the partial derivative of Y w.r.t. X 

marginal effect and elasticity (𝑑𝑦
𝑑𝑥

𝑋
𝑌

) may be computed at mean values of X and Y 

 

Outliers in Regression 

Outliers are the points that diverge a lot from the data in general and may affect the slope of 

the regression equation or the predictive power of the model. 

Types 

1. Extreme X values 

2. Extreme Y values 

3. Extreme X and Y 

4. Distant point with normal X or Y value 
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If the removal of outliers changes the slope or changes the coefficient of determination a lot, 

this may be called an influential point 

 

 

In both the diagrams the dots that appear far from the cluster of dots are outliers.  
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Lecture 09 
Multiple Regressions 

General Idea 

Simple Regression considers the relation between single independent variable and the 

dependent variable. The Multiple Regression considers relation between one dependent 

variable and two or more independent (explanatory) variables 

 

We intend to look into the impact of one independent variable on the dependent variable 

while other independent variables remain constant (are held). 

Multiple Regression: Examples 

• Earnings may depend on both the educational level and the experience  

• Quantity demanded may depend on price, income, prices of substitutes and other 

variables. 

• GDP may be related to Labor Force, Capital Stock, Human Resources, and Openness 

etc. 

Multiple Linear Regression: 2 independent variables 

Multiple Regression Equation 
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𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏𝑿𝟏𝒊 + 𝜷𝟐𝑿𝟐𝒊 + 𝑻𝒊 

 

• Simple Regression fits a regression line in 2-dimensional space 

• The Multiple Regression with two independent variables fits a line in 3-dimensional 

space 

 

Scatter Diagram in Multiple Regression 
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In Multiple Regressions we can: 

• Use several variables at the same time to explain the variation in a continuous 

dependent variable. 

• Isolate the unique effect of one variable on the continuous dependent variable while 

taking into consideration that other variables are affecting it too. (remember the 

concept of partial derivatives) 

• Write a mathematical equation that tells us the overall effects of several variables 

together and the unique effects of each on a continuous dependent variable. (Multiple 

Regression line) 

Estimating a Multiple Regression Line 

Least Square Estimation 

Consider a regression equation 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝜖𝑖 

We need to find the values of 𝛽0, 𝛽1 and 𝛽2 using OLS 

Remember that we estimate the parameters by minimizing the sum of squared residuals so we 

face a minimization problem 

𝑀𝑖𝑙�𝑻𝒊𝟐
𝑻

𝒊=𝟏

 

NOTE: We will ignore the subscript ‘i’ for convenience 

Remember that  𝑒 = 𝑌 −  𝑌�  and 𝑌� = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2  (subscript ‘i‘ ignored) 

Also remember that for ‘Optimization’ we take the first derivative and set it equal to zero 

Important:  Here although  𝑋1, 𝑋2 and Y are variables but for this minimization problem only we 

will consider 𝛽0,𝛽1 𝑎𝑙𝑑 𝛽2 to be the unknowns as we are trying to estimate their values. The 

minimization problem is 

𝑀𝑖𝑙�𝑻𝒊𝟐
𝑻

𝒊=𝟏

= �(𝒀 − 𝑌�)𝟐 =
𝑻

𝒊=𝟏

�(𝒀 − 𝛽0 − 𝛽1𝑋1 − 𝛽2𝑋2)𝟐
𝑻

𝒊=𝟏
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Where ‘𝛽0’ , ‘𝛽1’ and ‘𝛽2’ are the unknowns we focus on. 

Differentiating w.r.t. the unknown parameters and setting equal to zero, we get THREE normal 

equations. (If you have difficulty then refer to the lecture with minimization problem of the 

simple regression line) 

�𝑌 = 𝑙𝛽0 + 𝛽1�𝑋1 + 𝛽2�𝑋2  

�𝑋1𝑌 = 𝛽0�𝑋1 + 𝛽1�𝑿𝟏𝟐 + 𝛽2�𝑋1𝑋2  

�𝑋2𝑌 = 𝛽0�𝑋2 + 𝛽1�𝑋1𝑋2 + 𝛽2�𝑿𝟐𝟐 

Solving the above three normal equations will provide the values of the parameters. 

 

The Deviation form in Regression 

We can derive expression to estimate the parameters of the multiple regression equation using 

the three normal equations. 

For making calculations and working easy, we sometimes use what we call deviation form 

where deviations are taken from the arithmetic mean. 

Here we will use SMALL letters to indicate a variable in deviation form. 

𝒙𝟏𝒊 = 𝑿𝟏𝒊 − 𝑿 �  

𝒙𝟐𝒊 = 𝑿𝟐𝒊 − 𝑿 �  

𝒚𝒊 = 𝒀𝒊 − 𝒀 �  

Then the Regression equation (ignoring subscript ‘i') can be written as 

𝒀 = 𝜷𝟎 + 𝜷𝟏𝑿𝟏 + 𝜷𝟐𝑿𝟐 

And (Applying Summations and dividing first normal equation by N 

 𝒀� = 𝜷𝟎 + 𝜷𝟏𝑿𝟏���� + 𝜷𝟐𝑿𝟐���� 

First minus second equation gives (note that β0is cancelled out) 

𝒀 − 𝒀� = 𝜷𝟏(𝑿𝟏 − 𝑿𝟏����) + 𝜷𝟐(𝑿𝟐 − 𝑿𝟐����) 

That can be written in deviation form as 
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𝒚 = 𝜷𝟏𝒙𝟏 + 𝜷𝟐𝒙𝟐 

The above is a regression equation in deviation form. 

Now, as we have a regression equation in deviation form 

𝒚 = 𝜷𝟏𝒙𝟏 + 𝜷𝟐𝒙𝟐 

where 

𝒙𝟏𝒊 = 𝑿𝟏𝒊 − 𝑿 �  

𝒙𝟐𝒊 = 𝑿𝟐𝒊 − 𝑿 �  

𝒚𝒊 = 𝒀𝒊 − 𝒀 �  

We can minimize the sum of squared residual in deviation form. The equation has two 

unknowns and, as a result, we have two normal equations (in deviation form) 

�𝑥1𝑦 = 𝛽1�𝒙𝟏𝟐 + 𝛽2�𝑥1𝑥2  

�𝑥2𝑦 = 𝛽1�𝑥1𝑥2 + 𝛽2�𝒙𝟐𝟐 

Normal equations are derived by minimizing sum of squared residual 

One option is to substitute the summation values and solve the equations to get 𝛽1 and 𝛽2 but 

we can find expression for 𝛽1 and 𝛽2  

Deriving Expression for  𝜷 𝐜𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭𝐬 

 

�𝑥1𝑦 = 𝛽1�𝒙𝟏𝟐 + 𝛽2�𝑥1𝑥2  

�𝑥2𝑦 = 𝛽1�𝑥1𝑥2 + 𝛽2�𝒙𝟐𝟐 

From the first equation, we get  

𝛽2 =
∑𝑥1𝑦 − 𝛽1 ∑𝒙𝟏𝟐 

∑𝑥1𝑥2 
 

Substituting this in the second equation and solving for 𝛽1 gives  

𝛽1 =
∑𝑥1𝑦 ∑𝒙𝟐𝟐 − ∑𝑥2𝑦∑𝑥1𝑥2 
∑𝒙𝟏𝟐 ∑𝒙𝟐𝟐 − (∑𝑥1𝑥2)𝟐
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Similarly 

𝛽2 =
∑𝑥2𝑦 ∑𝒙𝟏𝟐 − ∑𝑥1𝑦∑𝑥1𝑥2 
∑𝒙𝟏𝟐 ∑𝒙𝟐𝟐 − (∑𝑥1𝑥2)𝟐

 

Also, using the first normal equation of the NORMAL form  

𝜷𝟎 =  𝒀� − 𝜷𝟏𝑿𝟏���� − 𝜷𝟐𝑿𝟐���� 

Notice the symmetry. If we just replace 𝑥1𝑤𝑖𝑡h 𝑥2  

andx2with x1 in the expression for 𝛽1we get the expression for 𝛽2 and vice versa. 

Manual procedure to solve for Multiple Regression 

The least time consuming manual procedure to estimate a regression line 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝜖𝑖 

Is to use the expression (in deviation form)  

𝛽1 =
∑𝑥1𝑦 ∑𝒙𝟐𝟐 − ∑𝑥2𝑦∑𝑥1𝑥2 
∑𝒙𝟏𝟐 ∑𝒙𝟐𝟐 − (∑𝑥1𝑥2)𝟐

 

𝛽2 =
∑𝑥2𝑦 ∑𝒙𝟏𝟐 − ∑𝑥1𝑦∑𝑥1𝑥2 
∑𝒙𝟏𝟐 ∑𝒙𝟐𝟐 − (∑𝑥1𝑥2)𝟐

 

and 

𝜷𝟎 =  𝒀� − 𝜷𝟏𝑿𝟏���� − 𝜷𝟐𝑿𝟐���� 

Where 

𝒙𝟏𝒊 = 𝑿𝟏𝒊 − 𝑿 �  

𝒙𝟐𝒊 = 𝑿𝟐𝒊 − 𝑿 �  

𝒚𝒊 = 𝒀𝒊 − 𝒀 �  

You can either generate columns having the values in deviation form (like 𝑋1𝑖 − 𝑋 � ) or you can 

calculate the summations in deviation form, using expressions shown in the next slide  

Conversion from Normal to Deviation form 

Notice that we need several summations in deviation form to estimate the regression 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝜖𝑖 
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where 

𝒙𝟏𝒊 = 𝑿𝟏𝒊 − 𝑿 �  

𝒙𝟐𝒊 = 𝑿𝟐𝒊 − 𝑿 �  

𝒚𝒊 = 𝒀𝒊 − 𝒀 �  

We need 

∑𝑥1𝑦 , ∑𝑥2𝑦 , ∑𝑥1𝑥2 , ∑𝒙𝟏𝟐 , ∑𝒙𝟐𝟐 

We also would be needing ∑𝑦2 in future although not required yet. Remember that we are 

using deviation form so 

�𝑥1𝑦 = �(𝑋1 − 𝑋1���) (𝑌 − 𝑌�) 

�𝒙𝟏𝟐 = �(𝑿𝟏 − 𝑋1���)2 

etc. 

We can use the following to convert summations from normal to deviation form 

�𝑥1𝑦 =�𝑋1𝑌 −
∑𝑋1 ∑𝑌

𝑙
 

�𝑥2𝑦 =�𝑋2𝑌 −
∑𝑋2 ∑𝑌

𝑙
 

�𝑥1𝑥2 =�𝑋1𝑋2 −
∑𝑋1 ∑𝑋2

𝑙
 

�𝒙𝟏𝟐 = �𝑿𝟏𝟐 −
(∑𝑋1)2

𝑻
 

�𝒙𝟐𝟐 = �𝑿𝟐𝟐 −
(∑𝑋2)2

𝑻
 

�𝑦2 = �𝑌2 −
(∑𝑌)2

𝑙
 

As An exercise, you can try to prove these expression using summation algebra 
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Example 

Although we can use data analysis tool in Microsoft Excel but for better understanding, we 

present an example in Microsoft Excel that first manually estimates the regression line and then 

verifies it with the LINEST formula 

 

Example 

From the example, calculating using Microsoft Excel, we have 

�𝑥1𝑦 =�𝑋1𝑌 −
∑𝑋1 ∑𝑌

𝑙
= 5513.5,�𝑥2𝑦 =�𝑋2𝑌 −

∑𝑋2 ∑𝑌
𝑙

= −1665 

�𝑥1𝑥2 =�𝑋1𝑋2 −
∑𝑋1 ∑𝑋2

𝑙
= −1115,  �𝒙𝟏𝟐 = �𝑿𝟏𝟐 −

(∑𝑋1)2

𝑻
= 6780.1 

�𝒙𝟐𝟐 = �𝑿𝟐𝟐 −
(∑𝑋2)2

𝑻
= 330,    �𝑦2 = �𝑌2 −

(∑𝑌)2

𝑙
= 8422.5 

Using these values, we compute 

𝛽1 =
∑𝑥1𝑦 ∑𝒙𝟐𝟐 − ∑𝑥2𝑦∑𝑥1𝑥2 
∑𝒙𝟏𝟐 ∑𝒙𝟐𝟐 − (∑𝑥1𝑥2)𝟐

= −0.0372 

𝛽2 =
∑𝑥2𝑦 ∑𝒙𝟏𝟐 − ∑𝑥1𝑦∑𝑥1𝑥2 
∑𝒙𝟏𝟐 ∑𝒙𝟐𝟐 − (∑𝑥1𝑥2)𝟐

= −𝟓.𝟏𝟕𝟏𝟑 
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and                   𝜷𝟎 =  𝒀� − 𝜷𝟏𝑿𝟏���� − 𝜷𝟐𝑿𝟐���� = 𝟐𝟔𝟒.𝟔𝟕 

𝑌 = 264.67 − 0.0372𝑋1 − 5.1713𝑋2 

 

Using LINEST in Multiple Regression 

Now we use the LINEST formula for multiple regression. It is used like as you did in simple 

regression but with additional columns. You need three columns (as you have three 

parameters) and five rows. So we Select Cells C19:E23 

• Start Typing =LINEST(C7:C16,D7:E16,TRUE,TRUE) 

• hold Ctrl + SHIFT and press ENTER (Ctrl + SHIFT + ENTER) 

The results are displayed in the cells that you select like this 

 

Using LINEST in Multiple Regression 

Values will be displayed like this 

value of 𝛽2 value of 𝛽1 value of 𝛽0 

standard Error of 𝛽2 standard error of 𝛽1 standard error of 𝛽0 

R-squared standard error of estimate  

F-statistic N-k  

Regression Sum of Squares Residual SS =Sum of square of errors  
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Values of t-statistic can be computed as a ratio of parameter and its standard error 

 

Simple Vs Multiple Regression 

As the number of independent variable increases the degree of freedom decreases. In our 

examples the d.f. was 8. In the current example with 10 observations and two independent 

variables, the degree of freedom N-k = 7 

In simple regression the coefficient of determination had a value identical to the square of 

the correlation coefficient. In multiple regressions, the coefficient of determination has a 

value different from the square of the correlation coefficient. 

We performed a test of significance for the parameter ‘b’ in simple regression. Here we 

need to perform two tests of significance as we have two slope coefficients. The formula for 

standard error changes in case of multiple regressions. 

Diagnostic Tests for Regression Analysis 

• We performed a test of significance for the parameter ‘b’ in simple regression. 

• Here we need to perform two tests of significance as we have two slope coefficients 

• The formula for standard error changes in case of multiple regression 

 

𝑡𝛼
2 ,𝑛−𝑘 = 𝑡0.025,7 = 2.36 
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We need to perform two tests for individual variable significance. One for 𝛽1and the second for  

𝛽2 

Test for  𝛽1 

 𝑡 =  𝛽1
𝑠𝑒(𝛽1)

= −0.0372
0.02892

= −1.287 

As |𝑡| >  𝑡𝛼
2,𝑛−𝑘 is not satisfied so 𝛽1 is not significant. The variable 𝑋1does not seem to have a 

significant impact on Y. 

Test for  𝛽2 

 𝑡 =  𝛽2
𝑠𝑒(𝛽2)

= −5.1713
0.1311

= −39.45 

As |𝑡| >  𝑡𝛼
2,𝑛−𝑘 is satisfied so 𝛽2 issignificant. The variable 𝑋2 seems to have a significant impact 

on Y. 

 

𝐹𝛼,𝑘−1,𝑛−𝑘 = 𝐹0.05,2,7 = 4.74 

𝑅2 = 1 −
𝑵∑𝑻𝟐

𝑁∑𝑌2 − (∑𝑌)2
= 0.9979 

𝐹 =  
𝑅2

(1 − 𝑅2)
𝑁 − 𝑘
𝑘 − 1

= 1667.53 

𝐹𝛼, 𝑘−1,𝑁−𝑘 = 𝐹0.05, 1,3 = 4.74 

As   𝐹 >  𝐹𝛼, 𝑘−1,𝑁−𝑘 is satisfied, we conclude that the fit is good. 
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Lecture 10 
Linear Regression Estimation with K-independent variables 

We define a linear regression equation with K independent variables as 

𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏𝑿𝟏𝒊 + 𝜷𝟐𝑿𝟐𝒊 + 𝜷𝟑𝑿𝟑𝒊 +  .    .    .    .    .    .    .  +  𝜷𝑲𝑿𝑲𝒊 + 𝑻𝒊 

Where 1 < 𝐾 < 𝑀 and M is a finite number. The variables have their usual meaning. 

If we minimize the sum of squared residuals, we get K+1 normal equations to be solved 

simultaneously. The software may use Matrix algebra to solve these equations. There is nothing 

new in such regression. The usual process may be followed. We can use the LINEST formula or 

Data Analysis Add-in in Microsoft Excel. Other software also may be used. 

However you may notice that some things change by adding independent variables 

• The degree of freedom (N-k) decreases. 

• You may observe some problems like multicollinearity 

• The formula for standard errors of the coefficients change. 

• You may need larger number of observations. 

• The coefficient of determination (𝑅2) increases by adding more independent variables. 

• The value of the regression coefficients may change by adding a new variable. 

• Software have their limitations. 

Analysis ToolPak: DATA ANALYSIS Add-In in Microsoft Excel 

To perform statistical and econometric analysis, we can save lot of time and effort by using 

software. The Analysis ToolPak in Microsoft Excel is an example of that. This tool uses the 

LINEST function to perform regressions. It produces and output containing basic regression 

statistics in tabular form. This tool has a limit of maximum 16 independent variables. This tool 

comes with Microsoft Excel but you need to install or add it from within Excel 

Analysis ToolPak: Installing or Adding 

Typically it is already installed. You just need to add it for which you will not need a CD. If it is 

not installed, you may need an Office CD. This is required only once.  

Excel 2003 and earlier: select in Excel the Tools Menu and the menu item Add-ins. 
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Excel 2007: Office Button   , Excel Options, Add-ins, Manage Excel Add-ins in the 

selection box, then click GO 

Excel 2010: Green File, Options, Manage Excel Add-ins in the selection box, then click GO  

We will demonstrate in Microsoft Excel 2010 

1. Click on FILE and you will see a list 

2. Now click on Options (the second last item) 

 

3. In the Excel options window, click on Add-In 

4. Now Click on Analysis ToolPak  (not with the VBA) 

5. Click GO 
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6. Check the box for Analysis ToolPak 

7. Click OK 
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8. You may be prompted that currently this is not installed, do you want to install it so here click 

YES 

9. Installation will start. After few seconds you can see if it is installed by clicking on the DATA 

ribbon and seeing if you find Data Analysis 

 

 

 

Regression with The Analysis ToolPak 

There are 19 options available in the Add-in but presently we will use and perform Regression. 

First Enter the following data (10 observations each) in your Excel Sheet. Use the same cells as 

we have done 
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In the Data Ribbon, Click on Data Analysis (right most item) 

 

 

In the window that appears, scroll down to Regression and click OK 
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In the window that appears now, click in the Input Y Range and select by dragging your mouse 

on the Y values 

 

Now click in the Input X Range and select by dragging your mouse on the X values (all the 

columns of X values) 

Check (if not already selected) on New Worksheet. Then click OK 
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The results will be displayed in a new worksheet. Just resize the columns to see the results in a 

better way. 

You have got all your usual regression statistics in a tabular form 
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Understanding the Regression Results 

In the third part of the table given above, we have the values of the coefficients, the standard 

errors, the t-statistic, the significance of t-statistic etc. Look at the P-values. These values show 

the level of significance at which, based on the t-statistic, we can reject the H0 that the 

coefficient is not significant. Only the value corresponding to the variable X2 is  below 1% (it is 

0.00001003). This shows that, at 1% level of significance, the coefficient of X2 is significant. 

Other coefficients are not significant. However, the intercept is also significant as the p-value is 

below 1% . 

 

Multiple correlations is computable form partial correlation coefficients and is the Square Root 

of 𝑹𝟐. Coefficient of Determination is Explanatory power of the model. Here it is 0.99 or 99%. 

Adjusted Coefficient of Determination (Adjusted to degrees of freedom) 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 

= 𝑅2 − (1 − 𝑅2) ∗
𝑘 − 1
𝑁 − 𝑘

 

As the number of independent variables increases the coefficient of determination is 

overstated so it may be sometimes better to use the adjusted 𝑅2 for goodness of fit test 
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The above table shows the sums of square. If we divide the SS (Sum of square) by the df 

(degree of freedom), we get the MS (Means Sum of Square). The Value of F-statistic that is 

required in the goodness of fit test is also given. The value under the significance of F which is 

0.0000000178 (approximately zero) shows that the F-Statistic is significance below 1% so we 

can conclude at 1% level of significance that the model is a good fit. 

P-value equals the Pr{|t| > t-Stat} where t is a t-distributed random variable with n-k degrees of 

freedom and t-Stat is the computed value of the t-statistic given in the previous column. 

You can say that it is the level of significance at which the calculated t-statistic becomes larger 

than the table value of t-statistic 

LIMITATIONS of working with Data Analysis Toolpak 

• Excel restricts the number of independent variables to 16. 

• Excel requires that all the independent variables variables be in adjoining columns.  

• Excel standard errors and t-statistics and p-values are based on the assumption that the 

error is independent with constant variance. 

• Excel does not provide alternative models like the ones with robust standard errors So 

more powerful software such as STATA, EVIEWS, SPSS may be needed 
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Practicing Regression Estimation 

Let us practice regression on real life data. 

Go to http://data.worldbank.org/data-catalog/world-development-indicators 

 

On the right, under RESOURCES,  click on DATA BANK.  When the page loads, select PAKISTAN in 

COUNTRY. Click on SERIES and when it loads, select the following variables: 

• GDP (constant 2005 US$) 

• Labor force, total 

• Gross fixed capital formation (constant 2005 US$) 

• Exports of goods and services (constant 2005 US$) 

You can use the filter given to search for variables. Now click on TIME and select the years from 

1991 to 2012. Now on top right of the page, click DOWNLOAD. You will be asked about the data 

format; Select EXCEL and click DOWLNOAD. 

Practicing Regression Estimation 

Save the file on your hard disk. Open the file and you will have the data you downloaded. First 

you need to reshape the data for use in Data Analysis ToolPak. Select all data and copy. Now 

press Ctrl+V to paste but use paste special and check on TRANSPOSE. Now you can use the 

DATA ANALYSIS ToolPak. REMEMBER: All independent variables should be in adjacent columns. 

Let  us run a regression where we think that GDP has a linear relationship with Labor Force, 

Stock of Capital (proxy is GFCF),  and Exports. The result is displayed below (for discussion view 

the video lecture) 

http://data.worldbank.org/data-catalog/world-development-indicators
http://data.worldbank.org/data-catalog/world-development-indicators
http://data.worldbank.org/data-catalog/world-development-indicators
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Possible Problems 

• The relationship may not be linear. (Wrong specification) 

• We may have missed some important variables 

• Some of the indicators may not be appropriate 

• There may be outliers (e.g. abnormal years) 

• The errors may not be normally distributed 

• There may be problems like multicollinearity, heterskedasticity or autocorrelation (to be 

discussed later) 
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Lecture 11 
Transformation for Regression 

Linear in the ‘Linear Regression’ means that the model is ‘linear in parameters’ and not 

necessarily linear in variables. Linearity is a poor approximation of truth. This is because the 

relationships may be non-linear e.g. quadratic, cubic, logarithmic etc. The scatter plot may 

indicate the type of relation. 

Examples: 

• Marginal Cost Curves: U shaped curve; a quadratic relationship 

• Total Cost Curves: The curve is upward sloping, changes its nature at a point of 

inflection. This may be shown by a cubic equation 

• Firms face diminishing returns: This means that the total product curve is not 

linear. There are three stages of production (study law of variable proportions 

for detail). In each stage the relationship may be different 

• Diminishing marginal utility 

• Elasticity changes with price (Demand Curve is not linear) 

Other Functional Forms 

• The scatter plot may indicate the type of relation. 
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Exponential and Logarithmic Function 

• The exponential functional form is 𝑦 = 𝑏𝑥 where 𝑏 > 0 It can be estimated as 

ln𝑦 = 𝑥 ln 𝑏 

• 𝑦∗ = 𝑏∗𝑥  (𝑏∗ = ln 𝑏 ,𝑦∗ = ln𝑦) 

• This is a regression equation without an intercept(another case: 

𝑦 = 𝑎𝑏𝑥 𝑤𝑜𝑢𝑙𝑑 𝑏𝑒 𝑤𝑖𝑡ℎ 𝑖𝑙𝑡𝑒𝑟𝑐𝑒𝑝𝑡) 

• When estimated, we need to compute the 𝑖𝑙𝑣𝑒𝑟𝑠𝑒 𝑙𝑜𝑔 to get  the original parameter b 

 

Quadratic 
LOGARITHMIC 

Exponential 
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• Logarithmic functions are related to exponential functions 

• From the above case, by the definition of logarithm to the base 𝑎 logarithmic function 

can be written as 𝑥 = 𝑙𝑜𝑔𝑎𝑦 

• Uses 

• When looking at growth or decay like models of economic growth  

• investment that increases by a constant percentage each time period 

• sales of a company that increase at a constant percentage each year 

• models of the spread of an epidemic 

Logs of variables 

Linear-log, log-linear and log-log forms 

• Linear log form: 𝑦 = 𝑎 + 𝑏 ln 𝑥 + 𝑒 

• Log-linear or semi-log model: ln 𝑦 = 𝑎 + 𝑏𝑥 + 𝑒 

• For log-log form please refer to the Cobb-Douglas production function discussed earlier 

• The graph of y against x is curved 

• The graph of y against ln 𝑥 is a straight line 

• Example: 

• Short run production: Y experiences diminishing marginal returns with respect to 

increases in X 

• Bends a concave curve to a straight line 
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Polynomial functions of higher order 

𝑦 =  𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 +  .  .  .  .  .  .  .  .  .𝛽𝑘𝑥𝑘 + 𝑒 

 

 

 

 

 

 

 

 

 

 

The model is linear in parameters and not in variables.  Explanation of the squared term with 

some examples 

 

 

Outpu
t 

Costs 

 

MC 

Marginal cost: 
Quadratic 

𝑦 =  𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 

𝛽0,𝛽2 > 0,𝛽1 < 0 

 

O Output 

Costs 
TC 

 

𝑦 =  𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑥3 

𝛽3 ≠ 0,𝛽2 < 0 
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Dynamic Models: Models with lagged independent Variable 

Example 1.  

Some times we see that a variable has an impact that continues in time e.g. the multiplier effect 

(EXPLAIN). Suppose that a change in investment took place in the period 𝑡 − 2. It had an impact 

in time 𝑡 − 2,  𝑖𝑙 𝑡 − 1 𝑎𝑙𝑑 𝑡 

∆𝑄 =  𝛽0 + 𝛽1∆𝐼𝑡 + 𝛽2∆𝐼𝑡−1 + 𝛽3∆𝐼𝑡−2 + 𝑒 

Example 2. Consider the Supply of an agricultural crop depends on the price of the previous 

time period. The farmers sow keeping in mind the price that they observed last year 

𝑄𝑠 = 𝑎 + 𝑏𝑃𝑡−1 + 𝑒 

Example 3. A variable may depend on the previous value of itself 

𝑦𝑡 = 𝑎 + 𝑏 𝑦𝑡−1 + 𝑒 

What is Interaction term? 

Example 1:  

Suppose that the impact of one independent variable on the dependent variable depends 

on another independent variable. For example suppose that marks in econometrics (𝑀) 

depend on your IQ level (𝐼)  and on your hard work (𝐻 =time spend on study). What if the 

impact of hard work on marks of econometrics depends on the IQ level. (More intelligent 

student may need less hard work to achieve the same result). 

This can be captured by an interaction term (𝐼 ∗ 𝐻) 

𝑀 = 𝑎 + 𝑏 𝐼 + 𝑐 𝐻 + 𝑑 (𝐼 ∗ 𝐻) + 𝑒 

(𝐼 ∗ 𝐻) is a new variable computed as the product of 𝐼 𝑎𝑙𝑑 𝐻. 
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The derivative of M w.r.t. H depends on 𝐼. (𝑐 + 𝑑𝐼) 

Example 2:  

Consider the impact of hypertension (B = blood pressure) and diabetes (S= average level of 

blood sugar) on the heart of individuals (H = some index of health of the heart). Both are 

‘Risk Factors’. The impact of having both risk factors may be greater than the total of the 

average impact of individual risk factors. This can be captured by an interaction term (𝐵 ∗ 𝑆) 

𝐻 = 𝑎 + 𝑏 𝐵 + 𝑐 𝑆 + 𝑑 (𝐵 ∗ 𝑆) + 𝑒 

(𝐵 ∗ 𝑆) is a new variable computed as the product of 𝐵 𝑎𝑙𝑑 𝑆. 

The coefficient of the interaction term captures the additional impact of having BOTH risk 

factors 
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Lecture 12 
Regression on standardized variables 

The units in which the regressand and the regressor are expressed effect the interpretation of 

the coefficients. (diff functional forms).  We can avoid this if we standardize our variables. A 

variable is standardized if we subtract its mean from it and divide by the standard deviation 

𝑿𝒊∗ =
𝑿𝒊 − 𝑿�
𝑺𝑿

      ,    𝒀𝒊∗ =
𝒀𝒊 − 𝒀�
𝑺𝒀

 

Then the variables will have zero means and unit variances 

𝑿𝒊∗��� = 𝒀𝒊∗��� = 𝟎 

𝑉𝑎𝑟(𝑿𝒊∗) = 𝑉𝑎𝑟(𝒀𝒊∗) = 𝟏 

It does not matter in what unit the variables are expressed 

Running the regression 𝒀𝒊∗ = 𝑽 + 𝒃 𝑿𝒊∗ + 𝑻 will give ‘a’ and ‘b’ as standardized coefficients 

often called BETA coefficients. The intercept term will always be zero as 𝑿𝒊∗��� = 𝒀𝒊∗��� = 𝟎 

(𝐴𝑠 𝑎 = 𝒀𝒊∗��� − 𝒃𝑿𝒊∗���) 

Interpretation: if the (standardized) regressor increases by one standard deviation, on average, 

the standardized) regressand increases by β standard deviation units. 

Advantages 

Standard coefficients' advocates note that the coefficients ignore the independent variable's 

scale of units, which makes comparisons easy. 

Disadvantages 

Such standardization can be misleading. The meaning of a standard deviation may vary 

markedly between non-normal distributions (e.g. skewed) 
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Theory behind regression 
Regression makes sense if there is a sound theory behind. Make Sure to include all necessary 

predictor variables (depends on problem statement, theory and previous knowledge) 

Some variables may measure the same things. Either keep one of them or combine them. 

Also, Consider the possible interactions 

Summary Statistics 

After you have entered your data, click Data Analysis in the Data Ribbon in Microsoft Excel, 

select Descriptive Statistics and click OK 

 

Summary Statistics before regression 

Click in the Input Range. Select your data including variable names by dragging your mouse.  

Check the option Labels in First Row. Check the option Summary Statistics and click OK 
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You will get the summary statistics in a new worksheet. 
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Correlation Matrix 

After you have entered your data. Click Data Analysis in the Data Ribbon in Microsoft Excel, 

select Correlation and click OK 

 

Click in the Input Range. Select your data including variable names by dragging your mouse.  

Check the option Labels in First Row and click OK.  
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The resulting matrix of correlations may help you to understand the relation between variables 

 

Graphs     

Some Graphs before regression include Scatter Diagrams, Scatter Diagrams with line plots, 

Histograms, Pie Charts etc. 

In the Insert Ribbon, click on the chart that your require, provide the required information and 

get your chart 
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How to present Regression Results in research papers 

Every paper uses slightly different strategy. Standard information to report in a regression table 

includes: 

• Dependent variable 

• Explanatory variables 

• Number of observations, sample period, data labels etc. 

• Estimates of intercept and other coefficients 

• Standard errors of estimate 

• Significance of variables/coefficients 

• R-squared and other required statistics 

It is common to present more than one regression results. 

You can add or drop variables and perform regressions. 

Keeping or Dropping Variables 

Regression results by adding or including variables vary markedly between non-normal 

distributions (e.g. skewed). A good strategy would be: 

• Keep significant predictors 

• Keep insignificant predictors with the expected sign 

• Drop insignificant predictors with unexpected sign 

• For significant predictors with unexpected sign, keep after review and including or 

excluding other variables 
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Examples of presented results 

Dependent Variable Model 1 

Car Price 

Model 2 

Car Price 

Millage 855.25 * 852.55 * 

Weight 1256.9 ** 1246.1 ** 

Foreign (=1 for 

imported cars) 

950.5 * 855.25 * 

Price of Oil - -132.25 

_constant 46.5* 41.5 * 

Number of 

observations 

2500 2500 

R-Squared 0.65 0.69 

*, ** significance at 1% and 5% respectively  

Regression related function in Microsoft Excel: A Brief review 

1. The LINEST (50  independent Variables) 

2. Data Analysis ToolPak (16 independent variables) RSQ 

3. Basic Formulas that are available include: INTERCEPT, SLOPE, TREND 

Steps before Regression 

• Theory 

• Graphs 
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• Summary statistics 

• Model specification 

• Regression 

• Estimation  

• Change of scale if required 

• Different functional forms 

• Interaction 

• Post Regression: Change of scale if required, Different functional forms, 

Interaction 

  



Business Econometrics by Dr Sayyid Salman Rizavi 

125 

Lecture 13 
Qualitative Independent Variable / Dummy Variables 

Remember that we are yet NOT considering Qualitative DEPENDENT variable 

Dummy variables have different names 

• Categorical Variable 

• Qualitative Independent variables (mostly called dummy variables) 

• Indicator variable 

• Binary variable / dichotomous variable (most often cases) 

• Polytomous dummy variables 

Such variable may divide the data into mutually exclusive Categories 

Dummy Variables 

Dummy variables are the variables that help encoding the qualitative variables. They may be 

binary (with values zero or one) 

 Examples: 

• Gender: We can create a variable with value 0 for female and 1 for male 

• Yes/No for existence of a fact (win, admit, disease, marital status. specific years 

etc.) 

