# **Business Econometrics**

# ECO 601

**Lecture Notes** 

As Delivered By Dr Sayyid Salman Rizavi

**On VU Television Network** 

**Virtual University of Pakistan** 

## **ECO601 - BUSINESS ECONOMETRICS**

| Lesson 01       Introducing Econometrics & types of data       .01         Lesson 02       Summation function, Application of Summation algebra       .09         Lesson 03       Quadratic Function & Simple Derivative       .11         Lesson 04       Partial Derivatives, Partial Differentiation Minima and Maxima       .33         Lesson 05       Multivariate Optimization & Review of Probability       .35         Lesson 06       Simple Regression Model       .64         Lesson 07       Estimation and Testing in Regression Analysis.       .67         Lesson 08       Simple Regressions       .100         Lesson 10       Multiple Regressions.       .100         Lesson 11       Transformation for Regression.       .111         Lesson 12       Regression on standardized variables       .125         Lesson 13       Dummy Variables       .125         Lesson 14       Transforming Variables in Regression.       .133         Lesson 15       Multicollinearity: Remedial Measures       .147         Lesson 16       Multicollinearity: Remedial Measures       .147         Lesson 17       Heteroskedasticity: Formal Tests.       .158         Lesson 18       Detection and handling of Heteroskedasticity       .63         Lesson 22       Treating Autocorrelati | Lesson No. | Topics                                                         | Page No. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------|----------|
| Lesson 00       Introducing Econometrics & types of data       .01         Lesson 03       Quadratic Function & Simple Derivative       .21         Lesson 04       Partial Derivatives, Partial Differentiation Minima and Maxima       .33         Lesson 05       Multivariate Optimization & Review of Probability       .35         Lesson 06       Simple Regression Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                                                |          |
| Lesson 02       Summation function, Application of Summation algebra       .09         Lesson 03       Quadratic Function & Simple Derivative.       .21         Lesson 04       Partial Derivatives, Partial Differentiation Minima and Maxima       .33         Lesson 05       Multivariate Optimization & Review of Probability       .35         Lesson 06       Simple Regression Model       .54         Lesson 07       Estimation and Testing in Regression Analysis       .67         Lesson 08       Simple Regressions       .100         Lesson 10       Multiple Regressions       .100         Lesson 11       Transformation for Regression       .111         Lesson 12       Regression on standardized variables       .125         Lesson 13       Dummy Variables       .125         Lesson 14       Transforming Variables in Regression       .133         Lesson 15       Multicollinearity: Remedial Measures       .147         Lesson 16       Multicollinearity: Remedial Measures       .148         Lesson 17       Heteroskedasticity       .163         Lesson 18       Detection and handling of Heteroskedasticity       .163         Lesson 20       Autocorrelation       .171         Lesson 21       Detecton of Autocorrelation       .176                          | Lesson 01  | Introducing Econometrics & types of data                       | 01       |
| Lesson 0.3       Quadratic Function & Simple Derivative.       21         Lesson 0.4       Partial Derivatives, Partial Differentiation Minima and Maxima       33         Lesson 0.5       Simple Regression Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lesson 02  | Summation function, Application of Summation algebra           |          |
| Lesson 04       Partial Derivatives, Partial Differentiation Minima and Maxima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lesson 03  | Quadratic Function & Simple Derivative                         | 21       |
| Lesson 05       Multivariate Optimization & Review of Probability       .54         Lesson 06       Simple Regression Model       .54         Lesson 07       Estimation and Testing in Regression Analysis.       .67         Lesson 08       Simple Regressions by Microsoft Excel       .79         Lesson 09       Multiple Regressions.       .100         Lesson 10       Multiple Regressions.       .100         Lesson 11       Transformation for Regression.       .111         Lesson 13       Dummy Variables in Regression.       .125         Lesson 14       Transforming Variables in Regression.       .125         Lesson 15       Multicollinearity: Remedial Measures       .147         Lesson 16       Multicollinearity: Remedial Measures       .147         Lesson 17       Heteroskedasticity       .152         Lesson 18       Detection of Heteroskedasticity: Formal Tests.       .158         Lesson 21       Detection of Autocorrelation       .171         Lesson 22       Treating Autocorrelation       .176         Lesson 23       Estimating Non-Linear equation by OLS       .193         Lesson 24       Introduction to Stata       .200         Lesson 25       Introduction to Stata       .227         Lesson 26                                             | Lesson 04  | Partial Derivatives, Partial Differentiation Minima and Maxima | 33       |
| Lesson 06       Simple Regression Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lesson 05  | Multivariate Optimization & Review of Probability              | 35       |
| Lesson 07       Estimation and Testing in Regression Analysis       .67         Lesson 08       Simple Regressions by Microsoft Excel       .79         Lesson 10       Multiple Regressions       .89         Lesson 11       Transformation for Regression       .111         Lesson 12       Regression on standardized variables       .117         Lesson 13       Dummy Variables       .117         Lesson 14       Transforming Variables in Regression       .133         Lesson 15       Multicollinearity: Remedial Measures       .147         Lesson 16       Multicollinearity: Remedial Measures       .147         Lesson 16       Multicollinearity: Remedial Measures       .147         Lesson 17       Heteroskedasticity: Formal Tests.       .152         Lesson 18       Detection of Heteroskedasticity: Formal Tests.       .153         Lesson 20       Autocorrelation       .171         Lesson 21       Detection of Autocorrelation       .176         Lesson 22       Treating Autocorrelation       .184         Lesson 23       Introduction to Stata       .200         Lesson 24       Introduction to Stata       .210         Lesson 25       Introduction to Stata       .227         Lesson 26       Data Management in                                             | Lesson 06  | Simple Regression Model                                        | 54       |
| Lesson 08       Simple Regression by Microsoft Excel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lesson 07  | Estimation and Testing in Regression Analysis                  | 67       |
| Lesson 09Multiple Regressions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lesson 08  | Simple Regression by Microsoft Excel                           | 79       |
| Lesson 10Multiple Regressions.100Lesson 11Transformation for Regression.111Lesson 12Regression on standardized variables117Lesson 13Dummy Variables125Lesson 14Transforming Variables in Regression.133Lesson 15Multicollinearity: Remedial Measures147Lesson 16Multicollinearity: Remedial Measures147Lesson 17Heteroskedasticity.152Lesson 18Detection of Heteroskedasticity: Formal Tests.158Lesson 19Detection of Heteroskedasticity.163Lesson 20Autocorrelation171Lesson 21Detection of Autocorrelation176Lesson 22Treating Autocorrelation176Lesson 23Estimating Non-Linear equation by OLS193Lesson 24Introduction to Stata200Lesson 25Introduction to Stata210Lesson 26Data Management in Stata217Lesson 27Stata Revision227Lesson 31Simultaneous Equation Models253Lesson 32Indirect Least Square (ILS)265Lesson 34SILS Models with Stata280Lesson 352SLS & 3SLS Models290Lesson 36Panel Data Methods & Post Estimation Tests with Stata201Lesson 37Panel Data Methods & Post Estimation Tests with Stata210Lesson 34Indirect Least Square (ILS)258Lesson 35SILS Models with Stata240Lesson 34Qualitative and limite                                                                                                                                                                              | Lesson 09  | Multiple Regressions                                           |          |
| Lesson 11Transformation for Regression111Lesson 12Regression on standardized variables117Lesson 13Dummy Variables125Lesson 14Transforming Variables in Regression133Lesson 15Multicollinearity: Remedial Measures147Lesson 16Multicollinearity: Remedial Measures147Lesson 17Heteroskedasticity152Lesson 18Detection of Heteroskedasticity: Formal Tests158Lesson 19Detection of Autocorrelation171Lesson 20Autocorrelation171Lesson 21Detection of Autocorrelation176Lesson 22Treating Autocorrelation174Lesson 23Estimating Non-Linear equation by OLS193Lesson 24Introduction to Stata200Lesson 25Introduction to Stata210Lesson 26Data Management in Stata218Lesson 27Stata Revision227Lesson 28Graphs in Stata240Lesson 30Simultaneous Equation Models253Lesson 31Simultaneous Equation Models253Lesson 32Indirect Least Square272Lesson 342SLS & 3SLS Models with Stata286Lesson 35Qualitative and limited dependent variable model-II318Lesson 34Qualitative and limited dependent variable models-III318Lesson 34Graphs in Stata290Lesson 35Qualitative and limited dependent variable models-III318Lesson 34Qualitat                                                                                                                                                                              | Lesson 10  | Multiple Regressions                                           | 100      |
| Lesson 12Regression on standardized variables117Lesson 13Dummy Variables in Regression125Lesson 14Transforming Variables in Regression133Lesson 15Multicollinearity: Remedial Measures140Lesson 16Multicollinearity: Remedial Measures147Lesson 17Heteroskedasticity: Formal Tests152Lesson 18Detection of Heteroskedasticity: Formal Tests153Lesson 19Detection and handling of Heteroskedasticity163Lesson 20Autocorrelation171Lesson 21Detection of Autocorrelation176Lesson 22Treating Autocorrelation176Lesson 23Estimating Non-Linear equation by OLS193Lesson 24Introduction to Stata200Lesson 25Introduction to Stata216Lesson 26Data Management in Stata217Lesson 27Stata Revision227Lesson 28Graphs in Stata240Lesson 30Simultaneous Equation Models258Lesson 31Simultaneous Equation Models258Lesson 32Latificet Least Square (ILS)265Lesson 33Two Stage Least Square270Lesson 342SLS & 3SLS Models290Lesson 35Qualitative and limited dependent variable model-1318Lesson 35Qualitative and limited dependent variable model-1318Lesson 34Grast System325339Lesson 35Qualitative and limited dependent variable models-II324 </td <td>Lesson 11</td> <td>Transformation for Regression</td> <td>111</td>                                                                                       | Lesson 11  | Transformation for Regression                                  | 111      |
| Lesson 13Dummy Variables125Lesson 14Transforming Variables in Regression133Lesson 15Multicollinearity140Lesson 16Multicollinearity: Remedial Measures147Lesson 17Heteroskedasticity: Remedial Measures147Lesson 18Detection of Heteroskedasticity: Formal Tests152Lesson 19Detection and handling of Heteroskedasticity163Lesson 20Autocorrelation171Lesson 21Detection of Autocorrelation176Lesson 22Treating Autocorrelation184Lesson 23Estimating Non-Linear equation by OLS193Lesson 24Introduction to Stata200Lesson 25Introduction to Stata210Lesson 26Data Management in Stata211Lesson 27Stata Revision227Lesson 28Graphs in Stata2240Lesson 30Simultaneous Equation Models253Lesson 31Simultaneous Equation Models-II.258Lesson 32Indirect Least Square272Lesson 33Simultaneous Equation Models-II.258Lesson 342LS & 3SLS Models with Stata290Lesson 35Qualitative and limited dependent variable model-I318Lesson 34Qualitative and limited dependent variable model-I318Lesson 34Qualitative and limited dependent variable model-III.324Lesson 35Qualitative and limited dependent variable model-II.318Lesson 34Gualitative and limited dependent va                                                                                                                                          | Lesson 12  | Regression on standardized variables                           | 117      |
| Lesson 14Transforming Variables in Regression133Lesson 15Multicollinearity: Remedial Measures140Lesson 16Multicollinearity: Remedial Measures147Lesson 17Heteroskedasticity152Lesson 18Detection of Heteroskedasticity: Formal Tests158Lesson 19Detection and handling of Heteroskedasticity163Lesson 19Detection of Autocorrelation171Lesson 20Autocorrelation176Lesson 21Detection of Autocorrelation176Lesson 22Treating Autocorrelation176Lesson 23Estimating Non-Linear equation by OLS193Lesson 24Introduction to Stata200Lesson 25Introduction to Stata210Lesson 26Data Management in Stata212Lesson 27Stata Revision227Lesson 28Graphs in Stata240Lesson 30Simultaneous Equation Models253Lesson 31Simultaneous Equation Models-II.258Lesson 32Indirect Least Square (ILS)265Lesson 33Two Stage Least Square272Lesson 34Qualitative and limited dependent variable model-I318Lesson 35Qualitative and limited dependent variable model-II318Lesson 44Forecasting-I.348Lesson 43Forecasting-I.348Lesson 44Time Series, Cointegration and Error Correction-III.369Lesson 45Time Series, Cointegration and Error Correction-III.369 <td>Lesson 13</td> <td>Dummy Variables</td> <td>125</td>                                                                                                          | Lesson 13  | Dummy Variables                                                | 125      |
| Lesson 15Multicollinearity140Lesson 16Multicollinearity: Remedial Measures147Lesson 17Heteroskedasticity152Lesson 18Detection of Heteroskedasticity: Formal Tests.158Lesson 19Detection and handling of Heteroskedasticity163Lesson 20Autocorrelation171Lesson 21Detection of Autocorrelation176Lesson 22Treating Autocorrelation176Lesson 23Estimating Non-Linear equation by OLS193Lesson 24Introduction to Stata200Lesson 25Introduction to Stata210Lesson 26Data Management in Stata211Lesson 27Stata Revision227Lesson 30Simultaneous Equation Models253Lesson 31Simultaneous Equation Models-II258Lesson 32Indirect Least Square272Lesson 33Two Stage Least Square272Lesson 342SLS & 3SLS Models290Lesson 35Qualitative and limited dependent variable model-I318Lesson 36Qualitative and limited dependent variable model-I318Lesson 34Cualitative and limited dependent variable model-II314Lesson 34Time Series, Cointegration and Error Correction-II369Lesson 44Time Series, Cointegration and Error Correction-III375                                                                                                                                                                                                                                                                          | Lesson 14  | Transforming Variables in Regression                           | 133      |
| Lesson 16Multicollinearity: Remedial Measures147Lesson 17Heteroskedasticity152Lesson 18Detection of Heteroskedasticity: Formal Tests153Lesson 19Detection and handling of Heteroskedasticity163Lesson 20Autocorrelation171Lesson 21Detection of Autocorrelation176Lesson 22Treating Autocorrelation184Lesson 23Estimating Non-Linear equation by OLS193Lesson 24Introduction to Stata200Lesson 25Introduction to Stata210Lesson 26Data Management in Stata210Lesson 27Stata Revision227Lesson 28Graphs in Stata240Lesson 30Simultaneous Equation Models253Lesson 31Simultaneous Equation Models-II.258Lesson 32Indirect Least Square (ILS)265Lesson 33Two Stage Least Square270Lesson 342SLS & 3SLS Models290Lesson 35Panel Data Medles-II with Stata209Lesson 36Panel Data Medles-II with Stata201Lesson 37Panel Data Medles-II with Stata231Lesson 37Panel Data Medles-II with Stata231Lesson 37Panel Data Medles-II with Stata231Lesson 38Qualitative and limited dependent variable model-I318Lesson 39Qualitative and limited dependent variable model-III314Lesson 41Forecasting-II344Lesson 42Forecasting-II3                                                                                                                                                                                       | Lesson 15  | Multicollinearity                                              | 140      |
| Lesson 17Heteroskedasticity152Lesson 18Detection of Heteroskedasticity: Formal Tests.158Lesson 19Detection and handling of Heteroskedasticity163Lesson 20Autocorrelation171Lesson 21Detection of Autocorrelation176Lesson 22Treating Autocorrelation176Lesson 23Estimating Non-Linear equation by OLS193Lesson 24Introduction to Stata200Lesson 25Introduction to Stata210Lesson 26Data Management in Stata210Lesson 27Stata Revision227Lesson 28Graphs in Stata227Lesson 30Simultaneous Equation Models253Lesson 31Simultaneous Equation Models258Lesson 32Indirect Least Square (ILS)265Lesson 342SLS & 3SLS Models with Stata281Lesson 35Panel Data Methods & Post Estimation Tests with Stata209Lesson 36Panel Data Methods & Post Estimation Tests with Stata205Lesson 37Panel Data Methods & Post Estimation Tests with Stata305Lesson 39Qualitative and limited dependent variable model-I318Lesson 39Qualitative and limited dependent variable models-III331Lesson 41Forecasting-II348Lesson 42Forecasting-II348Lesson 43Time Series, Cointegration and Error Correction-III369Lesson 44Time Series, Cointegration and Error Correction-III369                                                                                                                                                    | Lesson 16  | Multicollinearity: Remedial Measures                           | 147      |
| Lesson 18Detection of Heteroskedasticity: Formal Tests.158Lesson 19Detection and handling of Heteroskedasticity163Lesson 20Autocorrelation171Lesson 21Detection of Autocorrelation176Lesson 22Treating Autocorrelation184Lesson 23Estimating Non-Linear equation by OLS193Lesson 24Introduction to Stata200Lesson 25Introduction to Stata210Lesson 26Data Management in Stata210Lesson 27Stata Revision227Lesson 28Graphs in Stata220Lesson 30Simultaneous Equation Models253Lesson 31Simultaneous Equation Models-II.258Lesson 32Indirect Least Square (ILS)265Lesson 33Two Stage Least Square270Lesson 342SLS & 3SLS Models with Stata280Lesson 352SLS & 3SLS Models290Lesson 36Panel Data Methods & Post Estimation Tests with Stata305Lesson 37Panel Data Methods & Post Estimation Tests with Stata305Lesson 38Qualitative and limited dependent variable models-II318Lesson 40Qualitative and limited dependent variable models-III324Lesson 41Forecasting-II.344Lesson 42Forecasting-II.344Lesson 43Time Series, Cointegration and Error Correction-III.369Lesson 44Time Series, Cointegration and Error Correction-III.369Lesson 45Time Series, Cointegra                                                                                                                                          | Lesson 17  | Heteroskedasticity                                             | 152      |
| Lesson 19Detection and handling of Heteroskedasticity163Lesson 20Autocorrelation171Lesson 21Detection of Autocorrelation176Lesson 22Treating Autocorrelation184Lesson 23Estimating Non-Linear equation by OLS193Lesson 24Introduction to Stata200Lesson 25Introduction to Stata210Lesson 26Data Management in Stata210Lesson 27Stata Revision227Lesson 28Graphs in Stata227Lesson 29Regression with Stata240Lesson 30Simultaneous Equation Models253Lesson 31Simultaneous Equation Models-II.258Lesson 32Indirect Least Square (ILS)265Lesson 33Two Stage Least Square270Lesson 342SLS & 3SLS Models with Stata281Lesson 352SLS & Models -290Lesson 36Panel Data Models-II with Stata295Lesson 37Panel Data Methods & Post Estimation Tests with Stata305Lesson 39Qualitative and limited dependent variable model-I318Lesson 40Qualitative and limited dependent variable models-III324Lesson 41Forecasting-I348Lesson 42Forecasting-I348Lesson 43Time Series, Cointegration and Error Correction-I369Lesson 44Time Series, Cointegration and Error Correction-III375                                                                                                                                                                                                                                     | Lesson 18  | Detection of Heteroskedasticity: Formal Tests                  | 158      |
| Lesson 20Autocorrelation171Lesson 21Detection of Autocorrelation176Lesson 22Treating Autocorrelation184Lesson 23Estimating Non-Linear equation by OLS193Lesson 24Introduction to Stata200Lesson 25Introduction to Stata210Lesson 26Data Management in Stata211Lesson 27Stata Revision227Lesson 28Graphs in Stata227Lesson 29Regression with Stata227Lesson 30Simultaneous Equation Models253Lesson 31Simultaneous Equation Models253Lesson 32Indirect Least Square272Lesson 33Two Stage Least Square272Lesson 342SLS & 3SLS Models290Lesson 352SLS & Models290Lesson 36Panel Data Methods & Post Estimation Tests with Stata305Lesson 37Panel Data Methods & Post Estimation Tests with Stata305Lesson 39Qualitative and limited dependent variable models-II318Lesson 41Forecasting-I339Lesson 42Forecasting-I348Lesson 43Time Series, Cointegration and Error Correction-III369Lesson 44Time Series, Cointegration and Error Correction-III375                                                                                                                                                                                                                                                                                                                                                           | Lesson 19  | Detection and handling of Heteroskedasticity                   | 163      |
| Lesson 21Detection of Autocorrelation176Lesson 22Treating Autocorrelation184Lesson 23Estimating Non-Linear equation by OLS193Lesson 24Introduction to Stata200Lesson 25Introduction to Stata210Lesson 26Data Management in Stata210Lesson 27Stata Revision227Lesson 28Graphs in Stata227Lesson 29Regression with Stata227Lesson 30Simultaneous Equation Models253Lesson 31Simultaneous Equation Models-II258Lesson 32Indirect Least Square (ILS)265Lesson 33Two Stage Least Square272Lesson 342SLS & 3SLS Models with Stata281Lesson 35Panel Data Models-II with Stata290Lesson 36Panel Data Models-II with Stata305Lesson 37Panel Data Models-II with Stata305Lesson 38Qualitative and limited dependent variable model-I318Lesson 39Qualitative and limited dependent variable models-II311Lesson 40Qualitative and limited dependent variable models-III331Lesson 41Forecasting-I.339Lesson 42Forecasting-II.360Lesson 43Time Series, Cointegration and Error Correction-III.369Lesson 45Time Series, Cointegration and Error Correction-III.375                                                                                                                                                                                                                                                        | Lesson 20  | Autocorrelation                                                | 171      |
| Lesson 22Treating Autocorrelation184Lesson 23Estimating Non-Linear equation by OLS193Lesson 24Introduction to Stata200Lesson 25Introduction to Stata210Lesson 26Data Management in Stata211Lesson 27Stata Revision227Lesson 28Graphs in Stata227Lesson 29Regression with Stata227Lesson 20Regression with Stata240Lesson 30Simultaneous Equation Models253Lesson 31Simultaneous Equation Models-II.258Lesson 32Indirect Least Square (ILS)265Lesson 33Two Stage Least Square272Lesson 342SLS & 3SLS Models with Stata281Lesson 352SLS & 3SLS Models290Lesson 36Panel Data Methods & Post Estimation Tests with Stata305Lesson 37Panel Data Methods & Post Estimation Tests with Stata305Lesson 39Qualitative and limited dependent variable models-II.318Lesson 40Qualitative and limited dependent variable models-II.311Lesson 41Forecasting-I.339Lesson 42Forecasting-I.348Lesson 43Time Series, Cointegration and Error Correction-III.369Lesson 45Time Series, Cointegration and Error Correction-IIII.375                                                                                                                                                                                                                                                                                            | Lesson 21  | Detection of Autocorrelation                                   | 176      |
| Lesson 23Estimating Non-Linear equation by OLS193Lesson 24Introduction to Stata200Lesson 25Introduction to Stata210Lesson 26Data Management in Stata218Lesson 27Stata Revision227Lesson 28Graphs in Stata227Lesson 29Regression with Stata227Lesson 30Simultaneous Equation Models253Lesson 31Simultaneous Equation Models-II.258Lesson 32Indirect Least Square (ILS)265Lesson 342SLS & 3SLS Models with Stata290Lesson 352SLS & 3SLS Models290Lesson 36Panel Data Models-II with Stata295Lesson 37Panel Data Models-II with Stata305Lesson 38Qualitative and limited dependent variable model-I318Lesson 40Qualitative and limited dependent variable models-III.324Lesson 41Forecasting-I.339Lesson 42Forecasting-I.348Lesson 43Time Series, Cointegration and Error Correction-I.369Lesson 44Time Series, Cointegration and Error Correction-III.375                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lesson 22  | Treating Autocorrelation                                       | 184      |
| Lesson 24Introduction to Stata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lesson 23  | Estimating Non-Linear equation by OLS                          | 193      |
| Lesson 25Introduction to Stata210Lesson 26Data Management in Stata218Lesson 27Stata Revision227Lesson 28Graphs in Stata227Lesson 29Regression with Stata227Lesson 30Simultaneous Equation Models253Lesson 31Simultaneous Equation Models-II.258Lesson 32Indirect Least Square (ILS)265Lesson 33Two Stage Least Square272Lesson 342SLS & 3SLS Models with Stata281Lesson 352SLS & Models290Lesson 36Panel Data Models-II with Stata295Lesson 37Panel Data Methods & Post Estimation Tests with Stata305Lesson 38Qualitative and limited dependent variable model-I318Lesson 40Qualitative and limited dependent variable models-III324Lesson 41Forecasting-II.339Lesson 42Forecasting-II.348Lesson 43Time Series, Cointegration and Error Correction-I.369Lesson 45Time Series, Cointegration and Error Correction-III.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lesson 24  | Introduction to Stata                                          | 200      |
| Lesson 26Data Management in Stata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lesson 25  | Introduction to Stata                                          | 210      |
| Lesson 27Stata Revision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lesson 26  | Data Management in Stata                                       |          |
| Lesson 28Graphs in Stata227Lesson 29Regression with Stata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lesson 27  | Stata Revision                                                 |          |
| Lesson 29Regression with Stata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lesson 28  | Graphs in Stata                                                |          |
| Lesson 30Simultaneous Equation Models253Lesson 31Simultaneous Equation Models-II.258Lesson 32Indirect Least Square (ILS)265Lesson 33Two Stage Least Square272Lesson 342SLS & 3SLS Models with Stata281Lesson 352SLS & 3SLS Models290Lesson 36Panel Data Models-II with Stata295Lesson 37Panel Data Methods & Post Estimation Tests with Stata305Lesson 38Qualitative and limited dependent variable model-I318Lesson 40Qualitative and limited dependent variable models-III324Lesson 41Forecasting-I339Lesson 42Forecasting-II.348Time Series, Cointegration and Error Correction-I360Time Series, Cointegration and Error Correction-III.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lesson 29  | Regression with Stata                                          | 240      |
| Lesson 31Simultaneous Equation Models-II.258Lesson 32Indirect Least Square (ILS)265Lesson 33Two Stage Least Square .272Lesson 342SLS & 3SLS Models with Stata281Lesson 352SLS & 3SLS Models .290Lesson 36Panel Data Models-II with Stata295Lesson 37Panel Data Methods & Post Estimation Tests with Stata305Lesson 38Qualitative and limited dependent variable model-I318Lesson 40Qualitative and limited dependent variable models-III.324Lesson 41Forecasting-I.339Lesson 42Forecasting-I.348Lesson 43Time Series, Cointegration and Error Correction-I.369Lesson 45Time Series, Cointegration and Error Correction-III.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lesson 30  | Simultaneous Equation Models                                   | 253      |
| Lesson 32Indirect Least Square (ILS)265Lesson 33Two Stage Least Square272Lesson 342SLS & 3SLS Models with Stata281Lesson 352SLS & 3SLS Models290Lesson 36Panel Data Models-II with Stata295Lesson 37Panel Data Methods & Post Estimation Tests with Stata305Lesson 38Qualitative and limited dependent variable model-I318Lesson 40Qualitative and limited dependent variable models-III.324Lesson 41Forecasting-I.339Lesson 42Forecasting-II.348Lesson 43Time Series, Cointegration and Error Correction-I.369Lesson 45Time Series, Cointegration and Error Correction-III.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lesson 31  | Simultaneous Equation Models-II                                | 258      |
| Lesson 33Two Stage Least Square272Lesson 342SLS & 3SLS Models with Stata281Lesson 352SLS & 3SLS Models290Lesson 36Panel Data Models-II with Stata295Lesson 37Panel Data Methods & Post Estimation Tests with Stata305Lesson 38Qualitative and limited dependent variable model-I318Lesson 40Qualitative and limited dependent variable models-III324Lesson 41Forecasting-I339Lesson 42Forecasting-II348Time Series, Cointegration and Error Correction-I369Lesson 45Time Series, Cointegration and Error Correction-III375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lesson 32  | Indirect Least Square (ILS)                                    |          |
| Lesson 342SLS & 3SLS Models with Stata281Lesson 352SLS & 3SLS Models290Lesson 36Panel Data Models-II with Stata295Lesson 37Panel Data Methods & Post Estimation Tests with Stata305Lesson 38Qualitative and limited dependent variable model-I318Lesson 39Qualitative and limited dependent variable models-II324Lesson 40Qualitative and limited dependent variable models-III331Lesson 41Forecasting-I339Lesson 42Forecasting-II348Time Series, Cointegration and Error Correction-I360Lesson 45Time Series, Cointegration and Error Correction-III375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lesson 33  | Two Stage Least Square                                         | 272      |
| Lesson 352SLS & 3SLS Models290Lesson 36Panel Data Models-II with Stata295Lesson 37Panel Data Methods & Post Estimation Tests with Stata305Lesson 38Qualitative and limited dependent variable model-I318Lesson 39Qualitative and limited dependent variable models-II324Lesson 40Qualitative and limited dependent variable models-III331Lesson 41Forecasting-I339Lesson 42Forecasting-II348Lesson 43Time Series, Cointegration and Error Correction-I360Lesson 44Time Series, Cointegration and Error Correction-III375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lesson 34  | 2SLS & 3SLS Models with Stata                                  |          |
| Lesson 36Panel Data Models-II with Stata295Lesson 37Panel Data Methods & Post Estimation Tests with Stata305Lesson 38Qualitative and limited dependent variable model-I318Lesson 39Qualitative and limited dependent variable models-II.324Lesson 40Qualitative and limited dependent variable models-III.331Lesson 41Forecasting-I.339Lesson 42Forecasting-II.348Lesson 43Time Series, Cointegration and Error Correction-I.369Lesson 45Time Series, Cointegration and Error Correction-III.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lesson 35  | 2SLS & 3SLS Models                                             |          |
| Lesson 37Panel Data Methods & Post Estimation Tests with Stata305Lesson 38Qualitative and limited dependent variable model-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lesson 36  | Panel Data Models-II with Stata                                |          |
| Lesson 38Qualitative and limited dependent variable model-I318Lesson 39Qualitative and limited dependent variable models-II.324Qualitative and limited dependent variable models-III.331Lesson 40Qualitative and limited dependent variable models-III.331Lesson 41Forecasting-I.339Lesson 42Forecasting-II.348Lesson 43Time Series, Cointegration and Error Correction-I.360Lesson 44Time Series, Cointegration and Error Correction-III.369Time Series, Cointegration and Error Correction-III.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lesson 37  | Panel Data Methods & Post Estimation Tests with Stata          |          |
| Lesson 39Qualitative and limited dependent variable models-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lesson 38  | Qualitative and limited dependent variable model-I             |          |
| Lesson 40Qualitative and limited dependent variable models-III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lesson 39  | Qualitative and limited dependent variable models-II           |          |
| Lesson 41Forecasting-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lesson 40  | Qualitative and limited dependent variable models-III          |          |
| Lesson 42Forecasting-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lesson 41  | Forecasting-I                                                  |          |
| Lesson 43Time Series, Cointegration and Error Correction-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lesson 42  | Forecasting-II                                                 |          |
| Lesson 44Time Series, Cointegration and Error Correction-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lesson 43  | Time Series, Cointegration and Error Correction-I              |          |
| Lesson 45Time Series, Cointegration and Error Correction-III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lesson 44  | Time Series, Cointegration and Error Correction-I              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lesson 45  | Time Series, Cointegration and Error Correction-III            |          |