• Control group / experiment group / treatment group 

• Race 

• Educational Categories 

It does not matter for what status you assign zero and for what one. For example, We can 

assign zero for females as well as males in the Gender variable 

What happens if we ignore Gender? 
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Scenario 1: Education and Gender are not correlated 

We will have correct Slope estimate but larger errors 

Scenario 2: Education and Gender correlated 

We will have Biased Slope Estimates and larger errors 

Possible Solutions 

1. Run separate regression for male and female 

What if we need to test the gender difference? 

2. Solution 

Use dummy variables to capture the influence of gender 

Example of binary dummy variable: 

• Consider the hourly wages (W) as a function of years of education (E), years of 

experience (X)  and gender (G).  Set G=1 if gender=“FEMALE” else G=0 

• Gender is a qualitative variable (binary) encoded as 0 = male, 1 = female 

𝐺 = �1       𝑓𝑜𝑟 𝑊𝑜𝑚𝑒𝑙
0       𝑓𝑜𝑟 𝑀𝑒𝑙       

• Performing a linear regression  

𝑊 = 𝛽0 + 𝛽1𝐸 + 𝛽2𝑋 + 𝛽3𝐺 + 𝑒 

The data dummy.xlsx provided with lecture notes gives the result as 

𝑊 = 77.76 + 8.29 𝐸 + 28.52 𝑋 − 26.6 𝐺 

Interpret other variable 

• -26.6 means that female respondent’s wage, on the average, is 26.6 rupees less than 

males 

Suppose that E=14, X=5 
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For a female 𝑊 = 77.76 + 8.29 (14) + 28.52 (5) − 26.6 (1) = 309.82 

For a male 𝑊 = 77.76 + 8.29 (14) + 28.52 (5) − 26.6 (0) = 336.42  

336.42 − 309.82 = 26.6 is the average difference in wages of male and female with identical 

characteristics 

Exam Model Question 

The file in your lesson notes  ( dummy.xlsx ) provides the following information after 

applying the LINEST function for the regression 

𝑊 = 𝛽0 + 𝛽1𝐸 + 𝛽2𝑋 + 𝛽3𝐺 + 𝑒 

−26.869143 26.92131443 9.56630262 68.48962199 

12.59410484 3.958664082 5.24813727 66.42244505 

0.787428706 35.74053401   

38.27780854 31   

146686.584 39598.95891   

Interpret the results and apply the individual variable significance test and goodness of fit test 

For the regression, remember how LINEST provides the results. You need to calculate t-statistic 

and the table values of t-statistic and the F-statistic. For this, use Microsoft Excel. The results 

are as follows: 
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Now you can interpret your results using the above calculations (the coefficient of the dummy 

variable is significant). Female earn, on average 26.87 less than the ‘reference’ i.e. Males 

Polytomous qualitative variables: Qualitative variables with more than two 

categories 

Race: White, Black, Asian 

• We need 3 (binary) dummy variables 

• 𝐷1 = �1       𝑖𝑓 𝐵𝑙𝑎𝑐𝑘         
0      𝑖𝑙 𝑁𝑂𝑇 𝐵𝑙𝑎𝑐𝑘

 

• 𝐷2 = �1       𝑖𝑓 𝐴𝑠𝑖𝑎𝑙        
0      𝑖𝑙 𝑁𝑂𝑇 𝐴𝑠𝑖𝑎𝑙

 

• 𝐷3 = �1       𝑖𝑓 𝑤ℎ𝑖𝑡𝑒               
0      𝑖𝑙 𝑁𝑂𝑇 𝑤ℎ𝑖𝑡𝑒      

 

D1 (Black=1) D2 (Asian=1) D3 (White=1) Race 

0 0 1 White 

0 1 0 Asian 

0 1 0 Asian 

0 1 0 Asian 

0 0 1 White 

1 0 0 Black 

0 1 0 Asian 

↓ ↓ ↓ ↓ 

↓ ↓ ↓ ↓ 

 

 

We will include 2 dummy variables in the regression i.e. one less than the total categories. We 

will include 2 dummy variables in the regression i.e. one less than the total categories. If we 

include on two dummies in regression the third one is called reference variable. 
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Race 𝐷1 𝐷2 

White 0 0 

Asian 0 1 

Black 1 0 

𝑊 = 𝛽0 + 𝛽1𝐸 + 𝛽2𝑋 + 𝛽3𝐺 + 𝛽4𝐷1 + 𝛽5𝐷2 + 𝑒 

For White 

𝑊 = 𝛽0 + 𝛽1𝐸 + 𝛽2𝑋 + 𝛽3𝐺 + 𝛽4(0) + 𝛽5(0) + 𝑒 

𝑊 = 𝛽0 + 𝛽1𝐸 + 𝛽2𝑋 + 𝛽3𝐺 + 𝑒 

For Asian 

𝑊 = 𝛽0 + 𝛽1𝐸 + 𝛽2𝑋 + 𝛽3𝐺 + 𝛽4(0) + 𝛽5𝐷2 + 𝑒 

𝑊 = 𝛽0 + 𝛽1𝐸 + 𝛽2𝑋 + 𝛽3𝐺 + 𝛽5𝐷2 + 𝑒 

For Black 

𝑊 = 𝛽0 + 𝛽1𝐸 + 𝛽2𝑋 + 𝛽3𝐺 + 𝛽4𝐷1 + 𝛽5(0) + 𝑒 

𝑊 = 𝛽0 + 𝛽1𝐸 + 𝛽2𝑋 + 𝛽3𝐺 + 𝛽4𝐷1 + 𝑒 

Interpretation 

Example: dummy.xlsx provided with your lecture notes is used to perform such regression 

𝑊 = 𝛽0 + 𝛽1𝐸 + 𝛽2𝑋 + 𝛽3𝐺 + 𝛽4𝐷1 + 𝛽5𝐷2 + 𝑒 

Reference variable is ‘White’ 
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The results are  

Dependent Variable: hourly wages 

Observations   35 R-squared   0.85 

  F  33.83 

 Coefficient S. Error t-values 

constant 74.84 60.11 1.25 

Education 11.53** 4.67 2.47 

Experience 26.11* 3.51 7.44 

Female -31.49* 11.10 -2.84 

Black (ref. White) -45.17* 13.15 -3.44 

Asian (ref. White) -35.43** 13.96 -2.54 

*, ** significant at 1% & 5% respectively 

 

Interaction with Dummy Variables 

Interaction: 

• Use the interaction when the effect of one independent variable depends on the value 

of the other independent variable. 

Example:  

• Effect of race may be greater in case of black race 

• Effect of education on hourly wages may be different for males and female respondents 

Interaction & Correlation: 

• Correlation: If independent variables are related to each other 

• Interaction: If the effect of one independent variable depends on some other 

independent variable 



Business Econometrics by Dr Sayyid Salman Rizavi 

131 

• Variables may interact weather they are correlated or no 

Example: 

𝑊 = 𝛽0 + 𝛽1𝐸 + 𝛽2𝑋 + 𝛽3𝐺 + 𝛽4(𝐺 ∗ 𝐸) + 𝑒 

The new regressor is a function of G and E but not a linear function so we should not fear of 

perfect collinearity 

For Men (G = 0) 

𝑊 = 𝛽0 + 𝛽1𝐸 + 𝛽2𝑋 + 𝛽3(0) + 𝛽4(0 ∗ 𝐸) + 𝑒 

Or  

𝑊 = 𝛽0 + 𝛽1𝐸 + 𝛽2𝑋 + 𝑒 

For Women (G = 1) 

𝑊 = 𝛽0 + 𝛽1𝐸 + 𝛽2𝑋 + 𝛽3(1) + 𝛽4(1 ∗ 𝐸) + 𝑒 

Or  

𝑊 = (𝛽0 + 𝛽3) + (𝛽1 + 𝛽4)𝐸 + 𝛽2𝑋 + 𝑒 

In this case we need to take interaction as a product with all dummy variables 

Example: 

𝑊 = 𝛽0 + 𝛽1𝐸 + 𝛽2𝑋 + 𝛽3𝐺 + 𝛽4𝐷1 + 𝛽5𝐷2 + 𝑒 

With interaction of race and gender becomes 

𝑊 = 𝛽0 + 𝛽1𝐸 + 𝛽2𝑋 + 𝛽3𝐺 + 𝛽4𝐷1 + 𝛽5𝐷2 + 𝛽6(𝐺 ∗ 𝐷1) + 𝛽7(𝐺 ∗ 𝐷2) + 𝑒 

For Men (G = 0) 

White Men: 𝑊 = 𝛽0 + 𝛽1𝐸 + 𝛽2𝑋 + 𝑒  (as both 𝐷1& 𝐷2 are zero) 

Black Men: 𝑊 = (𝛽0 + 𝛽4) + 𝛽1𝐸 + 𝛽2𝑋 + 𝑒  (as 𝐷1 = 1) 

Asian Men: 𝑊 = (𝛽0 + 𝛽5) + 𝛽1𝐸 + 𝛽2𝑋 + 𝑒 (as 𝐷2 = 1) 

For Women (G = 1) 
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White Women: 𝑊 = (𝛽0 + 𝛽3) + 𝛽1𝐸 + 𝛽2𝑋 + 𝑒 

Black Women: 𝑊 = (𝛽0 + 𝛽3 + 𝛽4 + 𝛽6) + 𝛽1𝐸 + 𝛽2𝑋 + 𝑒  (as G = 𝐷1 = 1) 

Asian Women: 𝑊 = (𝛽0 + 𝛽3 + 𝛽5 + 𝛽7) + 𝛽1𝐸 + 𝛽2𝑋 + 𝑒 (as G = 𝐷2 = 1) 
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Lecture 14 
Transforming Variables in Regression 

Using logs in regression analysis 

Logarithms could be used because of: 

• Positively Skewed Distribution of Variable (take natural log) 

• When residuals are skewed 

• When change in either or both (LHS & RHS) are related in percentage terms (when 

theory indicates) 

• To linearize a relationship 
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Logs in regression 

Consider relation of wages with tenure and a dummy ‘race’ using nlsw88.dta (provided with 

stata) 

Dependent 

 

Wage ln(Wage) ln(Wage) 

R-squared 0.039 0.1043 0.1244 

F-Statistic 45.56 129.66 154.69 

variable coefficients 

tenure 0.1898* 0.0317*  

ln(tenure)   0.1624* 

race −1.07

 

−0.144* −0.1366* 

* Significant at 1% 
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Treatment of Missing Data 

Why data may be missing? 

• Attrition due to natural process 

• Death (panels) 

• Dropouts 

• Migration 

• New entries (like new countries) 

• Data not available legally (in some countries) 

• No Response / Refusal of respondents 

• Conditional questions in surveys  

• If student then - - -  

• If employed then - - - 

• If living in couple then - - - 

• Data Collection Issues 

• Encoding and Recoding 

Probability of Missing Data 

• Some groups are more likely to have missing values 

• Businessmen (particularly service) as compared to salaried individuals 

• Rural areas as compared to Urban (in developing countries) 

• Less education as compared to educated 

• Developing vs developed countries (documentation) 

• Some Variables may have more missing values 
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• Income (high income groups) 

• Area-specific variable (like use of AC in rural areas) 

• Variables related to Certain taboos (e.g. drinking in Pakistan, prostitution, drugs) 

Missing Data Mechanism: probability distributions 

1. MCAR: Missing Completely at Random 

Probability that Y  values missing is neither dependent on Y nor on X 

𝑃𝑟 (𝑌 𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑙𝑔 |𝑋,𝑌) =  𝑃𝑟 (𝑌 𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑙𝑔) 

2. MAR: Missing at Random 

Probability that Y  values missing does not depend on Y but depends on X 

𝑃𝑟 (𝑌 𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑙𝑔 |𝑋,𝑌) =  𝑃𝑟 (𝑌 𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑙𝑔|𝑋) 

Example: the probability of missing income depends on occupation, but within each 

occupation, the probability is not dependent on income 

3. Ignorable MAR 

Missing data mechanism is said to be ignorable if data is Missing At Random but the parameters 

governing the missing data are distinct from them ones being estimated 

• It is, in fact , MAR 

4. MNAR: Missing Not at Random 

Probability that Y  values missing depends on a variable that is missing 

• Heckman Regression for sample selection 

• Estimation of NMAR missing data 

• Data contains no information 

• Results are sensitive to choice of model 
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Dealing with missing data: Deletion Methods 

1. List wise deletion (complete case analysis) 

Only analyze row of data where there are no missing values 

i.e. delete or do not include the row in which there are missing values (software like stata may 

automatically do that) 

Example: all variable of the response with even one missing is deleted all together 

Advantages: Simple 

Disadvantages: Reduces statistical power 

2. Pairwise deletion (available case analysis; analysis to analysis) 

We do not only delete the row in which there is missing value but we delete on analysis to 

analysis base 

Example: diff observations for correlation, regression 

Advantages: uses all information possible with each case 

Disadvantages: Sample is different each time 

Imputation 

1. Single Imputation 

a) Substitute Mean / Median / Mode  

Method:  

• Just substitute constant in place of missing values 

Problems: 

• Run complete case 

• Weaker covariance & Reduced variability 

b) Dummy variable control 
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Method:  

• Generate indicator of rows with missing value 

• Use single imputation to fill in 

• Perform regression with dummy variable control 

Problems: 

• Estimates are biased and this method is not theoretically driven 

c) Regression Imputation 

Method:  

• Use regression to estimate value to substitute 

Problems: 

• Overestimates model fit 

• Weaker variance 

Model Based Imputation 

1. Maximum Likelihood 

Method:  

• Identify set of parameters that produces the maximum log likelihood.  

 ML: value most likely to have resulted in the observed data 

• Uses full estimation; unbiased estimates 

• Standard Errors biased downwards 

2. Multiple Imputation 

Method:  

• Data filled-in by applying specific regressions 
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• Experiment is repeated n number of times generating separate data sets 

• Perform regression on each dataset 

• Pool the datasets to performed regression 

Advantages 

• Good variability 

Disadvantages 

• Errors possible when specifying regression models 
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Lecture 15 
Multicollinearity 

Perfect Multicollinearity: Definition  

The above can be defined as Perfect or exact linear relationship between a pair or more of the 

explanatory variables. K-variable linear regression (𝑋0 = 1 for all observations to allow the 

intercept term) 

𝑌 = 𝛽0𝑋0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 +  … … … …𝛽𝑘𝑋𝑘 + 𝑒𝑖  

where we are going to ignore subscripts for convenience. Exact or perfect linear relationship 

exists if  𝝀R0𝑿R0+𝝀R1𝑿R1 +  𝝀R2𝑿R2 +·  ·  · +𝝀Rk𝑿Rk =  𝟎   Where 𝝀𝒊R cannot be zero at the same time. 

Near or Imperfect Multicollinearity: Definition  

In practice, we rarely observe perfect Multicollinearity but a degree of Multicollinearity 

For   𝑌 = 𝛽0𝑋0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 +  … … … …𝛽𝑘𝑋𝑘 + 𝑒𝑖   where we are going to ignore 

subscripts for convenience. 

Near or imperfect linear relationship exists if  𝜆R0𝑋R0+𝜆R1𝑋R1 +  𝜆R2𝑋R2 +·  ·  · +𝜆Rk𝑋Rk +  𝑣𝑖 =  0 

Understanding Perfect Multicollinearity 

Exact or perfect linear relationship exists if 𝜆R0𝑋R0+𝜆R1𝑋R1 +  𝜆R2𝑋R2 +·  ·  · +𝜆Rk𝑋Rk =  0 

Where 𝝀𝒊R can not all be zero at the same time. If we solve for any variable, it will be in a perfect 

linear combination of other independent variables e.g. for convenience, let all 𝝀𝒊R be zero 

except 𝝀𝟏R and 𝝀𝟐  

Then  𝑿𝟏 =  𝝀𝟐
𝝀𝟏
𝑿𝟐    (e.g. 𝑿𝟏 = 𝟓𝑿𝟐) 

Then both variables can be expressed in linear combinations of each other. Let us see what 

happens in this case 

𝑿𝟏 =  𝝀𝟐
𝝀𝟏
𝑿𝟐   (e.g. 𝑿𝟏 = 𝟓𝑿𝟐) ROr 𝑿𝟐 = 𝟏

𝟓
𝑿𝟏 

Then    𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝑒𝑖  becomes 
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𝑌 = 𝛽0 + 𝛽1(5𝑋2) + 𝛽2𝑋2 + 𝑒𝑖  

𝑌 = 𝛽0 + (5𝛽1 + 𝛽2)𝑋2 + 𝑒𝑖 

𝑌 = 𝛽0 + 𝛽𝑚𝑋2 + 𝑒𝑖 

i.e. a simple regression where Y depends on 𝑋2. Hence we cannot estimate all the parameters. 

Also Software may drop one of the variables. In the example the variable X1 (X2 = 5X1 ) has 

been dropped and a zero coefficient is shown. In fact a simple regression line Y on X2 has been 

estimated.  

Y X1 X2 

10 10 50 

20 11 55 

30 16 80 

40 15 75 

50 19 95 

60 21 105 

70 22 110 

80 24 120 

90 27 135 

100 31 155 

Function used =LINEST(F8:F17,G8:H17,TRUE,TRUE) 

0.882638215 0 -31.4985451 

0.051409833 0 5.301697428 

0.973576698 5.220060351 
 

294.7630701 8 
 

8032.007759 217.9922405 
 

t-statistic calculated by us are below 

17.16866536 
 

-5.94121893 
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Let us now slightly change the values of X. The new data is: 

Y X1 X2 

10 10 52 

20 11 54 

30 16 77 

40 15 78 

50 19 93 

60 21 104 

70 22 109 

80 24 119 

90 27 136 

100 31 153 

=LINEST(J8:J17,K8:L17,TRUE,TRUE) 

1.49 -2.93 -33.31 

0.86 4.24 4.85 

0.98 4.67  

185.94 7.00  

8097.58 152.42  

t-statistic calculated by us are below 

1.74 -0.69 -6.86 

Note the following: 

• We have slightly changed the values of X2 

• This time all the parameters are estimated 

• Standard errors are large (less precision in estimating parameters) 

• t-statistic are low 

• R-square is high but the t-statistic are low 

• Coefficients of parameters do not seem to be significant but he F-Test show a good fit. 
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Sources of Multicollinearity 

1. Narrow Subspace or The data collection method: sampling over a limited range or 

subgroups of population (correlation may exist only in the subgroup 

2. Natural Constraints on the model or population : 

•  e.g. If we regress GDP on exports and imports, high imports normally means 

high exports as well in most of the countries 

• in a sample survey both income and status of house are included as explanatory 

variables. 

• Model specification: for example, adding polynomial terms especially when X has 

a small range 

3. Over-determined model: Large number of explanatory variables with very low degree of 

freedom 

4. Common Time Series Trend: the explanatory variables may share a common trend in 

time.  

Theoretical consequences of Multicollinearity 

1. OLS estimators remain unbiased: no violation of BLUE property 

2. Interpretation of coefficients is not independent: simple interpretation does not seem 

to be valid 

3. Multicollinearity is a data deficiency problem: sometimes it is difficult to increase the 

sample size (cost, time) 

4. Multicollinearity is a sample phenomenon: especially with non-experimental data 

(occurring naturally like GDP and its determinants. 

5. We need larger samples: larger than without MC 
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Practical consequences of Multicollinearity 

• Large variances and standard errors of coefficients:  when correlation between pairs of 

explanatory variables is high;  or there is fall in precision of estimators 

• Wider confidence intervals: as a consequence of larger standard errors 

• Insignificant t-ratios: as a consequence of larger standard errors  (H0 accepted) 

• High R2 but low t: seem to be contradictory results. 

• Estimators and standard errors are very sensitive to changes in data: unstable 

• Wrong signs of coefficients: May not be according to economic and finance theory. 

• Difficulty in assessing the individual contribution of regressors to the explained 

variation: due to correlated regressors 

 

Detecting Multicollinearity 

Remember that 

1. Multicollinearity is question of DEGREE not of Presence alone 

2. Multicollinearity is a sample phenomenon 

3. It is a data deficiency problem 

There are three ways. 

1. Look at the symptoms 

2. Look at the correlation matrix 

3. Calculate VIF or Tolerance 

1. Look at the symptoms / indicators 

• High R2 but low t-statistic 

• Large standard errors 

• Individual variables are not significant but model seems to be a good fit 
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2. Look at the Correlation Matrix 

High pairwise correlations between the explanatory variables (e.g. greater than 0.8) 

Y X1 X2 X3 

10 10 52 26 

20 11 54 23 

30 16 77 23 

40 15 78 25 

50 19 93 22 

60 21 104 21 

70 22 109 19 

80 24 119 18 

90 27 136 19 

100 31 153 17 
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3. Estimate and look at VIF or Tolerance 

Method 

• Auxiliary Regressions: Regress each explanatory variable on other explanatory 

variables and find the coefficient of determination 

• You can test the significance of R2 (F or goodness of fit) 

• Estimate Tolerance or VIF 

𝑇𝑜𝑙𝑒𝑟𝑎𝑙𝑐𝑒 = 1 −  𝑅2 

• 𝑉𝑎𝑟𝑖𝑎𝑙𝑐𝑒 𝐼𝑙𝑓𝑙𝑎𝑡𝑖𝑜𝑙 𝐹𝑎𝑐𝑡𝑜𝑟 

𝑉𝐼𝐹 =  
1

1 −  𝑅2
 

• Decide according to the values of Tolerance /  VIF 

Decision about the degree of Multicollinearity 

 Tolerance VIF 

Problematic Multicollinearity ≤ 0.1 ≥  10 

Mild Multicollinearity 0.1 < 𝑇 < 0.2 5 < 𝑉𝐼𝐹 < 10 

Nearly No Multicollinearity ≥ 0.2 ≤ 5 

Important Points to note 

• VIF or Tolerance for the variable is calculated by the R2 of the auxiliary regression of the 

variable regressed on all other explanatory variables 

• One single variable is not responsible so we may estimate auxiliary regressions one less 

than the explanatory variable 
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Lecture 16 
Multicollinearity: Remedial Measures 

1. Do nothing 

If Multicollinearity is mild or If the purpose is only forecasting. If data deficiency is the problem, we have 

no choice over data. It is better to try to increase the data by extending the sample if possible. 

Multicolinearity is not a problem if theory permits us to estimate the missing coefficient e.g. in Cobb-

Douglas production function, if we assume constant returns to scale the either of alpha and beta can be 

estimated if one is estimated by regression. 

2. Drop one of the variables 

Drop the one that is less significant or drop the one with larger VIF. But this may lead to wrong model 

specification or may go against theoretical considerations (e.g. dropping price of substitute in demand 

function). An example of dropping variables is of import and export in GDP equation 

3. Transform the variable 

Combine the variables (we just add exports and imports to get a new variable labeled as openness). 

Another option is to convert the variables (import = f(GNP, CPI) we can divide by CPI (real imports = f 

(real GNP)); but error term may become heteroskedastic. Another way is to use first difference form 

(loss of one observation) 

𝒀𝒕 −  𝒀𝒕 − 𝟏 =  𝜷𝟐(𝑿𝟐𝒕 −  𝑿𝟐, 𝒕 − 𝟏) +  𝜷𝟑(𝑿𝟑𝒕 −  𝑿𝟑, 𝒕 − 𝟏) +  𝒗𝒕 

(may not be appropriate in cross sectional data; has no sense) 

Other options include: 

4. Get additional data and increase the sample size or 5. Combine cross section and time series (pool) or 

6. Use of panel data or 7. Use ridge regression, factor analysis etc. 

Multicollinearity  

Examples from Business and Economics 

Consider the data given in MC.xlsx. It contains data on quantity demanded, prices, and monthly income 

in thousands and prices of two different substitutes. First example has 50 observations in total. But first 

let us consider a small example 
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The data is as follows: 

Y X1 X2 X3 

10 10 52 26 

20 11 54 23 

30 16 77 23 

40 15 78 25 

50 19 93 22 

60 21 104 21 

70 22 109 19 

80 24 119 18 

90 27 136 19 

100 31 153 17 

Auxiliary regressions are produce using Microsoft Excel: 

Auxiliary Regressions Important 

• First two variables show MC 

• Look at F 

• Look at T/VIF 

 

Regression: X1 on X2 & X3 

𝑋1 =  4.977 + 0.188 𝑋2 −  0.176 𝑋3 

R2 = 0.998 F=1848.5 

Tolerance = 0.002 

VIF =  500 

Regression: X2 on X1 & X3 

𝑋2 =  − 22.11 +  5.24 𝑋1 +  0.794 𝑋3 

R2 = 0.9978 F= 1608.6 

Tolerance = 0.0022 

VIF =  454.5455 

Regression: X3 on X1 & X2 

𝑋3 =  28.97 − 2.03 𝑋1 +  0.3296 𝑋2 

R2 = 0.89 F= 28.43  

Tolerance = 0.11 

VIF =  9.090909 
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Multicollinearity: Example-1 from Business and Economics 

Let us use the file MC.xlsx and Fit different Regressions.  First Look at the correlation matrix.  

Correlation Matrix 

      

  Q price 

income 

(000) 

price of 

sub.-1 

price of 

sub.-2 

Q 1 

    Price -0.94144 1 

   income (000) -0.04567 0.309407 1 

  price of sub.-1 0.071323 0.234771 0.793596 1 

 price of sub.-2 0.017076 0.274298 0.79072 0.960501 1 

Below are different models that we ran. The first one contains only 10 observations. The second 

increases the sample size and the third is when we drop a variable. Let us see what happens. 

Model 1 (N=10) 

 

R Square=0.9106 F=12.73** 

   Coefficients VIF Comment 

Intercept 977.7725 *** 

  Price -0.2560*** 2.5 No MC 

Income 2.33** 5.12 No MC 

Price of 

Substitute-1 -0.2384 33.04 

MC, wrong sign, 

insignificant 

Price of 

Substitute-2 0.6310 22.75 MC, insignificant 
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Model 2 (N=50) 

 

R Square=0.978 F=508.41* 

   Coefficients VIF Comment 

Intercept 993.6106 * 

  Price -0.499* 1.13 No MC 

Income 0.498*** 2.88 No MC 

Price of Substitute-1 0.1924* 13.74 MC  

Price of Substitute-2 -0.0912 13.6 MC, wrong sign 

 

In the second model note that the VIF has decreases but still is greater than 10. Now let us drop one 
variable. 

Model 3 (N=50) 

 

R Square=0.978 F=687.98* 

   Coefficients VIF Comment 

Intercept 985.77* 

  Price -0.5* 1.13 No MC 

Income .4768*** 2.88 No MC 

Price of Substitute-1 0.1663* 13.6 No MC 

 

Multicollinearity Example-2 from Business and Economics 

• Data on GDP, Population, GFCF, Exports, Imports (2000-2012 Pakistan) 

• Downloaded from WDI 
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Dependent Variable GDP   

R-square 0.9927 F 271.4 

Expl Variables  significance VIF 

Population 1367.5 * 4.61 

GFCF 0.196  7.45 

Exports -0.247  10.28 

Imports 0.879  14.36 

Openness    

constant large value   

Result: No significance, high VIF, wrong signs 

After dropping imports the situation becomes: 

Dependent Variable GDP   

R-square 0.9897 F 289.17 

Expl Variables  significance VIF 

Population 1307.9 * 4.53 

GFCF 1.118 ** 4.15 

Exports 0.254  2.82 

Imports    

Openness    

constant large value *  

New Results show: better significance, low VIF, signs correct now 

Another option is to transform the variables. Let us generate a new variable, volume of trade as a proxy 
for openness and define it as the sum of imports and exports. 

Dependent Variable GDP   

R-square 0.7947 F 19.36 

Expl Variables  significance VIF 

GFCF 1.06  5.36 

Openness 1.809 ** 5.36 

constant large value   



Business Econometrics by Dr Sayyid Salman Rizavi 

152 

Results: openness is significance, low VIF indicates no Multicollinearity, the signs of the coefficients are 

also correct now however we may need other variables. 

 

Lecture 17 
Heteroskedasticity 

Heteroskedasticity: Background  

Consider the multiple regression line 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 +  … … … …𝛽𝑘𝑋𝑘 + 𝑒𝑖 

If we estimate the coefficients by OLS, we assume that  

𝑉𝑎𝑟�𝑒𝑗� = 𝜎2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 

or 

𝑉𝑎𝑟�𝑒𝑗�𝑋1,𝑋1, .  .  .  .  .𝑋1� = 𝜎2 

This is called Homoskedasticity (Absence of Heteroskedasticity). The alternative spelling is use are 

Homoscedasticity. 

Heteroskedasticity: Meaning  

𝑉𝑎𝑟�𝑒𝑗�𝑋1,𝑋1, .  .  .  .  .𝑋1� = 𝜎2 

This may means that the variance of errors in subgroups of the sample may not remain the same 

So if  

𝑉𝑎𝑟�𝑒𝑗�𝑋1,𝑋2, .  .  .  .  .𝑋𝐾� ≠ 𝜎2 

𝑜𝑟 

𝑉𝑎𝑟�𝑒𝑗�𝑋1,𝑋2, .  .  .  .  .𝑋𝐾� = 𝝈𝒊𝟐 

The subscript ‘𝑖‘ shows the variance to be variable and this is called  Heteroskedasticity. 

Hetero means ‘different’ and Skedasis means ‘dispersion’, Spread or variance. A homoskedastic error is 

one that has constant variance. Equivalently, this means that the dispersion of the observed values of Y 
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around the regression line is the same across all observations. Hence a heteroskedastic error is one that 

has a non-constant variance. 

Heteroskedasticity: Causes and Examples  

I- Variance of Errors may increase as the value of explanatory variable increases 

Examples 1:  

Expenditure on vacation = f (family income) 

𝐿𝑜𝑤 𝑖𝑙𝑐𝑜𝑚𝑒 → 𝑙𝑜𝑤 𝑒𝑥𝑝𝑒𝑙𝑑𝑖𝑡𝑢𝑟𝑒 𝑜𝑙 𝑣𝑎𝑐𝑎𝑡𝑖𝑜𝑙 

𝐻𝑖𝑔ℎ 𝑖𝑙𝑐𝑜𝑚𝑒 → 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑦 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑒𝑥𝑝𝑒𝑙𝑑𝑖𝑡𝑢𝑟𝑒 𝑜𝑙 𝑣𝑎𝑐𝑎𝑡𝑖𝑜𝑙 

With high income the variability as well as errors increases. High income is a necessary but not sufficient 

condition for greater expenditure on education. HSK is likely in such situation. 

Examples 2:  

Profitability = f (annual sales, liquidity, CCC) 

𝑠𝑚𝑎𝑙𝑙 𝑓𝑖𝑟𝑚𝑠 → 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑎𝑙𝑙𝑢𝑎𝑙 𝑠𝑎𝑙𝑒𝑠 → 𝑙𝑒𝑠𝑠 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑙 

𝐿𝑎𝑟𝑔𝑒 𝐹𝑖𝑟𝑚𝑠 → 𝐿𝑎𝑟𝑔𝑒𝑟 𝑠𝑎𝑙𝑒𝑠 → 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑙 

Being a large firm is a necessary but not sufficient condition for greater annual sales. HSK is likely in such 

situation. 

II- Subpopulation may have different effect 

Examples 1:  

Expenditure on vacation = f (family income) 

The Effect of income on expenditure on vacation may be different in different Localities or may be 

different for different races so we need to use dummy variables to capture this difference.  

Examples 2:  

Profitability = f (annual sales, liquidity, CCC) 

The Effect of sales on profitability may be different in different types of organizations due to different 

cost conditions or may be different for different areas due to different tax regulations so here also we 

need to use dummy variables 
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III- Measurement Errors 

Example:  

Some respondents may provide more accurate information for example high income groups may report 

income less than actual 

IV- Wrongly specified model 

Examples:  

Instead of using Log of Y, you may be using Y. Instead of using both X and square of X, you may be using 

only X 

V- Missing Variables 

Examples:  

Important Variables may be missing or instead of using both X and square of X, you may be using only X 

VI- HSK is more likely in Cross-sectional data 

Examples:  

Savings = f (income, wealth) 

People with higher income are likely to save a greater percentage of income  

VII- Different Quality of Data 

Examples:  

In cross country data, different quality of data may be reported e.g. some developing countries may 

provide lower or higher values than actual. 

VIII- Time Dependence of variables 

Examples:  

Seasonal component in variables: In some countries the variation in electricity prices increases in 

summer 

Heteroskedasticity: Summary of Causes 

I- Variance of Errors may increase with explanatory variable  
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II- Subpopulation may have different effect 

III- Measurement Errors 

IV- Wrongly specified model 

V- Missing Variables 

VI- HSK is more likely in Cross-sectional data 

VII- Different Quality of Data 

VIII- Time Dependence of variables 

Consequences of Heteroskedasticity 

1. OLS estimators remain unbiased and consistent 

2. However the distribution of estimators is effected increasing the variance of the distributions  

(Inefficient estimators: minimum variance property violated) 

3. Estimates of Variance are biases (formula require changes) 

4. Standard Errors / Confidence intervals not correct 

i. wrong conclusions on t and F 

ii. significance tests too high or too low 

iii. OLS gives more weight to larger errors (min Sum E square) SO IF HSK then 

overemphasized extreme values 

iv. Extreme values, in fact, contain less information so should be given less importance 

Detection of Heteroskedasticity 

The following can be used to detect Heteroskedasticity 

1. Visual Inspection (Graphs)  

2. Formal Tests   (Various Tests are available) 

Detection of Heteroskedasticity: Visual Inspection 

Normally graphs are used to detect Heteroskedasticity 
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• Without HSK the errors do not vary with the independent variable 

• With HSK errors may systematically be correlated with an independent variable 

• With HSK we may get variety of patterns 

• We can plot Y and X and look at the channel of errors 

• We can use either of error or the square of error on the Y-axis and plot it against each 

independent variable 

Homoskedasticity (No HSK): note that dots are evenly spread around the regression line. In the right 

panel X and square of error do not show any pattern. 

 

Heteroskedasticity: the following diagrams show the presence of Heteroskedasticity due to patterns or 

trend that is clearly visible. 
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Lecture 18 
Detection of Heteroskedasticity: Formal Tests 

 

The Goldfeld-Quandt Test: Stephen Goldfeld, Richard Quandt 

The following steps are performed for this test. 

Step 1.  

Arrange the data from small to large values of the explanatory variable Xj  (the one we suspect 

responsible for HSK).  

Step 2.  

Omit the middle C observations ( C = roughly 20% observations) 

Step 3. 

 Run two separate regressions, one for small values of Xj and one for large values of Xj, omitting C 

middle observations and record the residual sum of squares RSS for each regression: RSS1 for large 

values of Xj and RSS2 for small values of Xj 

Step 4.  

Calculate the ratio 

 𝐹 =  𝑅𝑆𝑆1
𝑅𝑆𝑆2

 

Degree of Freedom  = 𝑁−𝐶
2

 –𝐾 both in the numerator and the denominator, where N = total number of 

observations, C is the number of omitted observations, and K is the Number of explanatory variables + 

one. 

Step 5.  

Test  if 𝐹 >  𝐹𝛼,𝑁−𝐶2 −𝐾, 𝑁−𝐶2 −𝐾 to reject homoskedasticity (𝐻0) 

 

Example: GoldFeld-Quandt Test 
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𝐻0:𝐻𝑜𝑚𝑜𝑠𝑘𝑒𝑑𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦  

𝐻1:𝐻𝑒𝑡𝑒𝑟𝑜𝑠𝑘𝑒𝑑𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦  

𝛼 = 0.05 𝑜𝑟 0.01 

𝑇𝑒𝑠𝑡 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 

𝐹 =
𝑅𝑆𝑆ℎ𝑖𝑔ℎ
𝑅𝑆𝑆𝑙𝑜𝑤

  

If you think that var(e) is increasing function of X 

𝑅𝑒𝑔𝑖𝑜𝑙 𝑜𝑓 𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑙 

𝐹 >  𝐹
𝛼,𝑁−𝐶2 −𝐾, 𝑁−𝐶2 −𝐾

 

𝑅𝑆𝑆 = 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 

𝑁 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑙𝑠 

𝐶 = 𝑐𝑒𝑙𝑡𝑟𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑙𝑠 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑 

𝐾 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑒𝑠𝑡𝑖𝑎𝑚𝑡𝑒𝑑 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑝𝑙𝑎𝑙𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑝𝑙𝑢𝑠 𝑜𝑙𝑒 

The Goldfeld-Quandt Test: Example 
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The Goldfeld-Quandt Test: Drawbacks 

It cannot handle situations where several variables jointly cause Heteroskedasticity. There is no fix rule 

to know how many middle observations should be excluded. It is also possible that the difference in 

variance of errors may be observed in subsamples with different number of observations. The middle C 

observations are lost. It accounts only for linear relationship of independent variable and the variance of 

errors. 

 

The Park LM Test 

The following steps are performed in this test. 

Step 1. Run the required regression e.g. 𝑌 =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +  … … .𝛽𝐾𝑋𝐾 + 𝑒, obtain residuals 𝑒, 

compute ln 𝑒2 

Step 2. Run the auxiliary regression 

𝑙𝑙𝑒2 =  𝛼0 + 𝛼1𝑙𝑙𝑋1 + 𝛼2𝑙𝑙𝑋2+.  .  .  .  .  .  .  .𝛼𝐾𝑙𝑙𝑋𝐾 + 𝑢 

Step 3. Compute 𝐿𝑀 = 𝑁.𝑅2 (𝑁 𝑎𝑙𝑑 𝑅2are from the auxiliary regression) 

Step 4. If 𝐿𝑀 > 𝝌𝑲−𝟏𝟐  then reject Null hypothesis and conclude that there is significant evidence of 

Heteroskedasticity 

Harvey-Godfrey Test 

The following steps are performed in this test. 

Step 1. Run the required regression e.g. 𝑌 =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +  … … .𝛽𝐾𝑋𝐾 + 𝑒, obtain residuals 𝑒, 

compute ln 𝑒2 

Step 2. Run the auxiliary regression [assume σ2 = exp(α0 + αKXK)] 

𝑙𝑙𝑒2 =  𝛼0 + 𝛼1𝑋1 + 𝛼2𝑋2+.  .  .  .  .  .  .  .𝛼𝐾𝑋𝐾 + 𝑢 

Step 3. Compute 𝐿𝑀 = 𝑁.𝑅2 (𝑁 𝑎𝑙𝑑 𝑅2are from the auxiliary regression) 

Step 4. If 𝐿𝑀 > 𝝌𝑲−𝟏𝟐  then reject Null hypothesis and conclude that there is significant evidence of 

Heteroskedasticity 
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Glesjer Test 

The following steps are performed in this test. 

Step 1. Run the required regression e.g. 𝑌 =  𝛽0 + 𝛽1𝑋1 + 𝑒, obtain residuals 𝑒, compute ln 𝑒2 

Step 2. Run the auxiliary regressions [assume σ2 = exp(α0 + αKXK)] 

|𝑒𝑖| =  𝛼0 + 𝛼1𝑋1 + 𝑢𝑖  

|𝑒𝑖| =  𝛼0 + 𝛼1�𝑋1 + 𝑢𝑖  

|𝑒𝑖| =  𝛼0 + 𝛼1
1
𝑋1

+ 𝑢𝑖 

Step 3. Compute 𝐿𝑀 = 𝑁.𝑅2 (𝑁 𝑎𝑙𝑑 𝑅2are from the auxiliary regression) 

Step 4. If 𝐿𝑀 > 𝝌𝑲−𝟏𝟐  then reject Null hypothesis and conclude that there is significant evidence of 

Heteroskedasticity 

Breusch - Pagan Test 

The following steps are performed in this test. 

Step 1. Run the required regression e.g. 𝑌 =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +  … … .𝛽𝐾𝑋𝐾 + 𝑒, obtain residuals 𝑒, 

compute ln 𝑒2 

Step 2. Run the auxiliary regression [assume σ2 = exp(α0 + αKXK)] 

𝑒2 =  𝛼0 + 𝛼1𝑋1 + 𝛼2𝑋2+.  .  .  .  .  .  .  .𝛼𝐾𝑋𝐾 + 𝑢 

Step 3. Compute 𝐿𝑀 = 𝑁.𝑅2 (𝑁 𝑎𝑙𝑑 𝑅2are from the auxiliary regression) 

Step 4.  If 𝐿𝑀 > 𝝌𝑲−𝟏𝟐  then reject Null hypothesis and conclude that there is significant evidence of 

Heteroskedasticity  

OR 

test F-statistic for the above regression in step 2. (Goodness of fit) 

Problems with Breusch-Pagan and others 

Specification of model for variance dependence is needed  e.g. Breusch Pagan assume linear relation. If 

the errors are not normally distributed, then these tests may not be valid. Breusch Pagan Test  has been 



Business Econometrics by Dr Sayyid Salman Rizavi 

162 

shown to be sensitive to any violation of the normality assumption. Three other popular LM tests: the 

Glejser test; the Harvey-Godfrey test, and the Park test, are also sensitive to such violations  

 

The White Test: Most popular 

The following steps are performed in this test. 

Step 1. Run the required regression e.g. 𝑌 =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝑒, obtain residuals 𝑒, compute 𝑒�2 

Step 2. Run the auxiliary regression  

𝑒2 =  𝛼0 + 𝛼1𝑋1 + 𝛼2𝑋2 + 𝛼2𝑿𝟏𝟐 + 𝛼2𝑿𝟐𝟐 + 𝛼2𝑋1𝑋2 + 𝑢 

(Include all square and product terms) 

OR 

Run the regression 

𝑒2 =  𝛾0 + 𝛾1𝑌� + 𝛾2𝑌�2 + 𝑣 

Step 3. 

Compute 𝐿𝑀 = 𝑁.𝑅2 (𝑁 𝑎𝑙𝑑 𝑅2are from the auxiliary regression) 

OR 

Compute the F-Statistic 

Step 4. 

 If 𝐿𝑀 > 𝝌𝑲−𝟏𝟐  then reject Null hypothesis and conclude that there is significant evidence of 

Heteroskedasticity 

OR 

test F-statistic for the above regression in step 2. (Goodness of fit) 
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Lecture 19 
Examples of detecting Heteroskedasticity 

General Procedure for all the tests 

𝐻0:𝐻𝑜𝑚𝑜𝑠𝑘𝑒𝑑𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 

𝐻1:𝐻𝑒𝑡𝑒𝑟𝑜𝑠𝑘𝑒𝑑𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 

𝛼 = 0.05 𝑜𝑟 0.01 

𝑇𝑒𝑠𝑡 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 

𝐿𝑀 = 𝑁.  𝑅2 

𝑂𝑅   𝐹 =
𝑅2

1 − 𝑅2
𝑁 − 𝐾
𝐾 − 1

 

𝑂𝑅   (𝑓𝑜𝑟 𝐺𝑜𝑙𝑑𝑓𝑒𝑙𝑑 𝑄𝑢𝑎𝑙𝑑𝑡 𝑇𝑒𝑠𝑡) 𝐹 =
𝑅𝑆𝑆ℎ𝑖𝑔ℎ
𝑅𝑆𝑆𝑙𝑜𝑤

 

𝑅𝑒𝑔𝑖𝑜𝑙 𝑜𝑓 𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑙 

𝐿𝑀 > 𝜒𝐾2     𝑂𝑅    𝐹 >  𝐹𝛼,𝐾−1, 𝑁−𝐾 

𝑂𝑅   (𝑓𝑜𝑟 𝐺𝑜𝑙𝑑𝑓𝑒𝑙𝑑 𝑄𝑢𝑎𝑙𝑑𝑡 𝑇𝑒𝑠𝑡) 

  𝐹 >  𝐹
𝛼,𝑁−𝐶2 −𝐾, 𝑁−𝐶2 −𝐾

 

 

Examples 

For the below examples use the file HSK.xlsx for data 
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The Goldfeld - Quandt Test: Example Revision 

 

Example: The Park LM Test (ln (square of errors) and the ln(income)  

First we run the regression savings on income, find ln (square of errors) and the ln(income), 

while Square of errors are generated from the regression line Saving on Income. 

Saving Income ln (income) Square of Errors Ln e-square 
360 2455 7.80588204 497370.7375 13.1171 
534 3566 8.179199798 86591.3042 11.3690 
550 3666 8.206856428 66363.1361 11.1029 
510 4159 8.33302994 1761.6205 7.4740 
770 5261 8.568076402 131198.9807 11.7845 
921 6625 8.798605651 863800.5063 13.6691 

1250 6789 8.823058934 471640.0397 13.0640 
1650 7198 8.881558489 252118.1070 12.4377 
2045 8125 9.002701007 354277.5972 12.7778 
2598 8456 9.042631528 46870.3204 10.7551 
3254 8995 9.104424146 24243.0246 10.0959 
3897 9125 9.118773178 533268.0951 13.1868 
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4589 9564 9.165761329 1418726.1336 14.1653 
Now we run The Park LM Test: auxiliary regression: 𝑙𝑙𝑒2 =  𝛼0 + 𝛼1ln (𝑖𝑙𝑐𝑜𝑚𝑒) + 𝑢 

Park Test for Heteroskedasticity (LM test and F-Test) 

Run a regression ln(square of Errors) on ln(income) 

R2 = 0.0634 

  We can use both LM and the F-statistic for framing the conclusion.  

LM = N. R2=13(0.0634) = 0.8243 

 ChSQ(0.05,1) = CHISQ.INV.RT(0.05,1)= 3.841458821 

 As LM > Chi-SQ is not met, we cannot reject H0 and conclude that errors are  not 
Heteroskedastic  (There is no Heteroskedasticity)  
F = [R2/(1-R2)]/[11/1] = 0.7446 

 F0.05,1,11 = F.INV.RT(0.05,1,11)= 4.844335675 

 As F > F0.05,1,11  is not met so we cannot reject H0 and conclude that errors are not 
Heteroskedastic In the above table both LM and F-test are applied and the result is that the errors are not 

Heteroskedastic. 

Example: Harvey-Godfrey Test for Heteroskedasticity 

For the following results, see the file HSK.xlsx for detailed data 

Harvey-Godfrey Test for Heteroskedasticity 

1. Run a regression Savings on Income, Find error, then ln (square of error) 

2. Auxiliary Regression: Now Run a regression ln(square of Errors) on Income and obtain R2 

      

R2 obtained from the auxiliary Regression using LINEST() = 0.087076159 

 LM = N. R2=   1.13199   

ChSQ(0.05,1) = CHISQ.INV.RT(0.05,1) = 3.84146   

As LM > Chi-square value, we reject H0 and conclude that errors are Heteroskedastic 

F = [R2/(1-R2)]/[11/1] =   1.04919786607434   

F0.05,1,11   = F.INV.RT(0.05,1,11) = 4.84434 

As F < F0.05,1,11 so we cannot reject H0 and conclude that errors are not Heteroskedastic 
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Example: Glesjer's Test for Heteroskedasticity 

Glesjer's Test for Heteroskedasticity 

1. Run a regression Savings on Income (X), Find error, then find (1/X) and SQRT(X) 

2. Auxiliary Regression: Now Run the following auxiliary regressions and obtain their R2: 

Regression 1: |ei|= α0+α1 X+ui 

    

      

R-SQR of reg.1 = 0.11666 R-SQR of reg. 2 = 0.10218 R-SQR of reg. 3 = 0.04528 

  LM = N. R2 = 13 R2   

LM-1 = 1.51657 LM-2 = 1.3284 LM-3 = 0.5887 

ChSQ(0.05,1) = CHISQ.INV.RT(0.05,1) = 3.84146 

As LM > Chi-square  is not met in all three cases, we have strong evidence not to reject H0 and 

       

Example: Breusch Pagan Test for Heteroskedasticity 

Breusch Pagan Test for Heteroskedasticity 

1. Run a regression Savings on Income, Find error, then find square of errors 

2. Auxiliary Regression: Now Run a regression square of Errors on Income and obtain R2 

      

R2 obtained from the auxiliary Regression using LINEST()= 0.143181795 

LM = N. R2=   1.86136   

ChSQ(0.05,1) = CHISQ.INV.RT(0.05,1) = 3.84146   

As LM > Chi-square value, we reject H0 and conclude that errors are Heteroskedastic 

F = [R2/(1-R2)]/[11/1] =   1.83819594108222   

F0.05,1,11   = F.INV.RT(0.05,1,11) = 4.84434 

As F< F0.05,1,11 so we accept H0 and conclude that errors are not Heteroskedastic 

 

Example: White Test for Heteroskedasticity - version 1 

White Test for Heteroskedasticity - version 1 

1. Run a regression Savings on Income and interest rate, Find error, then square of error 

2. Auxiliary Regression: Now Run a regression square of Errors on X1, X2, X1.X2, X1 square and 
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R2 obtained from the auxiliary Regression using LINEST()= 0.5021 

LM = N. R2=   6.5273   

ChSQ(0.05,5) = CHISQ.INV.RT(0.05,5) = 11.0705   

As LM > Chi-square value, we can not reject H0 . We conclude that errors are not 

 F = [R2/(1-R2)]/[7/5] =   0.470603200107117   

F0.05,4,7   = F.INV.RT(0.05,4,7) = 4.12031 

As F < F0.05,1,11 so we cannot reject H0 . There is no HSK 

 

Handling Heteroskedasticity 

Method 1: Change the model specification / transform variables 

The Relation of variables may not be linear; change the model. Some important variable may be missing; 

find & use them. If there are subgroup differences, use dummy variables. If possible use panel data 

techniques 

Method 2: Use Huber / White Standard Errors 

This type of standard error is also called Heteroskedasticity consistent standard errors. With 

Heteroskedasticity our standard errors are incorrect so 𝑡 would be incorrect (Another formula is 

required for SE). White’s idea: Use simple OLS and correct the SE. For a simple regression line, the white 

estimator of error variance is 

𝑊ℎ𝑖𝑡𝑒 𝑉𝑎𝑟𝑖𝑎𝑙𝑐𝑒 (𝛽1) =  
∑(𝑋 − 𝑋�)2𝜎𝑖2

(∑(𝑋 − 𝑋�)2)2
 

Estimate 𝜎𝑖2 = 𝑒̂𝑖2 (using the squared residual for each observation as the estimate of its variance) 

Method 3: GLS / WLS 

Two cases; One where the variance of errors is known, Second where variance of errors is not known 

GLS / WLS (variance of errors known) 

Consider the model 

𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏𝑿𝒊 +  𝑻𝒊 

• Suppose we know 𝜎𝑖2 i.e. 𝑉𝑎𝑟𝑖𝑎𝑙𝑐𝑒 (𝛽1) 
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• Divide all by this error Standard Deviation, 

𝒀𝒊
𝜎𝑖

=
𝜷𝟎
𝜎𝑖

+
𝜷𝟏
𝜎𝑖
𝑿𝒊 +

𝑻𝒊
𝜎𝑖

 

• New model variance  

𝑉𝑎𝑟 �
𝑻𝒊
𝜎𝑖
� =  

1
𝜎𝑖2

 𝑣𝑎𝑟(𝑻𝒊) =
1
𝜎𝑖2

𝜎𝑖2 = 1 

GLS / WLS (Variance of errors NOT known) 

Make assumptions about the variance. Always transform the model dividing by the Standard Deviation 

of errors 

What does WLS do? 

OLS minimizes the sum of squared errors. OLS gives equal weight (importance) to all observations. 

WLS: observations with larger error variance will get less weight. WLS minimizes a weighted sum of 

square of errors  

e.g. minimizes ∑𝑒2

𝑣𝑎𝑟(𝑒𝑖)
 

Transformation Examples 

Assumption Comments Transformation 

𝑉𝑎𝑟(𝑒𝑖) =  𝜎2𝑋𝑖 Variance increases 

linearly with X 

𝑌𝑖
�𝑋𝑖

=
𝛽0
�𝑋𝑖

+
𝛽𝟏
�𝑋𝑖

𝑋𝑖 +
𝑻𝒊
�𝑋𝑖

 

   

  

𝑉𝑎𝑟(𝑒𝑖) =  𝜎2𝑋𝑖2 Variance is related to 

square of X 

𝑌𝑖
𝑋𝑖

=
𝛽0
𝑋𝑖

+
𝛽𝟏
𝑋𝑖
𝑋𝑖 +

𝑻𝒊
𝑋𝑖

 

 

Example: Handling Heteroskedasticity 

Consider the model 𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏𝑿𝒊 +  𝑻𝒊,  from the file HSK-Removal.xlsx 

observations  20    

K 2 F0.05, K-1, N-K 4.4138734 

N-K 18 ChiSQ0.05, K-1 3.8414588 

K-1 1    
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Breusch Pagan test 

From Reg e-squared on X 

R2 = 0.2283669 LM=N.R2 = 4.5673372 

   F =  5.3271473 

Both F and LM indicate the presence of Heteroskedasticity 

White Test 

From Reg e-squared on X and X2 

R2 = 0.3495372 LM=N.R2 = 6.9907444 

   F =  4.5676194 

Both F and LM indicate the presence of  Heteroskedasticity 

in non-linear fashion. 

Now let us try to estimate without heteroskedastic errors 

Consider the model  𝑌 = 𝛽0 +  𝛽1𝑋𝑖 + 𝑒𝑖 

Assume the relation  𝑉𝑎𝑟(𝑒𝑖) =  𝜎2𝑋𝑖2 

Transform the model to estimate  𝑌𝑖
𝑋𝑖

= 𝛽0
𝑋𝑖

+ 𝛽1
𝑋𝑖
𝑋𝑖 + 𝑒𝑖

𝑋𝑖
 

Or  (𝑌𝑖
𝑋𝑖

) = 𝛽0
𝑋𝑖

+  𝛽1 + 𝑒𝑖
𝑋𝑖

 

Or  𝑌𝑖
𝑋𝑖

=  𝛽1 + 𝛽0
1
𝑋𝑖

+ 𝑒𝑖
𝑋𝑖

 

Note the intercept is 𝜷𝟏 and the slope here is 𝜷𝟎 

This can be estimated by OLS 

For  𝑌𝑖
𝑋𝑖

=  𝛽1 + 𝛽0
1
𝑋𝑖

+ 𝑒𝑖
𝑋𝑖

 

We get  𝑌𝑖
𝑋𝑖

= 11.51 + 25.61 1
𝑋𝑖

 

The intercept 11.51 is in fact the slope of the original equation and the slope in this regression line is the 

intercept of the original regression line. But they may now be Heteroskedasticity Free (this can be 

checked by applying the White test to this regression) 
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Test for Heteroskedasticity for the new transformed regression  𝑌𝑖
𝑋𝑖

= 11.51 + 25.61 1
𝑋𝑖

  (data in HSK-

Removal.xlsx). Now testing for Heteroskedasticity for the new model gives the following results that are 

free from the problem. 

observations  20 

K 3 

N-K 17 

K-1 2 

F0.05, K-1, N-K 3.5915306 

ChiSQ0.05, K-1 5.9914645 

    

White Test 

From Reg e-squared on1/X and (1/X2 ) 

  R2 = 0.0389161 

  LM=N.R2 = 0.7783225 

  F =  0.3441812 

Conclusion: Heteroskedasticity does not 
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Lecture 20 
Autocorrelation 

What is Autocorrelation / Serial Correlation? 

Gauss Markov Assumptions: BLUE include 

• Errors are normally distributed with zero mean and constant variance 

• Errors are independent 

• Independence: one error term is not correlated to any other error term 

• Violation of above is called serial correlation  

But with Serial Correlation 

• Error terms are correlated with one another       

• Error term of different time periods (usually adjacent) or different cross sectional 

observations are correlated   

• if we know something about the error term of one observation, we know 

something about the error term of another observation     

• Errors associated in one time period carry over to future time periods (example 

of lagged models) 

• Serial correlation is usually associated with time series data so we will use a 

subscript 𝑡 instead of 𝑖   

Error terms may be correlated more with nearby observations as compared to distant 

observations   

𝝆(𝑻𝒕, 𝑻𝒕−𝒊) > 𝝆�𝑻𝒕,𝑻𝒕−𝒋� 𝒘𝒉𝑻𝒓𝑻 𝒊 < 𝒋 

Where 𝝆 (rho)  is the autocorrelation coefficient 

In case serial correlation exists (in time or space), 

𝝆(𝑻𝒕, 𝑻𝒕−𝒊) ≠ 𝟎 𝒘𝒉𝑻𝒓𝑻 𝑡 ≠ 0  𝑖𝑙 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑑𝑎𝑡𝑎 

𝝆�𝑻𝒊, 𝑻𝒋� ≠ 𝟎  𝒘𝒉𝑻𝒓𝑻 𝒊 ≠ 𝒋  𝒊𝑻 𝒄𝒓𝒐𝒔𝒔 𝒔𝑻𝒄𝒕𝒊𝒐𝑻𝑽𝑽 𝑻𝑽𝒕𝑽 
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−𝟏 ≤ 𝝆 ≤ 𝟏 

First Order Serial Correlation 

Let us consider one specific type i.e. first order (linear) serial correlation. In this case Error in 

one time period are correlated with the previous time period 

In case of first order serial correlation 

𝝆(𝑻𝒕, 𝑻𝒕−𝟏) ≠ 𝟎  

𝑤ℎ𝑒𝑟𝑒    − 𝟏 ≤ 𝝆 ≤ 𝟏 

In dynamic models   𝑻𝒕 = 𝝆𝑻𝒕−𝟏 + 𝑽𝒕 

Where ut is called white noise and is independently and identically distributed with zero mean 

and constant variance 

Possible Causes of Autocorrelation 

1. Missing Variables 

Error term may include all the variables not included in the regression equation. Change in any 

of the unobserved variable in one time period may impact the errors in different time periods. 

Errors may follow the patterns/ trends of the unobserved variables. 

Examples: Y depends on Xt1 and Xt2 and Xt2 is not included OR Sales depend on seasonal 

changes and it is not included 

2. Inertia or sluggishness 

Speed of Change in variables depends on time. Business Cycles (GDP, Prices etc. follow) are an 

example. Speed of change in price may depend on how far it is from the equilibrium price. This 

is a common phenomenon in time series data 

3. Incorrect Functional Form 

Autocorrelation may exist if Linear models are specified when non-linear are required. Linear-

in-variable or simple models are used when log form is needed. This is called model 

specification error 
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4. Cobweb phenomenon / reaction with lag 

When the dependent variable acts with a lag, we may observe Autocorrelation.  

Examples 

𝑸𝒔𝒕 = 𝑽 + 𝒃𝑷𝒕−𝟏 + 𝑻𝒕 

𝐶𝑡 = 𝑎𝑦𝑡−1 + 𝑏𝑦𝑡−2 + 𝑒𝑡 

Overproduction in one year may lead to underproduction in the next 

5. Lagged Relationship 

One reason may be that dependent variable may depend on its previous value 

Examples 

• Stock Prices 

• Consumption  𝑪𝒕 = 𝑽 + 𝒃𝑪𝒕−𝟏 + 𝑻𝒕 

6. Ratchet effect 

Tendency of people to be influenced by the previous (high, low or best) level of a variable may 

cause the ratchet effect to exist. Another example is of consumption. Consumption changes 

quickly upward (when income goes up) but does not come down easily if income declines (over 

or underestimation) 

7. Data Manipulation 

• Data manipulated in the following ways may cause the problem: 

• Averaging or smoothing 

• Converting quarterly data to annual 

• Converting monthly data to quarterly 

• Finding mid-points when faced with ranges 

• Sometimes we need to do the above because of measurement error in, e.g.,  monthly 

data but the byproduct is autocorrelation 

8. Systematic Measurement Error 
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Measurement error in one time period may be carried forward. Measurement error in 

inventories, Measurement error in stock of capital, Measurement error in asset value all can 

cause the problem of autocorrelation. This is why Time series is a noisy proxy. 

9. Variable Behavior 

Electricity consumption in different hours of the day; similar temperature patterns may cause 

patterns in errors. 

Spatial Autocorrelation 

This is a special cause of autocorrelation in cross sectional data.  

“Everything is related to everything else but near things are more related than distant things”   

First law of Geography by WALDO TOBLER 

Spatial autocorrelation is a correlation of a variable with itself through space. It is due to 

systematic pattern of spatial distribution of a variable. Sometimes the nearby areas are more 

alike: positive Sp. AC. Values in sample do not remain independent. Occurrence of one event in 

an area makes it more likely in other areas. Areas with higher concentration of events will have 

more impact on results (spatially clustered observations) 

Example:  

• In Karachi, due to high crime rate, more Police and Rangers are deployed 

• Due to Karachi operation the crime rate decreases in Karachi 

• Crime rate in nearby cities will increase although they did not decrease Police 

etc. 

Consequences of Autocorrelation 

• Estimators remain unbiased and consistent 

• Estimators are no more efficient 

• Standard Error of Estimate / variance of error is likely to be underestimated 

resulting in Overestimated R-square 
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• Variances of estimators are biased (see next slide) 

• Forecasts are unbiased but inefficient (with larger variances) 

• In case of positive AC, standard errors (of coefficients) are too small resulting in 

overestimation of t-statistic 

• In case of negative AC, standard errors (of coefficients) are too large resulting in 

underestimation of t-statistic 
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Lecture 21 
Detection of Autocorrelation 

Detection (Testing for serial correlation) 

• Graphic method 

• AR(1) test with strictly exogenous regressors 

• AR(1) test without strictly exogenous regressors 

• Durbin Watson d Test 

• Durbin h Test 

• LM Test 

Looking at the graph, we may see patterns or trends in residuals w.r.t. time or w.r.t. previous 

values of the errors. 

 

 

 

The above errors are plotted against time. You can see that a pattern is visible. This shows that 

the errors are not random. The graphs below show the errors of residuals plotted agains the 

past values of errors. In this case also we can observe some patterns and trends which is an 

indication of serial correlation. 

 

 

time 

e e 

time 
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Detecting Autocorrelation by formal tests 

AR(1) test with strictly exogenous regressors 

This tests first order AC with exogenous regressors 

Procedure 

• Run the regression 𝑌 on 𝑋1,  𝑋2,  …  𝑋𝐾 and obtain residual 𝑒𝑡  

• Run the regression 𝑒̂𝑡Ron 𝑒̂𝑡 − 1 𝑓𝑜𝑟 𝑁 =  2 𝑡𝑜 𝑙 

𝑒𝑡 = 𝜌𝑒𝑡−1 + 𝑢𝑡 

• Apply t-test (individual variable significance test) to test the hypothesis 

H0 : 𝜌 = 0 

The data and some estimated columns are given below: 
 

Time Period Y X e
t
 e

t-1
 

1 41 3.1 -6.69226 . 
2 51 3 3.57925 -6.69226 
3 55 3.3 6.76473 3.579245 
4 58 4 7.86418 6.764725 
5 56 4.3 5.04966 7.864179 

𝒆𝒕 

Negative autocorrelation 

𝒆𝒕−𝟏 

𝒆𝒕 Positive autocorrelation 
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6 51 4.7 -1.03637 5.049659 
7 46 5.4 -7.93691 -1.03637 
8 46 4.9 -6.57938 -7.93691 
9 48 6 -7.56595 -6.57938 

10 57 7.5 -2.63855 -7.56595 
11 58 6.9 -0.00951 -2.63855 
12 57 7.7 -3.18157 -0.00951 
13 62 7.9 1.27542 -3.18157 
14 64 8.1 2.73241 1.27542 
15 71 8.6 8.37487 2.732407 

 

1. Example of AR(1) test with strictly exogenous regressors 

The test is given below with all the required steps performed using Microsoft Excel. 

AR(1) test with strictly exogenous regressors 

Step 1: Run a Regression Y on X and obtain residuals 

Step 2: Run a Regression e
t
 = a + ρ e

t-1 
+ u

t
 

Results of using ‘=linest(E52:E65,F52:F65,true,true)’ 

0.6494361 0.8665148 

0.2328061 1.2152534 

0.393384 4.5171056 

7.7818704 12 

158.78317 244.85092 

Compute t-value = beta/se(beta) = 0.6494/0.2328= 2.789600395 

Testing H
0
: ρ = 0 

t  = 2.7896004   ,    𝑡𝑐=T.INV.2T(0.05,13) =  2.160368656 
As the calculated value of t is larger than the tabulated value so we 
reject H

0
 and conclude that the coefficient ρ is significant. This 

means that there is a problem of Autocorrelation.  
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2. Example of AR(1) test without strictly exogenous regressors 

This tests first order AC without exogenous regressors (where we suspect that explanatory 

variables may be correlated to residuals) 

Procedure 

• Run the regression 𝑌 on 𝑋1,  𝑋2,  …  𝑋𝐾 and obtain residual 𝑒𝑡  

• Run the regression 𝑒̂𝑡Ron 𝑋1,  𝑋2,  …  𝑋𝐾R and 𝑒̂𝑡 − 1 𝑓𝑜𝑟 𝑁 =  2 𝑡𝑜 𝑙 

• 𝑒𝑡 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯+ 𝛽𝐾𝑋𝐾 + 𝜌𝑒𝑡−1 + 𝑢𝑡 

• Apply t-test (individual variable significance test) to test the hypothesis H0 : 𝜌 = 0 

AR(1) test without strictly exogenous regressors 
Step 1: Run a Regression Y on X and obtain residuals 
Step 2: Run a Regression e

t
 = a + b X + ρ e

t-1 
+ u

t
 

You will need to rearrange the columns to put et-1 and X together 
The regression results are   

-0.05608296 0.645754025 1.193999801 
0.700460158 0.247399143 4.282505484 
0.393737269 4.716588768   
3.571974441 11   
158.9257843 244.7083057   

Compute t-value  
beta/se(beta) = 0.64575/0.247399 = 2.610170824 
Testing H

0
: ρ=0   

t= 2.610170824  
Critical value of t=T.INV.2T(0.05,11) = 2.20098516 

As the calculated value of t is larger than the tabulated value so we reject 
H

0
 and conclude that the coefficient ρ is significant. This means that there 

is a problem of Autocorrelation.  
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3. Example of Durbin Watson d Test 

This tests first order AC with exogenous regressors. It is not good when regressors are not 

exogenous. It is not good when the model contains lagged dependent variable 

Assumptions: 

• Regression Model has an intercept 

• Errors are generated by first order autoregressive scheme 

𝑒𝑡 = 𝜌𝑒𝑡−1 + 𝑢𝑡 

• Regression Model does not have lagged dependent variable as regressor 

• There are no missing observations 

Procedure: 

 𝐻0:  𝜌 = 0 

 𝐻𝐴:  𝜌 ≠ 0 

 𝛼 = 0.05 (5%) 

𝑇𝑒𝑠𝑡 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 

𝑻 =  
∑ (𝑻𝒕 − 𝑻𝒕−𝟏)𝟐𝑻
𝒕=𝟐

∑ 𝑻𝒕𝟐𝑻
𝒕=𝟏

 

This has an inconclusive region, rejection and acceptance region 

It has some limit or range of values: 

𝑑 =  
∑ (𝑻𝒕 − 𝑻𝒕−𝟏)𝟐𝑻
𝒕=𝟐

∑ 𝑻𝒕𝟐𝑻
𝒕=𝟏

 

𝑑 =
∑𝑒𝑡2 + ∑𝑒𝑡−12 − 2∑𝑒𝑡 ∑ 𝑒𝑡−1

∑ 𝑒𝑡2
 

For large samples 

�𝑒𝑡2 = �𝑒𝑡−12  
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So  𝑑 = 2(1 − ∑𝑒𝑡𝑒𝑡−1
∑𝑒𝑡

2 ) 

𝑑 = 2(1 −
∑𝑒𝑡 𝑒𝑡−1
∑ 𝑒𝑡2

) 

But 𝜌 = ∑𝑒𝑡 ∑𝑒𝑡−1
∑𝑒𝑡

2   So 

𝑑 = 2(1 − 𝜌) 

As we know that −𝟏 ≤ 𝝆 ≤ 𝟏, So 𝑑 will range from zero to four 

0 ≤ 𝑑 ≤ 4 

𝑖𝑓𝝆 = 0,  d = 2(1 − 0) = 2 

𝑖𝑓𝝆 = −1 (negative),  d = 2�1 − (−1)� = 4  

𝑖𝑓𝝆 = 1 (positive),  d = 2�1 − (1)� = 0  

The table of d at 0.05 level of significance and 𝐾 − 1 degrees of freedom will provide two 

values of d. A lower value 𝑑𝐿R and an upper value 𝑑𝑈R. 