## Lecture 01

## **Overview of the Course**

The course of Business Econometrics is designed for students of Business and Economics. It is an introductory level course but covers all useful topics. The course is not only suitable for students of Business, Commerce, Economics, and useful for Research students.

The presentation will be bilingual (English and Urdu) and is presented for a wide range of audience. It will include the uses software for estimations of the econometric models discussed. This includes the use of Microsoft Excel till the mid-term examination and later we plan to introduce stata (software for statistics and econometrics developed and supplied by Stata Corporation).

It will be supplemented with lecture notes, websites & learning modules of statistical software.

The course requires basic knowledge of statistics and probability. Understanding and use of calculus will be an added advantage. An average basic background of business and economics is also helpful.

## **Prescribed Text Books**

- Wooldridge, J. M. (2007), Introductory Econometrics: A Modern Approach, 3rd Edition, Thomson-South Western
- Gujarati, D. N. (2003), Basic Econometrics, 4th ed. (McGraw-Hill: New York)
- Butt, A. Rauf, "Lest Square Estimation of Econometrics Models", (National Book Foundation, Islamabad)

## **Supplementary Readings**

- Green, William H. (2002), Econometric Analysis, 5th Edition, (New York University: New York).
- Salvatore, D. & Reagle, D. (2002), Statistics and Econometrics, 2nd Edition, Schaum's outline series, (McGraw-Hill: New York).
- R.C. Hill, W.E. Griffiths and G.G. Judge (1993), Learning and Practicing Econometrics (Wiley: London). [More advanced.]

## **Additional Resources**

## http://www.wikihow.com/Run-Regression-Analysis-in-Microsoft-Excel

The above website provides a very good introduction to Use of a tool in Microsoft Excel to run regressions with some diagnostic test.

## http://www.ats.ucla.edu/stat/stata/

The above website of University of California LA is a great collection of training material and modules to learn the statistical software that we intend to use. It provides video tutorials, lectures, training and learning material.

## http://data.worldbank.org/data-catalog/world-development-indicators

The above website of The World Bank Group is a data archive for more than 180 countries. It provides macroeconomic and financial data on almost every aspect of the countries in the world for more than 60 years.

## What is Econometrics or Business Econometrics?

## **Traditional Perception**

- Econometrics is the branch of economics concerned with the use of mathematical methods (especially statistics) in describing economic systems.
- Econometrics is a set of quantitative techniques that are useful for making "economic decisions"
- Econometrics is a set of statistical tools that allows economists to test hypotheses using really world data. "Is the value of the US Dollar correlated to Oil Prices?", "Is Fiscal policy really effective?", "Does growth in developed countries stimulate growth in the developing countries?"
- The Economist's Dictionary of Economics defines Econometrics as "The setting up of mathematical models describing mathematical models describing economic relationships (such as that the quantity demanded of a good is dependent positively on income and negatively on price), testing the validity of such hypotheses and estimating the parameters in order to obtain a measure of the strengths of the influences of the different independent variables."

- Econometrics is the intersection of economics, mathematics, and statistics.
   Econometrics adds empirical content to economic theory allowing theories to be tested and used for forecasting and policy evaluation.
- Econometrics is the branch of economics concerned with the use of mathematical and statistical methods in describing, analyzing, estimating and forecasting economic relationships. Examples of Economic relationships or Business relations and interactions are:
  - o Estimation of the market model (demand and supply)
  - Are oil prices and the value of US dollar correlated?
  - o What are the determinants of growth?
  - How are liquidity and profitability related?

## **Modern View**

- Econometrics is no more limited to testing, analyzing and estimating economic theory.
   Econometrics is used now in many subjects and disciplines like Finance, Marketing,
   Management, Sociology etc.
- Also, the advent of modern day computers and development of modern software has helped in estimation and analysis of more complex models. So computer programing is now an essential component of modern day econometrics.
- Econometrics is the application of mathematics, statistical methods, and, more recently, computer science, to economic data and is described as the branch of economics that aims to give empirical content to economic relations.
- It is no more limited to quantitative research but encompasses qualitative research. So we can finally arrive at a simple but modern and comprehensive definition as:

Using the tools of mathematics, statistics and computer sciences, Econometrics analyses quantitative or qualitative phenomena (from Economics or other disciplines), based on evolution and development of theory, by recording observations based on sampling, related by appropriate methods of inference.

The following flow chart summarizes the above discussion



## Why should you study Econometrics?

The following arguments can be presented to convince a student of business and economics to study Business Econometrics:

- Econometrics provides research tools for your subject.
- Econometrics provides empirical evidence for theoretical statements. Without empirical support the statements may have no value. The theories are tested based of different models and we can forecast the results and make predictions.
- Data never speaks for themselves; Econometrics makes Data speak
- From Idea to forecasting: First we may have an Idea that can be converted to a sound theory. To test the theory we need a functional form showing the relationship of the variables. After that we can go for specification in which we use mathematical equations to reflect the nature of relationship of the variables. The next step may be data collection. We then may use the data for estimation, testing, forecasting based on the model that we have specified.

## The Methodology of Business Econometrics

The methodology of Business Econometrics may be described by the following steps:

- Creation of a statement of theory or hypothesis
- Collection of Data
- Model Specification
- Model Estimation
- Performing Diagnostic Tests
- Testing the Hypothesis
- Prediction or Forecasting

The creation of a statement of problem may be based on the existing theory of business and economics. We already know something about the interaction and relationship of variables. For example, we know that the quantity demanded may depend on price, income, prices of substitutes and complementary goods and some other variables. We collect data on these variables and specify our model based on demand theory. We can estimate the model with the help of some technique provided by Econometrics. The estimation may not be free form problems. Here some additional steps may be performed where we can check the validity of the model that we have specified by the use of various diagnostic tests to diagnose any possible problems in the estimation. For that, we test various hypothesis regarding the effectiveness and validity of the estimators. The ultimate result may be predicting or forecasting outcomes like economic and financial events of outcomes. If the technique and model applied is appropriate, the forecasts would be better.

#### Structure of Data

Cross-Sectional Data: Sample of entities at a given point in time
Time Series Data: Observations over time
Pooled Data / Pooled Cross Sections: Combined Cross Sections from different years
Panel / longitudinal Data: Time Series of each Cross Section, Same cross sectional units are followed over time

## **Example of Cross-Sectional Data**

| Respondent | Income (Rupees) |
|------------|-----------------|
| Ali        | 75000           |
| Faisal     | 42000           |
| Iqbal      | 33000           |
| Noreen     | 65000           |

Monthly Income of a sample of individuals in 2014

Other Examples: GDP across countries, Annual Sales of different companies in 2014 etc.

## **Examples of Time Series Data**

#### Monthly Income of a Person over time

| Year | Average Monthly Income in Rupees |
|------|----------------------------------|
| 2010 | 35000                            |
| 2011 | 42000                            |
| 2012 | 47000                            |
| 2013 | 51000                            |
| 2014 | 55000                            |

Other Examples: Pakistan's GDP from 1972 to 2012, Annual Sales of General Motors from 1985 to 2012 etc.

Time series data also need special attention. For example, many variables follow a time trend and we must take care of this while analyzing relationships of variables in time series data. Time series econometrics is evolving as a separate subject now.

## Example of Pooled Data / Pooled Cross Sections

Monthly income of respondents from 2011 to 2013

| Sample year | Respondent | Income (Rupees monthly average) |
|-------------|------------|---------------------------------|
| 2011        | Ali        | 75000                           |
| 2011        | Iqbal      | 42000                           |
| 2012        | Salma      | 74000                           |
| 2012        | Kumail     | 68000                           |
| 2013        | Sultan     | 80000                           |
| 2013        | Lubna      | 83000                           |

Note that individual may change in different years

## **Examples of Panel or longitudinal Data**

Exchange Rate of different countries over time

| Country   | Year | Exchange Rate to US dollar |
|-----------|------|----------------------------|
| Indonesia | 2008 | 9698.96                    |
| Indonesia | 2009 | 10389.9                    |
| Indonesia | 2010 | 9090.43                    |
| Pakistan  | 2008 | 70.40803                   |
| Pakistan  | 2009 | 81.71289                   |
| Pakistan  | 2010 | 85.19382                   |
| Sri Lanka | 2008 | 108.3338                   |
| Sri Lanka | 2009 | 114.9448                   |
| Sri Lanka | 2010 | 113.0661                   |

#### Source: Penn World Tables

Note that Individual entities (countries) do not change over time

## Some Sources of Data

You can just Google for the following and find economic and financial data

- World Development Report
- World Development Indicators
- International Financial Statistics
- Penn World Tables
- US time use Survey
- Panel Survey of Income Dynamics
- <u>http://finance.gov.pk</u> (Ministry of Finance, Pakistan)
- <u>http://sbp.org.pk</u> (State Bank of Pakistan)

## File types that you may come across

For downloading and using data, e.g. on the websites like that of the World Bank Group, you may come across the following usual files containing data.

- Microsoft Excel (.xls or .xlsx)
- SPSS (.sav)
- Stata (.dat)
- .csv (Comma Separated values / character separated values)
- .xml (extensible markup language)

## Lecture 02

## **The Summation Notation**

The summation operator is heavily used in econometrics. This operator is used to show that we are summing up something e.g. an expression. The Greek letter  $\Sigma$  (sigma) is used to indicate summation or addition. Usually  $\Sigma$  is followed by an expression. Summation Notation is an effective and comprehensive way to describe a sum of terms. Let us take some examples to grasp the concept.

Let 'a', 'b' and 'k' denote constants.

Let 'X', 'Y' and 'i' symbolize variables.

In the example on the right, the sum of the column of the variable is given as

Sum of  $X = X_1 + X_2 + X_3 + X_4 + X_5 =$ 

$$\sum_{i=1}^{5} X_i$$

5

Where *i* is a subscript and changes from 1 to 5

In general we write summation of X as

$$\sum_{i=1}^{n} X_i$$

| Here $n$ | is a | finite | number. |
|----------|------|--------|---------|
|----------|------|--------|---------|

Another Example: how summation notation makes life easy

Consider the expression containing different fractions like

$$\frac{2}{3} + \frac{3}{4} + \frac{4}{5} + \frac{5}{6} + \frac{6}{7}$$

Let k = 2, then the expression can be written as

$$\sum_{k=2}^{6} \frac{k}{k+1}$$

| Х  | Symbol                |
|----|-----------------------|
| 2  | <i>X</i> <sub>1</sub> |
| 4  | <i>X</i> <sub>2</sub> |
| 6  | <i>X</i> <sub>3</sub> |
| 8  | $X_4$                 |
| 10 | X <sub>5</sub>        |
| 30 | $\sum_{v=1}^{5} v$    |

To see how, we need to let k=2 first which gives

If k = 3 the expression is

We will continue till k = 6 and sum up all terms which gives:

$$\frac{2}{3} + \frac{3}{4} + \frac{4}{5} + \frac{5}{6} + \frac{6}{7}$$

 $\frac{2}{3}$ 

 $\frac{3}{4}$ 

Now we need to specify the range of values of k which is 2 to 6. We also need to specify the we are summing up (not multiplying for instance) which we do by applying the letter  $\Sigma$ The final expression is

$$\sum_{k=2}^{6} \frac{k}{k+1}$$

This gives

$$\frac{2}{3} + \frac{3}{4} + \frac{4}{5} + \frac{5}{6} + \frac{6}{7}$$

This is called expanding the summation expression

Practice Question 2.1: Try expanding the following expression and finding the value

$$\sum_{i=1}^{5} \frac{(i+1)^2}{i}$$

Practice Question 2.2: Try expanding the following expression and finding the value

$$\sum_{j=1}^{3} \frac{(2j+1)^2}{10j^2}$$

Practice Question 2.3: Try expanding the following expression and finding the value

$$\sum_{i=1}^{5} X^2$$

Where X assumes the values 5, 6, 7, 8 and 9

Practice Question 2.4: Try to write the following in summation notation

$$1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 + 81 + 100$$

Practice Question 2.5: Try to write the following in summation notation

$$2 + \frac{3}{4} + \frac{4}{9} + \frac{5}{16} + \frac{6}{25} + \frac{7}{36}$$

## **Properties of the Summation Operator**

## Property 1

$$\sum_{i=1}^{n} a_i = na$$

Sum of 'a' =  $a_1 + a_2 + a_3 + a_4 + a_5$ 

$$= \sum_{i=1}^{5} a_i$$

$$\boxed{\begin{array}{c|c|c|c|c|c|} A & Symbol \\ 2 & a_1 \\ 2 & a_2 \\ 2 & a_2 \\ 2 & a_3 \\ 2 & a_4 \\ 2 & a_5 \\ \hline 10 & 5 \\ \sum_{i=1}^{5} a_i = 2 + 2 + 2 + 2 = 10 \\ \end{array}}$$

In fact it is five times 2 = 5 multiplyed by 2 = na = 10

$$\sum_{i=1}^{5} a_{i} = 5a = na, where n = number of observations$$

Which can be generalized as

$$\sum_{i=1}^{n} a_i = na$$

IMPORTANT: We usually do not write subscript 'i' with a constant. This was just an example

Note that 'a' is a constant and all values of it are identical.

When  $\Sigma$  is multiplied by a constant we can write 'n' instead of  $\Sigma$ 

## Property 2

$$\sum_{i=1}^{n} kX_i = k \sum_{i=1}^{n} X_i$$

| х         | 5X        |
|-----------|-----------|
| 1         | 5         |
| 2         | 10        |
| 3         | 15        |
| 4         | 20        |
| 5         | 25        |
| Total: 15 | Total: 75 |

In column 2,

$$5 + 10 + 15 + 20 + 25 = 75 = \sum_{i=1}^{5} 5X_i$$

This can also be computed as

Let k = 5

Business Econometrics by Dr Sayyid Salman Rizavi

$$5 \ge 15 = 75 = 5 \sum_{i=1}^{5} X_i$$

Hence A constant value can be factored out of the summation operator and we can write

$$\sum_{i=1}^{n} kX_i = k \sum_{i=1}^{n} X_i$$

Property 3

| $\sum_{i=1}^{n} (X_i + Y_i) = \sum_{i=1}^{n} X_i + \sum_{i=1}^{n} Y_i$ |           |           |  |  |
|------------------------------------------------------------------------|-----------|-----------|--|--|
| Х                                                                      | Y         | X + Y     |  |  |
| 1                                                                      | 5         | 6         |  |  |
| 2                                                                      | 12        | 14        |  |  |
| 3                                                                      | 18        | 21        |  |  |
| 4                                                                      | 22        | 26        |  |  |
| 5                                                                      | 27        | 32        |  |  |
| Total: 15                                                              | Total: 84 | Total: 99 |  |  |
| $\sum_{i=1}^{5} X_{i}^{2} \neq (\sum_{i=1}^{5} X_{i})^{2}$             |           |           |  |  |

In column 3

$$\sum_{i=1}^{5} (X_i + Y_i) = 6 + 14 + 21 + 26 + 32 = 99$$

Which can also be computed as:

$$\sum_{i=1}^{5} X_i + \sum_{i=1}^{5} Y_i = 15 + 84 = 99$$

Extension: Combining property 2 & 3 we can also write

Business Econometrics by Dr Sayyid Salman Rizavi

$$\sum_{i=1}^{n} (aX_i + bY_i) = a \sum_{i=1}^{n} X_i + b \sum_{i=1}^{n} Y_i$$
$$\sum_{i=1}^{n} (aX_i + b) = \sum_{i=1}^{n} (aX_i) + \sum_{i=1}^{n} b = a \sum_{i=1}^{n} X_i + nb$$

#### What can NOT be done in the Summation Notation?

The summation algebra is not just identical to normal algebra. Some things that may seem obvious is normal algebra may not apply to summation algebra. Remember that the following expressions are NOT equal

$$\sum_{i=1}^{n} (X_i / Y_i) \neq \sum_{i=1}^{n} X_i \div \sum_{i=1}^{n} Y_i$$

Also

$$\sum_{i=1}^{n} (X_i Y_i) \neq \sum_{i=1}^{n} X_i \cdot \sum_{i=1}^{n} Y_i$$

and

$$\sum_{i=1}^n X_i^2 \neq (\sum_{i=1}^n X_i)^2$$

Practice Question 2.6: *Construct a table to prove the first and second inequality* discussed above.

## Application of Summation algebra

We can prove the following useful expression that may be used later.

Different forms of  $\sum (X - \overline{X})(Y - \overline{Y})$ 

Subscripts ('i') are omitted/ignored for simplicity

$$\sum (X - \bar{X})(Y - \bar{Y}) = \sum XY - \frac{\sum X \sum Y}{n} = \sum XY - n \bar{X} \bar{Y}$$
$$\sum (X - \bar{X})(Y - \bar{Y}) = \sum [XY - \bar{X}Y - X\bar{Y} + \bar{X}\bar{Y}]$$
$$= \sum XY - \bar{X} \sum Y - \bar{Y} \sum X + n \bar{X}\bar{Y}$$
$$= \sum XY - \frac{\sum X}{n} \sum Y - \frac{\sum Y}{n} \sum X + n \frac{\sum X \sum Y}{n}$$
$$= \sum XY - \frac{\sum X \sum Y}{n} - \frac{\sum X \sum Y}{n} + \frac{\sum X \sum Y}{n}$$
$$= \sum XY - \frac{\sum X \sum Y}{n} - \frac{\sum X \sum Y}{n}$$

Also  $\sum XY - \frac{\sum X \sum Y}{n} = \sum XY - n \frac{\sum X \sum Y}{n} = \sum XY - n \overline{X} \overline{Y}$ 

# Different forms of $\sum (X - \overline{X})^2$

Subscripts ('i') are omitted/ignored for simplicity

$$\sum (X - \bar{X})^2 = \sum X^2 - \frac{(\sum X)^2}{n}$$
$$\sum (X - \bar{X})^2 = \sum [X^2 + \bar{X}^2 - 2X\bar{X}]$$
$$= \sum X^2 + n\bar{X}^2 - 2\bar{X}\sum X$$
$$= \sum X^2 + n\frac{(\sum X)^2}{n^2} - 2\frac{\sum X}{n}\sum X$$
$$= \sum X^2 + \frac{(\sum X)^2}{n} - 2\frac{(\sum X)^2}{n}$$
$$= \sum X^2 - \frac{(\sum X)^2}{n}$$

Double Summation

Double Summation or nested summation also can be used

Example:

$$\sum_{i=1}^{3} \sum_{j=1}^{2} X_{ij} = X_{11} + X_{12} + X_{21} + X_{22} + X_{31} + X_{32}$$

Example:

$$\sum_{i=1}^{3} \sum_{j=1}^{2} X_i Y_j = X_1 Y_1 + X_1 Y_2 + X_2 Y_1 + X_2 Y_2 + X_3 Y_1 + X_3 Y_2$$

## **Linear Functions**

Most of you would be familiar to straight lines or linear functions. A variable may be a linear function of another if its plot produces a straight line. A linear function may be written as

$$Y = a + bX$$

a = intercept (the point where the line intersects the y-axis)

b = slope, rate of change, derivative

As 
$$Y = a + bX$$
  
 $\Delta Y = b\Delta X$   
 $b = \frac{\Delta Y}{\Delta X}$  = marginal effect

Function: Each domain value (X) represents a unique range value (Y)

Linear function: A function whose graph forms a straight line OR for which the rate of change 'b' is constant. Linear function can be with our without intercept. A straight line that is shown without intercept, when plotted, shows a line passing through the origin. Assuming linear relationship makes the models easy to solve.

Consider the following table

| X | Y  |
|---|----|
| 1 | 7  |
| 2 | 9  |
| 3 | 11 |
| 4 | 13 |



As the linear equation is written as Y = a + bX, we need the values of a and b for this equation We can compute it from the first two rows as

$$b = \frac{\Delta Y}{\Delta X} = \frac{9-7}{2-1} = \frac{2}{1} = 2$$

Note that this ratio is the same for if we use row 2 and row 3 or any other two consecutive rows.

As Y = a + bX we can get the value of a as a = Y - bX and compute it from any row in the given table. Here a = 7 - 2(1) = 5 so the equation for the table above can be written as



$$Y = 5 + 2X$$

## **Simple examples of Linear Functions**

#### **Linear Demand Functions**

The Demand Function:  $Q_d = f(P, Y, P_s, P_c, A)$ Where  $Q_d = Quantity$  Demanded  $P = Price, Y = income, P_s = Price of Substitute, P_c = Price of complemantary good$ <math>A = Advertisement Expenditure

Expression in terms of linear equation

$$Q_d = \mathbf{a} + \mathbf{b} \mathbf{P} + \mathbf{c} \mathbf{Y} + \mathbf{d} P_s + e P_c + f \mathbf{A}$$

Simple Demand Function

 $Q_d = a + b P$ , Ceteris Paribus

We estimate the parameters 'a' and 'b' from data. (Sometimes with the help of regression analysis)

What do we expect? The sign of 'b' is negative for 'normal' goods, sign of b is positive for 'Giffen' goods

## Practice Question 2.7:

Assume  $Q_d = 50 - 2 P$ , Ceteris Paribus

Activity: Assume valued of P (price) to be 1, 2, 3, 4 and 5

Compute  $Q_d$  and plot the 'Demand Curve'

NOTE: Here we have used a linear equation as a specification of a demand function, however Demand function may be non-linear in reality.