Example: 𝑑𝐿R=1, 𝑑𝑈 R=1.68   (at 5% and 𝑘 − 1 = 3)  

 

 

 

 

𝑑𝐿 𝑑𝑈 4-𝑑𝑈 4-𝑑𝐿 

1 1.68 2.3
 

3 

Inconclusive Region 

Acceptance Region 

 𝜌 = 0 
𝑑 = 2 

Acceptance Region Rejection Region 
Reject 𝐻0 

Rejection 
Region 

Reject 𝐻0 
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Based on the previous diagram, we may frame our conclusions as follows 

Accept 𝐻0  if  𝑑𝑢 < 𝑑 < 4 − 𝑑𝑢  (no autocorrelation) 

Reject 𝐻0   

 if  𝑑 < 𝑑𝐿    (positive autocorrelation) 

 if  𝑑 > 4 − 𝑑𝐿    (negative autocorrelation) 

Test is inconclusive if   

 if 𝑑𝐿 < 𝑑 < 𝑑𝑈     

 if   4−𝑑𝑈 < 𝑑 < 4 − 𝑑𝐿   

General Rules about Durbin Watson Statistic 

• d lies between 0 and 4. As d is closer to 2, the chances of AC decrease 

• If d < 2, This may indicate positive AC, IF d > 2, This may indicate negative AC 

Use the file AC.xlsx for data, run regression Y on X, obtain residuals  

e
t
 is in cells E51:E65, e

t-1
 is in cells F52:F65  

 d   l  b  f  h  
  

Formula used 

�𝑒𝑡2 =  451.6195 =SUMSQ(E51:E65) 

�(𝑒𝑡 − 𝑒𝑡−1)2 =  307.333 =SUMXMY2(E52:E65,F52:F65) 

      

𝑑 =
∑(𝑒𝑡 − 𝑒𝑡−1)2

∑ 𝑒𝑡2   d = 0.680513 =SUMXMY2(E52:E65,F52:F65)/SUMSQ(E51:E65) 

      

 
d

L 
= 1.08 Value read from table (n=15, K=2) 

 
d

U
 = 1.36 Value read from table (n=15, K=2) 

    K= number of parameters estimated 

As d < d
L
 , we reject H

0
 and conclude that there exists autocorrelation (positive) 
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Durbin h Test 

Procedure 

Run the regression 

𝑌𝑡 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯+ 𝛽𝐾𝑋𝐾 + 𝛾𝑌𝑡−1 + 𝑢𝑡 

Compute Durbin h, where 

ℎ = 𝜌��
𝑁

1 − 𝑁(𝑉𝑎𝑟(𝛾))
 

Where 𝜌� = 1 − 𝑑
2
   (provided the sample is large) 

Note: h is normally distributed with unit variance so conclusions may be formed by looking at 

the normal distribution table. 

Problem: Cannot be computed if  𝑁�𝑉𝑎𝑟(𝛾)� > 1 

 

Simple LM Test: Testing for AR(1) model 

Procedure 

To test first order serial correlation 

• Run the regression 

𝑌𝑡 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯+ 𝛽𝐾𝑋𝐾 + 𝑒𝑡 

• Obtain the residuals 𝑒̂𝑡 

• Regress 𝑒̂𝑡R on all explanatory variables and 𝑒̂𝑡 − 1 

• Now compute 𝐿𝑀 =  (𝑙 − 1) 𝑅2 (because we loose one observation so n-1 

• Test using Chi-square (0.05, 1) 

 Similar to AR(1) in case of NOT Exogenous regressors but uses LM instead of F.  

  



Business Econometrics by Dr Sayyid Salman Rizavi 

184 

Lecture 22 
Treating Autocorrelation 

Some consequences of ignoring autocorrelation are 

• Coefficients unbiased and consistent but not efficient (not BLUE) even in large 

samples. (like if there is  heteroskedasticity ) 

• Standard error estimates are inappropriate which leads to wrong inferences. 

• t-statistic overestimated 

• Regression coefficients appearing significant are, in fact, not significant. 

• R2 inflated and residual variance underestimated for positively correlated 

residuals (if X grows over time). 

• Forecasts are unbiased but with large variances 

 

Remedial Measures for the problem of Autocorrelation 

We may have two situations 

• When 𝜌 is known. . . . GLS 

• When 𝜌 is not known. . . . .estimate rho. . .  .GLS 

Generalized Differencing / Generalized Least Square 

Consider a two variable model 

𝑌𝑡 =  𝛽0 + 𝛽1𝑋𝑡 + 𝑒𝑡 

Assume that the error term follows AR(1) scheme 

𝑒𝑡 =  𝜌𝑒𝑡−1 + 𝑣𝑡 

Where  

−1 < 𝜌 < 1 

Where 𝑣𝑡 satisfies OLS assumptions and 𝜌  is either known or estimated 
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For estimation without autocorrelation, transform the model 

Procedure 

 write the regression with one period lag 

𝑌𝑡−1 =  𝛽0 + 𝛽1𝑋𝑡−1 + 𝑒𝑡−1 

Multiplying by 𝜌 

𝜌𝑌𝑡−1 =  𝜌 𝛽0 + 𝜌 𝛽1𝑋𝑡−1 + 𝜌 𝑒𝑡−1 

Subtracting this equation from the original regression (without lags) 

𝑌𝑡 − 𝜌𝑌𝑡−1 =  𝛽0 − 𝜌 𝛽0 + 𝛽1𝑋𝑡 − 𝜌 𝛽1𝑋𝑡−1 + 𝑒𝑡 − 𝜌 𝑒𝑡−1 

Which gives us  

𝑌𝑡 − 𝜌𝑌𝑡−1 =  𝛽0(1 − 𝜌) + 𝛽1(𝑋𝑡 − 𝜌𝑋𝑡−1) + 𝑒𝑡 − 𝜌 𝑒𝑡−1 

Or 

𝑌𝑡∗ = 𝛽0∗ + 𝛽1𝑋𝑡∗ + 𝑣𝑡 

Now we can estimate the AC free model 

𝑌𝑡∗ = 𝛽0∗ + 𝛽1𝑋𝑡∗ + 𝑣𝑡 

Where  

𝑌𝑡∗ = 𝑌𝑡 − 𝜌𝑌𝑡−1 

𝛽0∗ = 𝛽0(1 − 𝜌) 

𝑋𝑡∗ = 𝑋𝑡 − 𝜌𝑋𝑡−1 

Generalized Differencing: Special Cases 

Special Case: 𝝆 = +𝟏:  

write the regression with one period lag 

𝑌𝑡−1 =  𝛽0 + 𝛽1𝑋𝑡−1 + 𝑒𝑡−1 

Multiplying by 𝜌 
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𝑌𝑡−1 =   𝛽0 +  𝛽1𝑋𝑡−1 +  𝑒𝑡−1 

Subtracting this equation from the original regression (without lags) 

𝑌𝑡 − 𝑌𝑡−1 =  𝛽0 −  𝛽0 + 𝛽1𝑋𝑡 −  𝛽1𝑋𝑡−1 + 𝑒𝑡 −  𝑒𝑡−1 

Which gives us  

∆𝑌𝑡 =  𝛽1∆𝑋𝑡 + ∆𝑒𝑡 

Where 

∆𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1,  ∆𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1 

And we estimate an equation without intercept 

Special Case: 𝝆 = −𝟏:  

write the regression with one period lag 

𝑌𝑡−1 =  𝛽0 + 𝛽1𝑋𝑡−1 + 𝑒𝑡−1 

Multiplying by 𝜌 

𝑌𝑡−1 =   𝛽0 +  𝛽1𝑋𝑡−1 +  𝑒𝑡−1 

Subtracting this equation from the original regression (without lags) 

𝑌𝑡 + 𝑌𝑡−1 =  𝛽0 +  𝛽0 + 𝛽1𝑋𝑡 +  𝛽1𝑋𝑡−1 + 𝑒𝑡 +  𝑒𝑡−1 

Which gives us  

𝑌𝑡∗ = 2𝛽0 + 𝛽1𝑋𝑡∗ + 𝑣𝑡 

Where 

𝑌𝑡∗ = 𝑌𝑡 + 𝑌𝑡−1,𝑋𝑡∗ = 𝑋𝑡 − 𝑋𝑡−1 

Prais-Winsten Transformation 

We lose one observation due to differencing. Usually the first observation is lost. In small 

samples we may estimate the first observation as 

𝑌1∗ = �1 − 𝜌2𝑌1 

𝑋1∗ = �1 − 𝜌2𝑋1 



Business Econometrics by Dr Sayyid Salman Rizavi 

187 

However this does not need to be done in large samples. We can estimate the AC free model 

𝑌𝑡∗ = 𝛽0∗ + 𝛽1𝑋𝑡∗ + 𝑣𝑡 

Suppose we know that 

𝜌 = 0.6 

𝑌𝑡∗ = 𝑌𝑡 − 𝜌𝑌𝑡−1 

𝑋𝑡∗ = 𝑋𝑡 − 𝜌𝑋𝑡−1 

Where  𝛽0∗ = 𝛽0(1 − 𝜌) 

The following example is a small sample (Prais-Winsten transformation may be required) 

Time 
Period 

Y X et Y* x* 

1 41 3.1 -6.69226     
2 51 3 3.57925 26.40 1.14 
3 55 3.3 6.76473 24.40 1.50 
4 58 4 7.86418 25.00 2.02 
5 56 4.3 5.04966 21.20 1.90 
6 51 4.7 -1.03637 17.40 2.12 
7 46 5.4 -7.93691 15.40 2.58 
8 46 4.9 -6.57938 18.40 1.66 
9 48 6 -7.56595 20.40 3.06 

10 57 7.5 -2.63855 28.20 3.90 
11 58 6.9 -0.00951 23.80 2.40 
12 57 7.7 -3.18157 22.20 3.56 
13 62 7.9 1.27542 27.80 3.28 
14 64 8.1 2.73241 26.80 3.36 
15 71 8.6 8.37487 32.60 3.74 

We knew that 𝜌 = 0.6 

We transformed the model accordingly and estimated 

𝑌𝑡∗ = 𝛽0∗ + 𝛽1𝑋𝑡∗ + 𝑣𝑡 

Using Microsoft Excel functions of intercept and slope we find the regression line to be  

𝑌𝑡∗ = 17.995 + 2.1554 𝑋𝑡∗ 

The slope 2.1554 is the value of 𝛽1. As 𝛽0∗ = 𝛽0(1 − 𝜌), 
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We can estimate 𝛽0 as 𝛽0 = 𝛽0∗

1−𝜌
= 17.995

1−0.6
= 44.9877   

REMEMBER that the above procedure is based on an assumed value of 𝜌 to explain the 

procedure which may not be true. 

Removing Autocorrelation when 𝝆 is not know 

When is not known, we need to estimate it first (before treating autocorrelation). We will 

discuss three methods here 

• Durbin Watson 𝑑 

• Cochrane-Orcutt Method 

• Hildreth-Lu Procedure 

Using Durbin-Watson 𝑻 

A relationship already established between 𝜌 and 𝑑 is 

𝑑 = 2(1 − 𝜌) 

So  𝜌 ≅ 1 − 𝑑
2
 

As   0 ≤ 𝑑 ≤ 4 

−1 ≤ 𝜌 ≤ 1 

Above relation is approximate. For small samples Theil-Nagar suggest 

𝜌 =
𝑁2 �1 − 𝑑

2� + 𝐾2

𝑁2 + 𝐾2  

Now perform GLS. 

EXAMPLE (use ACRemoval.xlsx) 

As this is a small sample, we use Theil-Nagar estimation 

𝜌 =
𝑁2 �1 − 𝑑

2� + 𝐾2

𝑁2 + 𝐾2  

N = 14, K = 2, Durbin-Watson 𝑑 is estimated as 0.6805 
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𝜌 =
142 �1 − 0.6805

2 � + 22

142 + 22
= 0.667 

The value of 𝜌 can be used to apply Generalized difference model as described in the procedure 

for known-rho 

Cochrane-Orcutt Method 

This method uses Residuals to estimate 𝜌. It is an iterative process and is applicable with First-

Order Autocorrelation only 

STEPS 

Consider 𝑌𝑡 =  𝛽1 +  𝛽2𝑋𝑡 +  𝑒𝑡  

• Round 1: apply OLS, find residuals, compute 𝜌 = ∑𝑒𝑡𝑒𝑡−1
∑𝑒𝑡

2  

• Round 2: Perform GLS 

𝑌𝑡 − 𝜌𝑌𝑡−1 =  𝛽0(1 − 𝜌) + 𝛽1(𝑋𝑡 − 𝜌𝑋𝑡−1) + 𝑒𝑡 − 𝜌 𝑒𝑡−1 

Now obtain second order residual and 𝜌 again 

• Round 3 (if required): Perform GLS again with the new 𝜌 and continue in the same way 

We continue until the estimated 𝜌 from two successive rounds is almost equal. We also may 

perform Durbin Watson test and stop iteration if AC is not detected. 

Cochrane-Orcutt Method: EXAMPLE 

We will just demonstrates some rounds for your help 
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Cochraine-Orcutt method Round 1 
Time Period Y X et et-1 et.et-1 et

2 

1 41 3.1 -
6.69226 

    44.78636 

2 51 3 3.57925 -
6.69226 

-23.95325 12.81100 

3 55 3.3 6.76473 3.57925 24.21261 45.76151 
4 58 4 7.86418 6.76473 53.19901 61.84531 
5 56 4.3 5.04966 7.86418 39.71142 25.49906 
6 51 4.7 -

1.03637 
5.04966 -5.23330 1.07406 

7 46 5.4 -
7.93691 

-
1.03637 

8.22556 62.99460 

8 46 4.9 -
6.57938 

-
7.93691 

52.21998 43.28825 

9 48 6 -
7.56595 

-
6.57938 

49.77929 57.24366 

10 57 7.5 -
2.63855 

-
7.56595 

19.96317 6.96196 

11 58 6.9 -
0.00951 

-
2.63855 

0.02510 0.00009 

12 57 7.7 -
3.18157 

-
0.00951 

0.03027 10.12237 

13 62 7.9 1.27542 -
3.18157 

-4.05783 1.62670 

14 64 8.1 2.73241 1.27542 3.48497 7.46605 
15 71 8.6 8.37487 2.73241 22.88356 70.13851 

     240.49056 406.83312 
     Sum Sum 

 

Consider 𝑌𝑡 =  𝛽1 +  𝛽2𝑋𝑡 +  𝑒𝑡 

We have just demonstrates some rounds for your help 
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Run OLS Y on X and obtain e  
OLS:Y on X  
Intercept 39.27556 

Slope 2.715066 
First Round Rho = 0.591128 
 round 2: transformed model 
OLS:Y on X  
Intercept 18.33661 

Slope 2.166349 
Second Round Rho = 0.520366  
 round 3:transformed model 
Intercept 19.55304  

Slope 2.794671  

 

We will transform the model again and continue till the rho from two consecutive iterations is 

almost the same. This may be a lengthy process. 

Cochraine Orcutt Transformed variables & Round 2 
Y* X* et et-1 et.et-1 et2 

26.76374 1.167502 5.89791       
24.85246 1.526615 3.208663 5.89791 18.9244 10.29552 
25.48794 2.049277 2.711883 3.208663 8.701517 7.354307 
21.71456 1.935487 -0.81499 2.711883 -2.21017 0.664215 
17.89682 2.158148 -5.1151 -0.81499 4.168775 26.16425 
15.85246 2.621697 -8.16367 -5.1151 41.75797 66.64546 
18.8081 1.707907 -3.22844 -8.16367 26.35589 10.42281 
20.8081 3.103471 -4.25172 -3.22844 13.7264 18.0771 

28.62584 3.95323 1.725152 -4.25172 -7.33486 2.97615 
24.30569 2.466538 0.625692 1.725152 1.079415 0.391491 
22.71456 3.621215 -3.46687 0.625692 -2.16919 12.01918 
28.30569 3.348312 2.715461 -3.46687 -9.41415 7.37373 
27.35005 3.430087 1.582668 2.715461 4.297674 2.504838 
33.16779 3.811861 6.573355 1.582668 10.40344 43.209 
    108.2871 208.098 

 

Hildreth-Lu Search Procedure 

Step 1: Choose a grid of possible values (between -1 and +1) of 𝜌 
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Step 2: For each value of the grid, estimate the Generalized difference model and find the sum 

of square residuals 

Step 3: The equation with min SS will be considered the best equation 

Modified Step 1: Choose a grid of possible values (between -1 and +1) of 𝜌 

We can select a simple grid like   0, 0.1, 0.2, 0.3 - - - - 0.9, 1. After repeating the previous 

process, select a further grid. For example if the first grid gives us 0.7, we start with another 

grid based on this information around 0.7 like 0.66, 0.67, 0.68, 0.69, 0.71, 0.72, 0.73, 0.74 and 

repeat the above procedure. 

Problems: 

• Time consuming and long process 

• Grid values must be carefully selected to have a global minimum SS (not just a local min) 

Comparison: 

• Hildreth-Lu procedure is computer-time-intensive as compared to Cochrane-Orcutt 

procedure 

• The Cochrane-Orcutt procedure iterates to a local minimum and may miss the global 

minimum SS or residuals 
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Lecture 23 
Estimating Non-Linear equation by OLS 

 

Estimating Quadratic Equation by OLS 

Consider the relations of variables that provide U-shaped or inverted U-shaped curves. Some 

time we must use quadratic equations to capture the relationship. We introduce the square of 

the independent variable and include in regression. For U-shaped (convex) curves the 

coefficient of the quadratic term is positive. For Inverted-U-shaped (or concave) curves the 

coefficient of the quadratic term is negative. 

Consider the quadratic equation (subscripts ignored) 

𝑌 = 𝑎 + 𝑏 𝑋 + 𝑐 𝑋2 + 𝑒 

Applying optimization (minimize the sum of squared residuals) 

𝑀𝑖𝑙 𝑍 = �𝑻𝒊𝟐
𝑻

𝒊=𝟏

= �(𝒀 − 𝑌�)𝟐 =
𝑻

𝒊=𝟏

�(𝒀 − 𝑽 − 𝒃𝑿 − 𝒄𝑿𝟐)𝟐
𝑻

𝒊=𝟏

 

We have three parameters (a, b and c) so we need three partial derivatives set equal to zero 

First partial derivative w.r.t. a 

𝑍𝑎 =   �(𝑌 − 𝑎 − 𝑏𝑋 − 𝑐𝑋2)2−1.
𝜕
𝜕𝑎

(𝑌 − 𝑎 − 𝑏𝑋 − 𝑐𝑋2) = 0 

�(𝑌 − 𝑎 − 𝑏𝑋 − 𝑐𝑋2)(−1) = 0 

This gives the first normal equation as  

�𝑌 = 𝑙𝑎 + 𝑏�𝑋 + 𝑐�𝑋2  

Differentiating w.r.t. b & c we get the other normal equations 

�𝑋𝑌 = 𝑎�𝑋 + 𝑏�𝑋2 + 𝑐�𝑋3  

And 
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�𝑋2𝑌 = 𝑎�𝑋2 + 𝑏�𝑋3 + 𝑐�𝑋4  

Hence for estimating a regression equation  

We need to solve three normal equations 

�𝑌 = 𝑙𝑎 + 𝑏�𝑋 + 𝑐�𝑋2  

�𝑋𝑌 = 𝑎�𝑋 + 𝑏�𝑋2 + 𝑐�𝑋3  

�𝑋2𝑌 = 𝑎�𝑋2 + 𝑏�𝑋3 + 𝑐�𝑋4  

For which we need all the columns and sums shown in the three normal equations. However, in 

the example, we will use LINEST function of Microsoft Excel. 

Example I: 

 

 

 

 

 

 

 

 

 

 

Y X X2 

16 1 1 
9 2 4 

11 3 9 
7 4 16 

11 5 25 
12 6 36 Result of =LINEST() with quadratic term 
16 7 49 0.443842922 -4.019343891 18.26373626 
10 8 64 0.048788309 0.802761669 2.791214341 
19 9 81 0.967180725 3.133612459 
23 10 100 176.8193957 12 
29 11 121 3472.565676 117.8343245 
34 12 144 Regression line  
35 13 169 Y = 18.26 - 4.01934 X + 0.44 X2 
48 14 196 SSR from linear equation: 930.5107 

62 15 225 
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Example I Modified: Centering X 

Y x=X-Xbar  x2 
 

Old Result of =LINEST() with quadratic term 

16 -7 49 
 

0.443842922 -4.019343891 18.26373626 
9 -6 36 

 
0.048788309 0.802761669 2.791214341 

11 -5 25 
 

0.967180725 3.133612459   
7 -4 16 

 
176.8193957 12   

11 -3 9 
 

3472.565676 117.8343245   
12 -2 4 

    16 -1 1 
 

Result of =LINEST()  

10 0 0 
 

0.443842922 3.082142857 14.51493213 
19 1 1 

 
0.048788309 0.187269163 1.218210622 

23 2 4 
 

0.967180725 3.133612459   
29 3 9 

 
176.8193957 12   

34 4 16 
 

3472.565676 117.8343245   
35 5 25 

 
Regression line   

48 6 36 
 

Y = 14.51 -3.082 X + 0.44 X2   
62 7 49 

 
SSR from linear equation: 930.5107 

.  Y can be better predicted Correl(X,X2)= 0.97 
 .  No correlation in expl vars Correl(x,x2)= 0 
 Example II:  

Y X X2 

56 1 1 
52 2 4 
65 3 9 
58 4 16 
60 5 25 
65 6 36 
58 7 49 Result of =LINEST() with quadratic term 
58 8 64 -0.495475113 5.099030381 48.96703297 
59 9 81 0.077250272 1.271074145 4.419543828 
55 10 100 0.916745492 4.961689038   
44 11 121 66.06816929 12   
27 12 144 3252.979703 295.4202973   
36 13 169 Regression line  
25 14 196 Y = 48.97 + 5.099 X - 0.4955 X2 

14 15 225 SSR from linear equation: 1308.171 
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Estimating Cubic Equation by OLS 

Consider the relations of Cubic nature like the Total Cost function. We introduce the square and 

cube of the independent variable and include in regression. For Total Cost function, to get the 

required shape the coefficient of quadratic term is expected to be negative and that of cubic 

term should be non-zero. Consider the quadratic equation (subscripts ignored) 

𝑌 = 𝑎 + 𝑏 𝑋 + 𝑐 𝑋2 + 𝑑 𝑋3 + 𝑒 

Applying optimization (minimize the sum of squared residuals) 

𝑀𝑖𝑙 𝑍 = �𝑻𝒊𝟐
𝑻

𝒊=𝟏

= �(𝒀 − 𝑌�)𝟐 =
𝑻

𝒊=𝟏

�(𝒀 − 𝑽 − 𝒃𝑿 − 𝒄𝑿𝟐 − 𝑻𝑿𝟑)𝟐
𝑻

𝒊=𝟏

 

This time we have four parameters (a, b, c and d) so we need four partial derivatives set equal 

to zero. First partial derivative w.r.t. a 

𝑍𝑎 =   �(𝑌 − 𝑎 − 𝑏𝑋 − 𝑐𝑋2 − 𝑑𝑋3)2−1.
𝜕
𝜕𝑎

(𝑌 − 𝑎 − 𝑏𝑋 − 𝑐𝑋2 − 𝑑𝑋3) = 0 

�(𝑌 − 𝑎 − 𝑏𝑋 − 𝑐𝑋2 − 𝑑𝑋3)(−1) = 0 

This gives the first normal equation as  

�𝑌 = 𝑙𝑎 + 𝑏�𝑋 + 𝑐�𝑋2 + 𝑑�𝑋3  

Differentiating w.r.t. b & c we get the other normal equations. Hence for estimating a 

regression equation   𝑌 = 𝑎 + 𝑏 𝑋 + 𝑐 𝑋2 + 𝑑 𝑋3 + 𝑒, We need to solve four normal equations 

�𝑌 = 𝑙𝑎 + 𝑏�𝑋 + 𝑐�𝑋2 + 𝑑�𝑋3  

�𝑋𝑌 = 𝑎�𝑋 + 𝑏�𝑋2 + 𝑐�𝑋3 + 𝑑�𝑋4  

�𝑋2𝑌 = 𝑎�𝑋2 + 𝑏�𝑋3 + 𝑐�𝑋4 + 𝑑�𝑋5  

�𝑋3𝑌 = 𝑎�𝑋3 + 𝑏�𝑋4 + 𝑐�𝑋5 + 𝑑�𝑋6  
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For which we need all the columns and sums shown in the three normal equations. However, in 

the example, we will use LINEST function of Microsoft Excel. 

Consider the following example: 

Y X X2 X3 

1241 1 1 1 
1470 2 4 64 
1680 3 9 729 
1900 4 16 4096 
2100 5 25 15625 
2290 6 36 46656 
2500 7 49 117649 
2680 8 64 262144 Result of =LINEST() with quadratic and cubic term 
2900 9 81 531441 -9.8497E-06 -1.305954071 221.8711228 1023.7397 
3150 10 100 1000000 1.33877E-05 1.611087348 18.97304895 48.58616 
3350 11 121 1771561 0.998021737 43.86210487     
3450 12 144 2985984 1849.811606 11     
3650 13 169 4826809 10676470.21 21162.72668     
3700 14 196 7529536 Regresssion: Y = 1023.7 +221.87 X - 1.306 X2 + 0.00000984 X3 

4000 15 225 11390625 SSR from linear equation: 45562.33 

 

Estimating Cobb-Douglas Production Function 

Consider the Cobb-Douglas Production Function 

𝑄 = 𝐴 𝑙𝛼𝑘𝛽  

Taking log on both sides 

ln𝑄 = ln𝐴 + 𝛽 ln 𝑙 + 𝛾 ln 𝑘 

Let 𝑌 = ln𝑄,  𝛼 = ln𝐴 𝑎𝑙𝑑 𝐿 = ln 𝑙,  𝐾 = ln 𝑘 then the above can be written as 

𝑌 = 𝛼 + 𝛽𝐿 + 𝛾𝐾 

That can be estimated by OLS.  

Consider the following example: 
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Cobb-Douglas Production Function y = 2 La Kb 
Y L K ln Y ln L ln K Estimates of Cobb-Douglas 

Production Function 2.5 2 1.1 0.40 0.30 0.04 

2.8 3 1.1 0.45 0.48 0.04 0.4098673 0.3191 0.283 
3.6 3 2 0.56 0.48 0.30 0.0086869 0.015 0.007 
4 4 2 0.60 0.60 0.30 0.999333 0.0038   

4.7 4 3 0.67 0.60 0.48 5243.9969 7   
5.3 4 4 0.72 0.60 0.60 0.1490903 1E-04   
4.3 5 2 0.63 0.70 0.30 

   5 5 3 0.70 0.70 0.48 Elasticity (labor) 0.41 
5.6 5 4 0.75 0.70 0.60 Elasticity (Capital) 0.32 
6.2 5 5 0.79 0.70 0.70 Returns to scale 0.73 

Transformation of models and Use of OLS 

Method Transformation Regression equation 
Standard linear 

 

Not required y = b
0
 + b

1
x 

Exponential model 

  

  

Dependent variable = log(y) log(y) = b
0
 + b

1
x 

Logarithmic model 

  

  

Independent variable = log(x) y= b
0
 + b

1
log(x) 

Double log 

  

Dependent variable = log(y), 

    

log(y)= b
0
 + b

1
log(x) 

Cobb Douglas 

  

   

 

 𝑌 = 𝐴 𝐿𝛼𝐾𝛽  ln𝑌 = ln𝐴 + 𝛼 ln 𝐿 +

 Interpretation of different functional forms using OLS 

Model Interpretation Marginal 
Effect 

Elasticity 

Linear in variable 
𝑌 = 𝑎 + 𝑏𝑋 

One unit change in X will cause, on the 
average, ‘b’ units of change in Y 

b 𝑏
𝑋
𝑌

 

Double log form 
 (log-log) 

  

One percent change in X will cause, on the 
average, ‘b’ % change in Y 𝑏

𝑌
𝑋

 b 

Level-Log 
𝑌 = 𝑎 + 𝑏 𝑙𝑙 𝑋 

One percent change in X is expected to 
change Y by 100

𝑏
 units 

𝑏
𝑋

 
𝑏
𝑌

 

Log-Level form 
𝑙𝑙𝑌 = 𝑎 + 𝑏 𝑋 

When X changes by one unit, Y will change 
by approximately (b*100)% 

𝑏𝑌 𝑏𝑋 

For interpretation, we assume that Gauss Markov assumption hold and parameters are significant 

Marginal effect of X is defined as the partial derivative of Y w.r.t. X 

marginal effect and elasticity (𝑑𝑦
𝑑𝑥

𝑋
𝑌

) may be computed at mean values of X and Y 
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Problems with OLS 

We must take care of  

• Outliers 

• Non - linearity 

• Wrong specification 

• Missing Variables 

• Multicollinearity 

• Heteroskedasticity 

• Autocorrelation 

Taking care in use of OLS: 7 Questions 

1. Are the explanatory variables helping the model? 

2. Are the relationships what we expect?  

3. Are any of the explanatory variables redundant? 

4. Are the residuals normal?  

5. Have all important variables been included? 

6. How well the model explains the dependent variable? 

7. Are the results free form MC, HSK & AC?  

Remember that 

• Explanatory variables can have categories 

• We can use dummy variables for the above 

• But if the dependent variable is categorical, do not use simple regression (Examples) 

• Take care of origin and scale (magnitude of coefficients is better interpretable) 

• Model not linear in parameters cannot be transformed for OLS 
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Lecture 24 
Introduction to Stata- I 

The stat environment looks as follows: 

 

We have five windows visible. The main window is the output window in which you see all the 

output. Below that you will see a command window in which we can type and enter/execute 

the commands. Although stata has a good graphic user interface, we can efficiently use the 

command line for quick and efficient work. On the right you have a variable window in which all 

the variables will be displayed and below that there is a Properties window which will give the 

properties of all variables like their names, storage types, display format etc. 

The review window on the left will give all the commands that have been executed in the 

current session. We can just click on any of them to execute them again instead of retyping the 

command. We have several type of files that we use in Stata. Data files have extension .dta 

although we can type file names without this extension and they will be treated as dta files.  

Log files can be also be used to record our session (.smcl or .log). We have also Do files that 
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perform several operations at a time (.do). These files provide a list of commands that can be 

executed at one click.  

The data files (.dta) are of three types: 

• Sample data files Shipped with Stata (opened by sysuse command) 

• Files available on the web (using the webuse command) 

• Files that  you create and save on your hard disk (use command) 

Other data files (like MS Excel) can be imported into stata. 

The graphic use interface 

A strong graphic user interface is available where we can perform operations by clicking on 

different icons. This is very user friendly. See some example below: 

 

The Command window 

We can use the command window to type and execute different commands. All that can be 

performed by the graphic user interface can be performed in the command window. This is 

undoubtedly very quick way of using stata.   

This is useful in many ways 
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• Typing Commands is less time consuming 

• You remember the commands in this way 

• It may be helpful if you need to program in Stata 

For the commands 

• Use small letters; Stata is case sensitive 

• Short names can be used   (e.g. d / des instead of describe) 

• Syntax can be viewed in the help window 

• Underlined part in the syntax is the shortcut 

• Commands have options (after typing comma ,) 

• We can use conditions with commands (e.g. if, in etc.) 

The ‘help’ command 

The syntax is  

help [command or topic] [,options] 

The underlined part is the minimum that you should write for help. If we just type h describe , 

we will get a window showing help for ‘describe’. 

From the graphic user interface, we can click in this order 

Help > Stata Command... 

and write the command in the window that appears. 

Typing ‘help help’ in the command window opens the following window: 
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Typing ‘help describe’ opens the following window: 

 

Almost all the help windows have the same structure. They show the command, its shortcut, its 

syntax, description and practical example of the use of the command. 
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Opening files in Stata 

Sample data files Shipped with Stata  ( type in the command window: sysuse filename) 

For the files on the web type webuse filename.  On the hard disk of your computer (use path 

and file name) 

We can use   ,clear as an option.  

To open file on your computer using the graphic user interface, 

File > open (brows, find file and open) 

Alternatively type: use “path and file name”or   use “path and file name”, clear 

To know the files already available with stata type sysuse dir 

 

A list of files will be seen in the output window. Any one of them can be opened. 

For example, to open the first file type sysuse auto 

File will open; a message will appear in the output window. Variables will be show in the 

variable window. Variable description also will be shown in the properties window. Note that all 

commands that you have been typing are visible in the review window on the left. 
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The describe command 

Describe provides a description of data in the current file.  

We use the ‘describe’ command for description of data in a file. The describe command lists the 

variables, labels, formats, storage type, number of observations, and date file was created 

It can be used mainly in three ways 

• describe: it will describe all the variables in memory 

• describe variable-names: this will describe only the variables specified 

• describe variable1-variablen: this will describe all the variables in range 

To use the graphic user interface click as follows: 

Data > Describe data > Describe data in memory or in a file 
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A window will appear asking variable names etc. You need to use the pull-down menu to give 

the variable names (if file is open) 

 

Here is what you may see: 

 

Write the variable names with the help of pull down menu and click OK.  

EXAMPLES 

sysuse auto 

describe 

describe mpg price 

describe price – length 
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Typing describe will give the following output: 

 

This gives the variable names, the data type, the display type, and any labels if provided with 

the variables. We get to know the current file at a glance with all variables. 

The list command 

The list command lists rows and columns of the data file. 

The list command provides the values of observations of data 

It can be used mainly in three ways (as in describe) 

• list: it will list values of all the variables in memory 

• list variable-names: this will list the values of only the variables specified 

• list variable1-variablen: this will list values of all the variables in range 

Form the Graphic interface: 
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A window will appear asking variable names etc. You need to use the pull-down menu to give 

the variable names (if file is open) 

 

Select the variables and click OK 
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Using list with in and if 

 We can impose conditions for filtered data to be displayed (using ‘if’). We can specify rows of 

data to be displayed ( data ‘in’ specific rows) 

 

Conditions also may be attached 
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Lecture 25 
Introduction to Stata- II 

The summarize Command 

The syntax is 

Summarize [varlist] [if] [in] [weight] [, options] 

From the menu click: 

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Summary 

statistics  

 

If the file auto is open (sysuse auto), summarize will give the following results containing the 

summary statistics of the variables in the currently open file. 
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Like the previous commands, summarize can be used as standalone, with variables or with a 

range of variables. 

EXAMPLES 

sysuse auto, clear 

summarize 

summarize price mpg length 

summarize price-length 

The tabulate command 

The command tabulate provides one way or two way frequency tables. 

Syntax of the command is: 

tabulate varname [if] [in] [weight] [, tabulate1_options] 

From the menu, the command can be executed by clicking as: 

Statistics > Summaries, tables, and tests > Frequency tables > One-way table 

 

The command ‘tabulate’ needs a variable name. See the following examples: 
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The above command provides summary statistics of the variable mpg according to categories in 

the variable foreign. In this way we use summarize as an option of the tabulate command. 