## **Simple examples of using Linear Equations**

#### Example:

## Some times we can 'linearize' equations

Simple linear regression: linear in variable functional form  $Y = \beta_0 + \beta_1 X$ 

Marginal effect =  $\beta_1$ 

Elasticity =  $\varepsilon = \beta_1 (X/Y)$ 

Double log functional form

$$lnY = \beta_0 + \beta_1 lnX$$

Can be written as

$$Y^* = \beta_0 + \beta_1 X^*$$
 where  $Y^* = lnY$ ,  $X^* = lnX$ 

Marginal effect:  $m = \beta 2(Y/X)$ 

Elasticity:  $\varepsilon = \beta_1$ 

#### Example:

Linear-Log functional form

$$Y = \beta_0 + \beta_1 lnX$$

Can be written as

$$Y = \beta_0 + \beta_1 X^* \text{ where } X^* = lnX$$
  
Marginal effect =  $\frac{\beta_1}{X}$   
Elasticity =  $\varepsilon = \frac{\beta_1}{Y}$   
Log-Linear functional form

$$lnY = \beta_0 + \beta_1 X$$

Can be written as

$$Y^* = \beta_0 + \beta_1 X$$
 where  $Y^* = lnY$ 

Marginal effect:  $m = \beta_1 Y$ 

Elasticity:  $\varepsilon = \beta_1 X$ 

## Example:

**Cobb-Douglas Production Function** 

 $Y = AL^{\alpha}K^{\beta}$ 

Taking log on both sides,

$$\ln Y = \ln A + \alpha \ln L + \beta \ln K$$

Can be written as

$$Y^* = a + \alpha L^* + \beta K^*$$

where  $L^* = \ln L$ ,  $K^* = \ln K$  and  $Y^* = \ln Y$ 

Which can be estimated as a linear equation

The equation is not linear but we can estimate it by transformation

## Lecture 03

## **Quadratic Function**

A quadratic function is a function of the form

$$f(x) = Y = aX^2 + bX + c \quad where \ a \neq 0$$

a, b and c are called coefficients

The graph forms a parabola. Each graph has either a maxima or minima

A line divides the graph in two parts creating symmetry

Examples:

$$- Y = 2X^{2} + 3X + 10$$
  

$$- Y = 3X^{2} - 5X + 5$$
  

$$- Y = 10X^{2} + 2X$$
  

$$- Y = 5X^{2}$$

In the diagram:

- Axis of Symmetry: x = 0
- Here a = 1, b = 0, c = 0



Example:

Form:  $Y = aX^2 + bX + c$ 

When a is positive, the graph concaves downward When a is negative, the graph concaves upward (see the graph) When c is positive, the graph moves up When c is negative, the graph moves down.



## **Quadratic Function in econometrics**

Let us consider some quadratic functions. The practical examples discussed here can be of inverted-U-shaped functions and U-shaped functions

## **Inverted U relationships**

#### Liquidity and profitability

The profitability has many determinants including liquidity. For the liquidity of a firm, we use indicators like current ratio and quick ratio. Normally a range of 1 to 2 is fine for current ratio. This means that if the liquidity ratio is less than 1 then the firm has inadequate resources to meet her obligations. This may negatively affect profitability so, at this stage, an increase in liquidity may increase profits. However, if a current ratio of above 2 (excess liquidity) is observed, this means that the funds are not placed properly and are not contributing to profit. At this stage, and increase in liquidity may negatively affect profitability.

So, initially, increase in liquidity increases profit but later on an increase in liquidity may decrease profits. This can be dealt by showing the relationship as an inverted-U shape.

## **Competition and Innovation**

Initially increase in competition is good and gives rise to innovation and modification in the products. But too much competition may decrease the possibility of innovation because too much competition gets the prices to a minimum level (break-even point in economics). With just a normal profit, the firms had no incentive to be innovative because they get the same price for the product.

**Kuznets Curve (income per capita & income inequality)** Kuznets curve represents graphically the hypothesis of Simon Kuznets that with economic development, initially, economic inequality occurs naturally, and then decreases it after a certain average income is attained. This means that initially inequality increases with development but later, it decreases with further development.



## **Calmfors–Driffill Hypothesis**

Inverted U relationships: Calmfors–Driffill hypothesis: Trade union size is a proxy for collective bargaining power. The following text is taken from Wikipedia.org

"The Calmfors–Driffill hypothesis is a macroeconomic theory in labor economics that states that there is a non-linear relationship between the degree of collective bargaining in an economy and the level of unemployment. Specifically, it states that the relationship is roughly that of an 'inverted U': as trade union size increases from nil, unemployment increases, and then falls as unions begin to exercise monopoly power. It was advanced by Lars Calmfors and John Driffill." (Source: Wikipedia.org)



## U shaped quadratic relationships

## **Economic Development and Fertility**

As economic development takes place, fertility declines however with more economic development, countries may provide incentives for childbearing. When the cost of childbearing declines, fertility rates may start rising again. If the above is believed, it may be depicted by a quadratic form of equation.

## Marginal Cost and Average Cost Curves

Both the marginal and average cost curves that are based on the Cost theory have a U-shape. This means that first marginal and average cost decline with increase in production but after a point they start rising when the production increases. The minimum point for both curves is different but the marginal cost curve intersects the average cost curve from the minimum average cost as seen in the following figure.



Output Exponential & Logarithmic Functions

**Brief Description** 

• Exponential function are functions in which constant base 'a' is raised to a variable exponent x

$$Y = a^x$$
 where  $a > 0$  and  $a \neq 1$ 

- 'a' is the base and x is the exponent.
- The base can be any value including the value of e=2.7172828

• 'e' is the base of natural logarithm (Euler's constant)

$$Y = a^x$$
 then  $log_a Y = x$  is called log to the base 'a'

And if

 $Y = e^x$  then  $log_e Y = ln Y = x$  (called natural logarithm)

• Some times the exponent can be an expression

## **Exponential & Logarithmic Functions**

#### **Examples: Exponential Growth**

At every instance, the rate of growth of the quantity is proportional to the quantity (population growth may be an example)

$$P(t) = 2e^{3t}$$

**Continuous Compound Interest** 

 $C = Pe^{rt}$ 

C = compounded balance after t years

P = Principal amount, t = number of years

r = rate of interest

Logarithmic equation

Equations of the type  $lnY = \beta_0 + \beta_1 lnX$  provide elasticity

#### **Simple Derivative**

#### The concept of differentiation

Consider Y = f(x)

The Rate of Change is defined as  $= \frac{\Delta Y}{\Delta X}$ 

Derivative is the instantaneous rate of change of the dependent variable due to a very small change in the independent variable. The slope of the tangent line approximates the slope of the function at the point of tangency. The secant line approaches the tangent line by the definition of derivative (see the next slide) For normal comprehension, derivative, slope of a function, marginal function (like MC as the derivative of TC) can be thought to be identical



$$\frac{dy}{dx} = \acute{y} = \acute{f}(x) = \lim_{\Delta x \to \infty} \frac{f(x + \Delta x) - f(x)}{f(x)}$$

## Some Important things to note

| Expression         | Read as                        | Meaning                             |
|--------------------|--------------------------------|-------------------------------------|
| f(x)               | 'f prime x'                    | Derivative of 'f' with respect to x |
| dy                 | 'dee why dee ecks'             | Derivative of y with respect to x   |
| ý                  | y prime                        | Derivative of y                     |
| $\frac{d}{dx}f(x)$ | 'dee by dee ecks of f<br>of x' | The derivative of the function of x |
|                    |                                |                                     |

dx' does not mean d multiplied by x (same for 'dy')

 $\frac{dy}{dx}$  does not mean  $dy \div dx$ 

## **Rules of differentiation**

**The Power Rule** 

If 
$$y = a x^n$$
,  $\frac{dy}{dx} = anx^{n-1}$ 

Example

$$y = 10x^{3}$$
$$\frac{dy}{dx} = \dot{y} = 10 \ (3)x^{3-1} = 30 \ x^{2}$$

Example

$$y = 5x^{2}$$
  
 $\frac{dy}{dx} = \dot{y} = 5 \ (2)x^{2-1} = 10 \ x$ 

Example

$$y = \frac{10}{x^2} = 10x^{-2} \text{ (write as the format a } x^n)$$
$$\frac{dy}{dx} = \dot{y} = 10 \text{ (-2)}x^{-2-1} = -20 x^{-3}$$
$$= \frac{20}{x^3}$$

## **The Constant Function Rule**

If 
$$y = k$$
 where k is a constant,  $\frac{dy}{dx} = 0$ 

Derivative is 'rate of change' and there is no change in a constant

This can be derived from the power rule!

The above can be written as  $y = k = kx^0$  so  $\acute{y} = k \ (0)x^{0-1} = 0$ 

Example

$$y = 10, \ y = 0$$

What is y = x?

$$y = x = 1.x^{1}$$

$$\frac{dy}{dx} = \dot{y} = (1)(1)x^{1-1} = 1x^0 = 1$$

Hence If y = x then  $\frac{dy}{dx} = 1$ 

## The Sum-Difference Rule

If 
$$y = f(x) \pm g(x)$$
,  $\frac{dy}{dx} = f(x) \pm g(x)$ 

Example

$$y = 10x^{3} + 5x^{2}$$
$$\frac{dy}{dx} = \dot{y} = 10 \ (3)x^{3-1} + 5 \ (2)x^{2-1}$$
$$= 30 \ x^{2} + 10 \ x$$

## Example

The above can be extended to more than two terms

$$y = 2x^{3} - 3x^{2} - 10x + 5$$

$$\frac{dy}{dx} = \dot{y} = \frac{d}{dx}(2x^{3}) - \frac{d}{dx}(3x^{2}) - \frac{d}{dx}(10x) + \frac{d}{dx}(5)$$

$$= 6x^{2} - 6x - 10(1) + 0$$

$$= 6x^{2} - 6x - 10$$

The Product Rule

If 
$$y = f(x) \cdot g(x)$$
,  $\frac{dy}{dx} = g(x) \cdot \hat{f}(x) + f(x) \cdot \hat{g}(x)$ 

The derivative of the product of two functions is equal to the second function times the derivative of the first plus the first function times the derivative of the second.

## Example

$$y = (10 - x)(5 + x)$$
  
Here  $f(x) = 10 - x$ , and  $g(x) = 5 + x$   
$$\frac{dy}{dx} = (5 + x)\frac{d}{dx}(10 - x) + (10 - x)\frac{d}{dx}(5 + x)$$
$$= (5 + x)(-1) + (10 - x)(1)$$

$$= -5 - x + 10 - x$$
$$\frac{dy}{dx} = 5 - 2x$$

*Verification:*  $y = (10 - x)(5 + x) = 50 + 5x - x^2$ 

which gives  $\dot{y} = 5 - 2x$  (same as above)

## **The Quotient Rule**

$$If y = \frac{f(x)}{g(x)}, \quad \frac{dy}{dx} = \frac{g(x).f(x) - f(x).g(x)}{(g(x))^2}$$

 $(g(x))^2$  can be written as  $g^2(x)$ 

Example

$$y = \frac{10 - x}{5 + x}$$
Here  $f(x) = 10 - x$ , and  $g(x) = 5 + x$ 

$$\frac{dy}{dx} = \frac{(5 + x)\frac{d}{dx}(10 - x) - (10 - x)\frac{d}{dx}(5 + x)}{(5 + x)^2}$$

$$= \frac{(5 + x)(-1) - (10 - x)(1)}{(5 + x)^2}$$

$$= \frac{-5 - x - 10 - x}{(5 + x)^2} = \frac{-15 - 2x}{(5 + x)^2}$$

## The Chain Rule: functions involving different variables

let y = f(g(x)) where z = g(x) then  $\frac{dy}{dx} = \frac{dy}{dz}\frac{dz}{dx}$ 

Remember: on the RHS dz does not cancel dz, (dy/dz) is ONE symbol Example:  $y = (5x^2 + 2x + 10)^3$  (we can make use of the chain rule)

let 
$$z = 5x^2 + 2x + 10$$
 then  $\frac{dz}{dx} = 5x + 2$ 

y can be written as 
$$y = z^3$$
 then  $\frac{dy}{dz} = 3z^2$ 

Using the chain rule  $\frac{dy}{dx} = \frac{dy}{dz}\frac{dz}{dx}$ 

$$\frac{dy}{dx} = (3z^2)(5x+2) = 3(5x^2+2x+10)^2(5x+2)$$

NOTE: we can directly apply power rule to such problems

$$\frac{dy}{dx} = 3(5x^2 + 2x + 10)^{3-1} (derivative of the inner expression)$$
$$= 3(5x^2 + 2x + 10)^2 (5x + 2)$$

## **Some Application of Simple Derivatives**

Remember:

• Derivative is rate of change or slope or marginal function

## **Example: Finding Marginal functions**

If total cost  $C = \frac{1}{3}Q^3 - 2Q^2 + 120Q + 1000$ 

Then Marginal cost is the derivative of total cost

$$MC = \frac{d}{dx} \left( \frac{1}{3}Q^3 - 2Q^2 + 120 Q + 1000 \right)$$
$$MC = \frac{1}{3}(3)Q^{3-1} - 2(2)Q^{2-1} + 120(1) + 0$$
$$MC = Q^2 - 4Q + 120$$

#### Example: Applying the chain rule

If total cost R = f(Q) and Q = g(L)

$$\frac{dR}{dL} = \frac{dR}{dQ} \cdot \frac{dQ}{dL}$$
$$= MR. \ MPP_L = MRP_L$$

Example: finding elasticity

$$Q_d = 100 - 2P$$

(we will learn how to get the values of the above coefficients through regression)

*Price* = P = 10, Using the above information,  $Q_d = 100 - 2(10) = 80$ 

#### **Example: finding elasticity**

Business Econometrics by Dr Sayyid Salman Rizavi

$$Q_d = 100 - 2P$$
 gives  $\frac{dQ}{dP} = -2$ 

Price Elasticity of Demand =  $E_p = \frac{dQ}{dp} \cdot \frac{P}{Q}$ 

= (derivative of Q w.r.t. P) times (P/Q)

$$= (-2)\left(\frac{10}{115}\right) = -0.1739$$

Which means that for every one percent change in price, quantity demanded decreases by 0.1739 units

## **Higher Order Derivatives**

## What are higher order derivatives?

The derivative of a derivative is called second order derivative. The third order derivative is the derivative of the second order derivative. This may continue and are called Higher Order Derivative.

Meaning of the second order derivative: It show the rate of change of the rate of change.

Example:  $y = 10x^3$ 

$$y' = 10 (3)x^{3-1} = 30 x^{2}$$
$$y'' = \frac{d}{dx}(30 x^{2}) = 60x$$
$$y''' = \frac{d}{dx}(60x) = 60$$

And so on

## Lecture 04 Partial Derivatives

## **Multivariate Functions**

Functions of more than one variable are called multivariate functions.

## **Examples:**

 Quantity Demanded is a function of Price, Income, Prices of other goods and some other variables

$$Q_d = f(P, I, P_o, O)$$

• Profitability depends on liquidity, capital structure, government regulations, prices of raw material etc.

$$\pi = f (LQ, CS, GR, PR)$$

Partial Derivatives: Rate of change of the dependent variable with respect to change in one of the independent variables while the other independent variables are assumed to be constant (are held)

## **Partial Derivatives**

## Symbols

The mathematical symbol  $\partial$  (partial or partial dee or del) is used to denote partial derivatives.

$$\frac{\partial z}{\partial x}$$

The above symbol is read as 'partial derivative of z with respect to x' (other variables are treated as constants)

Another symbol can also be used:  $Z_x$  or  $Z_1$ 

For second order derivatives we can use the following symbols:

$$\frac{\partial^2 z}{\partial x^2}$$

Or  $Z_{xx}$ ,  $Z_{xy}$ ,  $Z_{11}$ ,  $Z_{12}$  etc.

## **Partial Differentiation**

## Method to partially differentiate functions

- You have as many 'first order partial derivatives' as number of independent variables
- When we differentiate a variable with respect to any one independent variable, we treat all other variables as if they were constants.
- All the usual rules of differentiation are applicable.
- Higher Order Derivatives may be of two types
  - Direct Partial Derivative: differentiate twice w.r.t. the same variable (2<sup>nd</sup> order direct partial)
  - Cross Partial Derivatives: differentiate w.r.t. one variable and then w.r.t. another variable (2<sup>nd</sup> order cross partial)
  - Cross partial Derivatives are always equal (symmetry of second derivatives OR equality of mixed partial)

## **Partial Differentiation: Examples**

## Example:

$$Z = f(x, y) = 2x^2 + 3y^2 + 5xy + 20$$

• Three type of terms in the expression: That contain only x, That contain only y, That contain both x and y

$$\frac{\partial z}{\partial x} = \frac{\partial}{\partial x} (2x^2 + 3y^2 + 5xy + 20)$$
$$\frac{\partial z}{\partial x} = \frac{\partial}{\partial x} (2x^2) + \frac{\partial}{\partial x} (3y^2) + \frac{\partial}{\partial x} (5xy) + \frac{\partial}{\partial x} (20)$$

Now treat y as a constant while differentiating w.r.t. x

Remember: Derivative of a constant is zero, In case of coefficient do as in the power rule

$$\frac{\partial z}{\partial x} = 4x + 0 + 5y(1) + 0 = 4x + 5y$$

Here y is treated as a constant so  $3y^2$  is a constant and its derivative is zero
# And y is treated as a constant so 5y is a constant coefficient which is multiplied by the derivative of x i.e. by 1

$$Z = f(x, y) = 2x^2 + 3y^2 + 5xy + 20$$

Now let us differentiate w.r.t. y, treating x as a constant

$$\frac{\partial z}{\partial y} = \frac{\partial}{\partial y} (2x^2 + 3y^2 + 5xy + 20)$$
$$\frac{\partial z}{\partial y} = \frac{\partial}{\partial y} (2x^2) + \frac{\partial}{\partial y} (3y^2) + \frac{\partial}{\partial y} (5xy) + \frac{\partial}{\partial y} (20)$$

Now treat x as a constant while differentiating w.r.t. y

$$\frac{\partial z}{\partial y} = 0 + 6y + 5x (1) + 0 = 6y + 5x = 5x + 6y$$

Here

**x** is treated as a constant so  $2x^2$  is a constant and its derivative is zero

x is treated as a constant so 5x is a constant coefficient which is multiplied by the derivative of y i.e. by 1

Example:

$$Z = f(x, y) = 2x^2y^2 + 5x^3y^4$$

$$\frac{\partial z}{\partial x} = Z_x = \frac{\partial}{\partial x} (2x^2y^2 + 5x^3y^4)$$
$$\frac{\partial z}{\partial x} = Z_x = \frac{\partial}{\partial x} (2x^2y^2) + \frac{\partial}{\partial x} (5x^3y^4)$$
$$Z_x = 2y^2 \cdot \frac{\partial}{\partial x} (x^2) + 5y^4 \cdot \frac{\partial}{\partial x} (x^3)$$

Here  $2y^2$  is presently a constant so we factor it out and differentiate the variable part

$$Z_x = 2y^2(2x) + 5y^4(3x^2)$$
$$Z_x = 4xy^2 + 15x^2y^4$$
$$Z = f(x, y) = 2x^2y^2 + 5x^3y^4$$

Business Econometrics by Dr Sayyid Salman Rizavi

$$\frac{\partial z}{\partial y} = Z_y = \frac{\partial}{\partial y} (2x^2y^2 + 5x^3y^4)$$
$$\frac{\partial z}{\partial y} = Z_y = \frac{\partial}{\partial y} (2x^2y^2) + \frac{\partial}{\partial y} (5x^3y^4)$$
$$Z_y = 2x^2 \cdot \frac{\partial}{\partial y} (y^2) + 5x^3 \cdot \frac{\partial}{\partial x} (y^4)$$
$$Z_y = 2x^2 (2y) + 5x^3 (4y^3)$$

Here  $2x^2$  is presently a constant so we factor it out and differentiate the variable part

$$Z_y = 4x^2y + 20x^3y^3$$

## **Example : Second Order Direct Partial Derivatives**

Consider the previous example

$$Z = f(x, y) = 2x^{2} + 3y^{2} + 5xy + 20$$
$$\frac{\partial z}{\partial x} = Z_{x} = 4x + 5y$$

Differentiating again w.r.t. x

$$\frac{\partial}{\partial x} \left( \frac{\partial z}{\partial x} \right) = Z_{xx} = 4(1) + 0 = 4$$

Similarly

$$\frac{\partial z}{\partial y} = Z_y = 5x + 6y$$

Differentiating again w.r.t. y

$$\frac{\partial}{\partial y} \left( \frac{\partial z}{\partial y} \right) = Z_{yy} = 0 + 6(1) = 6$$

Both are called 'Second order DIRECT partial derivatives'

$$Z = f(x, y) = 2x^2 + 3y^2 + 5xy + 20$$
$$\frac{\partial z}{\partial x} = Z_x = 4x + 5y$$

After differentiating w.r.t. x first, we Differentiate w.r.t. y

Business Econometrics by Dr Sayyid Salman Rizavi

$$\frac{\partial}{\partial y} \left( \frac{\partial z}{\partial x} \right) = Z_{xy} = 0 + 5(1) = 5$$

Similarly

$$\frac{\partial z}{\partial y} = Z_y = 5x + 6y$$

Now Differentiating again w.r.t. x

$$\frac{\partial}{\partial x} \left( \frac{\partial z}{\partial y} \right) = Z_{yx} = 5(1) + 0 = 5$$

Both are called 'Second order Cross partial derivatives'

Note that  $Z_{xy} = Z_{yx}$ 

## Now let us find the second order direct partial derivatives

$$Z = f(x, y) = 2x^2y^2 + 5x^3y^4$$
$$Z_x = \frac{\partial}{\partial x}(2x^2y^2 + 5x^3y^4) = 4xy^2 + 15x^2y^4$$

Differentiating again w.r.t. x

$$Z_{xx} = \frac{\partial}{\partial x} (4xy^2 + 15x^2y^4)$$
$$Z_{xx} = 4y^2 + 30xy^4$$

Similarly

$$Z_{y} = \frac{\partial}{\partial y}(2x^{2}y^{2} + 5x^{3}y^{4}) = 4x^{2}y + 20x^{3}y^{3}$$

Differentiating again w.r.t. y

$$Z_{yy} = \frac{\partial}{\partial y} (4x^2y + 20x^3y^3)$$
$$Z_{yy} = 4x^2 + 60x^3y^2$$

$$Z = f(x, y) = 2x^{2}y^{2} + 5x^{3}y^{4}$$
$$Z_{x} = \frac{\partial}{\partial x}(2x^{2}y^{2} + 5x^{3}y^{4}) = 4xy^{2} + 15x^{2}y^{4}$$

Now Differentiating w.r.t. y

$$Z_{xy} = \frac{\partial}{\partial y} (4xy^2 + 15x^2y^4)$$
$$Z_{xy} = 8xy + 60x^2y^3$$

Similarly

$$Z_{y} = \frac{\partial}{\partial y} (2x^{2}y^{2} + 5x^{3}y^{4}) = 4x^{2}y + 20x^{3}y^{3}$$

Now Differentiating w.r.t. x

$$Z_{yx} = \frac{\partial}{\partial x} (4xy^2 + 15x^2y^4)$$
$$Z_{yx} = 8xy + 60x^2y^3$$
$$Z_{xy} = Z_{yx}$$

## An example with Chain Rule & Summation Algebra

Example :

$$Z = \sum (y - a - bx)^2$$

This time let 'a' and 'b' act as the unknowns (you can think of them as variables) Differentiating w.r.t. 'a'

$$Z_a = 2\sum (y - a - bx)(0 - 1 - 0)$$

Here Chain Rule is applied and we multiply the derivative of the inner expression. Here 'a' is the variable.

$$Z_a = -2\sum(y - a - bx)$$
$$Z_a = -2(\sum y - na - b\sum x)$$

Similarly

$$Z_b = 2\sum (y - a - bx)(0 - 0 - x(1))$$

Here b is the variable and its derivative is '1'



## Simple Optimization:Maxima and Minima

## Finding Minima and Maxima

Note that the slope (derivative) of minima or maxima is zero so we can find the point by setting the first derivative equal to zero. This is called First Order Condition of Optimization Also note that the derivative of the derivative (2<sup>nd</sup> order derivative) is positive in case of a minima and negative in case of a maxima.

This is called Second Order Condition for Optimization

So, to optimize a function of one variable, we can use two conditions

- 1. First Derivative = 0 (if y = f(x),  $\dot{f}(x) = 0$
- 2. Second Derivative > 0 for minimization & is < 0 for maximization

(f(x) > 0 in case of minimization, f(x) < 0 in case of maximization.

## Example:

$$If y = 40x - 2x^2$$

For maximization or minimization the first derivative should be set equal to zero

$$\frac{dy}{dx} = y' = 40 - 4x = 0$$
$$40 = 4x$$
$$\bar{x} = \frac{40}{4} = 10$$

To know if it is a maxima or minima, we need to differentiate again

$$\frac{d^2y}{dx^2} = y'' = \frac{d}{dx}(40 - 4x) = -4 < 0$$

As the second derivative is less than zero the function is maximized at x = 10,

the maximum value is  $Y_{max} = 40(10) - 2(10)^2 = 200$ 

#### Example:

Consider the following profit function where Q is the output

$$\pi = 100 \text{ Q} - 120 - 2\text{Q}^2$$

Frist Order Condition is

$$\pi' = 100 - 4Q = 0$$
$$4Q = 100$$
$$\bar{Q} = 25$$

Second Order Condition is

$$\pi'' = \frac{d}{dx}(100 - 4Q) = -4 < 0$$

Hence the profit function is maximized at Q = 4

$$\pi_{MAX} = 100 (25) - 120 - 2 (25)^2 = 2500 - 120 - 2(625)$$
  
 $\pi_{MAX} = 1130$ 

# Lecture 05 Multivariate Optimization

## Local Minimum

Consider the following diagram

- Point 'O' is a local minimum FROM ALL DIRECTIONS
- At point 'O', derivative of z w.r.t. x or w.r.t. y both are zero OR the slope of the tangents parallel to x-axis or the one parallel to y-axis at point 'O' are both zero i.e.



 $Z_x = 0$  AND  $Z_y = 0$  (First Order Condition)

## Local Minimum: Second order condition

Now consider the point 'O' again

When we move the tangents parallel to x-axis or y-axis, there is a positive change in the derivative (derivative of the derivative is positive)

$$Z_{xx} > 0$$
 &  $Z_{yy} > 0$ 

This gives us the Second Order Condition for minimization

(Both second order derivatives are positive)



## Local Maximum

Consider the following diagram

Point 'a' is a local maximum FROM ALL DIRECTIONS

At point 'a', derivative of z w.r.t. x or w.r.t. y both are zero OR the slope of the tangents parallel to x-axis or the one parallel to y-axis at point 'a' are both zero i.e.

$$Z_x = 0$$
 AND  $Z_y = 0$  (First Order Condition)



## Local Maximum: Second order condition

Now consider the point 'a' again

When we move the tangents parallel to x-axis or y-axis, there is a negative change in the derivative (derivative of the derivative is negative)

$$Z_{xx} < 0 \quad \& \quad Z_{yy} < 0$$

This gives us the Second Order Condition for maximization

(both second order derivatives are negative)



## Saddle Point: Second order derivatives have different signs

Consider the point 'O' in the following diagram

- A tangent at this point has a zero slope (first derivative is zero i.e. the first condition is met)
- If we shift the tangent in the direction of the x-axis, the slope of the tangent (derivative of the derivative) increases so this is a local minima form one direction (x-axis)  $Z_{xx} > 0$
- But is we shift the tangent at point 'O' in the direction of the y-axis, its slope will decrease i.e.  $Z_{yy} < 0$



#### A third condition: ruling out point of inflection

When evaluated at the critical point(s), the product of the second order partials must exceed the product of the cross partials. This condition rules out critical points that are neither points of maximum or minimum, but are points of inflection. A point of inflection is a where certain conditions of optima are met, but the function is not actually a maximum or minimum.

$$Z_{xx} Z_{yy} > \mathbf{Z}_{xy}^2$$
$$\begin{vmatrix} Z_{xx} & Z_{xy} \\ Z_{yx} & Z_{yy} \end{vmatrix} > 0$$

We call the above a Hessian determinant or simply Hessian which shows that

$$Z_{xx}.Z_{yy}-\mathbf{Z}_{xy}^2>\mathbf{0}$$

Or

$$Z_{xx}.Z_{yy} > \mathbf{Z}_{xy}^2$$

#### **Example: Maximization**

Consider the following profit function where x & y are the levels of output

$$\pi = 80x - 2x^2 - xy - 3y^2 + 100y$$
$$\pi_x = 80 - 4x - y = 0$$

$$\pi_y = -x - 6y + 100 = 0$$

Solving the above two equations simultaneously gives the critical values

$$\bar{x} = 16.52$$
 and  $\bar{y} = 13.91$ 

Second order condition

$$\pi_{xx} = -4 < 0$$
$$\pi_{yy} = -6 < 0$$

Which confirms that profit is maximized from the principle direction at the critical points Third condition

$$\pi_{xx} \cdot \pi_{yy} = (-4)(-6) = 24 \text{ AND} \quad \pi_{xy}^2 = (-1)^2 = 1$$
  
Hence  $\pi_{xx} \cdot \pi_{yy} > \pi_{xy}^2$ 

The profit function is maximized from all directions at the critical point. Maximum profit can be found by substituting the critical points in the profit function.

#### **Example: Minimization**

Consider the following marginal cost function where x and y are the level of output

$$MC = 5x^{2} - 8x - 2xy - 6y + 4y^{2} + 100y$$
$$MC_{x} = 10x - 8 - 2y = 0$$
$$MC_{y} = -2x - 6 + 8y = 0$$

Solving the above two equations simultaneously gives the critical values

$$\bar{x} = 1$$
 and  $\bar{y} = 1$ 

Second order condition

$$MC_{xx} = 10 > 0$$
$$MC_{yy} = 8 > 0$$

# Which confirms that MC is minimized from the principle direction at the critical points Third condition

$$MC_{xx}.MC_{yy} = (10)(8) = 80 AND MC_{xy}^2 = (-2)^2 = 4$$
  
Hence  $MC_{xx}.MC_{yy} > MC_{xy}^2$ 

The function is minimized from all directions at the critical point. Minimum MC can be found by substituting the critical points in the MC function.

## **Review of Probability**

## Probability: This is only a 'Review'

## **Random Experiment**

Any process of observation or measurement that has more than one possible outcome and we are not certain about which outcome will materialize

Examples: Tossing a coin, throwing a pair of dice, drawing a card form deck of cards

## Sample Space/Population

The set of all possible outcomes of an experiment

Example: when you toss a coin, S = {H, T}

Example: When you toss two coins, S = {HH, HT, TH, TT}

## **Sample Point**

Each member of the sample space is a sample point

## Event

Event is a particular collection of outcomes (a subset of the sample space)

**Example:** Event 'A' is occurrence of one head and one tail in the experiment of tossing two coins A = {HT, TH}

**Mutually Exclusive Events:** Occurrence of one event prevents the occurrence of the other event at the same time

**Example:** when we toss two coins, occurrence of two heads means that other three cannot occur at the same time

**Example:** when we toss a single coin, occurrence of a head means that the tail did not occur or can not occur at the same time

Equally Likely Events: if one event is as likely to occur as the other

Example: head and tail have the same possibility or chance of occurring

Collectively Exhaustive Events: if they exhaust all possible outcomes of an experiment

Example: Event is the sample space. A = Occurrence of a head or tail while tossing a single coin

### **Stochastic or Random Variable**

A variable whose value is determined by the outcome of an experiment

**Example:** Let X = Number of heads in an experiment of tossing two coins, then X can have values of 0, 1, or 2 as the possibilities are no head, one head or two heads

A random variable can be discrete (can take only whole numbers and finite values) or continuous (can take any values between and interval either whole numbers or fractions e.g. height of an individual).

## **Classical Definition of Probability:**

Probability of an event 'A' =  $P(A) = \frac{Number of favorable outcomes}{Number of total outcomes}$ 

Example: Total number of outcomes in tossing two coins is 4 {HT, HH, TH, TT}

Probability of getting exactly one head =  $\frac{2}{4} = 0.5$ 

## **Probability Distribution**

The possible values that a random variable can take with the number of occurrences (frequency) of those values.

#### Example: Probability Distribution of discrete random variable

Let X = Number of heads in an experiment of tossing two coins, the X can have values of 0, 1, or 2 as the possibilities are no head, one head or two heads as shown in table with the probabilities.

Probability Mass Function or simply Probability Function

$$f(X = x_i) = P(X = x_i) \quad i = 1, 2, \dots$$
$$= 0 \text{ if } X \neq x_i$$
$$0 \le f(x_i) \le 1$$

Business Econometrics by Dr Sayyid Salman Rizavi

$$\sum_{x} f(x_i) = 1$$

| x     | $P[X = x_i]$ |
|-------|--------------|
| 0     | 1⁄4=0.25     |
| 1     | 2/4=0.5      |
| 2     | 1⁄4=0.25     |
| Total | 1            |



## **Probability Density Function (PDF)**

Probability Distribution of a continuous random variable e.g. X = height of person measured in inches

- X is a continuous random variable
- Probability of continuous random variable is always computed for a range not for a single value
- PDF is

$$P(x_1 < X < x_2) = \int_{x_1}^{x_2} f(x) \, dx$$

This calculates the probability as the area under a curve between a range ( $x_1$  to  $x_2$ )

Cumulative Distribution Function (CDF)



## **Important Probability Distributions**

Some important probability distributions are Normal Distribution, t distribution, Chi square distribution and the F-distribution

## **Normal Distribution**

It is the most important probability distribution for a continuous random variable. It has a

Bell shaped curve (highest point at mean value) where

$$X \sim N(\mu_x, \sigma_x^2), -\infty < X < \infty$$

Change in  $\mu$  shifts the curve to right or left where change in  $\sigma$  increases of decreases the spread



of the curve. The function may be written as



This gives a bell shaped curve with different centers and spreads depending on the values of  $\mu$  and  $\sigma$ 

Mathematical Constants

 $\pi$ =3.14159

#### e=2.71828

$$p(Z) = \frac{1}{(1)\sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{Z-0}{1})^2} = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{1}{2}(Z)^2}$$

The probabilities or areas under standard normal curve are already calculated and available in the shape of tables (the Z-table)

Standard Normal Distribution

If  $Z = \frac{X-\overline{X}}{\sigma}$ , then  $\mu_z = 0$  and  $\sigma_z = 1$ . The distribution of Z is a 'Standard' normal distribution  $Z \sim N(0,1)$ 

## Student's t-distribution

t-distribution is a probability distribution of a continuous random variable when the sample size is small and the population variance is not known. Its curve is symmetric and bell shaped but flatter than normal distribution. The mean is zero but the variance is larger (heavier tails) than the variance of standard normal distribution (which is unity). It has only one parameter i.e. the degree of freedom. As the degree of freedom (or the number of observations) increases, the distribution approaches the normal distribution.