Remember that all options for any command in stata must be given after a comma (,). 

In the tabulate command we can tabulate one variable at a time. For example if we need 

frequency tables for rep78 and foreign (in the file auto), we need to type and execute the 

tabulate command separately for both the variables.  

We have a command tab1 that does this by specifying both the variable names in one go. 
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Two way frequency tables 

Two way tables can also be created. For this we should not have many categories for the 

variables (at least one). The following example provides a two way table. 

 

The tabstat command 

The command tabstat displays summary statistics for a series of numeric variables. It is a good 

alternative to ‘summarize’ as it allows us to specify the list of statistics to be displayed 

The syntax is  
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tabstat varlist [if] [in] [weight] [,options] 

You can call this command from the menu by clicking: 

Statistics > Summaries, tables, and tests > Other tables > Compact table of summary statistics 

 

 

EXAMPLES 

 

The above command (used without specifying any options) provides the means of the variables 

specified. If you need other statistics, you must use the stats option (after comma) as follows: 

 

You can do the same by any categorical variable (e.g. the variable foreign has two categories) 
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Bothe the above options can be used together as follows: 

 

The correlate command 

This command provides the correlation or covariance matrix of the variables specified. 

The syntax is  

correlate [varlist] [if] [in] [weight] [,correlate_options] 

If you want to use the graphic user interface instead, click on: 

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Correlations and 

covariances 
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EXAMPLES 

 

If you need summary statistics along with correlations, do the following 
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Use the covariance option if you need the covariance matrix instead. 
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Lecture 26 
Introduction to Stata- III 

Data Management in Stata 

Importing Data 

Data can be imported into stata from various types of files including Microsoft Excel files, raw 

data files, text files, csv files etc. 

We can use the following commands in Stata to import files 

• import excel: for importing .xls or .xlsx files 

  it has the syntax: import excel [using] filename [, import_excel_options] 

• infix: is used for fixed format files  

• Infile: is used for free format files 

• insheet: to import ASCII text data 

• input: enter data from keyboard 

For example let us import an Excel file 

From the menu click on: 

File > Import > Excel spread sheet (or others) 
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Now brows, select your file and open 

 

Select import variables names as first row and click OK 

Entering Data 

Click on the icon ‘data editor (edit)’ 

  

Start entering data (as in Excel). Variable names may be changed 



Business Econometrics by Dr Sayyid Salman Rizavi 
 

220 
 

 

Variable Names 

Variable name in Stata should be according to some conventions: 

• Up to 32 characters, 12 displayed 

• 0 to 9, A to Z, _ , 

• First letter cannot be number 

• Variable names are Case sensitive 

Valid examples include 

• mpg 

• mpg2 

• mpg_domestic 

• _2014 

Variable manager is used to change variable names. We can also use the rename command 

(rename oldname newname) 

Creating Variables 

Variables are created and/or modified using the generate and replace commands. 

The command generate creates a new variable. The value of new variable is given by the =exp 

It has a syntax: 

generate [type] newvar[:lblname] =exp [if] [in] 

 

Variable names 
can be changed 
here 
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The command can also be executed using the menu: 

Data > Create or change data > Create new variable 

 

A window will open in which you need to fill the required information 

 

EXAMPLES 

generate income = 0 

gen income = 0 

gen income = salary + bonus 

gen int agesquare = age^2 

gen lngdp = ln(gdp) 

The replace command 

The replace is used along with generate creates a new variable or modify existing variables 

The use of the command ‘in’ is helpful . 

  



Business Econometrics by Dr Sayyid Salman Rizavi 
 

222 
 

It has the syntax: 

replace oldvar =exp [if] [in] [, nopromote] 

From the menu click on: 

Data > Create or change data > Change contents of variable 

 

The following window will open 

 

Fill in the variable name and then click on the if/in ribbon to type a condition to change the 

variable values and click OK. 

EXAMPLE 

The following are examples to use from the command window: 

replace income = 1 in 5 

replace income = 1000 if income == 0 

replace highincome = 1 if income > 5000 

gen age2 = 0 

replace age2 =  age^2 

replace age2 = age^2 , nopromote 
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Operators in stata 

The following usual operators are used in Stata 

Arithmetic Logical Relational 

+    add 

-    subtract 

*   multiply 

/    divide 

^   raise to a power 

+ (In strings) 

!     not  (also ~ is used) 

|    or 

&   and 

== equal 

!= not equal (or ~ =) 

<    less than 

>    greater than 

<=  less than or equal to 

>=  greater than or equal to 

 

Functions 

Type help mathfun to know all functions. Here are some examples 

abs(x) Absolute value of x 

int(x) Integer of x 

log(x) Logarithm  

sqrt(x) Square root of x 

round(x) Round x to the nearest integer 

 

Assigning labels to variables 

Variable labels are useful to understand what the variables contain. Label provides data labels 

and variable labels. They are helpful in understanding the data 

We use the label variable command for assigning labels to variables. 

To label the dataset as a whole use the following command 

label data ["label"] 

Example: label data “1978 Automobile Data”  
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To create variable labels use the following: 

label variable varname ["label"] 

Example: label variable make “Make and Model” 

Creating Notes 

The command ‘note’ places a note in the data. It can be general or attached to specific variable. 

To create notes for a variable, use the following command: 

notes [evarname]: text 

Examples: Creating notes for variables 

sysuse auto 

note make: this is a note for variable make 

To see the note type and enter: 

note make 

Examples: Creating general notes  

 sysuse auto 

 note: this version is from June 2014 

To see the note type and enter: 

notes or notes _dta 

Dropping or Keeping Variables 

The commands drop and keep are used to drop specific rows of data or entire variables. 

Syntax 

To Drop variables 

        drop varlist 

To Drop observations 

        drop if exp 

To Drop a range of observations 

        drop in range [if exp] 
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To Keep variables 

        keep varlist 

To Keep observations that satisfy specified condition 

        keep if exp 

To Keep a range of observations 

        keep in range [if exp] 

Using log files and do files 

Log files are used to record your session. You can use .smcl or .log or .txt depending on needs 

On the other hand, do files are used to run several commands at a time or replicate your 

results. 

To open log files click on the icon similar to notepad on the menue 

 

You can create file of extension .smcl or .log (.log can be opened in notepad) 

 

Log files record all what you do. You can suspend log files in order to stop recording the session. 

The file can be resumed later. Finally we can close a log file to see it later. 
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The files of extension .do are text editor files that can execute several commands at a time. You 

can click on the following icon in order to open a do file. In the file you can type a list of 

command and execute those in one go. 

 

Here is a snap of a do file editor with a list of commands. 
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Lecture 27 
Introduction to Stata- IV 

Video learning modules 

Lecture27 is based on video tutorials for Stata. The students are required to consult the videos 

in lecture 27 in order to revise them. 

 

Lecture 28 
Introduction to Stata- V 

Graphs in Stata 

Stata has a very good capability to produce graphs with the following properties 

• Rich set of tools 

• Publishable quality of graphs 

• GUI / Command line both 

• Graph Editor 

• Graphs can be copied/saved 

You can create graphs by clicking on: 



Business Econometrics by Dr Sayyid Salman Rizavi 
 

228 
 

 

 

Examples 

Histograms 

We can create Histograms for both continuous and categorical variables 

Syntax: histogram varname [if] [in] [weight] [, [continuous_opts | discrete_opts] options] 

From the menu: Graphics > Histogram 
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Specify the variable and click OK 

 

It would be better to use the command window as well to practice. 

EXAMPLES: 

sysuse auto 

histogram price 

 

 

sysuse auto 
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histogram length 

 

 

The following example produces a normal curve as well (using the option ‘normal’) 

sysuse auto 

histogram rep78, discrete normal 

 

The following example shows how to create histogram by specifying grids etc. 

sysuse auto 

 histogram mpg, discrete freq addlabels ylabel(,grid) xlabel(10(5)40) 



Business Econometrics by Dr Sayyid Salman Rizavi 
 

231 
 

 

 

PIE Charts 

Syntax: graph pie varlist [if] [in] [weight] [, options] 

Menu: Graph > Pie 

 

 

The following window will open. Fill the required information and click OK. 
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EXAMPLES 

sysuse auto 

 graph pie, over(rep78) plabel(_all name) title("Repair Record 1978") 

 

 

 

1
2

3

4

5

1 2
3 4
5

Repair Record 1978
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An Example of PIE chart 

Enter the following data in a new file and use the commands list and describe and 

summarize to practice summary statistics. 

 

Type and enter the following in the command window: 

graph pie _all   

Or type  

graph pie Statistics Mathematics Economics Accounting Law 

 

 

Typing the following will produce a pied chart with labels: 

Statistics Mathematics
Economics Accounting
Law
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graph pie _all , plabel(_all name)  title(“Distribution of marks") 

 

 

 

Two way graphs 

When more than one variable is involved, we create twoway graphs like scatter plots 

They can be created by using the menu as: 

Graphics > Twoway graph 

 

In the window that appears, click on create 

Statistics

Mathematics

Economics

Accounting

Law

Statistics Mathematics
Economics Accounting
Law
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The following will appear, select a scatter plot, specify variables and click Accept. 

 

 

To select titles of axis use the ribbons identified below: 
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The result will be a scatter plot 

 

The above scatter plot can also be created by the following command: 

twoway (scatter price length), ytitle(Price) xtitle(Length) title(Price and Length) 

 

Examples of Scatter Plots ( type sysuse auto, clear to open the file auto.dta) 

twoway (scatter price length), by(foreign) 

0
5,

00
0

10
,0

00
15

,0
00

P
ric

e

140 160 180 200 220 240
Length

Price and Length
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twoway (scatter price length), by(rep78) 

 

twoway (scatter price length) (lfit price length) 

5,
00

0
10

,0
00

15
,0

00

150 200 250 150 200 250

Domestic Foreign

P
ric

e

Length (in.)
Graphs by Car type

5,
00

0
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,0
00

15
,0

00
5,

00
0
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,0

00
15

,0
00
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150 200 250 150 200 250

1 2 3

4 5P
ric

e

Length (in.)
Graphs by Repair Record 1978
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twoway (scatter price length) (lfit price length), by(foreign) 

 

 

LINE plots 

0
5,

00
0

10
,0

00
15

,0
00
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Price Fitted values

0
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Graphs by Car type
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Using the menu, Line plots are created in the same way as scatter plots. Open the file sp500 

which is a file available with stata. 

Syntax: [twoway] line varlist [if] [in] [, options] 

sysuse sp500 

twoway (line open date) 

 

sysuse sp500 

twoway (connected close date) 

 

Other twoway plots also can be produced in the same way. 
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Lecture 29 
Introduction to Stata- VI 

Regression with Stata 

Regression analysis in stata is mainly done by the regress command. 

Syntax:  

regress depvar [indepvars] [if] [in] [weight] [, options] 

The menu also can be used by clicking on:  

Statistics > Linear models and related > Linear regression 

 

A window will appear that requires to specify the dependent and independent variables and 

other information. 
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Fill in the information and click OK. 

STEP by STEP example of regression 

First open a file auto.dta 

sysuse auto, clear 

Summarize and analyze the data using related commands 

Look at various two-way graphs 

graph matrix price mpg length weight, half 

 

For several related variables perform the following: 

To get a Scatter with a line fit: 

twoway (scatter price weight) (lfit price weight) 

Price

Mileage
(mpg)

Length
(in.)

Weight
(lbs.)

5,000 10,000 15,000

10

20

30

40

10 20 30 40

150

200

250

150 200 250

2,000

3,000

4,000

5,000
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twoway (scatter price mpg) (lfit price mpg) 

 

 

Check for outliers: 

graph matrix price mpg length weight, half 

0
5,

00
0

10
,0

00
15

,0
00

2,000 3,000 4,000 5,000
Weight (lbs.)

Price Fitted values

0
5,

00
0

10
,0

00
15

,0
00

10 20 30 40
Mileage (mpg)

Price Fitted values
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Now let us perform a regression by using the regress command: 

regress price rep78 weight foreign 

You will get the following result that has the usual interpretation as you did with the regression 

in Microsoft Excel. (see the relevant lectures) 

 

regress price mpg length foreign 

Price

Mileage
(mpg)

Length
(in.)

Weight
(lbs.)

5,000 10,000 15,000

10

20

30

40

10 20 30 40

150

200

250

150 200 250

2,000

3,000

4,000

5,000
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Post regression Analysis 

Use the following to get your trend values and residuals: 

Predict phat 

predict e, residual 

list price phat e in 1/20 

The above will create new variables phat (the trend values through the predict command) and 

the variable ‘e’ for the residuals. You can use the list command to see the new columns of 

variables. 

 

See if the residuals follow the assumption of normality 
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histogram e,normal 

 

The above shows that the residuals are not normally distributed. 

One reason of errors not being normally distributed is that the outcome (dependent) variable is 

not normally distributed. 

histogram price, normal 

 

We can transform the variable price. 
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Let us try to transform price to be normally distributed by trying taking log or square or other 

powers (ladder and gladder commands can help us) 

 

 

The inverse and 1/square have the smallest chi-square but let us look at the graphs 

The gladder gives a graph to analyze the situation (it may take some time to display the graph) 

gladder price 

 

 

Let us transform the variable price. 
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gen priceinv=1/price 

reg priceinv mpg length foreign 

predict e1, residual 

histogram e1, normal 

First you will get the regression results, then the following diagram. 

 

Now the residuals form regressing inverse of price looks somehow normal so we use it in our 

regression. To have the kernel density,type: 

Kdensity e, normal 

 

Post regression tests 
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To test for Multicollinearity and other problems, look at the following: 

We have two different tests for Heteroskedasticity; the IM test and the hottest commands are 

used. 

IM TEST (White Test) 

 

This shows that there is heteroskedasticity. 

The second test is hettest 

 

This also shows that there is heteroskedasticity. 

To check for Multicollinearity use the VIF (variance inflation factor) command 
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As the values of VIF are less than 5, there is no multicollinearity detected. 

Another test the linktest is used. The linktest command performs a model specification test for 

single-equation models.  

The null hypothesis is that the model is specified correctly. As the variable _hatsq is significant 

so the model is not specified correctly. 

 

 

 

 

 

 



Business Econometrics by Dr Sayyid Salman Rizavi 
 

250 
 

There is another test (missing variable). The command is ovtest. Here it shows that there may 

be some missing variables in the model that has been specified. 

 

Testing for autocorrelation 

As autocorrelation is normally a time series phenomenon, we change our file an open a time 

series data file and use the Durbin Watson test. Type and enter the following: 

webuse klein, clear 

tsset yr 

regress consump wagegovt 

estat dwatson 

 

 

There is evidence that autocorrelation exists as we can reject the H0 of absence of 

autocorrelation (P value for F is less than 5%) 
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REMEDIES for Heteroskedasticity 

White developed an estimator for standard errors that is robust to the presence of 

heteroskedasticity. Use the robust option with regression. 

Remember we had transformed the outcome variable to 1/p. Now let us just use price. The 

errors will be heteroskedastic. 

 

 

This shows heteroskedasticity. 

We can not run the regression with robust option 

reg price mpg length foreign, robust 

Standard errors will change, coefficients remain the same 

Remedy for autocorrelation 

Run the analysis with the Prais-Winston command, specifying the Cochran-Orcutt option. 
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After iterations dw has improved a bit. It is better to use models other than least square (AR1, 

ARIMA, lagged variable, GLS) 
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Lecture 30 
Simultaneous Equation Models 

OLS deals with single equations. We have a response variable and some explanatory variables. 

In fact, variables in real life may be a cause as well as an effect. The interdependence of 

variables may give rise to simultaneity bias if OLS is used. If we consider the demand and supply 

model or the national income model, we can quickly observe that variables may depend on 

each other. For example income is influenced by consumption level but consumption level itself 

depends on income levels. 

To handle such relationships, we use simultaneous models with multiple equations where 

dependent variable in one equation may be the explanatory variable in some other equation. 

Consider the following examples of simultaneous models: 

 

The Market Model 

𝑄𝑑  =  𝛼0 +  𝛼1𝑃 +  𝛼2𝐼 +  𝑒1 

𝑄𝑠 =  𝛽0 +  𝛽1𝑃 +  𝛽2𝑇 +  𝑒2 

𝑄𝑑 = 𝑄𝑠 

 

Liquidity and Profitability 

𝑃𝑅𝑂𝐹𝐼𝑇𝐴𝐵𝐼𝐿𝐼𝑇𝑌 =  𝛼0 +  𝛼1𝐿𝐼𝑄𝑈𝐼𝐷𝐼𝑇𝑌 +  𝛼𝑖𝐹𝑖 +  𝑒1 

𝐿𝐼𝑄𝑈𝐼𝐷𝐼𝑇𝑌 =  𝛽0 +  𝛽1𝑃𝑅𝑂𝐹𝐼𝑇𝐴𝐵𝐼𝐿𝐼𝑇𝑌 +  𝛼𝑖𝐺𝑖 +  𝑒2 

𝐹𝑖 AND 𝐺𝑖  are matrices of determinants of prof and liq 

 

The National Income (Macroeconomic) Model 

𝑌𝑡 = 𝐶𝑡 + 𝐼𝑡 + 𝐺𝑡 

𝐼𝑡 = 𝛼0 + 𝛼1𝑌𝑡 

𝐶𝑡 =  𝛽0 +  𝛽1𝑌𝑡 +  𝑒2 
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Endogenous and Exogenous Variables 

Consider the following model 

𝒀𝟏 = 𝜶𝟎 + 𝜶𝟏𝒀𝟐 + 𝜶𝟐𝑿𝟏 + 𝒆𝟏 

𝒀𝟐 = 𝜷𝟎 + 𝜷𝟏𝒀𝟏 + 𝜷𝟐𝑿𝟐 + 𝒆𝟐 

The number of unknowns is 4 and the number of equations is 2. To solve the model, the 

number of equations should be equal to No of unknowns. Note that 𝒀𝟏 and 𝒀𝟏 cause each 

other. Let us assume that 𝑿𝟏and 𝑿𝟏 are already given. Then we are left with two variables to be 

solved by two equations which is possible. The already given variables or the variables whose 

values externally (from outside the model) determined are called exogenous variables. The 

remaining variables whose values we seek by solving the model are called endogenous 

variables. Here 𝑋1and 𝑋2 are exogenous and 𝑌1 and 𝑌2 are endogenous variables. 

Practice Question: 

Consider 

𝑄𝑑  =  𝛼0 +  𝛼1𝑃 +  𝛼2𝐼 +  𝑒1 

𝑄𝑠 =  𝛽0 +  𝛽1𝑃 +  𝛽2𝑇 +  𝑒2 

𝑄𝑑 = 𝑄𝑠 

Identify Exogenous and endogenous variables. 

Example: 

𝑌1 = 𝛼0 + 𝛼1𝑌2 + 𝛼2𝑌3 + 𝛼3𝑋1 + 𝑒1 

𝑌2 = 𝛽0 + 𝛽1𝑌1 + 𝛽2𝑌3 + 𝛽3𝑋2 + 𝑒2 

𝑌3 = 𝛾0 + 𝛾1𝑌1 + 𝛾2𝑌2 + 𝛾3𝑋3 + 𝑒3 

• We have three equations so must have three endogenous variables 

• 𝑌1, 𝑌2 and 𝑌3 are endogenous 

• All remaining variables 𝑋1, 𝑋2 and 𝑋3 are exogenous 
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Identification Problem 

An equation (not model) can be Unidentified or Under-identified, exactly identified or Over 

identified. What do we need to do if OLS cannot be applied? we need to transform the model 

to reduced form. 

Reduced form equation: equations that express endogenous variables as functions only of 

exogenous variables and disturbances. OLS can be applied to reduced-from equation ( no 

endogenous variables on RHS). We need to solve and get reduced from equation for each 

Endogenous Variable. 

No of endogenous variables in a model = no of reduced form equations 

Example of simultaneous model is 

𝒀𝟏 = 𝜶𝟎 + 𝜶𝟏𝒀𝟐 + 𝜶𝟐𝑿𝟏 + 𝒆𝟏 

𝒀𝟐 = 𝜷𝟎 + 𝜷𝟏𝒀𝟏 + 𝜷𝟐𝑿𝟐 + 𝒆𝟐 

After identifying the endogenous variables, we transform the model in to reduced form which 

may be like this 

𝑌1 = 𝜋10 + 𝜋11𝑋1 + 𝜋12𝑋2 + 𝑣1 

𝑌2 = 𝜋20 + 𝜋21𝑋1 + 𝜋22𝑋2 + 𝑣2 

 

𝜷𝒊 are called structural parameters. 𝜋𝑖𝑗 are called  reduced form coefficients. 

• Unidentified or Under-identified: if we cannot express the structural parameters of an 

equation in terms of reduced form coefficients 

• Exactly identified: if we CAN express the structural parameters of an equation in terms 

of reduced form coefficients in one way 

• Over identified: if we CAN express the structural parameters of an equation in terms of 

reduced form coefficients in more than one way 

Exclusion principle: consider a two equation system; For an equation to be identified, there 

should be at least one exogenous variable that is excluded from the equation i.e. the variable 

does not exist in the equation but must be found on the RHS of the other equation. 



Business Econometrics by Dr Sayyid Salman Rizavi 
 

256 
 

Example: 

Consider the model 

𝑌1 = 𝛼0 + 𝛼1𝑌2 + 𝛼2𝑋1 + 𝑒1 … … … … (1) 

𝑌2 = 𝛽0+𝛽1𝑌1 + 𝛽2𝑋2 + 𝑒2 … … … … (2) 

Substituting the value of 𝑌2 from equation 2 in equation 1 and solving for 𝑌1 gives 

𝑌1 =
𝛼0 + 𝛼1𝛽0
1 − 𝛼1𝛽1

+
𝛼2

1 − 𝛼1𝛽1
 𝑋1 +

𝛼1𝛽2
1 − 𝛼1𝛽1

𝑋2 + 𝑢1 

Where 𝑢1 contains expressions with residuals 

The above can be written as 

𝑌1 = 𝜋10 + 𝜋11𝑋1 + 𝜋12𝑋2 + 𝑢1 

 

𝑌1 = 𝜋10 + 𝜋11𝑋1 + 𝜋12𝑋2 + 𝑢1 

is a reduced from equation. Now substituting this expression for in equation 2, we get 

𝑌2 = (𝛽0 + 𝛽1𝜋11) + 𝛽1𝜋11𝑋1 + (𝛽1𝜋12 + 𝛽2)𝑋2 + 𝛽𝑢1 + 𝑒2 

or 

𝑌2 =
𝛽0 + 𝛼0𝛽1
1 − 𝛼1𝛽1

+
𝛽1𝛼2

1 − 𝛼1𝛽1
𝑋1 +

𝛽2
1 − 𝛼1𝛽1

𝑋2 + 𝑢2 

𝑌2 = 𝜋20 + 𝜋21𝑋1 + 𝜋22𝑋2 + 𝑢2 

Results: 

𝑌1 = 𝛼0 + 𝛼1𝑌2 + 𝛼2𝑋1 + 𝑒1 

𝑌2 = 𝛽0+𝛽1𝑌1 + 𝛽2𝑋2 + 𝑒2 

The above model is now transformed into reduced form equations 

𝑌1 = 𝜋10 + 𝜋11𝑋1 + 𝜋12𝑋2 + 𝑢1 

𝑌2 = 𝜋20 + 𝜋21𝑋1 + 𝜋22𝑋2 + 𝑢1 

Where reduced form coefficients are symbols for some expression in the structural parameters 

The reduced form coefficients 
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𝜋10 =
𝛼0 + 𝛼1𝛽0
1 − 𝛼1𝛽1

,𝜋11 =
𝛼2

1 − 𝛼1𝛽1
,𝜋12 =

𝛼1𝛽2
1 − 𝛼1𝛽1

 

𝜋20 =
𝛽0 + 𝛼0𝛽1
1 − 𝛼1𝛽1

,𝜋21 =
𝛽1𝛼2

1 − 𝛼1𝛽1
,𝜋22 =

𝛽2
1 − 𝛼1𝛽1

 

Solving the above, we can see that we can express the structural parameters (𝛼𝑖 𝑎𝑛𝑑 𝛽𝑖) in the 

form of reduced form coefficients. 

We can easily see that 

𝛽1 =
𝜋21
𝜋11

,    𝛽0 = 𝜋20 −
𝜋21
𝜋11

𝜋10 

𝑎𝑛𝑑  𝛽2 = 𝜋22 −
𝜋21
𝜋11

𝜋12 

As the structural parameters of equation 2 can be expressed in one way in terms of reduced 

form coefficients, Equation 2 is exactly identified. Also 

𝛼1 =
𝜋12
𝜋22

,    𝛼0 = 𝜋10 −
𝜋12
𝜋22

𝜋20 

𝑎𝑛𝑑  𝛼2 = 𝜋11 −
𝜋12
𝜋22

𝜋21 

As the structural parameters of equation 1 can be expressed in one way in terms of reduced 

form coefficients, Equation 1 is also exactly identified 
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Lecture 31 
Simultaneous Equation Models-II 

Let us take another example of identification 

Example: 

Consider the market model 

𝑄𝑑  =  𝛼0 +  𝛼1𝑃 +  𝛼2𝐼 +  𝑒1 

𝑄𝑠 =  𝛽0 +  𝛽1𝑃 +  𝛽2𝑇 +  𝑒2 

𝑄𝑑 = 𝑄𝑠 

This time it is not simple to identify the endogenous variable. We do that with the help of 

market equilibrium analysis 

• Use equilibrium condition 𝑄𝑑 = 𝑄𝑠 

• Remember that in the market model we solve for price and quantity 

Endogenous variables are Q and P and Exogenous variables are I and T 

To solve, we use the equilibrium condition  𝑄𝑑 = 𝑄𝑠 

So 

𝜶𝟎 +  𝜶𝟏𝑷 +  𝜶𝟐𝑰 +  𝒆𝟏 =  𝜷𝟎 +  𝜷𝟏𝑷 +  𝜷𝟐𝑻 +  𝒆𝟐 

Now solve for the endogenous variable P 

𝑷 =  
(𝜷𝟎 − 𝜶𝟎)
(𝜶𝟏 − 𝜷𝟏)

+  
𝜷𝟐

(𝜶𝟏 − 𝜷𝟏)
𝑻 −  

𝜶𝟐
(𝜶𝟏 − 𝜷𝟏)

𝑰 +  
(𝒆𝟐 −  𝒆𝟏)
(𝜶𝟏 − 𝜷𝟏)

 

Labeling 

𝑃 =  𝜋10 +  𝜋11𝑇 +  𝜋12𝐼 +  𝑣1 

𝑃 =  𝜋10 +  𝜋11𝑇 +  𝜋12𝐼 +  𝑣1 

Substituting in the demand equation 

𝑸 =  𝜶𝟎 +  𝜶𝟏(𝜋10 +  𝜋11𝑇 +  𝜋12𝐼 +  𝑣1) +  𝜶𝟐𝑰 +  𝒆𝟏 

Or 

= �𝜶𝟎 +  𝜶𝟏𝝅𝟏𝟎� +  𝜶𝟏𝝅𝟏𝟏𝑻 + (𝜶𝟏𝝅𝟏𝟐 +  𝜶𝟐)𝑰 + (𝒆𝟏 +  𝜶𝟏𝒗𝟏 ) 

Labeling, we get 



Business Econometrics by Dr Sayyid Salman Rizavi 
 

259 
 

𝑄 = 𝝅20 +  𝝅21𝑇 + 𝝅22𝐼 +  𝑣2 

Now we have both reduced forms 

𝑃 =  𝜋10 +  𝜋11𝑇 +  𝜋12𝐼 +  𝑣1 

𝑄 = 𝜋20 +  𝜋21𝑇 + 𝜋22𝐼 +  𝑣2 

Where    𝜋10 = (𝛽0−𝛼0)
(𝛼1−𝛽1)

,  𝜋11 = 𝛽2
(𝛼1−𝛽1)

,   𝜋12 = − 𝛼2
(𝛼1−𝛽1)

 

And 𝜋20 = 𝛼0 +  𝛼1𝜋10,        𝜋21 = 𝛼1𝜋11, 

𝜋22 = 𝛼1𝜋12 +  𝛼2 

All structural parameters may be expressed in terms of reduced form coefficients (solve to get 

the following) 

𝛽1 =
𝜋22
𝜋12

,𝛽0 = 𝜋20 −
𝜋22
𝜋12

𝜋10,𝛽2 = 𝜋21 −
𝜋22
𝜋12

𝜋11 

𝛼1 =
𝜋21
𝜋11

,𝛼2 = 𝜋22 −
𝜋21
𝜋11

𝜋12,𝛼0 = 𝜋20 −
𝜋21
𝜋11

𝜋10 

Hence both equations are exactly identified 

Example: under-identified equation 

Now let us see a model with one under-identified equation. Consider the model 

𝑌1 = 𝛼0 + 𝛼1𝑌2 + 𝛼2𝑋1 + 𝑒1 

𝑌2 =  𝛽0 + 𝛽1𝑌1 + 𝑒2 

Exogenous variables: 𝑋1; Endogenous variables: 𝑌1and 𝑌2 

Substituting value of 𝑌2 in equation 1 

𝒀𝟏 =
(𝜶0 +  𝜶𝟏𝜷0)
(𝟏 − 𝜶𝟏𝜷𝟏)

+
𝜶𝟐

(𝟏 − 𝜶𝟏𝜷𝟏)
𝑿𝟏 +

(𝜶𝟏𝒆𝟐 + 𝒆𝟏)
(𝟏 − 𝜶𝟏𝜷𝟏)

 

Labeling 

𝒀𝟏 =  𝝅𝟏𝟎 + 𝝅𝟏𝟏𝑿𝟏 + 𝑽𝟏 

𝝅𝟏𝟎= (𝜶𝟎+ 𝜶𝟏𝜷𝟎)
(𝟏−𝜶𝟏𝜷𝟏)

 ,   𝝅𝟏𝟏 = 𝜶𝟐
(𝟏−𝜶𝟏𝜷𝟏)

 

Substituting  reduced form of 𝑌1 in equation 2 

𝒀𝟐 =  𝜷0 + 𝜷𝟏(𝝅𝟏𝟎 + 𝝅𝟏𝟏𝑿𝟏 + 𝑽𝟏) + 𝒆𝟐 
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Or 𝒀𝟐 = (𝜷0 + 𝜷𝟏𝝅𝟏𝟎) + 𝜷𝟏𝝅𝟏𝟏𝑿𝟏 + (𝜷𝟏𝑽𝟏 + 𝒆𝟐) 

Labeling 

𝒀𝟐 = 𝝅𝟐𝟎 + 𝝅𝟐𝟏𝑿𝟏 + 𝑽𝟐 

𝝅𝟐𝟎= 𝜷0 + 𝜷𝟏𝝅𝟏𝟎 

𝝅𝟐𝟏 = 𝜷𝟏𝝅𝟏𝟏 

• We can solve for 𝜷𝟏 and 𝜷𝟎 but not for 𝛼𝑖 so only equation 2 is exactly identified. 

Equation 1 is unidentified. 

• The parameters of an unidentified equation have no interpretation, because you do not 

have enough information to obtain meaningful estimates 

 

Example: One over identified equation 

A model with one over identified equation 

𝑌1 = 𝛼0 + 𝛼1𝑌2 + 𝑒1 

𝑌2 = 𝛽0 + 𝛽1𝑌1 + 𝛽2𝑋1 + 𝛽3𝑋2 + 𝑒2 

 

Substituting the first equation in second and rearranging, 

𝑌2 =
𝛽0 + 𝛽1𝛼0
1 − 𝛼1𝛽1

+
𝛽2

1 − 𝛼1𝛽1
𝑋1 +

𝛽3
1 − 𝛼1𝛽1

𝑋2 + 𝛽1𝑒1 + 𝑒2 

Labeling, we get reduced form for 𝑌2 

𝑌2 = 𝜋20 + 𝜋21𝑋1 + 𝜋22𝑋2 + 𝑣2 

where 

𝜋20 =
𝛽0 + 𝛽1𝛼0
1 − 𝛼1𝛽1

 

𝜋21 =
𝛽2

1 − 𝛼1𝛽1
 

𝜋22 =
𝛽3

1 − 𝛼1𝛽1
 

Substituting the reduced form for 𝑌2 in the first structural equation 
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𝑌1 = 𝛼0 + 𝛼1(𝜋20 + 𝜋21𝑋1 + 𝜋22𝑋2 + 𝑣2) + 𝑒1 

𝑌1 = 𝛼0 + 𝛼1𝜋20 + 𝛼1𝜋21𝑋1 + 𝛼1𝜋22𝑋2 + 𝛼1𝑣2 + 𝑒1 

𝑌1 = 𝜋10 + 𝜋11𝑋1 + 𝜋12𝑋2 + 𝑒1 

Where 

𝜋10 = 𝛼0 + 𝛼1𝜋20 

𝜋11 = 𝛼1𝜋21 

𝜋12 = 𝛼1𝜋22 

This means that we can find or express 𝛼1 in terms of reduced from coefficients in two ways, as 

follows: 

𝛼1 =
𝜋11
𝜋21

 

And in another way as, 

𝛼1 =
𝜋12
𝜋22

 

Hence equation 1 is over-identified. 

Equation 2 is under-identified. 

 

Order Condition for Identification status 

We can know the identification status  by applying order condition without solving or using 

reduced forms. We compare two parameters (call them 𝑃1and 𝑃2). 