## Chi-Square ( $\chi^2$ ) distribution

The Chi-square distribution has the following shape.

The square of a standard normal variable is distributed as a Chi-square probability distribution with one degree of freedom. Sampling distribution of samples means when the mean and

variance is known as the Normal Distribution but when the variance is not known it is the tdistribution. If we need the sampling distribution of the sample variance we have the Chisquare distribution

$$Z^2 = \chi^2_{(1)}$$

You can say that Normal distribution and t-distributions are related to means but the Chisquare and F-distributions are related to variances.

#### **Properties:**

- Chi-square takes only positive values (zero to infinity)
- It is skewed (depending on the d.f.) unlike the normal distribution
- As the d.f. increases, the distribution approaches the normal distribution
- Its mean is k (=d.f.) and variance is 2k (variance is twice the mean)



## **F-distribution**

This is a variance ration distribution. (ratio of sample variances of two independent samples.). This is also equal to ratios of two Chi-squares. It has two parameters  $k_1$  and  $k_2$  (degrees of freedom in both samples i.e. numerator and denominator of  $F = \frac{s_1^2}{s_2^2}$ )

Uses

- Testing equality of variances
- Tests in Regression models like Goodness of fit test

## Properties

- Skewed to the right between zero and infinity
- Approaches normal distribution as d.f. increases



# Lecture 06 The Simple Regression Model

## **The Basic Concept**

Regression is a statistical measure to determine the (strength of) relationship between a dependent variable (explained variable, response variable or regressand) and a list of independent variables (explanatory variables, predictor variables or regressors). It is a process of estimating the relationship among variables. It looks into the dependence of the regressand on the regressors). It is not the correlation but we want to know how and how much the dependent variable changes in response to changes in the dependent variable(s). We need, sometimes, to predict the values of the dependent variable with the help of the values of the regressors.

Consider the Demand Function. Demand theory suggests that the quantity demanded depend on various variables like price, income of the consumer, taste, prices of other variables etc. We want to know how the quantity demanded may change due to changes in some of the independent variables like price.

Usually we denote the dependent variable by Y and the regressors as X (or  $X_1$ ,  $X_2$  etc. in case of multiple regressors). In regression analysis, we try to explain the variable Y in terms of the variable X. Remember that the variable X may not be the only factor effecting Y. Also the relationship may not be exact e.g. for the same Y we may have different X values and for the same X value we may have different Y values. One row shows a pair of X and Y. We handle this by looking on the averages and try to know how the values of the variable Y change in response to changes in the variable X, *on the average*.

Before performing regression, we also need to have an idea about the nature of the functional relationship of the variable. The relationship may be linear, quadratic, exponential etc. There are many regression models and we select the model that closely approximates the relationship among the variables. We can have an idea about the type of relationship by looking into, what we call, a scatter diagram.

## **Scatter Diagram**

Scatter diagram shows the pairs of actual observations. We usually plot the dependent variable against an explanatory variable to see if we can observe a pattern. If the pattern shows a linear relation, we use a linear regression model.



The above diagram shows that the expenditure on food is a direct (increasing) function of the income levels. The dots showing the plots of the pairs of observation resemble a linear shape (straight line). The points do not lie exactly on a straight line but are scattered around a hypothetical straight line. In the diagram below, the annual sales seem to be inversely related to the price of the commodity. This is because the dots of pairs of observation seem to be scattered around a (hypothetical) straight line that is negatively sloped.



X = Price

Remember that straight lines are show by equations of the type Y = a + b X where a is the yintercept (the point where the straight line intersects the Y-axis) and b is the slope of the line (the change in the variable Y due to one unit change in the variable X or  $\frac{\Delta Y}{\Delta x}$ ).

In simple regression, we try to estimate the best (explained later) values of a and b by applying appropriate techniques. One of the techniques is called Ordinary Least Square (OLS).

#### **Simple Regression Line by OLS**

- The relationship seems to be 'linear' that can be captured with the equation of a straight line (Y = a + b X)
- We may need to predict Y if the value of X is given
- We capture the relation by writing a 'simple regression equation'

 $Y = a + b X + e \quad \text{OR } Y = \beta_0 + \beta_1 X + e$ 

**Residual:** Note that we have added *e* which is called an error term or residual. We add this because the actual values do not exactly lie on a straight line but maybe scattered around it. To account for this difference, we capture it in the residual *e*. When we estimate the parameters 'a' and 'b', they do not provide exact estimates of the value of the dependent variable. The difference is called error term or residual

## $Y_i = \beta_0 + \beta_1 X_i + e_i$ (with subscripts)

Subscript: The subscript *i* shows that the variable may have multiple observations (as you learnt in summation algebra).  $\beta_0$  and  $\beta_1$  are written instead of *a* and *b* so that we follow the tradition of regression analysis.



## Business Econometrics by Dr Sayyid Salman Rizavi

In both the diagrams above and below, we have imposed a straight line on the scatter diagram to show how the points are scattered around the straight line and if we move along the straight line, we approximate the relation of Y and X. A good technique applied on an appropriate situation may well approximate the relationship (with smaller values of )



## **Regression Explained**

Population Regression Equation is an assumed equation that may have possibly been estimated from a population. We will use samples to get the values of the parameters  $\beta_0$  and  $\beta_1$  as all the population may not be available or observed.

$$Y_i = \beta_0 + \beta_1 X_i + e_i$$

Here

 $Y_i$  = Dependent Variable or Explained Variable.  $\beta_0$  and  $\beta_1$  are Parameters the we need to estimate. X is the Independent Variable OR Explanatory Variable



#### **Regression equation estimation**

 $Y_i = \beta_0 + \beta_1 X_i + e_i$  is the population regression equation

Let a and b be the estimated values of  $oldsymbol{eta}_0$  and  $oldsymbol{eta}_1$  respectively

We estimate a and b from a sample. The 'estimated value' of Y based on the estimated regression equation is

 $\widehat{Y} = a + b X$  where  $\widehat{Y}$  is the estimated value or 'Trend Value'

Then  $e_i = Y - \widehat{Y}$ 



**Regression equation estimation** 

It is good to have low values of errors (residuals). Negative and Positive Errors cancel each other and we want to 'Magnify' larger errors so we focus on the 'Square of Errors' and try to minimize their sum. In least square estimation, we minimize the 'Sum of Squared Residuals' or 'Sum of Square of Errors'.

We try to estimate the parameters a and b for which we have the minimum possible 'Sum of Square of Residuals'.

Other values of 'a' and 'b' may provide larger SSR.

• Finding the values of 'a' and 'b' in the regression equation is a minimization problem

$$Min\sum_{i=1}^{n}e_{i}^{2}$$

NOTE: We will ignore the subscript 'i' for convenience

Remember that

- $e = Y \hat{Y}$
- $\hat{Y} = a + bX$

Also Remember that

• For 'Optimization' we take the first derivative and set it equal to zero

Important: Here although X and Y are variables but for this minimization problem only we will consider 'a' and 'b' to be the unknowns as we are trying to estimate the values of 'a' and 'b' The above minimization becomes

$$Min\sum_{i=1}^{n}e_{i}^{2}=\sum_{i=1}^{n}(Y-\hat{Y})^{2}=\sum_{i=1}^{n}(Y-a-bX)^{2}$$

Where 'a' and 'b' are the unknowns we focus on.

Let Z denote our expression so that we need to minimize

$$Min Z = \sum_{i=1}^{n} (Y - a - bX)^2$$

Ignoring subscripts and partially differentiating Z w.r.t. 'a' and setting equal to zero

$$Z_a = \sum (Y - a - bX)^{2-1} \cdot \frac{\partial}{\partial a} (Y - a - bX) = 0$$

Chain rule is used for differentiation

$$\sum (Y - a - bX)(-1) = 0$$
$$\sum (Y - a - bX) = 0$$
$$\sum Y - na - b\sum X = 0$$

Summation Algebra is used when we multiply the Summation symbol

$$\sum Y = na + b \sum X$$

This is called the **first normal equation** 

Ignoring subscripts and partially differentiating Z w.r.t. 'b' and setting equal to zero

$$Z_b = \sum (Y - a - bX)^{2-1} \cdot \frac{\partial}{\partial a} (Y - a - bX) = 0$$

Chain rule is used for differentiation

$$\sum (Y-a-bX)(-X)=0$$

This time 'b' is the unknown and X is the coefficient of 'b'.

The derivative of 'b' is 1 and X will be retained as its coefficient

$$\sum (Y - a - bX)(X) = 0$$

$$\sum (X)(Y - a - bX) = 0$$
$$\sum XY - a \sum X - b \sum X2 = 0$$

Summation Algebra is used when we multiply the Summation symbol

$$\sum XY = a \sum X + b \sum X^2$$

This is called the **second normal equation** 

In summary, to estimate a linear regression line  $Y_i = \beta_0 + \beta_1 X_i + e_i$ Where 'a' is a sample estimate of  $\beta_0$  and 'b' is a sample estimate of  $\beta_1$ , We minimized the Sum of Squared Residuals

$$Min Z = \sum_{i=1}^{n} (Y - a - bX)^2$$

As a result we got two normal equations

$$\sum Y = na + b \sum X$$
$$\sum XY = a \sum X + b \sum X^{2}$$

To find the values of 'a' and 'b' we need some observations of X and Y. We can solve the normal equations and find the values of 'a' and 'b'. Solving these equations gives the values of parameters a and b.

## Finding the values of parameters directly

Instead of solving two normal equations, we can derive expressions to directly find the values of *a* and *b*.

Dividing equation (1) by n,

$$\frac{\sum Y}{n} = a + b \frac{\sum X}{n} \text{ which gives } a = \frac{\sum Y}{n} - b \frac{\sum X}{n}$$

We can also write this as

$$a = \overline{Y} - b\overline{X}$$

Substituting this value of 'a' in equation (2)

$$\sum XY = \left(\frac{\sum Y}{n} - b \frac{\sum X}{n}\right) \sum X + b \sum X^{2}$$

$$\sum XY = \frac{\sum Y \sum X}{n} - b \frac{\sum X \sum X}{n} + b \sum X^{2}$$

$$\sum XY - \frac{\sum Y \sum X}{n} = b\left(\sum X^{2} - \frac{\sum X \sum X}{n}\right)$$

$$b = \frac{\sum XY - \frac{\sum X \sum Y}{n}}{\sum X^{2} - \frac{(\sum X)^{2}}{n}} = \frac{n \sum XY - \sum X \sum Y}{n \sum X^{2} - (\sum X)^{2}}$$

$$b = \frac{\sum XY - \frac{\sum X \sum Y}{n}}{\sum X^{2} - \frac{(\sum X)^{2}}{n}} = \frac{n \sum XY - \sum X \sum Y}{n \sum X^{2} - (\sum X)^{2}}$$

&  $a = \overline{Y} - b\overline{X}$ 

## Example:

Consider the following example where X = Income in thousand rupees and Y = expenditure on food items (thousand rupees)

| Observation # | X        | Y        | ХҮ        | X <sup>2</sup> |
|---------------|----------|----------|-----------|----------------|
| 1             | 25       | 20       | 500       | 625            |
| 2             | 30       | 24       | 720       | 900            |
| 3             | 35       | 32       | 1120      | 1225           |
| 4             | 40       | 33       | 1320      | 1600           |
| 5             | 45       | 36       | 1620      | 2025           |
| Totals        | 175      | 145      | 5280      | 6375           |
|               | $\sum X$ | $\sum Y$ | $\sum XY$ | $\sum X^2$     |

The normal equations are

$$\sum Y = na + b \sum X \quad \& \quad \sum XY = a \sum X + b \sum X^2$$

Substituting values in the normal equations gives us:

$$145 = 5a + b (175) \&$$
  
 $5280 = a(175) + b(6375)$ 

OR

Solving them simultaneously gives us:

a = 0.3 and b = 0.82

We can write the regression line as

$$Y = 0.3 + 0.82 X$$

#### Interpretation

The value of a is the Y-intercept and the value of b is the slope of the line (rate of change of Y w.r.t. X or derivative of Y w.r.t. X)

### Alternative Method

The values of a and b can also be found by substituting in any one of the expressions that we derived.

$$b = \frac{n\sum XY - \sum X\sum Y}{n\sum X^2 - (\sum X)^2}$$
$$b = \frac{5(5280) - (175)(145)}{5(6375) - (175)^2}$$
$$b = 0.82$$
$$a = \bar{Y} - b\bar{X}$$
$$a = \left(\frac{145}{5}\right) - 0.82 \left(\frac{175}{5}\right)$$

## *a* = 0.3

'b' is called the slope coefficient.

b = 0.82 means that a one unit change in X (income level) brings 0.82 unit changes in Y (expenditure of food), on the average.

OR Change if 1000 rupees (one unit is in thousands) increase in income may increase the expenditure on food items by 820 rupees.

## **Trend Values and Errors:**

| Observation | X        | Y        | Tend Value              | Residual or           | Square of Residuals |
|-------------|----------|----------|-------------------------|-----------------------|---------------------|
| #           |          |          | $\widehat{Y}$           | Error                 | $e^2$               |
|             |          |          |                         | $e = Y - \widehat{Y}$ |                     |
| 1           | 25       | 20       | 20.8                    | -0.8                  | 0.64                |
| 2           | 30       | 24       | 24.9                    | -0.9                  | 0.81                |
| 3           | 35       | 32       | 29                      | 3.0                   | 9                   |
| 4           | 40       | 33       | 33.1                    | -0.1                  | 0.01                |
| 5           | 45       | 36       | 37.2                    | -1.2                  | 1.44                |
| Totals      | 175      | 145      | 145                     | Zero                  | 11.9                |
|             | $\sum X$ | $\sum Y$ | $\sum \hat{Y} = \sum Y$ | $\sum e$              | $\sum e^2$          |

We can substitute the values of X in the estimated regression equation and find Trend Values

The First trend value is computed as Y = 0.3 + 0.82 (25) = 20.8 and so on. If you change the values of a and b and compute new squares of errors, the new value would be larger than the value here (Least Square of errors)

## The Error Term

We assume that error are normally distributed with zero mean and constant variance

$$e \sim N(0, \sigma^2)$$

As you must have noticed while estimating regression parameters,

$$\sum_{i=1}^n e_i = 0$$

Also, you can verify easily that

$$\sum_{i=1}^n e_i X_i = \mathbf{0}$$

And as we got the regression equation by minimization process,

$$\sum_{i=1}^{n} e_i^2$$
 is minimum

## Nature of the Error Term

- Error Term may represent the influence the variables NOT included in the model. (Missing Variables)
- Even if we are able to include all variables or determinants of the dependent variable, there will remain randomness in the error as human behavior is not rational and predictable to the extent of 100%
- e may represent 'Measurement Error'; When data is collected we may round some values or observe values in ranges or some variables are not accurately measured

## **Assumptions of OLS estimators**

## **Gauss-Markov assumptions**

- 1. Linear in Parameters
- 2. Random Sampling of n observations
- 3. Sample variation in explanatory variable (X<sub>i</sub>). are not all the same value
- 4. Zero conditional mean: The error e has an expected value of 0, given any values of the explanatory variable
- 5. Homoskedasticity: The error has the same variance given any value (in subsets) of the explanatory variable.

## **BLUE: Best Linear Unbiased Estimators**

Under the Gauss-Markov Assumptions the OLS estimators are Best, Linear and Unbiased in the Model  $Y = \beta_0 + \beta_1 X + e$  where a and b are sample estimates of  $\beta_0$  and  $\beta_1$  respectively. Linear: The model is linear in parameters. However variables can have powers not equal to one.

- Y = a + b X is linear but  $Y = a + b^2 X$  is not
- $Y = a + b X + c X^2$  is fine

- Y = a + ln(bX) is not OLS
- Y = a + b ln(X) is OLS

In fact 'linear' means that we can express the slope coefficient as a linear function of Y Unbiased: A parameter is unbiased if the average value of the estimator in repeated samples is equal to the true population parameter.