• 𝑃1: Number of exogenous variables excluded from  the equation 

(number of exogenous variables in the model –  number of exogenous variables in the 

equation) 

• 𝑃2: Number of endogenous variable in the model minus 1 

If 𝑃1< 𝑃2, the equation is under-identified 

If 𝑃1= 𝑃2, the equation is exactly identified 

If 𝑃1> 𝑃2, the equation is over-identified 
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• If the equation is under-identified, we cannot find its parameters 

• If the equation is exactly identified, we use ILS 

• If the equation is over-identified, we may use 2SLS 

 

Example: 

𝑌1 = 𝛼0 + 𝛼1𝑌2 + 𝛼2𝑋1 + 𝑒1 

𝑌2 = 𝛽0+𝛽1𝑌1 + 𝛽2𝑋2 + 𝑒2 

Identification status of equation 1 

𝑃1 = 1 (𝑋2 is the only exog. variable excluded from equation 1) 

𝑃2 = 2 − 1 = 1 (Y1 and Y2 are two endogenous variables) 

𝑃1 = 𝑃2 So equation 1 is exactly identified (apply ILS) 

Identification status of equation 2 

𝑃1 = 1 (𝑋1 is the only  exog. variable excluded from equation 2) 

𝑃2 = 2 − 1 = 1 (Y1 and Y2 are two endogenous variables) 

𝑃1 = 𝑃2 So equation 1 is exactly identified (apply ILS) 

 

Example: 

𝑄𝑑  =  𝛼0 +  𝛼1𝑃 +  𝛼2𝐼 +  𝑒1 

𝑄𝑠 =  𝛽0 +  𝛽1𝑃 +  𝛽2𝑇 +  𝑒2 

𝑄𝑑 = 𝑄𝑠 

Identification status of equation 1 

𝑃1 = 1 (𝑇 is the only exog. variable excluded from equation 1) 

𝑃2 = 2 − 1 = 1 (𝑄 and 𝑃 are two endogenous variables) 

𝑃1 = 𝑃2 So equation 1 is exactly identified (apply ILS) 

Identification status of equation 2 
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𝑃1 = 1 (𝐼 is the only exog. variable excluded from equation 2) 

𝑃2 = 2 − 1 = 1 (𝑄 and 𝑃 are two endogenous variables) 

𝑃1 = 𝑃2 So equation 1 is exactly identified (apply ILS) 

 

Example: 

𝑌1 = 𝛼0 + 𝛼1𝑌2 + 𝛼2𝑋1 + 𝑒1 

𝑌2 =  𝛽0 + 𝛽1𝑌1 + 𝑒2 

Identification status of equation 1 

𝑃1 = 0 (𝑁𝑜 𝑒𝑥𝑜𝑔𝑒𝑛𝑜𝑢𝑠 variable is excluded from equation 1) 

𝑃2 = 2 − 1 = 1 (Y1 and Y2 are two endogenous variables) 

𝑃1 < 𝑃2 So equation 1 is under- identified (no method can be applied) 

Identification status of equation 2 

𝑃1 = 1 (𝑋1 is the only  exog. variable excluded from equation 2) 

𝑃2 = 2 − 1 = 1 (Y1 and Y2 are two endogenous variables) 

𝑃1 = 𝑃2 So equation 1 is exactly-identified (apply  ILS) 

Example: 

𝑌1 = 𝛼0 + 𝛼1𝑌2 + 𝑒1 

𝑌2 = 𝛽0 + 𝛽1𝑌1 + 𝛽2𝑋1 + 𝛽3𝑋2 + 𝑒2 

Identification status of equation 1 

𝑃1 = 2 (𝑁𝑜.  𝑜𝑓 𝑒𝑥𝑜𝑔𝑒𝑛𝑜𝑢𝑠 variable  excluded from equation 1) 

𝑃2 = 2 − 1 = 1 (Y1 and Y2 are two endogenous variables) 

𝑃1 > 𝑃2 So equation 1 is over- identified (apply 2SLS) 

Identification status of equation 2 

𝑃1 = 0 (𝑛𝑜 𝑒𝑥𝑜𝑔.  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑 from equation 2) 

𝑃2 = 2 − 1 = 1 (Y1 and Y2 are two endogenous variables) 
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𝑃1 < 𝑃2 So equation 1 is under-identified (no method can be applied) 

Example: 

𝑌1 = 𝛼0 + 𝛼1𝑌2 + 𝛼2𝑌3 + +𝛽2𝑋1 + 𝑒1 

𝑌2 = 𝛽0 + 𝛽1𝑌1 + 𝛽2𝑌3 + 𝛽3𝑋2 + 𝑒2 

𝑌3 = 𝛾0 + 𝛾1𝑌1 + 𝛾2𝑌2 + 𝛾3𝑋3 + 𝑒3 

Identification status of equation 1: 

𝑃1 = 2 (two exogenous variables are excluded from equation 1, one is found in equation 2 and 

the other in equation 3) 

𝑃2 = 3 − 1 = 2 (Y1, Y2  and Y3 are three endogenous variables) 

𝑃1 = 𝑃2 So equation 1 is exactly identified (apply ILS) 

Identification status of equation 2 & 3: 

Applying similar process, we can find that both equation 2 and 3 are exactly identified and we 

can apply ILS to find the parameters. 
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Lecture 32 
Indirect Least Square (ILS) 

Indirect least square may be applied when an equation is exactly identified. ILS will provide 

consistent estimates of the structural parameters. Applying OLS to individual equation of a 

simultaneous equation model does not provide consistent results (simultaneity bias). 

STEPS 

• Apply order condition 

 

• Find the reduced from equations 

• Express the structural parameters in terms of reduced form coefficients 

• Estimate the reduced form coefficients by OLS 

• Calculate the structural parameters 

Example: 

Consider: 

𝑌1 = 𝛼0 + 𝛼1𝑌2 + 𝛼2𝑋1 + 𝑒1 

𝑌2 = 𝛽0+𝛽1𝑌1 + 𝛽2𝑋2 + 𝑒2 

Applying order condition shows that both equations are exactly identified 

Reduced form equations are 

𝑌1 = 𝜋10 + 𝜋11𝑋1 + 𝜋12𝑋2 + 𝑢1 

𝑌2 = 𝜋20 + 𝜋21𝑋1 + 𝜋22𝑋2 + 𝑢1 

Expressing the structural parameters in terms of reduced form coefficients : 

𝛽1 =
𝜋21
𝜋11

,    𝛽0 = 𝜋20 −
𝜋21
𝜋11

𝜋10 

𝑎𝑛𝑑  𝛽2 = 𝜋22 −
𝜋21
𝜋11

𝜋12 

and 

𝛼1 =
𝜋12
𝜋22

,    𝛼0 = 𝜋10 −
𝜋12
𝜋22

𝜋20 
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𝑎𝑛𝑑  𝛼2 = 𝜋11 −
𝜋12
𝜋22

𝜋21 

Now consider the data (ILS.xlsx) 

Y1 Y2 X1 X2 
25 0.8 10 12 
25 0.9 8 11 
27 0.8 8 12 
29 1.2 7 11 
32 1.2 6 9 
32 1.6 3 8 
33 1.9 4 8 
36 2.1 5 7 
40 2 4 5 
49 2 2 5 

 

The OLS estimation of the reduced from equations are 

Y1=54.96 - 0.245 X1 - 2.359 X2 And  Y2=3.011 - 0.039 X1 - 0.152 X2 

Comparing the results 

𝑌1 = 𝛼0 + 𝛼1𝑌2 + 𝛼2𝑋1 + 𝑒1 

Y1=54.96 - 0.245 X1 - 2.359 X2 

𝑌2 = 𝛽0+𝛽1𝑌1 + 𝛽2𝑋2 + 𝑒2 

Y2=3.011 - 0.039 X1 - 0.152 X2 

 

π
10

 π
11

 π
12

 

54.96086 -0.24518 -2.35947 

π
20

 π
21

 π
22

 

3.010546 -0.03949 -0.15175 

 

Using these estimations, we can compute the structural parameters indirectly. 
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Indirect estimation using the expression of structural parameters in terms of reduced form 

coefficients gives the following results. 

α
0-ILS

 α
1-ILS

 α
2-ILS

 

8.152606 15.54809 0.368888 

β
0-ILS

 β
1-ILS

 β
2-ILS

 

-5.8429 0.161086 0.228326 

 

The estimated equations can thus be written as: 

𝑌1 = 8.15 + 15.55 𝑌2 + 0.369 𝑋1 

𝑌2 = −5.84 + 0.161 𝑌1 + 0.228 𝑋2 

If we would have estimated the structural equations individually by OLS we would have got 

different and inconsistent results 

 

Example: 

Consider the demand and supply equations: 

𝑄𝑑  =  𝛼0 +  𝛼1𝑃 +  𝛼2𝐼 +  𝑒1 

𝑄𝑠 =  𝛽0 +  𝛽1𝑃 +  𝛽2𝑇 +  𝑒2 

𝑄𝑑 = 𝑄𝑠 

Applying order condition shows that both equations are exactly identified 

Reduced form equations are 

𝑃 =  𝜋10 +  𝜋11𝑇 +  𝜋12𝐼 +  𝑣1 

𝑄 = 𝜋20 +  𝜋21𝑇 + 𝜋22𝐼 +  𝑣2 

The structural parameters expressed in terms of the reduced from coefficients as: 

𝛽1 =
𝜋22
𝜋12

,𝛽0 = 𝜋20 −
𝜋22
𝜋12

𝜋10,𝛽2 = 𝜋21 −
𝜋22
𝜋12

𝜋11 

𝛼1 =
𝜋21
𝜋11

,𝛼2 = 𝜋22 −
𝜋21
𝜋11

𝜋12,𝛼0 = 𝜋20 −
𝜋21
𝜋11

𝜋10 
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Now consider the data (ILS.xlsx) 

Quantity Price level of 

 

level of technology 

 Q P I T 

5 3 5 0.2 

6 5 10 0.5 

7 2 6 0.5 

4 6 7 0.2 

6 10 15 0.2 

9 5 8 0.5 

11 6 10 0.9 

7 6 8 0.5 

6 12 12 0.2 

12 12 16 0.9 

 

The OLS estimation of the reduced from equations are 

𝑃 = −0.82 − 2.62 𝑇 +  0.9 𝐼 

𝑄 =  2.12 +  8.2 𝑇 +  0.15 𝐼 

Comparing the results 

𝑃 =  𝜋10 +  𝜋11𝑇 +  𝜋12𝐼 +  𝑣1 

𝑃 = −0.82 − 2.62 𝑇 +  0.9 𝐼 

𝑄 = 𝜋20 +  𝜋21𝑇 + 𝜋22𝐼 +  𝑣2 

𝑄 =  2.12 +  8.2 𝑇 +  0.15 𝐼 

π10 π11 π12 

-0.82 -2.62 0.9 

π20 π21 π22 

2.12 8.2 0.15 

Using these estimations, we can compute the structural parameters indirectly 
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Indirect estimation using the expression of structural parameters in terms of reduced form 

coefficients gives the following results 

α0-ILS α1-ILS α2-ILS 

-0.45087 -3.12665 2.958705 

β0-ILS β1-ILS β2-ILS 

2.250948 0.161495 8.623996 

 

With these ILS estimations, the estimated equations can be written as 

𝑄𝑑  = −0.45 − 3.13 𝑃 + 2.96 𝐼 

𝑄𝑠 = 2.25 + 0.16 𝑃 + 8.62 𝑇 

If we would have estimated the structural equations individually by OLS we would have got 

different and inconsistent results 

 

ILS using Stata 

• reg3 can be used.  reg3 is a command for 3SLS (option 2sls can be used) 

• For exactly Identified equations: 2SLS Results identical to ILS 

• Example II can be done as follows: 

reg3 q p i, exog(i t) endog (q p) 2sls 

and 

reg3 q p t, exog(i t) endog (q p) 2sls 

From the Interface 

𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 → 𝐿𝑖𝑛𝑒𝑎𝑟 𝑀𝑜𝑑𝑒𝑙𝑠 →  𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙𝑠 →  𝑡ℎ𝑟𝑒𝑒 𝑠𝑡𝑎𝑔𝑒 𝑙𝑒𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒 

In a two equation system, at least one variable must be excluded from an equation to make it 

identified. 

To identify the demand equation Technology must appear in the supply equation and 

Technology must NOT appear in the demand equation. 
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Understanding Identification: Exclusion Restriction 

Consider two points on the same demand curve. Two points on the demand curve show 

different supply curves. Supply curve shifts through ‘shift factors’ or ‘supply shifters’. 

Technology is a supply shifter. 

 

 

The two points on the same demand curve. It must not appear in the demand equation because 

if it is then it will shift the demand as well. To have two points on the same demand curve, we 

need an exogenous variable that does not shift the demand curve but only the supply curve. 

Now consider two points on the same supply curve. Two points on the supply curve show 

different demand curves. Demand curve shifts through ‘shift factors’ or ‘demand shifters’. 

Income level is a demand shifter. 

 

To show both points (different demand curves) Income level must appear in the demand 

equation. It must not appear in the supply equation because if it is then it will shift the supply 
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as well. To have two points on the same supply curve, we need an exogenous variable that does 

not shift the supply curve but only the demand curve. 

Some notes and assumption on ILS 

We can directly write the reduced form equations without solving the model. We need to solve 

the model to derive the structural parameters from the reduced form coefficients. 2SLS also 

can be applied to exactly identified equations with the same results as ILS. ILS and 2SLS provide 

the same results when 2SLS is applied to a single equation.  ILS and 3SLS may provide the same 

results when applied to a complete system. (Park, Canadian Journal of Statistics  01/1974) 

Assumption of ILS: 

• Equations must be exactly identified 

• Error terms in all reduced from equations must satisfy all usual assumption of OLS 

estimation 

• No Multicollinearity in exogenous variables 

• Sample size not very small (ILS biased for small samples) 

 

  

http://www.researchgate.net/journal/1708-945X_Canadian_Journal_of_Statistics
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Lecture 33 
Two Stage Least Square 

We can use 2SLS to estimate the parameters of over-identified equations. 

Stage I: Derive or write the reduced forms for all endogenous variables on the RHS of the over-

identified equation and estimate them using OLS 

Stage II: find trend value of the above estimated reduced form equations and replace with the 

variables in the over-identified equation and estimate it using OLS 

Consider the model 

𝑌1 = 𝛼0 + 𝛼1𝑌2 + 𝑒1 

𝑌2 = 𝛽0+𝛽1𝑌1 + 𝛽2𝑋1 + 𝛽3𝑋2 + 𝑒2 

Stage I: First equation is over-identified (we will use order condition to verify). As 𝑌2 is the 

endogenous variable on the RHS of the first (over-identified) equation, we need to estimate 

the reduced form for 𝑌2 

Stage II: Replace 𝑌2 with 𝑌2� (from the reduced form) and estimate it using OLS 

Let us do it in detail 

𝑌1 = 𝛼0 + 𝛼1𝑌2 + 𝑒1 

𝑌2 = 𝛽0+𝛽1𝑌1 + 𝛽2𝑋1 + 𝛽3𝑋2 + 𝑒2 

Order Condition: Equation 1 

Number of exogenous variables excluded from the equation is 2 which is greater than the 

Number of endogenous variables in the model minus one (which gives 1) so equation 1 is over-

identified. ILS cannot be used. 

Stage 1 

• We need the reduced form for the endogenous variable on the RHS of equation 1 

• 𝑌2 is the variable 

Reduced form equations contain only exogenous variables and they contain all the exogenous 

variables of the model. 

𝑌2 = 𝜋10 + 𝜋11𝑋1 + 𝜋12𝑋2 + 𝑣1 
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For 2SLS We do not need to know what the πi are equivalent to. 

Now consider a small data set (2SLS.xlsx) to estimate 

𝑌2 = 𝜋10 + 𝜋11𝑋1 + 𝜋12𝑋2 + 𝑣1 

After estimating, we need to compute the trend values for 𝑌2 

Y1 Y2 X1 X2 

25 0.8 10 12 

25 0.9 8 11 

27 0.8 8 12 

29 1.2 7 11 

32 1.2 6 9 

32 1.6 3 8 

33 1.9 4 8 

36 2.1 5 7 

40 2 4 5 

49 2 2 5 

 

The estimates for  𝑌2 = 𝜋10 + 𝜋11𝑋1 + 𝜋12𝑋2 + 𝑣1 are  𝑌2 =  3.011 –  0.039 𝑋1 –  0.152 𝑋2 

Trend (Y2) 

0.794564 

1.025306 

0.873553 

1.0648 

1.407801 

1.678038 

1.638543 

1.750802 

2.093803 

2.172792 
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This gives the trend values. Stage I is complete now. 

In Stage II, we replace the variable Y2 in the original over-identified equation with the trend 

values from the reduced form of Y2 and run the regression. 

The original (over-identified) equation was 

𝑌1 = 𝛼0 + 𝛼1𝑌2 + 𝑒1 

After replacing Y2 with the estimated Y2, the equation becomes 

𝑌1 = 𝛼0 + 𝛼1𝑌2� + 𝑒1 

Estimating the following 

𝑌1 = 𝛼0 + 𝛼1𝑌2� + 𝑒1 

gives the following results 

𝑌1 =  12.81 +  13.785 𝑌2 

12.81 and 13.785 are the 2SLS estimates of 𝛼0−2𝑆𝐿𝑆 and 𝛼1−2𝑆𝐿𝑆. If we would have directly 

regressed 𝑌1R on 𝑌2R we would have got (not appropriate estimates). 16.03 and 11.6 as 𝛼0𝑂𝐿𝑆 

and 𝛼1𝑂𝐿𝑆. 

 

Example: 

Consider the model 

𝑄𝑑  =  𝛼0 +  𝛼1𝑃 +  𝑒1 

𝑄𝑠 =  𝛽0 +  𝛽1𝑃 + 𝛽2𝐶 + 𝛽3𝑇 +  𝑒2 

𝑄𝑑 = 𝑄𝑠 

Where 

𝑃 =  𝑃𝑟𝑖𝑐𝑒,  𝑄 = 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 (𝑑𝑒𝑚𝑎𝑛𝑑𝑒𝑑 𝑜𝑟 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑) 

𝐶 =  𝐶𝑜𝑠𝑡 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑇 =  𝑡ℎ𝑒 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦. 

• 2SLS is needed for the first equation 

• Stage I: First equation is over-identified. As 𝑃 is the endogenous variable on the RHS of 

the first (over-identified) equation, we need to estimate the reduced form for 𝑃 
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• Stage II: Replace 𝑃 with 𝑃�(from the reduced form) in the demand equation and estimate 

it using OLS 

 

Let us do it in detail 

𝑄𝑑  =  𝛼0 +  𝛼1𝑃 +  𝑒1 

𝑄𝑠 =  𝛽0 +  𝛽1𝑃 + 𝛽2𝐶 + 𝛽3𝑇 +  𝑒2 

𝑄𝑑 = 𝑄𝑠 

Order Condition: Demand equation 

Number of exogenous variables excluded from the equation is 2 which is greater than the 

Number of endogenous variables in the model minus one (which gives 1) so demand equation 

is over-identified. Here ILS cannot be used. 

 

Stage 1 

• We need the reduced form for the endogenous variable on the RHS of demand equation 

• Q and P are endogenous 

• C and T are exogenous variables 

• 𝑃 is the variable for which reduced form is needed 

Reduced form equations have the following properties 

• They contains only exogenous variables 

• They contains all the exogenous variables of the model 

So the reduced form for P can be written as 

𝑃 = 𝜋10 + 𝜋11𝐶 + 𝜋12𝑇 + 𝑣1 

For 2SLS we do not need to know what the πi are equivalent to 

Now consider a small data set (2SLS.xlsx) to estimate 

𝑃 = 𝜋10 + 𝜋11𝐶 + 𝜋12𝑇 + 𝑣1 

After estimating, we need to compute the trend values for 𝑃 
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Q P C T 

5 3 10 0.2 

6 5 10 0.5 

7 2 9 0.5 

4 6 12 0.2 

6 10 9 0.2 

9 5 8 0.5 

11 6 7 0.9 

7 6 9 0.5 

6 12 9 0.2 

12 12 12 0.9 

 

The estimates for 

𝑃 = 𝜋10 + 𝜋11𝐶 + 𝜋12𝑇 + 𝑣1 

are 

𝑃 =  0.868 +  0.548 𝐶 +  1.3683 𝑇 

This gives the trend values. Stage I is complete now. 

Trend (P) 

6.618038 

7.028532 

6.480933 

7.713237 

6.070439 

5.933333 

5.933059 

6.480933 

6.070439 

8.671056 
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In Stage II, we replace the variable P in the original over-identified equation with the trend 

values from the reduced form of P and run the regression. 

The original (over-identified) equation was 

𝑄𝑑  =  𝛼0 +  𝛼1𝑃 +  𝑒1 

After replacing P with the estimated P, the equation becomes 

𝑄 = 𝛼0 + 𝛼1𝑃� + 𝑒1 

Estimating the following 

𝑄 = 𝛼0 + 𝛼1𝑃� + 𝑒1 

gives the following results (parameters written for original equation) 

𝑄 = 4.1735 + 0.4667 𝑃 

4.1735 and 0.4667 are the 2SLS estimates of 𝛼0−2𝑆𝐿𝑆 and 𝛼1−2𝑆𝐿𝑆. If we would have directly 

regressed 𝑄 on 𝑃 we would have got (not appropriate estimates). 5.906 and 0.20799 as 𝛼0𝑂𝐿𝑆 

and 𝛼1𝑂𝐿𝑆 

 

Using Stata for Two Stage Least Square (2SLS) 

 

On the Menu: Statistics > Endogenous covariates > Three-stage least squares 

In the window, after providing required information, we need to check the option 2SLS. In the 

command window (for the model in the first example) type: 

𝑟𝑒𝑔3 (𝑦1 𝑦2) (𝑦2 𝑥1 𝑥2),  2𝑠𝑙𝑠 

That is, reg3 (first over-identified equation)(second reduced from equation), option-2SLS. 
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For example II 

In the command window (for the model in the first example) type: 

𝑟𝑒𝑔3 (𝑞 𝑝) (𝑝 𝑐 𝑡),  2𝑠𝑙𝑠 
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Using ivregress 

In some cases ivregress can be used but prefer reg3. 

For example I 

In the command window (for the model in the first example) type: 

ivregress 2sls y1 (y2= x1 x2) 

Ivregress 2sls dependent variable (instrumented variable=instruments) 

 

We can use the option ‘first’ to see the stage I results 

ivregress 2sls y1 (y2= x1 x2), first 

For example II 

In the command window (for the model in the first example) type: 

ivregress 2sls q  (p= c t) 

iIvregress 2sls dependent variable (instrumented variable=instruments) 



Business Econometrics by Dr Sayyid Salman Rizavi 
 

280 
 

 

We can use the option ‘first’ to see the stage I results: ivregress 2sls q  (p= c t), first 

 

  



Business Econometrics by Dr Sayyid Salman Rizavi 
 

281 
 

Lecture 34 
2SLS & 3SLS Models 

Why to use 2SLS? 

OLS has only one endogenous variable (dependent). When we have system of equations, we 

may have several endogenous variables. When a variable is endogenous, it may be correlated 

with the disturbance term (biased OLS). 2sls goal is to find a proxy of the endogenous variable 

that is not correlated to e. (like 𝑃�).  𝑃� should not be correlated to  e1. 

Testing Endogeneity: Durban and Wu-Hausman Tests 

After ivregress use the following post-estimation command: 

estat endogeneity 

 

As p-values are less than 5%, we can reject H0 of exogenous regressors and conclude that C and 

T can be used as endogenous variables. 

 

Proof: 2SLS == ILS for exactly identified equations 

consider the model 

𝑌1 = 𝛼0 + 𝛼1𝑌2 + 𝑒1 

𝑌2 = 𝛽0+𝛽1𝑌1 + 𝛽2𝑋1 + 𝑒2 

The reduced form equations are 

𝑌1 = 𝜋10 + 𝜋11𝑋1 + 𝑢1 

𝑌2 = 𝜋20 + 𝜋21𝑋1 + 𝑢2 

Where 

𝝅𝟏𝟏 = 𝜶𝟏𝜷𝟐
(𝟏−𝜶𝟏𝜷𝟏)

 ,       𝝅𝟐𝟏 = 𝜷𝟐
(𝟏−𝜶𝟏𝜷𝟏)
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𝜶𝟏𝑰𝑳𝑺 =
𝝅𝟏𝟏
𝝅𝟐𝟏

 

Applying ILS 

We estimate the two reduced forms by OLS 

𝑌1 = 𝜋10 + 𝜋11𝑋1 + 𝑢1 

𝑌2 = 𝜋20 + 𝜋21𝑋1 + 𝑢2 

Where 

𝝅𝟏𝟏𝑶𝑳𝑺 = ∑𝒙𝟏𝒚𝟏
∑𝒙𝟏

𝟐 
 ,       𝝅𝟐𝟏𝑶𝑳𝑺 = ∑𝒙𝟏𝒚𝟐

∑𝒙𝟏
𝟐 

 

𝜶𝟏𝑰𝑳𝑺 =
𝝅𝟏𝟏
𝝅𝟐𝟏

=
∑𝒙𝟏𝒚𝟏
∑𝒙𝟏𝒚𝟐

 

Applying 2LS 

We estimate 𝑌�2  and replace it in first equation 

𝐴𝑠 𝑌2 = 𝜋20 + 𝜋21𝑋1 + 𝑢2 

𝑌�2 = 𝜋�21𝑋1 

Replacing in the original equation 

𝑌1 = 𝛼0 + 𝛼1𝑌�2 + 𝑒1 

𝜶𝟏 𝟐𝑺𝑳𝑺 =
∑𝑌𝟏𝑌�2
∑𝑌�2𝟐  

=
∑𝑌𝟏𝜋�21𝑋1
∑(𝜋�21𝑋1)𝟐  

 

=
𝜋�21 ∑𝑋1𝑌𝟏

(𝜋�21)2 ∑(𝑋1)𝟐  
 

=
𝜋�21 ∑𝑋1𝑌𝟏

(𝜋�21)2 ∑(𝑋1)𝟐  
 

=
∑𝑋1𝑌𝟏

𝜋�21 ∑(𝑋1)𝟐  
=
∑(𝑋1)𝟐

∑𝑋1𝑌𝟐

∑𝑋1𝑌𝟏
∑(𝑋1)𝟐  

 

𝜶𝟏 𝟐𝑺𝑳𝑺 =
∑𝑋1𝑌𝟏
∑𝑋1𝑌𝟐

= 𝜶𝟏 𝑰𝑳𝑺 
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Numerical Example 

Consider the model 

𝑌1 = 𝛼0 + 𝛼1𝑌2 + 𝑒1 

𝑌2 = 𝛽0+𝛽1𝑌1 + 𝛽2𝑋1 + 𝑒2 

The reduced form equations are 

𝑌1 = 𝜋10 + 𝜋11𝑋1 + 𝑢1 

𝑌2 = 𝜋20 + 𝜋21𝑋1 + 𝑢2 

We can estimate the above equations using data in ILS-2SLS.xlsx 

Y1 Y2 X1 

25 0.8 10 

25 0.9 8 

27 0.8 8 

29 1.2 7 

32 1.2 6 

32 1.6 3 

33 1.9 4 

36 2.1 5 

40 2 4 

49 2 2 

 

Here 𝝅𝟏𝟏 = 𝜶𝟏𝜷𝟐
(𝟏−𝜶𝟏𝜷𝟏)

 ,       𝝅𝟐𝟏 = 𝜷𝟐
(𝟏−𝜶𝟏𝜷𝟏)

 

Using slope function in Excel 

𝝅𝟏𝟏 = −𝟐.𝟒𝟓𝟒𝟑𝟗 

𝝅𝟏𝟏 = −𝟎.𝟏𝟖𝟏𝟓𝟖 

𝜶𝟏𝑰𝑳𝑺 =
𝝅𝟏𝟏
𝝅𝟐𝟏

= 𝟏𝟑.𝟓𝟏𝟔𝟓𝟗 

 

Now 2SLS: 
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Y2 hat 

0.669191 

1.032358 

1.032358 

1.213941 

1.395525 

1.940275 

1.758692 

1.577108 

1.758692 

2.121859 

 

Stage I: Y2 on Xi gives Y2hat 

Stage II: replace y2hat in first equation 

Estimate y1 on y2 haat 

𝜶𝟏𝟐𝑳𝑺 = 𝟏𝟑.𝟓𝟏𝟔𝟓𝟗 = 𝜶𝟏𝑰𝑳𝑺 

Hence ILS and 2SLS provide identical results if applied to exactly identified equations. 

 

Three Stage Least Square 

Background 

• OLS: inconsistent for systems with simultaneous equations 

• 2SLS: ‘Cleans’ the endogenous regressors 

• I: regress endogenous variables against all predetermined variables of the 

system (reduced form). This gives ‘theoretical values’ 
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• II: Use OLS for theoretical values replacing the original values 

In 2SLS 

• Endogenous variable may be related to error term of another equation. 

Possible Problem with 2SLS 

• Focus on single equation in the system 

• Correlations between error terms of various equations is ignored 

• This may give inefficient estimates 

Solution:  

Use Three Stage Least Square (Zellner & Theil (1962)) 

• After 2SLS, we add a third stage to account for correlations of error terms. 

• 3SLS uses the results of 2SLS to estimate ‘ALL’ coefficients of the system simultaneously 

• 3SLS is more efficient as compared to 2SLS 

• 3SLS is better when correlation of error terms is not small 

 

3SLS using Stata 

Syntax is reg3 (depvar1 varlist1) (depvar2 varlist2) ...…(depvarN varlistN) [if] [in] [weight] 

Menu: Statistics > Endogenous Covariates > Three Stage Least Square 

EXAMPLE: 

webuse klein 

describe 

http://en.wikipedia.org/wiki/Simultaneous_equations_model
http://en.wikipedia.org/wiki/Simultaneous_equations_model
http://en.wikipedia.org/wiki/Simultaneous_equations_model
http://en.wikipedia.org/wiki/Simultaneous_equations_model
http://en.wikipedia.org/wiki/Simultaneous_equations_model
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EQ1: consump wagepriv wagegovt 

EQ2: wagepriv consump govt capital1 
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Select independent variable: 
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Similarly now click on equation 2 and select variables. We can use various options. Click OK 

 

Only important options of this stata procedure as an example 

noconst 

• omits constant term for an equation if specified in an equation 

• omits constant term from instrument list (stage I) if specified overall 

ireg3 

• iterates over the estimated disturbance covariance matrix and parameter 

estimates until the parameter estimates converge 

Sure 

• performs a seemingly unrelated regression estimation of the system -even if 

dependent variables from some equations appear as regressors in other 

equations. 

2sls 

• performs equation-by-equation two stage least squares on the full system of 

equations. 
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first 

• Requests display of first stage regression 

Corr (Correlations) 

• specifies the assumed form of the correlation structure of the equation 

disturbances; rarely requested 

small 

• Small sample statistics are also computed. 

3sls 

• Performs three stage least square; default 
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Lecture 35 
Panel Data Methods 

Types of Econometric Data 

Time Series Data: different points of time 

Cross Sectional Data: different entities 

Pooled Data: mixture of time series and cross sectional data; 

Panel /longitudinal Data/Repeated Cross Sections: type of panel data; same cross sectional 

entities over time 

 

Definition of Pooled Data: Randomly sampled cross sections of individuals at different points in 

time 

Example of Pooled Data 
Respondent Year Income (Rs.) Expenditure (Rs.) 
Ali 2012 12000 9500 
Arif 2012 15000 11500 
Sakina 2012 11500 9000 
Ali 2013 12500 10000 
Jameel 2013 11000 . 
Fatima 2013 14000 12500 
Baqir 2013 9500 8500 
Individuals may or may not be repeated 
Different number of observations in different time periods 
There may be missing value 

 

Examples of pooled data include Women’s Fertility over time, Population Survey, Labor Force 

Survey, Marketing Surveys, Consumer Surveys. 