In our case  $E(b_j) = \beta_{1j}$ 

Best / Efficient: A parameter is best if its variance is less than any other estimator of the parameter

$$Var(b) \leq Var(\tilde{b})$$

where  $\tilde{b}$  is any other unbiased estimatro of  $\beta_1$ 

We will learn later how to compute Var (b)

### Exercise

1. Prove that the above expression for 'b' can also be written as

$$b = \frac{\sum (X - \bar{X})(Y - \bar{Y})}{\sum (X - \bar{X})^2} = \frac{Cov(X, Y)}{Var(X)}$$

2. Estimate a linear regression Y on X from the following data. Find the trend values and compute the errors

X = 1, 5, 6, 9, 9, 10, 9, 11, 10, 12

Y= 45, 42, 41, 37, 36, 31, 33, 36, 29, 27

3. For the data and results of question 2, See if the following is true

$$\sum_{i=1}^n e_i = 0 \text{ and } \sum_{i=1}^n e_i X_i = 0$$

## Lecture 07

# **Estimation and Testing in Regression Analysis**

## Example:

Consider the following example where X = Income in thousand rupees and Y = expenditure on food items (thousand rupees)

| Sr. #  | Х        | Y   | XY        | X          | Tend Value                   | Error                 | Square of             |
|--------|----------|-----|-----------|------------|------------------------------|-----------------------|-----------------------|
|        |          |     |           |            | Ŷ                            | $e = Y - \widehat{Y}$ | Residuals             |
|        |          |     |           |            |                              |                       | <i>e</i> <sup>2</sup> |
| 1      | 25       | 20  | 500       | 625        | 20.8                         | -0.8                  | 0.64                  |
| 2      | 30       | 24  | 720       | 900        | 24.9                         | -0.9                  | 0.81                  |
| 3      | 35       | 32  | 1120      | 1225       | 29                           | 3.0                   | 9                     |
| 4      | 40       | 33  | 1320      | 1600       | 33.1                         | -0.1                  | 0.01                  |
| 5      | 45       | 36  | 1620      | 2025       | 37.2                         | -1.2                  | 1.44                  |
| Totals | 175      | 145 | 5280      | 6375       | 145                          | Zero                  | 11.9                  |
|        | $\sum x$ | Σy  | $\sum XY$ | $\sum X^2$ | $\sum_{i=1}^{i} \hat{Y}_{i}$ | $\sum e = 0$          | $\sum e^2$            |
|        |          |     |           |            |                              |                       |                       |

$$b = \frac{n\sum XY - \sum X\sum Y}{n\sum X^2 - (\sum X)^2} = \frac{5(5280) - (175)(145)}{5(6375) - (175)^2} = 0.82$$
$$a = \bar{Y} - b\bar{X} = \left(\frac{145}{5}\right) - 0.82\left(\frac{175}{5}\right) = 0.3$$

## **Interpretation of Regression Coefficients**

## The Intercept 'a' (usually also denoted by $\beta_0$ )

This is the y-intercept of the straight line and indicates the value of Y when X is zero; Usually the base or the initial value

Examples: (Assuming linear relationships)

• Autonomous Consumption in the Keynesian Consumption function

• Autonomous Investment in the Investment function



## The Slope Coefficient 'b' (Usually denoted also by $\beta_1$ )

In linear regression lines, it shows the average unit change in the dependent variable due to one unit change in the independent variable. In a linear equation, It can also be called the derivative of the dependent variable w.r.t. the independent variable.

The slope coefficient b is an unbiased estimate of the population regression coefficient  $\beta_1$ 

## Standard Error of Estimate/Standard Error of Regression

The standard error of the estimate is a measure of the accuracy of predictions.

It is the standard deviation of errors and defined as

$$\widehat{\sigma}_e = \sqrt{rac{\sum e_i^2}{N-k}}$$

Where N = Number of observations

k = number of restrictions imposed which is equal to number of parameters

$$N - k = degree \ of \ freedom$$

Standard Error of 'b' (for regression with one independent variable)

$$se(b) = \frac{\widehat{\sigma}_e}{\sqrt{\sum (X - \overline{X})^2}}$$

Or

$$se(b) = \frac{\widehat{\sigma}_e}{\sqrt{\sum X^2 - \frac{(\sum X)^2}{N}}}$$

In the current example

$$\widehat{\sigma}_e = \sqrt{\frac{\sum e_i^2}{N - k}}$$

$$\widehat{\sigma}_e = \sqrt{\frac{11.9}{5 - 2}} = \sqrt{\frac{11.9}{3}}$$

$$\widehat{\sigma}_e = 1.9916$$

Also

$$se(b) = \frac{\hat{\sigma}_e}{\sqrt{\sum X^2 - \frac{(\sum X)^2}{N}}}$$
$$= \frac{1.9916}{\sqrt{6375 - \frac{(175)^2}{5}}} = \frac{1.9916}{15.81139}$$
$$= 0.12596$$

## Testing for the significance of slope coefficient: Individual variable significance test

The Procedure is as follows:

H0: 
$$b = 0$$
  
H1:  $b \neq 0$   
 $\alpha = 0.05 \ (or \ 0.01)$ 

Level of significance: Probability of type I error (rejecting a true hypothesis

Test statistic

$$t = \frac{b}{se(b)}$$

If you do not fully understand all this then you need to revise the topic 'Test of Hypothesis' in your basic statistics course.

## Region of Rejection

$$|t| > t_{\frac{\alpha}{2},n-k}$$

As this is a two tailed test so we search for the value if t in the table of t-distribution corresponding to  $\alpha/2$  and n-k

In this example

$$t = \frac{b}{se(b)} = \frac{0.82}{0.12596} = 6.51$$

Looking into the table of t-distribution

$$t_{\frac{\alpha}{2},n-k} = t_{0.025,3} = 3.182$$

As  $|t| > t_{\frac{\alpha}{2},n-k}$ 

So we reject  $H_0$  and conclude that 'b' is significant and the variable X has a significant impact on the variable Y

## Reading the value of t-distribution

You can download statistical tables from the internet

e.g. http://wps.aw.com/wps/media/objects/15/15512/stat\_tables.pdf

To read the value of  $t_{0.025,3}$  look in the column below  $t_{0.025}$  (for 2 tailed test 0.5 is divided in two parts so we look at 0.025 or 2.5%) and 3 degrees of freedom. You get the value 3.182. You may find slightly different tables so read the instruction provided with the table.

Reading the value of  $t_{0.025,3}$  in Microsoft Excel (2007 or later)
Type in any cell and press ENTER

= T.INV.2T(0.05,3)

The cell will display the value 3.182

This formula has two parameters. The first one is the level of significance and the second is the d.f. (N - K)

| df | t <sub>0.10</sub> | t <sub>0.05</sub> | t <sub>0.025</sub> | t <sub>0.01</sub> | t <sub>0.005</sub> | df |
|----|-------------------|-------------------|--------------------|-------------------|--------------------|----|
| 1  | 3.078             | 6.314             | 12.706             | 31.821            | 63.657             | 1  |
| 2  | 1.886             | 2.920             | 4,303              | 6.965             | 9.925              | 2  |
| 3  | 1.638             | 2.353             | 3.182              | 4.541             | 5.841              | 3  |
| 4  | 1.533             | 2.132             | 2.776              | 3.747             | 4.604              | 4  |
| 5  | 1.476             | 2.015             | 2.571              | 3.365             | 4.032              | 5  |
| 6  | 1.440             | 1.943             | 2.447              | 3.143             | 3.707              | 6  |
| 7  | 1.415             | 1.895             | 2.365              | 2.998             | 3.499              | 7  |
| 8  | 1.397             | 1.860             | 2.306              | 2.896             | 3.355              | 8  |
| 9  | 1.383             | 1.833             | 2.262              | 2.821             | 3.250              | 9  |
| 10 | 1.372             | 1.812             | 2.228              | 2.764             | 3.169              | 10 |

### The Coefficient of Determination: Explanatory power of the model

The proportion of variation in Y that is explained by X

$$R^{2} = \frac{Explained \, Variation}{Total \, Variation} = \frac{\sum (\hat{Y} - \bar{Y})^{2}}{\sum (Y - \bar{Y})^{2}}$$

Where

**Total Variation** 

=Explained Variation +Unexplained variation

So the above can be written as

$$R^{2} = \frac{Total \, Variation - Unexplained \, Variation}{Total \, Variation}$$
$$= 1 - \frac{Unexplained \, Variation}{Total \, Variation} = 1 - \frac{\sum e^{2}}{\sum (Y - \overline{Y})^{2}}$$

Which also can be transformed as

Business Econometrics by Dr Sayyid Salman Rizavi

$$R^2 = 1 - \frac{N \sum e^2}{N \sum Y^2 - (\sum Y)^2}$$

In our current example

$$R^{2} = 1 - \frac{N \sum e^{2}}{N \sum Y^{2} - (\sum Y)^{2}}$$
$$R^{2} = 1 - \frac{5(11.9)}{5(4385) - (145)^{2}}$$
$$R^{2} = 0.934$$

#### Interpretation

The explanatory power of the model is 93.4%

Or

With the simple regression model, The variations in X can explain 93.4% of variation in Y

Note: The coefficient of determination is equal to the square of the correlation coefficient only in case of the simple regression line with one independent variable.

## The Goodness of Fit Test: Using the F-distribution

The Procedure is as follows:

H0: The Fit is not good  
H0: The fit is good  
$$\alpha = 0.05$$
 (or 0.01)  
Test statistic

$$F = \frac{R^2}{(1-R^2)} \frac{N-k}{k-1}$$

Where

$$R^{2} = 1 - \frac{\sum e^{2}}{\sum (Y - \bar{Y})^{2}} = 1 - \frac{N \sum e^{2}}{N \sum Y^{2} - (\sum Y)^{2}}$$

Note: the Coefficient of Determination  $R^2$  is equal to the square of the correlation coefficient only in case of simple regression line (one independent variable)

# Region of Rejection

$$F > F_{\alpha, k-1, N-k}$$

In our current example

$$F = \frac{R^2}{(1-R^2)} \frac{N-k}{k-1}$$
$$= \frac{0.934}{1-0.934} \left(\frac{3}{1}\right) = 42.4$$

Looking into the table of F-distribution

$$F_{\alpha, k-1, N-k} = F_{0.05, 1, 3} = 10.13$$

As

$$F > F_{\alpha, k-1, N-k}$$
  
42.4 > 10.13

So we reject  $H_{0}$  and conclude that The Fit is Good .

### **Reading the value of F-distribution**

See table VI from <a href="http://wps.aw.com/wps/media/objects/15/15512/stat\_tables.pdf">http://wps.aw.com/wps/media/objects/15/15512/stat\_tables.pdf</a>

|     |       |        |          |         |        | dfn     |
|-----|-------|--------|----------|---------|--------|---------|
| dfd | α     | 1      | 2        | 3       | 4      | 5       |
|     | 0.10  | 39.86  | 49.50    | 53.59   | 55.83  | 57.24   |
|     | 0.05  | 161.45 | 5 199.50 | 215.71  | 224.58 | 230.16  |
| 1   | 0.025 | 647.79 | 799.50   | 864.16  | 899.58 | 921.85  |
|     | 0.01  | 4052.2 | 4999.5   | 5403.4  | 5624.6 | 5763.6  |
|     | 0.005 | 16211  | 20000 2  | 21615 2 | 22500  | 23056   |
|     | 0.10  | 8.53   | 9.00     | 9.16    | 9.24   | 9.29    |
|     | 0.05  | 18.51  | 19.00    | 19.16   | 19.25  | 5 19.30 |
| 2   | 0.025 | 38.51  | 39.00    | 39.17   | 39.25  | 39.30   |
|     | 0.01  | 98.50  | 99.00    | 99.17   | 99.25  | 99.30   |
|     | 0.005 | 198.50 | 199.00   | 199.17  | 199.25 | 199.30  |
|     | 0.10  | 5.54   | 5.46     | 5.39    | 5.34   | 5.31    |
|     | 0.05  | 10.13  | 9.55     | 9.28    | 9.12   | 9.01    |
| 3   | 0.025 | 17.44  | 16.04    | 15.44   | 15.10  | 14.88   |
|     | 0.01  | 34.12  | 30.82    | 29.46   | 28.71  | 28.24   |
|     | 0.005 | 55.55  | 6 49.80  | 47.47   | 46.19  | 45.39   |
|     |       |        |          |         |        |         |

To read the value of  $F_{0.05, 1,3}$  look in the column below 1 (k-1) and 3 (N-k) and look for the value for 0.05 ( $\alpha$ ). The value is 10.13.

# Reading the value of $F_{0.05, 1,3}$ in Microsoft Excel (2007 or later)

Type in any cell and press ENTER

= F.INV.RT(0.05,1,3) The cell will display the value 10.13

This formula has three parameters. The level of significance, k-1 & N-k

### Using basic Microsoft Excel Formulas: intercept and slope

We will use basic formulas here. An additional tool called DATA ANALYSIS tool pack will be discussed later. Intercept and slope: To Estimate Y = a + b X + e, We can find the values of the parameter 'a' (intercept) and parameter 'b' (slope) in Microsoft Excel.

Value of 'a'

= intercept (Cell range of Values of Y, Cell range of Values of X)

Value of 'b'

= slope (Cell range of Values of Y, Cell range of Values of X)

| 1 | А | В  | С  | D | E        | F                        | C     |
|---|---|----|----|---|----------|--------------------------|-------|
| 1 |   |    |    |   |          |                          |       |
| 2 |   | Y  | Х  |   |          |                          |       |
| 3 |   | 20 | 25 |   | =INTERCE | PT(B3:B7,C               | 3:C7) |
| 4 |   | 24 | 30 |   |          |                          |       |
| 5 |   | 32 | 35 |   | =slope(E | 33: <mark>B7,C</mark> 3: | C7)   |
| 6 |   | 33 | 40 |   |          |                          |       |
| 7 |   | 36 | 45 |   |          |                          |       |
| 8 |   |    |    |   |          |                          |       |
| 9 |   |    |    |   |          |                          |       |
|   |   |    |    |   |          |                          |       |

The cells are showing the formulas. When you will press ENTER after writing these formulas, the values will be displayed as 0.3 and 0.82

## Using basic Microsoft Excel Formulas: the LINEST formula

Remember that We will use basic formulas here. An additional tool called DATA ANALYSIS tool pack will be discussed later. Syntax: LINEST(known\_y's, [known\_x's], [const], [stats]) Steps:

- This is an array command so we select the cells D3 to E7 (2 columns and five rows to display results)
- When the cells are selected then type = LINEST(B3:B7,C3:C7,TRUE,TRUE)
- Press and hold Ctrl + SHIFT and press ENTER (Ctrl + SHIFT + ENTER)

The results are displayed in the cells that you had selected like this

| value of 'b'              | value of 'a'                          |
|---------------------------|---------------------------------------|
| standard Error of 'b'     | standard error of 'a'                 |
| R-squared                 | standard error of estimate            |
| F-statistic               | N-k                                   |
| Regression Sum of Squares | Residual SS = Sum of square of errors |

This example is for simple regression line. For details see Microsoft Help on LINEST

## Understanding the LINEST formula

LINEST(known\_y's, [known\_x's], [const], [stats])

The range of Y values B3:B7

The range of X values C3:C7

If TRUE then the constant intercept 'a' is calculated normally. If FALSE then 'a' is set equal to zero

If TRUE then additional statistics are displayed in an array (D3 to E7)

STEP 1

First Enter your data in cells B3 to C7 (you can add title Y and X in cells B2 and C2 respectively

## Business Econometrics by Dr Sayyid Salman Rizavi

|   | А | В  | С  |
|---|---|----|----|
| 1 |   |    |    |
| 2 |   | Y  | x  |
| 3 |   | 20 | 25 |
| 4 |   | 24 | 30 |
| 5 |   | 32 | 35 |
| 6 |   | 33 | 40 |
| 7 |   | 36 | 45 |
| 8 |   |    |    |

### STEP 2

Now, whatever the number N, select any two columns and five rows to display the result in an array (10 different statistics will be displayed)

|   | А | В  | С  | D | E |  |
|---|---|----|----|---|---|--|
| 1 |   |    |    |   |   |  |
| 2 |   | Y  | x  |   |   |  |
| 3 |   | 20 | 25 |   |   |  |
| 4 |   | 24 | 30 |   |   |  |
| 5 |   | 32 | 35 |   |   |  |
| 6 |   | 33 | 40 |   |   |  |
| 7 |   | 36 | 45 |   |   |  |
| 8 |   |    |    |   |   |  |

### STEP 3

While the cells remain selected, type the following then hold the Ctrl and SHIFT keys and press ENTER. We do this so that the result is displayed in the selected array.

## Business Econometrics by Dr Sayyid Salman Rizavi

|   | А | В  | С  | D               | E              |   |
|---|---|----|----|-----------------|----------------|---|
| 1 |   |    |    |                 |                |   |
| 2 |   | Y  | х  |                 |                |   |
| 3 |   | 20 | 25 | =linest(B3:B7,C | 3:C7,TRUE,TRUE | ) |
| 4 |   | 24 | 30 |                 |                |   |
| 5 |   | 32 | 35 |                 |                |   |
| 6 |   | 33 | 40 |                 |                |   |
| 7 |   | 36 | 45 |                 |                |   |
| 8 |   |    |    |                 |                |   |
| ~ |   |    |    |                 |                |   |

## Results

Hold Ctrl and SHIFT keys and press ENTER, the results will be as follows

|   | А | В  | С  | D           | E           |  |
|---|---|----|----|-------------|-------------|--|
| 1 |   |    |    |             |             |  |
| 2 |   | Y  | x  |             |             |  |
| 3 |   | 20 | 25 | 0.82        | 0.3         |  |
| 4 |   | 24 | 30 | 0.125962958 | 4.497777229 |  |
| 5 |   | 32 | 35 | 0.933888889 | 1.991649233 |  |
| 6 |   | 33 | 40 | 42.37815126 | 3           |  |
| 7 |   | 36 | 45 | 168.1       | 11.9        |  |
| 8 |   |    |    |             |             |  |

The results may be read in the following order

|   | А | В  | С  | D                                | E                                     |
|---|---|----|----|----------------------------------|---------------------------------------|
| 1 |   |    |    |                                  |                                       |
| 2 |   | Y  | x  |                                  |                                       |
| 3 |   | 20 | 25 | vlaue of 'b'                     | value of 'a'                          |
| 4 |   | 24 | 30 | standard Error of 'b'            | standard error of 'a'                 |
| 5 |   | 32 | 35 | R-squared                        | standard error of estimate            |
| 6 |   | 33 | 40 | F-statistic                      | N-k                                   |
| 7 |   | 36 | 45 | <b>Regression Sum of Squares</b> | Residual SS = Sum of square of errors |
| 8 |   |    |    |                                  |                                       |
| 9 |   |    |    |                                  |                                       |

For example a = 0.3, b = 0.82, F = 42.37815126 etc.