Definition of Panel Data: Observe cross sections of the same individuals at different points in 

time 

Examples: 

• Panel Survey of Income Dynamics (PSID) 
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• British Household Panel Survey (BHPS) 

• US Time Use Surveys 

• French Time Use Surveys 

• German Socio-Economic Panel 

• National Longitudinal Surveys (NLS) 

Panel data is also a pooled data set. All pooled Data should not be called panels 

Panel Dataset 

Country Year Y X 

1 2012 6 9 

1 2012 3 8 

1 2012 5 11 

2 2013 9 12 

2 2013 5 7 

2 2013 6 14 

3 2014 11 14 

3 2014 6 5 

3 2014 8 16 

Panel Data shows the behavior of individual entities across time 

The same set of individuals are normally observed 

There may be missing values 

  

Types: 

• Short and Long Panel 

• Short: Many entities, few time periods 
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• Balanced and Unbalanced Panel 

• Balanced: all entities have measurements in all time periods (no of 

observations is nT) 

• Fixed and Rotating Panel 

• Fixed: individuals remain the same 

Rotating panel may also be called Pseudo Panels 

• Compact Panel: consecutive time periods 

 

Panel Data benefits 

• More degree of freedom (nT) 

• Captures more complexities (blend both cross sectional and time series behavior) 

• Better forecasts 

• We can study heterogeneity and avoid omitted variable bias 

 

Panel Data: Drawbacks 

• Data collection issues 

• Sampling design and coverage 

• No response cases in micro panels 

• Cross country correlation in case of macro panels (e.g. location or spacial correlation, 

gravity models) 

• Attrition: dropping out of individuals leads to unbalance and/or uncompact panel 

Rationale for using Panel data 

• Unobserved Heterogeneity 

• Many individual characteristics are not observed; examples are:  Risk taking 

behavior, Ability 

They vary across individuals and are called unobserved heterogeneity. If they influence the 

response variable and are correlated to regressors, OLS results will be biased. 
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Examples of Unobserved Heterogeneity 

• Returns to Education 

 Ability is not observed 

 Returns may be influenced due to ability 

• Discrimination: Race, Gender, Religion 

• Unobserved characteristics of groups 

 Attitude to risk 

 Social behavior 

 Working habits 

• Macro Panels (e.g.country GDP) 

• Countries have some unobserved characteristics 

 

Pooled Regression 

If we ignore the panel structure of the model and just run a regression, it is called a pooled 

regression or regression on pooled data. We have to assume that the error is 

𝑒𝑖𝑡~𝑁(0,  𝜎2) 

which may not be the case. We can pool the data with or without constraints on the 

disturbance term. We can use the Chow test (discussed with stata) 

Least Square Dummy Variable Model 

Dummy Variables can be used for different individual or time entities or both. Regression could 

be run using the dummy variables on the RHS of the regression equation. We can capture 

different intercepts for different groups. Problems include lack of degree of freedom or dummy 

variable trap. 
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Error component: one way and two way 

Consider the model with 𝑒𝑖𝑡 =  𝜇𝑖 +  𝑢𝑖𝑡 

Fixed Effect: when we assume 𝜇𝑖 to be constant (for one individual, different for different 

individuals) 

Random Effect: when we assume the 𝜇𝑖 is drawn independently from some probability 

distribution 
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Lecture 36 
Panel Data Models-II 

Fixed Effect Model 

Consider the model 

𝒀𝒊𝒕 = 𝜷𝟎 + 𝜷𝟏𝑿𝟏𝒊𝒕 + 𝜷𝟐𝑿𝟐𝒊𝒕 + 𝒆𝒊𝒕 

with 𝑒𝑖𝑡 =  𝜇𝑖 +  𝑢𝑖𝑡 

Then 

𝒀𝒊𝒕 = 𝜷𝟎 + 𝜷𝟏𝑿𝟏𝒊𝒕 + 𝜷𝟐𝑿𝟐𝒊𝒕 + 𝜇𝑖 +  𝑢𝑖𝑡 

so 

𝒀𝒊𝒕 = (𝜷𝟎 + 𝜇𝑖) + 𝜷𝟏𝑿𝟏𝒊𝒕 + 𝜷𝟐𝑿𝟐𝒊𝒕 +  𝑢𝑖𝑡 

• 𝜇𝑖 is now a part of constant term but different for different individuals 

• Individuals have different intercepts but common slope 

 

Above diagrams shows three different classes with three different intercepts but a common 

slope as is the concept in fixed effect model. 
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Possible regressions with panel data are: 

 

 

 

 

 

 

 

 

 

Fixed Effect Model Estimation: First Difference 

Eliminating unobserved heterogeneity by first differencing 

𝒀𝒊𝒕 = (𝜷𝟎 + 𝜇𝑖) + 𝜷𝟏𝑿𝟏𝒊𝒕 + 𝜷𝟐𝑿𝟐𝒊𝒕 +  𝑢𝑖𝑡 

With one time lag 

𝒀𝒊𝒕−𝟏 = (𝜷𝟎 + 𝜇𝑖) + 𝜷𝟏𝑿𝟏𝒊𝒕−𝟏 + 𝜷𝟐𝑿𝟐𝒊𝒕−𝟏 +  𝑢𝑖𝑡−1 

𝒀𝒊𝒕 − 𝒀𝒊𝒕−𝟏 = 𝜷𝟏(𝑿𝟏𝒊𝒕 − 𝑿𝟏𝒊𝒕−𝟏) + 𝜷𝟐(𝑿𝟐𝒊𝒕 − 𝑿𝟐𝒊𝒕−𝟏) + (𝑢𝑖𝑡 − 𝑢𝑖𝑡−1) 

∆𝒀𝒊𝒕 = 𝜷𝟏∆𝑿𝟏𝒊𝒕 + 𝜷𝟐∆𝑿𝟐𝒊𝒕 + ∆𝑢𝑖𝑡 

• Which can be generalized for more variables 

• Works fine for two time periods 

 

Fixed Effect Model Estimation: Deviation from means (alternative approach) 

We can use the deviations from means 

𝒀𝒊𝒕 = (𝜷𝟎 + 𝜇𝑖) + 𝜷𝟏𝑿𝟏𝒊𝒕 + 𝜷𝟐𝑿𝟐𝒊𝒕 +  𝑢𝑖𝑡 

Taking deviations from mean, intercept will be eliminated 

𝑌𝑖𝑡−1 − 𝑌𝚤.� = 𝛽1(𝑋1𝑖𝑡 − 𝑋1𝚤.����) + 𝛽2(𝑋2𝑖𝑡 − 𝑋2𝚤.�����) +  𝑢𝑖𝑡 
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Constant part is eliminated again. Deviations from mean for each individual, averaged across all 

time periods. Model can be estimated by OLS, LSDV etc. This is called ‘within’ estimator. This 

previous one is called ‘within’ estimator. The ‘between’ estimator can be found by using the 

individual averages. The ‘overall estimator’ is the weighted average of within and between 

estimators. 

 

Random Effect Model 

If correct weights are used, combination of fixed (within) and between effect estimator is called 

random effect estimator 

𝒀𝒊𝒕 = 𝜷𝟎 + 𝜷𝟏𝑿𝟏𝒊𝒕 + 𝜷𝟐𝑿𝟐𝒊𝒕 + 𝒆𝒊𝒕 

𝑒𝑖𝑡 =  𝜇𝑖 +  𝑢𝑖𝑡 

when we assume the 𝜇𝑖 is drawn independently from some probability distribution we are 

dealing with the random effect model. When unobserved heterogeneity is uncorrelated with 

regressors, panel data techniques are not needed to produce a consistent estimator. We must 

correct for serial correlation between observations of the same entity (individual, firm, country 

etc.). If 𝐸�𝑋𝑖𝑡,  𝑒𝑖𝑡� ≠ 0,  Fixed Effect model may be used When 𝐸�𝑋𝑖𝑡,  𝑒𝑖𝑡� = 0, Random 

Effect model may be usedto overcome the serial correlation of panel data. 

To estimate the random effect model, we assume that 𝜇𝑖 is part of the error term 𝑒𝑖𝑡. We 

evaluate the structure of the error and apply appropriate Generalized Least Square (with 

correct weights) to calculate efficient estimators.  The following assumptions must hold: 

𝐸(𝜇𝑖) = 𝐸(𝑢𝑖𝑡) = 0 

𝐸�𝒖𝒊𝒕𝟐 � = 𝜎𝒖𝟐 & 𝐸�𝜇𝒊𝒕𝟐 � = 𝜎𝜇𝟐 

𝐸(𝑢𝑖𝑡 , 𝜇𝑖) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑡 

𝐸�𝑒𝑖𝑡𝟐� = 𝜎𝒖𝟐 + 𝜎𝜇𝟐 

𝐸(𝑋𝑘𝑖𝑡, 𝜇𝑖) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘,  𝑖 𝑎𝑛𝑑 𝑡 
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Panel Data Models using Stata 

All panel data command will start with xt. We need to set the panel data first: xtset. If needed, 

we need to reshape our panel. We will use a file panel1.dta available with lecture notes. The 

following example uses data from world Development Indicators.  Pakistan, India, SriLanka are 

included and data is from 1991 to 2012 which is a strongly balanced long panel. 

xtset command is used to set the data as panel data where both variables of cross sectional and 

time should be numeric. Country is a string variable, We need to create a numeric ID. We use 

the command 

encode country, generate(countryId) to create a numeric variable. 

 

xtsummarize provides summary statistics 
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Let us think that gdp is a function of gfcf and exports and imports. Look at the dependent 

variable by country. 

xtline gdp 

 

Use fixed-effects (FE) whenever you are only interested in analyzing the impact of variables that 

vary over time. FE explores the relationship between predictor and outcome variables within an 

entity (country, person, company, etc.). Each entity has its own individual characteristics that 

may or may not influence the predictor variables (for example being a male or female could 

influence the opinion toward certain issue or the political system of a particular country could 

have some effect on trade or GDP or the business practices of a company may influence its 

stock price). 

 

Simple OLS may provide results like this: 
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When using FE we assume that something within the individual may impact or bias the 

predictor or outcome variables and we need to control for this. This is the rationale behind the 

assumption of the correlation between entity’s error term and predictor variables. FE removes 

the effect of those time-invariant characteristics from the predictor variables so we can assess 

the predictors’ net effect. 

Least Square dummy variable model may provide the following result: 
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Another important assumption of the FE model is that those time-invariant characteristics are 

unique to the individual and should not be correlated with other individual characteristics. Each 

entity is different therefore the entity’s error term and the constant (which captures individual 

characteristics) should not be correlated with the others. If the error terms are correlated then 

FE is no suitable since inferences may not be correct and you need to model that relationship 

(probably using random-effects), this is the main rationale for the Hausman test (presented 

later on in this document). 

Fixed effect model may provide: 
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Random effect model 

 

𝒀𝒊𝒕 = 𝜷𝟎 + 𝜷𝟏𝑿𝟏𝒊𝒕 + 𝜷𝟐𝑿𝟐𝒊𝒕 + 𝒆𝒊𝒕 

Y = gdp,   X1 = gfcf,   X2 = exports 

𝑒𝑖𝑡 =  𝜇𝑖 +  𝑢𝑖𝑡 
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Fixed or Random? Hausman Test 

Perform the following: 

qui xtreg gdp gfcf exports, fe 

estimates store fixed 

qui xtreg gdp gfcf exports, re 

estimates store random 

hausman fixed random 

Rejecting H0 means that fixed effects should be used 
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Lecture 37 
Panel Data Methods & Post Estimation Tests 

For practice download the file nlswork from the web. Perform the following operations: 

webuse nlswork, clear 

the variables are shown in the variable window 
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Fixed Effect Estimation 
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Testing Time Fixed Effects 

 

 

We reject the null that all years coefficients are jointly equal to zero therefore time fixed effects 

are needed.  Time dummies can be used. 
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Testing for Fixed Effects: Hausman test 

xtreg ln_wage tenure age south union,fe 

estimates store fixed 

xtreg ln_wage tenure age south union,re 

estimates store random 

hausman fixed random 

 

Fixed effect model is better (H0 rejected) 

Testing for random Effects: LM test (Breusch and Pagan LM test for random effects) 

The LM test helps you decide between a random effects regression and a simple OLS 

regression. 

Null hypothesis: variances across entities is zero / No significant difference across units / No 

panel effect. 

Stata Command: 

xttest0 

Menu: 
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Statistics > Longitudinal/panel data > Linear models > Lagrange multiplier test for random 

effects 

 

Prerequisite 

• xtset 

• Random effect model must be run first 

Run the commands 

xtreg ln_wage tenure age south union,re 

xttest0 

 

No random effects exist, simple OLS can be run 

 

Breusch-Pagan LM test for cross-sectional correlation in fixed effects model 

(contemporaneous correlation / cross sectional dependence) 

• This is a tests for  cross-sectional independence in the residuals of a fixed effect 

regression model. 

• This is a problem in macro panels with long time series 

Null hypothesis: 
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• residuals across entities are not correlated 

Stata Command: 

xttset2 

Prerequisite 

xtset 

Fixed effect model must be run first. Macro panel problem may exist so we reduce the entities. 

xtreg ln_wage tenure age south union in 1/25,fe 

xttest2 

 

No correlations found (H0 accepted) 

 

Testing for Heteroskedasticity 

This calculates a modified Wald statistic for groupwise heteroskedasticity 

Null hypothesis: Homoskedasticity (constant variance) 

Stata Command:  xttest3 

Prerequisite 

xtset 

Fixed effect model must be run first 

xtreg ln_wage tenure age  south union, fe 

xttest3 
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Conclusion 

• Heteroskedasticity Exists 

• Use robust option with regression (both fixed and random) 

 

Testing for serial correlation: 

Wooldridge test for serial correlation in panel-data models 

This implements a test for serial correlation in the idiosyncratic errors of a linear panel-data 

model discussed by Wooldridge (2002) 

Null hypothesis: No Serial Correlation 

Stata Command:  xtserial depvar [varlist] [if exp] [in range] [, output] 

Prerequisite: xtset 

xtserial  ln_wage tenure age  south union 
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Conclusion: 

• Serial Correlation Exists 

• Use xtregar 

Remedy for Serial Correlation: xtregar 

xtregar fits regression models for panel data when the residual is first-order autoregressive. 

xtregar offers a within estimator for fixed-effects models and a GLS estimator for random-

effects models. 

Syntax: 

For Fixed-effects (FE) model 

xtregar depvar [indepvars] [if] [in] [weight] , fe [options] 

For GLS random-effects (RE) model 

xtregar depvar [indepvars] [if] [in] [, re options] 

Prerequisites: xtset 

As serial correlation exists in our example so we can use xtregar 

xtregar ln_wage tenure age south union, fe 
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Example of Panel Data 

Using the file grunfeld.dta from the web perform various steps to apply panel data models: 

See the following stat code (panelExample.do): 

set more off 

webuse grunfeld, clear 

xtset company year 

 

* run fixed effect model 

xtreg invest mvalue kstock, fe 
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To test time fixed effects: 

qui xtreg invest mvalue kstock i.year, fe 

testparm i.year 

 

H0: All year coefficients are zero 

As p-value is greater than 5% or even 10%, we can not reject H0 so we accept that all year 

coefficients are zero and there are no time-FEs 

 

To test for Random effects? 

qui xtreg invest mvalue kstock, re 

xttest0 
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As prob > chibar2, we reject H0 and conclude that panel effects exist 

 

Fixed of Random effects? 

xtreg invest mvalue kstock, fe 

estimates store fixed 

xtreg invest mvalue kstock, re 

estimates store random 

hausman fixed random 

 

Random effect model seems to be appropriate 
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Heteroskedasticity in FE 

qui xtreg invest mvalue kstock, fe 

xttest3 

 

It is Required to run FE model before xttest3 

H0: homoscedasticity; we reject H0 and conclude that there is Heteroskedasticity. Use robust 

option for both FE & RE models 

e.g. xtreg invest mvalue kstock, fe robust 

Test for serial correlation 

xtserial invest mvalue kstock 

 

• reject H0 , serial correlation exists 

• xtregar may be used 

Remedy for serial correlation 

xtregar invest mvalue kstock,fe 

xtregar invest mvalue kstock,re 
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Only the random effect model results are shown above 

Panel Data: both HSK and SC! 
xtreg invest mvalue kstock, fe cluster ( company) 
Use cluster with individual ID variable as input (cluster ( company) ) option with xtreg 

 

The resulting standard errors are completely robust to any kind of serial correlation and/or 

heteroskedasticity 
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Lecture 38 

Qualitative and limited dependent variable models-I 
(Categorical dependent variable models) 

 

Variables with category: 

• Variable that has categories 

• Normally qualitative in nature 

• binary, multivariate (ordinal, or nominal) 

Examples 

Gender, color of eyes, educational status, different outcomes of an event encoded in numbers 

are some examples. When dependent variable is categorical OLS is biased and inefficient. 

Logistic Regression 

A type of regression analysis used to predict the outcome of a categorical variable (binary or 

others). The dependent variable has a limited number of outcomes. The dependent variable is 

predicted by using a logistic function (e.g. logistic regression). Logistic regression does not make 

any assumptions of normality, linearity, and homogeneity of variance for the independent 

variables. The minimum number of cases per independent variable is 10. 

Logistic Function: 

𝐹(𝑡) =
𝑒𝑡

𝑒𝑡 + 1
=

1
1 + 𝑒−𝑡

 

Where t is a linear function of the explanatory variables. 

𝜋(𝑥) =
1

1 + 𝑒−(𝛽0+𝛽1𝑋)
 

Which can be interpreted as the probability of dependent variable equaling a ‘success’ or a 

‘case’ 

The logistic function is: 

𝑔(𝑥) = ln
𝜋(𝑥)

1 − 𝜋(𝑥) = 𝛽0 + 𝛽1𝑋 
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This is the log of odds 

 

𝑔(𝑥) = ln
𝜋(𝑥)

1 − 𝜋(𝑥) = 𝛽0 + 𝛽1𝑋 

As a latent variable model this has an equivalent formulation. Let 𝑌∗be a continuous latent 

variable (unobserved random variable) where 𝑌∗ = 𝛽1𝑋 +  ∈ 

Where ∈ ~𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(0,1) 

 

 

Odd Ratio: 

The logistic function is: 

𝑔(𝑥) = ln
𝜋(𝑥)

1 − 𝜋(𝑥) = 𝛽0 + 𝛽1𝑋 

This is the ln of odds 

Where odd ratio is defined as : ratio of probability of an event occurring to probability of an 

event not occurring 

Commands for logistic regression in Stata 

Binary logit: logit 

Ordered logit: ologit 

Multinomial logit: mlogit 

 

Syntax of the logit command is:  logit depvar [indepvars] [if] [in] [weight] [, options] 
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Menu:  Statistics > Binary outcomes > Logistic regression 

 

Consider the file logitProbit.dta 

Binary logistic regression 

 

Interpreting Results 

odds: odds mean ratio of favorable items to non-favorable items 

Interpretation: The log of odds changes by the amount of the coefficient for one unit increase 

in the independent variable. Prob > Chi2 = 0.0000: our model as a whole fits significantly better 

than an empty model . we see the coefficients, their standard errors, the z-statistic, associated 

p-values, and the 95% confidence interval of the coefficients.  For one unit increase in GAT 
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score, the log odds of getting CGPA > 3 in Masters increases by 0.1787 (similar for other 

coefficients). Gender is not significant 

Pseudo Rsquare 

As equivalent statistic to R-squared does not exist because OLS not apply, pseudo R-squares are 

used because they look like R-squared (0 to 1). Higher values indicating better model fit 

different pseudo R-squars can give different values 

To get odd ratios instead of log of odds 

 

 

Ordinal Logistic Regression 

Ordinal categorical dependent variable examples: 

• Encoding in age brackets 

• Educational Grades (enccoded numerically) 

• Income brackets encoded numerically 

• size  (small, medium, large or extra large) 

• decesion (unlikely, somewhat likely, or very likely) 

• Opinion ( strongly agree , agree -- - - - -  -) 

• The actual values are irrelevant 



Business Econometrics by Dr Sayyid Salman Rizavi 
 

322 
 

• Larger values are assumed to correspond to "higher" outcomes. 

In Stata Command Syntax:  ologit depvar [indepvars] [if] [in] [weight] [, options] 

Menu: 

Statistics > Ordinal outcomes > Ordered logistic regression 

Follow the example given below: 

 

 

 

Multinomial Logistic Regression 
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We use this model when no order to the categories of the outcome variable is found(i.e., the 

categories are nominal). 

Examples 

• Occupational choice (categories of job) 

• Choice of specialization in Degrees (Accounting, Finance, marketing etc) 

mlogit fits maximum-likelihood multinomial logit models, also known as polytomous logistic 

regression. 

In Stata: 

Menu: Statistics > Categorical outcomes > Multinomial logistic regression 

Command Syntax:   mlogit depvar [indepvars] [if] [in] [weight] [, options] 

Please follow the example given below: 
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The above is a result of using the mlogit command. 

Lecture 39 
Qualitative and limited dependent variable models-II 

(Categorical dependent variable models) 

Probit Regression 

A type of regression analysis used to predict the Probability of a categorical variable (binary or 

others).  Examples of categorical variables: as in logit. The dependent variable has a limited 

number of outcomes. The dependent variable is predicted by using a probit function. The 

minimum number of cases per independent variable is 10. 

Probit Function: 

Recall the standard normal distribution/ Z-scores 

Given any Z-score , ɸ(𝑍) is the cumulative normal distribution function 

For any given Z, ɸ(𝑍) ∈ [0,1] 
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𝑌 = ɸ(𝑿𝛽 + 𝜖) then ɸ−1(𝑌) = 𝑿𝛽 + 𝜖 

𝐹(𝑌) = ɸ−1(𝑌) is called the probit function 

Probit may be a short for ‘probability unit’ P(Y)=1 

𝑿𝛽 is the Z-value of a normal distribution. Higher the estimation value, more likely is the event 

to happen. A one unit change in the value of X bring 𝛽 change in the Z-score of Y. Estimated 

Curve in S-shaped. 

 

 

• Red dots are actual value of categorical variable (‘CGPA>3’ =1) 

• The curve shows the probit 

Example of binary probit 

Binary probit command in Stata: probit 

Sytax: probit depvar [indepvars] [if] [in] [weight] [, options] 

Menu: Statistics > Binary outcomes > Probit regression 
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Consider the file logitProbit.dta 

Run the Binary Probit regression 

 

Interpreting Results 

• Significance is almost as in logit 

• Model, as a whole is statistically significant (Pr > chi2) < 0.05 

• Coefficients: Change in Z-score or probit due to change in one unit of independent 

variable (they are less than one) 

Interpretation of the coefficients: 

• Not as in OLS 
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• Not slope coefficient or marginal effects 

• The increase in probability due to a one-unit increase in a given independent 

variable/predictor depends both on the values of the other predictors and the starting 

value of the given predictors (different for different rows of observation) 

• The predicted probability of CGPA>3 can be calculated as 

• 𝐹 (𝛽0 + 𝛽1𝐺𝐴𝑇 + 𝛽2𝐴𝐺𝐸 + 𝛽3𝐻𝑅𝑆) 

• Where 𝛽𝑖are the coefficients generated by the probit regression. 

• Effect of change in one variable on the probability of getting CGPA>3  depends on the 

current value of a variable under consideration and also on the GIVEN/CONSTANT 

values of the other variables 

Tests after probit (fitness, different pseudo R squares) 

If fitstat is not installed try ssc install fitstat 

 

Ordinal Probit Regression 

Ordinal categorical dependent variable examples: 

• Encoding in age brackets 

• Educational Grades (enccoded numerically) 

• Income brackets encoded numerically 

• size  (small, medium, large or extra large) 



Business Econometrics by Dr Sayyid Salman Rizavi 
 

328 
 

• decesion (unlikely, somewhat likely, or very likely) 

• Opinion ( strongly agree , agree -- - - - -  -) 

• The actual values are irrelevant 

• Larger values are assumed to correspond to "higher" outcomes. 

In Stata 

Menu: Statistics > Ordinal outcomes > Ordered probit regression 

Command Syntax:  oprobit depvar [indepvars] [if] [in] [weight] [, options] 

 

Magnitude of Coefficients differs from probit by a scale factor. Magnitude of Coefficients is not 

interpreted. The sign will matter. 

Multinomial Probit Regression 

No order to the categories of the outcome variable is found (i.e., the categories are nominal). 

Examples 

• Occupational choice (categories of job) 
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• Choice of specialization in Degrees (Accounting, Finance, marketing etc) 

mprobit fits maximum-likelihood multinomial probit models, also known as polytomous probit 

regression. 

 

In Stata: 

Menu:  Statistics > Categorical outcomes > Independent multinomial probit 

Command Syntax:   mprobit depvar [indepvars] [if] [in] [weight], [options] 

Follow the example below: 
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Lecture 40 
Qualitative and limited dependent variable models-III 

& 
Censored Regression Models (Tobit Model) 

Probability Vs. Odd Ratio 

The following table maps the odd ratio and probability concepts. 

Probability Odd Ratio Ln (odds) Odds 

0 0 - - 

1/5 1/4 Negative Against (1 to 4) 

1/4 1/3 Negative Against (1 to 3) 

1/3 1/2 Negative Against (1 to 2) 

1/2 1 Zero Even 

2/3 2 Positive Favor (2 to one) 

3/4 3 Positive Favor (3 to one) 

1 ∞ Positive/∞ - 

Range= 0 to 1 Range= 0 to ∞ -∞ to ∞  

 

Note that Probability ranges from 0 to 1 while Odds range from 0 to infinity and Log (odds) 

ranges from −∞ 𝑡𝑜 ∞. Also: 

𝑂𝑑𝑑 𝑟𝑎𝑡𝑖𝑜 =
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑥

1 − 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑥
 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑂𝑑𝑑 𝑅𝑎𝑡𝑖𝑜

1 + 𝑂𝑑𝑑 𝑟𝑎𝑡𝑖𝑜
 

Remember that the coefficients are the CHANGE in probability or odd ratios, not the probability 

or Odds. Above formula are not for the coefficients. 

 

 

Marginal Effects 
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For simple regression, slopes are the derivative of dependent variable w.r.t. independent 

variable. This is not the case in probit models where 

𝜕ℙ�𝑌𝑖 = 1�𝑋1𝑖 , ,  … … .𝑋𝑘𝑖;𝛽0,…..𝛽𝑘�
𝜕𝑋𝑘𝑖

= 𝛽𝑘ɸ (𝛽0 + �𝛽𝑘𝑋𝑘𝑖)
𝒌

𝟏

 

Here 𝜙(⋅) is the standard normal probability density function. 

The increase in probability due to a one-unit increase in a given independent variable/predictor 

depends both on the values of the other predictors and the starting value of the given 

predictors (different for different rows of observation). Effect of change in one variable on the 

probability of getting CGPA>3  depends on the current value of a variable under consideration 

and also on the GIVEN/CONSTANT values of the other variables 

Marginal Effects in Stata 

Open the file logitProbit.dta and run the following Probit regression  

probit cgpm3 gat age hrs gender 

margins, dydx(*) 

 

One unit increase in gat increases the probability of CGPA>3 by 0.0128985. 

Tests after logit/probit models 
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Likelihood ratio test 

This test is used both for logit and probit models. It estimates two models and compares them 

(e.g. empty vs full OR restricted model vs. unrestricted model). This statistic is distributed chi-

squared with degrees of freedom equal to the difference in the number of degrees of freedom 

between the two models. Significance means that the model improves. 

Open logitProbit.dta and run the following commands 

probit cgpm3 

estimates store m1 

probit cgpm3 gat age hrs gender 

estimates store m2 

lrtest m1 m2 

 

Here the last line gives the result above. As the p-value is less than 0.01, including all variable 

together improves the model. We can use this test for two models where the first one is nested 

in the second one. 

Wald Test 

Wald test estimates the lrtest but is better as we need to run only one model. It tests if the 

parameters of interest are jointly equal to zero. For the file logitProbit.dta, run the following 

(Other combination of variables may also be tested): 

probit cgpm3 gat age hrs 

test gat age hrs 
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The above result shows that H0 is rejected at 10%: all coefficients of variables (gat, age, hrs) are 

not jointly zero.  

 

Censored Data Regression Models: The Tobit Model 

OLS is inefficient when The dependent variable is incompletely observed or when the 

dependent variable is observed completely but the selected sample is not representative of the 

population. 

Truncated and Censored Data 

Truncated Data: observations on both dependent and independent variable are lost 

Example: small firms only included, low income respondents only etc. 

Censored Data: when observations on dependent variable only are lost (or limited) 

     Examples: Income top-coded to 50,000; time bottom-coded to 10 minutes chunks etc. 

Tobit Model: Structure 

Suppose 𝑦∗is a latent variable that is observed partially for values greater than 𝜃 

𝑦∗ = 𝑋𝑖𝛽 + 𝜖𝑖 

And  

𝜖𝑖~𝑁(0,  𝜎2) 

Then the observed 𝑦 is defined as 

𝑦 = �
𝑦∗ 𝑖𝑓𝑦∗ > 𝜃
𝜃𝑦 𝑖𝑓𝑦∗ ≤ 𝜃 
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As the data is usually censured at zero, the model becomes 

𝑦 = �𝑦
∗ 𝑖𝑓𝑦∗ > 0

0 𝑖𝑓𝑦∗ ≤ 0 

 

Examples where the Tobit model can be applied may include: 

• Time use surveys: 10 minutes time chunks 

• Glucometers to detect blood sugar give a reading Error or not more than a specific value 

(like, for example, 500 mg/dL) 

• GAT (Gen): students answering all 100 questions may have different IQ levels and/or 

aptitude. 

 

Tobit Model using Stata 

Tobit Model Stata Command: tobit 

Syntax:   tobit depvar [indepvars] [if] [in] [weight] , ll[(#)] ul[(#)] [options] 

Menu:  Statistics > Linear models and related > Censored regression > Tobit regression 

 

Open the file logitProbit.dta, use usual commands to know your data (sum, des, etc.) 
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Consider the variable ‘gat’. 

histogram gat 

 

Just for example, let us consider censoring data at different levels. 

First let us consider left censoring at 60. There were 40 observations with 10 with gat<60. Even 

after censoring there are 40! 
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Here lower/left censoring is used at 60 

We can also use both left and right censor. Even after censoring there are 40 observations! 

 

 Now let us look at various parts of the result using the following diagramatic representation. 
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Log likelihood for the fitted model; 
used for LR test  

P-value of Chi2, good fit, at least one of 
regression coefficients in non-zero 

McFadden Pseudo R-square 

Observation Summary shows how 
many values have been censored.  

The right censored 12 are 
considered as  having 75 marks 

Regression Coefficients: e.g. age, higher the age greater the gat score; one 
year of increase in age may increase the gat score by 3.2 on the average 

P-values show the significance of the 
coefficients 

estimated standard error of the 
regression.  Like the RMSE in OLS 
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Lecture 41 
Forecasting-I 

Meaning and Types of Forecasting 

• Variance of Unconditional and Conditional Forecasts  

• Forecasting Performance 

Meaning 

Prediction: inference from laws of nature 

Forecasting is more ‘probabilistic’  

Forecast is any statement about the future. Econometric forecast has some basis; A systematic 

procedure to predict future events.  

In Econometrics forecasting can be defined as “Predicting a known or unknown value of a 

dependent variable based on known or unknown values of the independent variables by using 

an econometric model. 

Fore – “in front” or “in advance” 

Cast – dice, lots, spells, horoscopes are all cast 

 

Good Forecasting requires that 

• There are some patterns or regularities or trends to be captured 

• These patterns or regularities or trends provide some information about the future 

• The econometric model used can capture the regular trends 

However 

• Irregular variations and shocks cannot be captured or predicted or forecasted. 

 

Methods of Forecasting 

• Guess using some rules of thumbs 

• Use leading indicators 
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• Extrapolation 

• Time series models 

• Econometric forecasting models  

Forecasting: Never 100% accurate 

There are things we know but we may not Incorporated in the model 

There are things we do not know which can be classified as 

• What we know that we do not know 

• What we do not know that we do not know 

Another problem is using static models for dynamic world. Data problem also may influence the 

quality of forecast. 

 

Types of Forecast 

 Ex Ante and Ex post forecast 

 

Mean Forecast and Individual Forecast 

• Individual Forecast: Forecasting the individual value of the dependent variable 

• Mean Forecast: Forecasting the expected value of the dependent variable  

Conditional and unconditional forecast 

• Unconditional Forecast: Forecasting the dependent variable when the values of 

explanatory variables are known. 

• Conditional Forecast: Forecasting dependent variable when the all values of explanatory 

variables are not known. 
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• Ex post forecasts are always unconditional 

• Ex Ante forecasts may or may not be unconditional 

𝑌𝑡 = 𝑓(𝑋𝑡−3,𝑋𝑡−4) 

Qualitative and Quantitative Forecast 

Qualitative Forecast is based on opinion, emotion, personal experience, surveys etc.  which is 

Subjective in nature while Quantitative Forecast: is based on Mathematical Models 

 

Examples of forecasts 

Qualitative Forecasts 
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Quantitative Forecast 

 

Patterns in Time Series Data 

Trend: Steady growth or decline over time in the long run. 

 Seasonal Variations: Variations in data normally in different parts of the year (short run) 

 Cyclical Variation: upward or downward movement in the data over the medium term. (e.g. 

Business Cycle) 

 Irregular or Random Variations or Shocks: Unpredictable variation without any pattern (e.g. 

due to war, natural disasters etc.) 

 

Time Series Models for forecasting 

a) Last Period: Last period value as a forecast 

b) Simple or Weighted Average: simple of weighted average (e.g. Arithmetic Mean) as a 

forecast 
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c) Simple or weighted Moving Averages: moving averages (e.g. three years, five years, four 

years centered etc.) 

d) Seasonal Indices: Uses seasonal variation or seasonal patterns existing in the data 

e) Exponential Smoothing: Weighted technique; more weight for recent observation 

f) Trends: Uses least square method to fit a regression line to forecast 

The examples for these models are given below. 

Examples of Forecasting Techniques 

Use data given in forecast.xlsx for the purpose of all examples. It is Demand Data (hypothetical)  

Year Quarter Time Q Demand Price 
2006 1 1 12 9.9 

 2 2 18 9.2 
 3 3 17 9.65 
 4 4 14 9.8 

2007 1 5 13 9.75 
 2 6 18 9.4 
 3 7 17 9.55 
 4 8 14 9.4 

Data continues till 2013 

with Quarterly Time series from 2006 to 2013 but We convert data to annual. 

year time Demand price 
(sums) 

price (average) 

2006 1 61 38.55 9.6375 
2007 2 62 38.1 9.525 
2008 3 66 38.8 9.7 
2009 4 68 38.5 9.625 
2010 5 74 38.2 9.55 
2011 6 74 38.9 9.725 
2012 7 83 37.45 9.3625 
2013 8 85 37.55 9.3875 

Reshaped / Transformed Data 

 

 

Last Period Method considers the value of the previous time period as a forecast for the 

current period. 
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Last Period Method 
 Description: We simply use the value of the last period as a forecast 

  
year time Demand Forecasted Demand(t-1) Remarks 

  
2006 1 61 - 

 
  

2007 2 62 61 previous value 

  
2008 3 66 62 

 
  

2009 4 68 66 
 

  
2010 5 74 68 

 
  

2011 6 74 74 
 

  
2012 7 83 74 

 
  

2013 8 85 83 
 

  
2014   Forecast 85 

 Simple Average Method uses the average of previous time periods as a forecast. Starting from 

the second period i.e. 2007, the first value is just the previous one. Next time the average of 

2006 and 2007 is used as a forecast for 2008. For 2009 the average of 2006 to 2008 is used and 

this continues in the same way. 

Simple Average Method 
 Description:the forecast for the next period is the average of the previous demands 

  
year time Demand Forecasted Demand Remarks 

  
2006 1 61 - 

 
  

2007 2 62 61 
 

  
2008 3 66 61.5 (61+62)/2 

  
2009 4 68 63 (61+62+66)/3 

  
2010 5 74 64.25 (61+62+66+68)/4 

  
2011 6 74 66.2 

 
  

2012 7 83 67.5 
 

  
2013 8 85 69.71428571 

 
  

2014   Forecast 71.625 
 Moving Average Method uses the moving average of previous (fixed e.g. 2) time periods.  For 

example in 2008 the average demand of 2006 and 2007 is used. The years change dynamically 

e.g. for 2009, the average demand of 2007 and 2008 is used as a forecast. 

Moving Average Method 
 Description:We use the moving average of the past (2 in this example) periods of time 

     
two years moving average 
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year time Demand Forecasted Demand Remarks 

  
2006 1 61 - 

 
  

2007 2 62 - 
 

  
2008 3 66 61.5 (61+62)/2 

  
2009 4 68 64 (62+66)/2 

  
2010 5 74 67 (66+68)/2 

  
2011 6 74 71 

 
  

2012 7 83 74 
 

  
2013 8 85 78.5 

 
  

2014   Forecast 84 
  

Weighted Moving Average method is similar to the moving average method except that some 

weights are assigned to the values. In the example below, out of the two years that we consider 

for averaging,  a weight of 0.6 is assigned to the first year and 0.4 to the second year. 

Weighted Moving Average Method 
 Description:We use the weighted moving average of the past specified 

number of time periods (2 years in this example). [Weights: 0.6 for 
previous year and 0.4 for 2 years back] 

 
     

two years  weighted moving average 
 

  
year time Demand Forecasted Demand Remarks 

  
2006 1 61 - 

 
  

2007 2 62 - 
 

  
2008 3 66 61.6 0.6*62+0.4*61 

  
2009 4 68 64.4 0.6*66+0.4*62 

  
2010 5 74 67.2 0.6*68+0.4*66 

  
2011 6 74 71.6 Note: for computing 

weighted average, we 
devide by the total of 
weights which is ONE 
here 

  
2012 7 83 74 

  
2013 8 85 79.4 

  
2014   Forecast 84.2 

 

Exponential Smoothing Method may be selected by minimizing the mean square error or any 

other technique. This is a forecasting technique and is different form the exponential 

smoothing. Do not be confused! 

 

Exponential Smoothing Method 
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Description: The forecast of a period is calculated as the last periods 
forecast plus a factor multiplied by the difference of the last periods 
actual value and the forecasted value.   

 Where alpha is a smoothing coefficient having values between zero and 
one 

 
       
  

year time Demand Forecasted Demand Remarks 

  
2006 1 61 - 

 

  
2007 2 62 61 

first forecast is prev. 
value 

  
2008 3 66 61.4 61+0.1(62-61) 

  
2009 4 68 63.24 61.4+0.1(66-61.4) 

  
2010 5 74 65.144 

 
  

2011 6 74 68.6864 
 

  
2012 7 83 70.81184 

 
  

2013 8 85 75.687104 
 

  
2014   Forecast 79.4122624 

 smoothing constant may be selected by minimizing the mean square 
error or any other technique 

 This is a forecasting technique and is different form the exponential 
smoothing. Do not be confused! 

 Forecasting by Trend Method uses regression equation to forecast the values as we estimate 

trend values.  

Forecasting by Trend 
 Description: use regression on the time trend to forecast 
 Y = a + b T gives Y= 55.393 + 3.0607 T, use time value 9 for 2014 
 

     
Trend 

 
  

year time Demand Forecasted Demand Remarks 

  
2006 1 61 59 intercept 

  
2007 2 62 62.60714286 55.39285714 

  
2008 3 66 66.21428571 slope 

  
2009 4 68 69.82142857 3.607142857 

  
2010 5 74 73.42857143 

 
  

2011 6 74 77.03571429 
 

  
2012 7 83 80.64285714 

 
  

2013 8 85 84.25 
 

  
2014   Forecast 87.85714286 55.393 + 3.607 (9) 
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Associative Causal Forecast depends on the values of the associated variables. It is similar to 

the trend method but here the demand may depend on various variables in the system instead 

of being dependent on time. 

 

 

Associative or Causal Forecast 
  Description: Forecast depends on the values of the associated variables e.g a regression line where 

demand may depend on price. This is possible in cross section as well. 
 Demand = a + b Price; this gives 500.49 - 44.84 Price  Demand = a + b Price 

 
  

year time Demand price (average) Trend Remarks 

  
2006 1 61 9.6375 68.33200062 intercept 

  
2007 2 62 9.525 73.37659542 500.485622 

  
2008 3 66 9.7 65.52944795 

 
  

2009 4 68 9.625 68.89251115 slope 

  
2010 5 74 9.55 72.25557435 -44.84084269 

  
2011 6 74 9.725 64.40842688 

 
  

2012 7 83 9.3625 80.66323235 
 

  
2013 8 85 9.3875 79.54221129 price(2014) = 9.3 

  
2014     Forecast 83.46578502 500.49 - 44.84 (9.3) 
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Lecture 42 
Forecasting-II 

Seasonal Variation and forecasting 

 

 

 

Calculating Seasonal Index 

The following example shows how to calculate seasonal indices. 

• The plot shows a clear demonstration of 
seasonal variation 

• Values are high in the second quarter 

• Values are high in the second quarter in general  
• Values are least in the first quarter and slightly 

higher in third and fourth quarter and the highest in 
the second quarter  
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First we need to reshape the data 
 

 
Quarterly Demand 

 
 

Q1 Q2 Q3 Q4 Annual Demand 
2006 12 18 17 14 61 
2007 13 18 17 14 62 
2008 15 19 17 15 66 
2009 15 19 18 16 68 
2010 17 21 18 18 74 
2011 18 20 19 17 74 
2012 19 23 21 20 83 
2013 21 23 21 20 85 

qaurterly 
averages     

573 
16.25 20 18.5 16.75 71.625 

    
AVG 71.625/4=17.90625 

Seasonal 
index 

devide each quarterly average by average of the four averages 
0.9075044 1.1 1.0331588 0.9354276 4 

 

Average of annual demands is equal to total of the quarterly averages. Sum of seasonal index 

equals FOUR 

Now we need to adjust the forecast of each quarter multiplying by the relevant index. Any 

forecasting method may be used 

 

Example 

Run a regression Demand on Time, Forecast the demand for four quarters of 2014, Adjust the 

forecasts by multiplying them to the relevant seasonal index   

Regression of Demand on time is    

𝐷𝑒𝑚𝑎𝑛𝑑 =  14.24395 +  0.221957 (𝑇𝑖𝑚𝑒) 

 

Now we need to encoded time values for the four quarters of 2014 are 33,34,35 and 36 

Unadjusted Forecasts 
 

Adjusted forecasts computation 
2014-1 21.568531 

 
2014-1 19.573536 21.56853 (0.907504) 

2014-2 21.790488 
 

2014-2 24.490531 21.79049 (1.123909) 
2014-3 22.012445 

 
2014-3 22.742352 22.01245 (1.033159) 

2014-4 22.234402 
 

2014-4 20.798673 22.2344 (0.935428) 



Business Econometrics by Dr Sayyid Salman Rizavi 
 

350 
 

 

Measuring Forecasting Performance 

To see which forecasting technique works the best, we use various criteria. We look at the 

success of each method using performance measures. 

Almost all the performance measures start by looking at the difference on the actual and 

forecasted values  𝑌𝑡 −  𝐹𝑡 

This is called the Forecast Error. 

This enables us to see the reliability of different econometric models. 

Different methods or measures are commonly used. 

These methods relate to the Ex Post Forecast as we know the actual values of the dependent 

variable. 

Some of the measures are listed below: 

1. Mean Forecast Error (MFE) 

2. Mean Absolute Error (MAE) or Mean Absolute Deviation (MAD) 

3. Mean Absolute Percent Error (MAPE) 

4. Root Mean Square Error (RMSE) [its square is Mean Square Error (MSE)] 

5. Root Mean Square Percent Error (RMSPE) 

6. Theil’s Inequality Coefficient (TIC) 

Let us look at them one by one considering the following (taken from previous data) 

We are considering (just as an example) the values of 2008-2013 from two methods: weighted 

moving average to illustrate the calculations and later we will compare this with the forecasting 

performance of the projection by trend. 

Year Actual Forecast Forecast Error 

  Y F Y - F 

2008 66 61.6 4.4 

2009 68 64.4 3.6 
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2010 74 67.2 6.8 

2011 74 71.6 2.4 

2012 83 74 9 

2013 85 79.4 5.6 

 

Let T denote the number of observations (or number of forecasted values) 

1. Mean Forecast Error (MFE) 

It is the arithmetic mean of the forecast error. It may be sometimes misleading as negative and 

positive errors cancel each other. This is why it may be better to used MEA. 

𝑀𝐹𝐴 =
∑(𝑌𝑡 − 𝐹𝑡)

𝑇
 

2. Mean Absolute Error (MAE) or Mean Absolute Deviation (MAD) 

𝑀𝐴𝐷 =
∑|𝑌𝑡 − 𝐹𝑡|

𝑇
 

3. Mean Absolute Percent Error (MAPE) 

𝑀𝐴𝑃𝐸 =
∑(|𝑌𝑡 − 𝐹𝑡|

𝑌𝑡
)

𝑇
 

4. Root Mean Square Error (RMSE) [its square is Mean Square Error (MSE)] 

This gives more weight to larger observations. It is commonly used. The weak point is 

that its value will be larger if values of the dependent variable are large. In such cases it 

is better to use RMSPE. 

𝑅𝑀𝑆𝐸 = �∑(𝑌𝑡 − 𝐹𝑡)2

𝑇
 

5. Root Mean Square Percent Error (RMSPE) 

𝑅𝑀𝑆𝑃𝐸 = �∑(𝑌𝑡 − 𝐹𝑡
𝑌𝑡

)2

𝑇
 

6. Theil’s Inequality Coefficient (TIC) 
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Concept was given by Theil in 1961. 

𝑈 =
�1
𝑇∑(𝑌𝑡 − 𝐹𝑡)2

�1
𝑇∑𝑌𝑡

2 + �1
𝑇∑𝐹𝑡

2
=

𝑅𝑀𝑆𝐸

�1
𝑇∑𝑌𝑡

2 + �1
𝑇∑𝐹𝑡

2
 

Example: Measuring Forecast Performance
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Tracking Signals in Forecasting 

Tracking signals are used to monitor the accuracy of the forecast over time. An acceptable 

range according to situation is decided and we see if the tracking signal fall within this 'channel' 



Business Econometrics by Dr Sayyid Salman Rizavi 
 

357 
 

𝑇𝑆 =  𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟/𝑀𝐴𝐷 

  Y F Y - F cumulative error 
2008 66 66.21428571 -0.214285714 -0.214285714 
2009 68 69.82142857 -1.821428571 -2.035714286 
2010 74 73.42857143 0.571428571 -1.464285714 
2011 74 77.03571429 -3.035714286 -4.5 
2012 83 80.64285714 2.357142857 -2.142857143 
2013 85 84.25 0.75 -1.392857143 

 

|Y-F| cumulative |Y-F| MAD (till point) TS=cum. Error/MAD 
0.214285714 0.214285714 0.214285714 -1 
1.821428571 2.035714286 1.017857143 -2 
0.571428571 2.607142857 0.869047619 -1.684931507 
3.035714286 5.642857143 1.410714286 -3.189873418 
2.357142857 8 1.6 -1.339285714 

0.75 8.75 1.458333333 -0.955102041 

 

 

Let us select a safe range of -5 to 5 and plot the TSs.  In practice each point will be plotted each 

year when data is available.  

 

 

Variance of Forecast Error 

Consider the following multiple regression model. 
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𝑌𝑡+ℎ =  𝛽0 + 𝛽1𝑋1𝑡 + 𝛽2𝑋2𝑡 +  … … . . +𝛽𝐾𝑋𝐾𝑡 + 𝑒𝑡 

Its OLS estimate is  

𝒀𝒕+𝒉 =  𝜷�𝟎 + 𝜷�𝟏𝑿𝟏𝒕 + 𝜷�𝟐𝑿𝟐𝒕 +  … … . . +𝜷�𝑲𝑿𝑲𝒕 + 𝒆�𝒕 

And 

𝑉𝑎𝑟�𝒀�𝒕+𝒉� = 𝑉𝑎𝑟(𝜷�𝟎 + 𝜷�𝟏𝑿𝟏𝒕 + 𝜷�𝟐𝑿𝟐𝒕 … . . +𝜷�𝑲𝑿𝑲𝒕) 

 

Predicted Standard Error is  

𝑠𝑒�𝑌�𝑡+ℎ� =  �𝑉𝑎𝑟�𝒀�𝒕+𝒉� 

Computed in Stata by as:    𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑠, 𝑠𝑡𝑑𝑝 

• Forecast Error is 

𝑒̂𝑡+ℎ = �𝑌𝑡+ℎ − 𝑌�𝑡+ℎ� 

Variance of Forecast Error is 

𝑉𝑎𝑟(𝑒̂𝑡+ℎ) = (𝑉𝑎𝑟�𝑌𝑡+ℎ) + 𝑉𝑎𝑟(𝑌�𝑡+ℎ)� 

= 𝜎2 + 𝑉𝑎𝑟(𝑌�𝑡+ℎ) 

Which has two components: 

• Model variance (𝜎2) that is larger than estimated variance 

• Estimated Variance, 𝑉𝑎𝑟(𝑌�𝑡+ℎ) that tends to decrease with increase in T. 

As  

𝑉𝑎𝑟(𝑒̂𝑡+ℎ) = 𝜎2 + 𝑉𝑎𝑟(𝑌�𝑡+ℎ) 

𝑠𝑒(𝑒̂𝑡+ℎ) = �𝜎2 + 𝑠𝑒(𝑌�𝑡+ℎ)2 

Which can be computed in Stata as:   𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑠, 𝑠𝑡𝑑𝑓 

Consider the following example for explaining the concept discussed above: 
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We can verify that    𝑠𝑓2 =  �𝑠𝑝2 + 𝑠2 
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Lecture 43 
Time Series, Cointegration and Error Correction-I 

What is a time series? 

An analysis of a single sequence of data is called univariate time-series analysis. An analysis of several 
sets of data for the same sequence of time periods is called multivariate time-series analysis or, more 
simply, multiple time-series analysis. For a long time there has been very little communication between 
econometricians and time-series analysts. Econometricians have emphasized economic theory and a 
study of contemporaneous relationships. Lagged variables were introduced but not in a systematic way, 
and no serious attempts were made to study the temporal structure of the data 

Theories were imposed on the data even when the temporal structure of the data was not in conformity 
with the theories. The time-series analysts, on the other hand, did not believe in economic theories and 
thought that they were better off allowing the data to determine the model. Since the mid-1970s these 
two approaches—the time-series approach and the econometric approach—have been converging 

Econometricians now use some of the basic elements of time-series analysis in checking the 
specification of their econometric models, and some economic theories have influenced the direction of 
time-series work. 

Stationary and Nonstationary time series 

Moments: a moment is a specific quantitative measure of the shape of a set of points. Moments are of 
different types e.g. raw, about mean etc. 

The first raw moment (∑𝑋
𝑛

; do not confuse with the moments about mean) is the mean. First moment 

about mean is zero. Second moment about mean is the variance. 

Joint distribution of 𝑋(𝑡1),𝑋(𝑡2),𝑋(𝑡3) . . .𝑋(𝑡𝑛) is complicated so we usually define the  

𝑚𝑒𝑎𝑛 =  𝜇(𝑋) = 𝐸(𝑋𝑡) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  𝜎2(𝑡) =  𝐸(𝑋𝑡2) 

𝐴𝑢𝑡𝑜𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝛾(𝑡1, 𝑡2) = 𝐶𝑜𝑣(𝑋𝑡1,𝑋𝑡2)  

The autocovariance is the covariance of the variable against a time-shifted version of itself. (is the 
variance if t1=t2=t) 

Strict or Strong Stationary: a series is called strict stationary if the joint distribution of any set of n 
observations 𝑋(𝑡1),𝑋(𝑡2),𝑋(𝑡3) . . .𝑋(𝑡𝑛) is the same as joint distribution of 𝑋(𝑡1 + ℎ),𝑋(𝑡2 +
ℎ),𝑋(𝑡3 + ℎ) . . .𝑋(𝑡𝑛 + ℎ) for all 𝑛 and ℎ. 
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All moments are independent of t. The mean, variance, and all higher order moments of the joint 
distribution of any combination of variables 𝑋(𝑡1),𝑋(𝑡2),𝑋(𝑡3) . . .𝑋(𝑡𝑛)  are constant & independent of 
t. (Very strong assumption) 

Statistical Properties do not change over time. 

Now define ℎ = 𝑡2 − 𝑡1and call it a lag. 

As joint distribution of 𝑋(𝑡1),𝑋(𝑡2) and that of 𝑋(𝑡1 + ℎ),𝑋(𝑡2 + ℎ) are the same and not dependent 
on 𝑡1 or 𝑡2 (𝑡2 =  𝑡1 + ℎ) but on the differenceℎ. 

So autocovariance function 𝛾(𝑡1, 𝑡2) = 𝛾(ℎ) = 𝐶𝑜𝑣 (𝑋𝑡 ,𝑋𝑡+ℎ) is the autocovariance function (𝑎𝑐𝑣𝑓) at 
lag ℎ.  

𝑉𝑎𝑟 (𝑋𝑡) = 𝑉𝑎𝑟(𝑋𝑡+ℎ) = 𝜎2 = 𝛾(0)  

So the autocorrelation function at lag (ℎ), is defined as 𝜌(ℎ) = 𝛾(ℎ)
𝛾(0)

  

A plot of 𝜌(ℎ) is called correlogram. 

Second Order or Weak Stationary (covariance stationarity): a series is called weakly 
stationary if its mean and variance do not depend on 𝑡 (are constant) and the 𝑎𝑐𝑣𝑓 depends only on the 
lag ℎ. 

Stationary series revert in the long run to their mean. 

Non-Stationarity: In real life most of the data is non-stationary. Variables that increase over time are 
non-stationary.  

Mean and variance are not constant over time. 

We need differencing and/or detrending. 

We can define a non-stationary model as 𝑋𝑡 = 𝜇𝑡 + 𝑒𝑡 where mean 𝜇𝑡 is a function of time (linear or 
non-linear) and 𝑒𝑡 is second order stationary series. 

Autoregressive Model specifies that the output variable depends linearly on its own previous values. 

Time series models include ARMA, ARIMA (auto regressive integrated moving average) etc. (we are not 
going to discuss them). OLS should not be used on non-stationary data. (e.g. problem of spurious 
regression). We usually can transform variables by taking differences of using lags if the data becomes 
stationary at difference or lag. 

Types of Non-Stationarity  

• Random Walk with Drift: 𝑌𝑡 =  𝜇 + 𝑌𝑡−1 + 𝑒𝑡 
• Deterministic Trend Process: 𝑌𝑡 = 𝛽0 +  𝛽1𝑡 + 𝑒𝑡 
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• To induce Stationarity both will require different treatment 
o Differencing 
o Detrending  

 

 

 

 

 

 

 

 

 

 

 

 

If a non-stationary series 𝑌𝑡is difference 𝑑 times in order to become stationary, it is said to be integrated 
of order 𝑑. 

If 𝑌𝑡~ 𝐼(𝑑)   𝑡ℎ𝑒𝑛  ∆𝑑𝑌𝑡~ 𝐼(0) 

𝐼(0) is a stationary series. It will cross the mean frequently. 

𝐼(1) is a series containing one unit root 

Most of the economic and financial series contain a single unit root (Some may be stationary) 

However prices have been seen in various researches to have 2 unit roots. 

UNIT ROOT TEST 

A unit root test tests is used to know if a time series variable is non-stationary using an autoregressive 
model. The famous tests include augmented Dickey–Fuller test and the Phillipe-Perron test. The null 
hypothesis for these tests is the existence of a unit root. 

Why do we need to test for Non-Stationarity? 
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• The stationarity or non-stationarity of a series can strongly influence its behavior and properties. 
• Spurious regressions: If two variables are trending over time, a regression of one on the other 

could have a high R-square even if the two are totally unrelated.  
• The parameters are misleading 
• If variables in the model are not stationary, the usual “t-ratios” will not follow a t-distribution, so 

various tests will not be valid 

Augmented Dickey-Fuller unit-root test (𝒅𝒇𝒖𝒍𝒍𝒆𝒓) 

𝑑𝑓𝑢𝑙𝑙𝑒𝑟 performs the augmented Dickey-Fuller test that a variable follows a unit-root process.  It adds 
lagged differences to the model. The null hypothesis is that the variable contains a unit root, and the 
alternative is that the variable was generated by a stationary process.  You may optionally exclude the 
constant, include a trend term, and include lagged values of the difference of the variable in the 
regression. 

Syntax: dfuller varname [if] [in] [, options] 

Menu: Statistics > Time series > Tests > Augmented Dickey-Fuller unit-root test 

Characteristics of Non-Stationary Series 

Characteristics of the series Dickey-Fuller Regression Model 
No Constant , No time Trend ∆𝑌𝑡 = 𝛾𝑌𝑡−1 + 𝑢𝑡 
Constant, without time trend ∆𝑌𝑡 = 𝛼 + 𝛾𝑌𝑡−1 + 𝑢𝑡 
Constant and time trend ∆𝑌𝑡 = 𝛼 + 𝛾𝑌𝑡−1 + 𝛾𝑡 + 𝑢𝑡 
Use constant (drift) when series fluctuates against a non-zero mean. 

Phillips-Perron unit-root test (𝒑𝒑𝒆𝒓𝒓𝒐𝒏) 

pperron performs the Phillips-Perron test that a variable has a unit root.  The null hypothesis is that the 
variable contains a unit root, and the alternative is that the variable was generated by a stationary 
process.  pperron uses Newey-West standard errors to account for serial correlation, (so it allows for 
autocorrelated residuals) whereas the augmented Dickey-Fuller test implemented in dfuller uses 
additional lags of the first-difference variable. 

Syntax: pperron varname [if] [in] [, options] 

Menu: Statistics > Time series > Tests > Phillips-Perron unit-root test 

Examples 

webuse sunspot 

tsset time 

tsline spot 
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Seems to be stationary 

dfuller spot 

 

webuse dow1 

des 

tsline dowclose 
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Shows random Walk with non-zero drift (use drift option) 

dfuller dowclose 

 

trend specifies that a trend term be included in the associated regression and that the process under the 
null hypothesis is a random walk, perhaps with drift.  This option may not be used with the noconstant 
or drift option. 
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drift indicates that the process under the null hypothesis is a random walk with nonzero drift.  This 
option may not be used with the noconstant or trend option. 

 

regress specifies that the associated regression table appear in the output.  By default, the regression 
table is not produced. 

 

NOTE: see that coefficient of L1 is not significant 

lags(#) specifies the number of lagged difference terms to include in the covariate list. 
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dfuller D.dowclose 

 

Philip Perron Test Example 
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Lecture 44 
Time Series, Cointegration and Error Correction-II 

 

What to do in case of non-stationarity? 

Differencing: throws out long term properties of the series and is good for short term modeling  

Cointegration: Granger introduces this.  

Cointegration 

Two series of variables may be integrated, but their difference (or any linear combination) may be 
stationary. This means that each variable wanders quite far from its mean, but the two series wander 
very near each other. The value/ location of one variable could be told by looking at the other variable. 
They have an equilibrium relationship (never expected to drift too far). Deviations from this equilibrium 
will be corrected over time. 

Cointegration & Error Correction Model Using Stata 

Engle-Granger Cointegration Analysis: STEPS 

• Test individual variables for unit root 
• Estimate the static regression 
• Test for unit roots in the error of the static regression; if residuals are stationary, series are 

cointegrated. 
• Finally we can use Error Correction Model 

Granger: two or more integrated time series that are cointegrated have an error correction 
representation. 

If x and y are cointegrated, then, by the Granger Representation Theorem, we can model y and x as 
being in an error correcting relationship. 

Basically, it has y and x being in an equilibrium relationship, with the short run behavior of y being a 
function of the short run behavior of x and an equilibrating factor. It estimates the speed at which a 
dependent variable Y returns to equilibrium after a change in an independent variable - X. 

The EC model is: 

∆𝑌𝑡 = 𝛽∆𝑋𝑡 +  𝜌 (𝑌𝑡−1 − 𝛾𝑋𝑡−1) +  𝜖𝑡 

Where 𝑌𝑡−1 − 𝛾𝑋𝑡−1 is the predicted error generated from a basic regression Y on X. 

where 𝜖𝑡 is stationary (test for this with Dickey-Fuller). 𝛽 is the short run effect of x on y and 𝛾 is the 
speed of equilibration, with giving the long run relation between y and x. 
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NOTE: ECM is normally used on non-stationary data but can be used for stationary data. 

Cointegration and Error Correction Model in Detail 

Stationary Data means that data has a finite mean and variance that do not depend on time. Data 
reverts to mean in the long run. It crossed the mean quite often. 

Usually time series data is not stationary but is integrated. 

Integrated time series data:  

• Does not revert to the mean 
• Usually moves in a random walk 
• Previous changes are reflected in the current value 
• May have infinite variance and no appropriate mean 
• Shocks are permanently incorporated 

If a non-stationary series 𝑌𝑡is difference 𝑑 times in order to become stationary, it is said to be integrated 
of order 𝑑. 

Two series are cointegrated if 

• They are integrated of the same order 
• There is a linear combination of the two series that is stationary i.e. integrated of order zero I(0) 
• Cointegrated data do not drift very far from each other. 
• Deviation from equilibrium will be corrected over time 

Critical Values and Power 
Statistics Name 1% 5% 10% 

1 DF 4.07 3.37 3.03 
2 ADF 3.77 3.17 2.84 

Example: 

Consider the file ECM.dta provided to you. 

It contains Pakistani data (GDP, GFCF, imports etc.) from WDI 

Year 1983 to 2012 

Suppose we focus on GFCF and IMPORTS 

Are they ‘integrated’? 
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GFCF is integrated at first difference. 

 

Imports is also integrated at first difference. Both are integrated at the same level i.e. first difference 

Are GFCF and imports cointegrated? 

We use Engle Granger Test. It has three steps. 
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• Run a basic regression (long run) 
• Predict the errors 
• Run the regression of First difference of residuals on lag of residuals and on lag of first difference 

of residuals 

If the coefficient of lag of residuals is significant, the series are cointegrated. 

IMPORTANT: the t-values reported in simple regression are not appropriate so we use the EG critical 
values. 

Step I 

 

Step II 

 

Step III 
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The coefficient of first lag of residuals is -0.5926 and the t-value is -3.42. Remember that we should not 
use the p-values here but look at the critical values of EG. The critical value at 5% is -3.37. 

Our value, -3.42 < -3.37, so hypothesis of no Cointegration is rejected. The series are Cointegrated. 

If < 𝑡𝑐  , we reject the null hypothesis that the least square residuals are non-stationary (no 
cointegration). Here the least square residuals are stationary and the series GFCF and Imports are 
Cointegrated. 

Engle and Granger suggested a model for cointegrated series 

The EC model is: 

∆𝑌𝑡 = 𝛽∆𝑋𝑡 +  𝜌 (𝑌𝑡−1 − 𝛾𝑋𝑡−1) +  𝜖𝑡 

Where 𝑌𝑡−1 − 𝛾𝑋𝑡−1 is the predicted error generated from a basic regression Y on X and where 𝜖𝑡 is 
stationary (test for this with Dickey-Fuller). 𝛽 is the short run effect of x on y and 𝛾 is the speed of 
reverting to equilibrium, with giving the long run relation between y and x. 

using the file ECM.dta, 

𝑡𝑠𝑠𝑒𝑡 𝑦𝑒𝑎𝑟 

𝑟𝑒𝑔𝑟𝑒𝑠𝑠 𝑔𝑓𝑐𝑓 𝑖𝑚𝑝𝑜𝑟𝑡𝑠 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑟ℎ𝑎𝑡, 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 

Now using the residuals etc. 
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The short run effect of imports on GFCF is positive and significant. 

The long term relation is established by the coefficient -0.3765 which is also significant. 

The speed shows that the deviations from equilibrium are corrected at 37.5% in one time period. 

Check if the error generated here is stationary 

 

Additional or alternative lags and deterministic terms may be added. 
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Lecture 45 
Time Series, Cointegration and Error Correction-III 

As you know, we define ‘Time Series’ as follows: 

Variables recorded over time 

• Annually   (Macro data) 

• Biannually (financial data: banks biannual reports) 

• Quarterly (Macro data, agricultural data, ) 

• Monthly  (agricultural data, market prices) 

• Daily  (Stock exchange, Foreign ExchangeRates, commodity) 

 

Example Graph for Time Series Data 

 

An Autoregressive Process is when we have variable depending linearly on its own past values (lags) 

This can be as weighted sum of past values. 

AR (p) process 

𝑦𝑡 = 𝜑0 + 𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2 +  … …  𝜑𝑝𝑦𝑡−𝑝 + 𝜖𝑡 

AR (1) process 

𝑦𝑡 = 𝜑0 + 𝜑1𝑦𝑡−1 + 𝜖𝑡  

Stata example: AR (3) model 

𝑟𝑒𝑔 𝑔𝑑𝑝 𝐿.𝑔𝑑𝑝 𝐿2.𝑔𝑑𝑝 𝐿3.𝑔𝑑𝑝 
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VAR (Vector Autoregressive Model is a multivariate time-series regression of each dependent variable 
on lags of itself and on lags of all the other dependent variables 

VAR (1) process for y and z 

𝑦𝑡 = 𝛼0 + 𝛼1𝑦𝑡−1 + 𝛼2𝑧𝑡−1 + 𝑢𝑡 

𝑧𝑡 = 𝛽0 + 𝛽1𝑦𝑡−1 + 𝛽2𝑧𝑡−1 + 𝑣𝑡 

Stata example: VAR (1) model 

𝑡𝑠𝑠𝑒𝑡 𝑡𝑖𝑚𝑒 

𝑣𝑎𝑟 𝑔𝑑𝑝 𝑒𝑥𝑝𝑜𝑟𝑡𝑠, 𝑙𝑎𝑔𝑠(1) 

𝐼𝑓 𝑙𝑎𝑔𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑, 2 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 

For VAR  both series should be stationary. Dickey Fuller test can be used to know when (what level) data 
is stationary. For Dickey Fuller test we need to know the appropriate lag (Schwert's rule of thumb can be 
used) 

• If p is too small then the remaining serial correlation in the errors will bias the test. 

• If p is too large then the power of the test will suffer. 

• Monte Carlo experiments suggest it is better to error on the side of including too many 
lags. 

Schwert’s (1989) rule of thumb 

This rule of thumb helps in having an optimum lag 

𝑝𝑚𝑎𝑥 = [12. (
𝑇

100
)
1
4] 

Where 𝑇 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠  and  [] 𝑚𝑒𝑎𝑛𝑠 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑝𝑎𝑟𝑡 

In ECM.dta with 30 observations, lags = 8 

The Default lag length for the 𝑑𝑓𝑢𝑙𝑙𝑒𝑟 command is zero. 

Here are some examples using the file ECM.dta 
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Imports are, in fact, stationary at second level 

The command 𝑑𝑓𝑢𝑙𝑙𝑒𝑟 for random walk with drift 
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If they follow random walk with drift, exports and imports are integrated of order 1 

Applying VAR 

First determine the optimal lag length for VAR. The command is 𝑣𝑎𝑟𝑠𝑜𝑐 (number of max lags can be 
given) 

 

AIC: Akaike Information Criterion, should be minimized; suggested lag is ONE 

The model can be estimated as follows: 
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Default lag=2 so we need to specify ONE (suggested by AIC). Here the Sign and significance, not the 
magnitude, are important. 

 

 

Post Estimation Test of stability of the model:  eigen values should be less than one 

After running the model, use the Varstable, graph. 
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ARMA (Autoregressive Moving Average) 

ARIMA (Autoregressive Integrated Moving Average) model 

ARIMA is a A combination of AR and MA processes where AR is autoregressive, I is Integrated and MA is 
an abbreviation for a Moving Average process (a process containing past realizations of the variables 
own residual) 

ARMA (p,q) process 

𝑦𝑡 = 𝜑0 + 𝜖𝑡 + 𝜑1𝑒𝑡−1 + 𝜑2𝑒𝑡−2 +  … …  𝜑𝑝𝑒𝑡−𝑞 

ARMA (1,0) is as AR(1) 

ARMA (0,1) is as MA(1) 

ARMA (1,1) process can be given by the equation 

𝑦𝑡 = 𝑐 + 𝛼1𝑦𝑡−1 + 𝛽1𝜖𝑡−1 + 𝜖𝑡 

Series where I=0 is stationary. 

arima is a maximum likelihood estimation (not OLS). We are discussing Univariate ARIMA 

Stata Example:  

We must run arima on a stationary series 

Stationary level must be determined. Then the Stata command will be 

𝑎𝑟𝑖𝑚𝑎 𝑔𝑑𝑝,𝑎𝑟𝑖𝑚𝑎 (1,1,1) which is the same as:  𝑎𝑟𝑖𝑚𝑎 𝑔𝑑𝑝,𝑎𝑟(1) 𝑚𝑎(1) 

𝑎𝑟𝑖𝑚𝑎 𝑔𝑑𝑝,𝑎𝑟𝑖𝑚𝑎 (1,1,1)  will give the result 



Business Econometrics by Dr Sayyid Salman Rizavi 
 

381 
 

 

ARIMA Post Estimation Commands in Stata 

𝑒𝑠𝑡𝑎𝑡 𝑎𝑐𝑝𝑙𝑜𝑡 estimates autocorrelation and covariances 
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𝑒𝑠𝑡𝑎𝑡 𝑎𝑟𝑜𝑜𝑡𝑠 Checks the stability conditions 

 

 

 

 

 

 

 

 

𝑒𝑠𝑡𝑎𝑡 𝑣𝑐𝑒 gives the Variance covariance matrix of the estimates 

 

 

Johansen’s Test for Cointegration 

This test is based on maximum likelihood estimation and two statistics: maximum eigenvalues and a 
trace-statistics. 𝑣𝑒𝑐𝑟𝑎𝑛𝑘 is the command in Stata.  We use one lag as suggested by 𝑣𝑎𝑟𝑠𝑜𝑐 for VAR 
model; then use the command 𝑣𝑒𝑐𝑟𝑎𝑛𝑘 𝑒𝑥𝑝𝑜𝑟𝑡𝑠 𝑖𝑚𝑝𝑜𝑟𝑡𝑠, 𝑙𝑎𝑔𝑠(1) 
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Variables are cointegrated. If rank would have been zero there would have been no Cointegration. 

 

Vector Error Correction Model 

ECM cannot be used in complex situations like more number of nonstationary variables 

A vector error correction model (VECM) adds error correction features to a multi-factor model such as a 
vector autoregressive model. It is nothing but multivariate specification of ECM. 

The command in stata is 𝑣𝑒𝑐. Here there is one lag less than that of VAR but Stata will automatically 
subtract the lag and you do not need to do that. 

The syntax of 𝑣𝑒𝑐 is 𝑣𝑒𝑐 𝑣𝑎𝑟𝑙𝑖𝑠𝑡 [𝑖𝑓] [𝑖𝑛] [, 𝑜𝑝𝑡𝑖𝑜𝑛𝑠]. 

For the menu we can click on  

Statistics > Multivariate time series > Vector error-correction model (VECM) 

Here is an example: 
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If we use the option alpha, we get the short run adjustment parameters as well. This would be in 
addition to the previous results as  

 

It looks like gfcf responds faster than exports in case of changes or shocks.  

Post Estimation commands for 𝒗𝒆𝒄  
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Usually eigenvalues should be within the circle 

Post Estimation: 𝑣𝑒𝑐𝑙𝑚𝑎𝑟 test the autocorrelation of residuals 

 

Here we do not detect autocorrelation. 
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