Note: The value of t could be calculated

## Understanding the TREND formula

You may compute all the trend values without calculating the regression coefficients by using this formula

|   | Α | В  | С  | D         | E              | F             | G        |
|---|---|----|----|-----------|----------------|---------------|----------|
| 1 |   |    |    |           |                |               |          |
| 2 |   | Y  | Х  | Trend     |                |               |          |
| 3 |   | 20 | 25 | =TREND(\$ | B\$3:\$B\$7,\$ | C\$3:\$C\$7,0 | C3,TRUE) |
| 4 |   | 24 | 30 |           |                |               |          |
| 5 |   | 32 | 35 |           |                |               |          |
| 6 |   | 33 | 40 |           |                |               |          |
| 7 |   | 36 | 45 |           |                |               |          |
|   |   |    |    |           |                |               |          |

Note the \$ sings; they are inserted around the letter so that the reference does not change

when you extend the formula to other cells by dragging

|   | Α | В  | С  | D     |
|---|---|----|----|-------|
| 1 |   |    |    |       |
| 2 |   | Y  | Х  | Trend |
| 3 |   | 20 | 25 | 20.8  |
| 4 |   | 24 | 30 | 24.9  |
| 5 |   | 32 | 35 | 29    |
| 6 |   | 33 | 40 | 33.1  |
| 7 |   | 36 | 45 | 37.2  |
| 0 |   |    |    |       |

Drag the formula to get other trend values

## Lecture 08

## **Examples Using Microsoft Excel**

This is only to demonstrate the procedure of OLS. In Future you would be using the Data Analysis Tool to perform regressions. Prerequisite: The student must be familiar with Microsoft Excel.

## **Model Exam Question**

Consider the following data. You may open Microsoft Excel and enter the Data and create the required sums

- Calculate the values of parameters 'a' and 'b' for the regression Y=a + b X + e using the formulas you have learnt.
- Calculate the standard error of estimate and standard error of b.
- Calculate t-values and draw your conclusions regarding the individual variable significance
- Calculate the Coefficient of determination
- Calculate the F-statistic and draw your conclusion regarding the goodness of fit
- Use the LINEST Excel formula and verify all your results

NOTE: Interpret your results at each step, write formulas using equation editor (you can write formulas / Sums in Microsoft Word and paste in Excel sheet if you feel easy like that)

|    | Α                    | В     | С      | D        | E        | F           | G                          | Н                     |
|----|----------------------|-------|--------|----------|----------|-------------|----------------------------|-----------------------|
| 1  |                      |       |        |          |          |             |                            |                       |
| 2  | Quantity<br>Demanded | Price |        |          |          | Estimated Q | Residual =<br>Q - Estim. Q | Square of<br>Residual |
| 3  | Q                    | Р     | PQ     | P square | Q square | Q hat       | e                          | e-squared             |
| 4  | 255                  | 100   | 25500  | 10000    | 65025    | 256.1439    | -1.1439                    | 1.3086                |
| 5  | 230                  | 115   | 26450  | 13225    | 52900    | 243.4334    | -13.4334                   | 180.4549              |
| 6  | 231                  | 125   | 28875  | 15625    | 53361    | 234.9596    | -3.9596                    | 15.6786               |
| 7  | 225                  | 145   | 32625  | 21025    | 50625    | 218.0122    | 6.9878                     | 48.8297               |
| 8  | 224                  | 156   | 34944  | 24336    | 50176    | 208.6911    | 15.3089                    | 234.3632              |
| 9  | 212                  | 172   | 36464  | 29584    | 44944    | 195.1331    | 16.8669                    | 284.4919              |
| 10 | 183                  | 178   | 32574  | 31684    | 33489    | 190.0489    | -7.0489                    | 49.6867               |
| 11 | 178                  | 192   | 34176  | 36864    | 31684    | 178.1857    | -0.1857                    | 0.0345                |
| 12 | 164                  | 200   | 32800  | 40000    | 26896    | 171.4067    | -7.4067                    | 54.8589               |
| 13 | 140                  | 230   | 32200  | 52900    | 19600    | 145.9855    | -5.9855                    | 35.8263               |
| 14 | 2042                 | 1613  | 316608 | 275243   | 428700   | 2042        | 0                          | 905.5332              |

= A4\*B4

= A4\*A4 OR = A4^2

= TREND(\$A\$4:\$A\$13,\$B\$4:\$B\$13,B4)

= A4 – F4

= Sum(A4:A13)

Consider P as X and Q as Y so we do not need to change the usual formula

Calculate the following in Excel by entering formulas

$$b = \frac{n\sum XY - \sum X\sum Y}{n\sum X^2 - (\sum X)^2}$$
  
= (10 \* (C14) - (B14) \* (A14))/(10 \* (D14) - (B14)^2)  
= -0.84737  
$$a = \bar{Y} - b\bar{X}$$
  
= (A14/10) - K6 \* (B14/10)  
= 340.8812

### Verification

Instead of calculating by formula, you can use the SLOPE and INTERCEPT Excel Formula as well

=SLOPE(A4:A13,B4:B13)

And for the intercept

=INTERCEPT(A4:A13,B4:B13)

The regression Equation may now be written as

Y = 340.8812 - 0.84737 X

Interpretation of 'b' (the slope coefficient): For every on unit change in X, there may be, on the average, 0.84737 unit change in Y in the inverse direction.

## **Computations in Microsoft Excel**

Standard Error of Estimate

$$\widehat{\sigma}_e = \sqrt{\frac{\sum e_i^2}{N-k}} = 10.63916$$

Also

$$se(b) = \frac{\widehat{\sigma}_e}{\sqrt{\sum X^2 - \frac{(\sum X)^2}{N}}}$$
$$= 0.08668$$

Cell H14 contains the value of  $\sum e^2$ 



Cell D14 contains the value of  $\sum X^2$ 



Cell B14 contains the value of  $\sum X$ 

### Individual Variable Significance Test

H0: 
$$b = 0$$
  
H1:  $b \neq 0$   
 $\alpha = 0.05$  (or 0.01)  
Test statistic

$$t = \frac{b}{se(b)} = -9.77614$$

If the value of 'b' was calculated in Cell K6 and If Standard Error of b was calculated in Cell K14



Region of Rejection

$$|t| > t_{\frac{\alpha}{2}, n-k}$$
$$t_{\frac{\alpha}{2}, n-k} = 2.306$$

=T.INV.2T(0.05,8)

As the absolute value of 't-statistic' (9.77614) is greater than the value in the table so we reject H1 and conclude that 'b' is significant.

## The Goodness of Fit Test: Using the F-distribution

The Procedure is as follows:

H0: The Fit is not good H0: The fit is good  $\alpha = 0.05$  Test statistic (F)

$$R^{2} = 1 - \frac{N \sum e^{2}}{N \sum Y^{2} - (\sum Y)^{2}} = 0.9228$$

Cell H14 contains the value of  $\sum e^2$ 

Cell E14 contains the value of  $\sum Y^2$ 

A14 contains the value of  $\sum Y$ 

Which gives F

$$F = \frac{R^2}{(1-R^2)} \frac{N-k}{k-1} = 95.573$$

k - 1 = 1

We calculated the value of  $R^2$  in Cell M6

N - k = 10 - 2 = 8Region of Rejection  $F > F_{\alpha, k-1, N-k}$ 

or

F > 5.3177



As 95.573 > 5.3177, We reject  $H_0$  and conclude that the FIT IS GOOD

## Verifying the results with the LINEST formula

Remember that We will use basic formulas here. An additional tool called DATA ANALYSIS tool pack will be discussed later.

### Business Econometrics by Dr Sayyid Salman Rizavi

Syntax: LINEST(known\_y's, [known\_x's], [const], [stats])

The results are displayed in the cells that you Select like this

| value of 'b'              | value of 'a'                         |
|---------------------------|--------------------------------------|
| standard Error of 'b'     | standard error of 'a'                |
| R-squared                 | standard error of estimate           |
| F-statistic               | N-k                                  |
| Regression Sum of Squares | Residual SS =Sum of square of errors |

Select Cells D18:D22

- Start Typing =LINEST(A4:A13,B4:B13,TRUE,TRUE)
- hold Ctrl + SHIFT and press ENTER (Ctrl + SHIFT + ENTER)

| -0.84737 | 340.8812 |
|----------|----------|
| 0.086678 | 14.3802  |
| 0.92276  | 10.63916 |
| 95.57301 | 8        |
| 10818.07 | 905.5332 |
|          |          |

The results are displayed and all the value are identical to our calculations. The value of t could be calculated by dividing the value of 'b' by the lower cell that contains the value of the standard error of b

## **Change of Unit of Measurement**

Sometimes we change the unit of measurement for larger or smaller values. This makes the calculation easy and also makes the meaning of the coefficients useful. (Multiplying or dividing by a factor can be an example)

### Examples:

• Population can be recorded or displayed in Millions

• Prices may be displayed in thousand rupees if required

In fact we are dividing the values of Population by 1000000 (one million) and the values of Prices by 1000

We can call this a linear transformation. A linear transformation preserves linear relationships between variables. Therefore, the correlation between x and y would not change.

| Source:                                     | ource: GDP from www.tradingeconomics.com, Labor Force from http://www.indexmundi.com |                          |  |                              |                            |                               |
|---------------------------------------------|--------------------------------------------------------------------------------------|--------------------------|--|------------------------------|----------------------------|-------------------------------|
| Year                                        | Y = GDP (US \$)                                                                      | Labor Force              |  | Year                         | Y = GDP<br>(Billion US \$) | Labor Force                   |
| 2008                                        | 14300000000                                                                          | 48230000                 |  | 2008                         | 143                        | 48230000                      |
| 2009                                        | 16400000000                                                                          | 50580000                 |  | 2009                         | 164                        | 50580000                      |
| 2010                                        | 16200000000                                                                          | 53780000                 |  | 2010                         | 162                        | 53780000                      |
| 2011                                        | 17600000000                                                                          | 55770000                 |  | 2011                         | 176                        | 55770000                      |
| 2012                                        | 211000000000                                                                         | 58410000                 |  | 2012                         | 211                        | 58410000                      |
| GDP = -132789907605.614 + 5697.6 LaborForce |                                                                                      |                          |  | GDP = -1                     | 32.79 + 0.00000569         | 7 LaborForce                  |
| Year                                        | Y = GDP<br>(Billion US \$)                                                           | Labor Force<br>(Million) |  | If we divide<br>factor the s | the indpendent values      | ariable by a<br>multiplied by |
| 2008                                        | 143                                                                                  | 48.23                    |  | the factor                   |                            |                               |
| 2009                                        | 164                                                                                  | 50.58                    |  | the factor.                  |                            |                               |
| 2010                                        | 162                                                                                  | 53.78                    |  | If wedivide                  | the dependent var          | riable by a                   |
| 2011                                        | 176                                                                                  | 55.77                    |  | factor, both                 | the intercept and          | slope are                     |
| 2012                                        | 211                                                                                  | 58.41                    |  | divided by t                 | the factor                 |                               |
| GD                                          | 0P = -132.79 + 5.697                                                                 | LaborForce               |  | Multiplicati                 | on will produce op         | posite effect.                |

### Change of Unit of Measurement

## Transformation of models and Use of OLS

Some times we need to estimate models that are not linear but we can transform them and use OLS to estimate them.

## Non Linear Transformation:

Nonlinear transformation changes (increases or decreases) linear relationships between variables. Correlation between variables changes.

## Examples:

Taking logs of natural logs

Taking the square or square root or reciprocals of a variable

## **Cobb Douglas Production Function**

$$Q = A L^{\alpha} K^{\beta}$$

Reducing to one variable (to make example of simple regression)

$$Q = AK^{\beta}$$

Taking log on both sides

$$\ln Q = \ln A + \beta \ln K$$

Let  $Y = \ln Q$ ,  $\alpha = \ln A$  and  $X = \ln K$ , then the above can be written as

$$Y = \alpha + \beta X$$

That can be estimated by OLS

### Transformation of models and Use of OLS

Non Linear Transformation: Nonlinear transformation changes (increases or decreases) linear relationships between variables. Correlations between variables change.

| Method                                                     | Transformation                                                | Regression equation                          |
|------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|
| Standard linear regression                                 | Not required                                                  | $y = b_0 + b_1 x$                            |
| Exponential model or log-linear functional form            | Dependent variable = log(y)                                   | $\log(y) = b_0 + b_1 x$                      |
| Logarithmic model or Linear-Log<br>functional form         | Independent variable = log(x)                                 | $y=b_0 + b_1 \log(x)$                        |
| Double log functional form                                 | Dependent variable = log(y),<br>Independent variable = log(x) | $\log(y) = b_0 + b_1 \log(x)$                |
| Cobb Douglas Production Function<br>(like double log form) | $Y = A  L^{\alpha} K^{\beta}$                                 | $\ln Y = \ln A + \alpha \ln L + \beta \ln K$ |

| Model                                                                   | Interpretation                                                                   | Marginal          | Elasticity        |  |  |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------|-------------------|--|--|
|                                                                         |                                                                                  | Effect            |                   |  |  |
| Linear in variable                                                      | One unit change in X will cause, on the                                          | b                 | $b - \frac{X}{2}$ |  |  |
| Y = a + bX                                                              | average, 'b' units of change in Y                                                |                   | Ŷ                 |  |  |
| Double log form                                                         | One percent change in X will cause, on the                                       | $b - \frac{Y}{2}$ | b                 |  |  |
| (log-log)                                                               | average, 'b' % change in Y                                                       | X                 |                   |  |  |
| ln Y = a + b  ln X                                                      |                                                                                  |                   |                   |  |  |
| Level-Log                                                               | One percent change in X is expected to                                           | b                 | b                 |  |  |
| $Y = a + b \ln X$                                                       | change Y by $\frac{100}{b}$ units                                                | X                 | Y                 |  |  |
| Log-Level form                                                          | When X changes by one unit, Y will change                                        | bY                | bX                |  |  |
| lnY = a + b X                                                           | by approximately (b*100)%                                                        |                   |                   |  |  |
| For interpretation, we a                                                | assume that Gauss Markov assumption hold and                                     | parameters a      | re                |  |  |
| significant                                                             |                                                                                  |                   |                   |  |  |
| Marginal effect of X is defined as the partial derivative of Y w.r.t. X |                                                                                  |                   |                   |  |  |
| marginal effect and elas                                                | sticity $\left(\frac{dy}{dx}\frac{X}{Y}\right)$ may be computed at mean values o | f X and Y         |                   |  |  |

## Interpretation of different functional forms using OLS

## **Outliers in Regression**

Outliers are the points that diverge a lot from the data in general and may affect the slope of the regression equation or the predictive power of the model.

## Types

- 1. Extreme X values
- 2. Extreme Y values
- 3. Extreme X and Y
- 4. Distant point with normal X or Y value

If the removal of outliers changes the slope or changes the coefficient of determination a lot, this may be called an influential point



In both the diagrams the dots that appear far from the cluster of dots are outliers.

# Lecture 09 Multiple Regressions

### **General Idea**

Simple Regression considers the relation between single independent variable and the dependent variable. The Multiple Regression considers relation between one dependent variable and two or more independent (explanatory) variables



We intend to look into the impact of one independent variable on the dependent variable while other independent variables remain constant (are held).

### **Multiple Regression: Examples**

- Earnings may depend on both the educational level and the experience
- Quantity demanded may depend on price, income, prices of substitutes and other variables.
- GDP may be related to Labor Force, Capital Stock, Human Resources, and Openness etc.

#### Multiple Linear Regression: 2 independent variables

Multiple Regression Equation





- Simple Regression fits a regression line in 2-dimensional space
- The Multiple Regression with two independent variables fits a line in 3-dimensional space



Scatter Diagram in Multiple Regression

In Multiple Regressions we can:

- Use several variables at the same time to explain the variation in a continuous dependent variable.
- Isolate the unique effect of one variable on the continuous dependent variable while taking into consideration that other variables are affecting it too. (remember the concept of partial derivatives)
- Write a mathematical equation that tells us the overall effects of several variables together and the unique effects of each on a continuous dependent variable. (Multiple Regression line)

#### **Estimating a Multiple Regression Line**

### **Least Square Estimation**

Consider a regression equation

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i$$

We need to find the values of  $\beta_0$ ,  $\beta_1$  and  $\beta_2$  using OLS

Remember that we estimate the parameters by minimizing the sum of squared residuals so we face a minimization problem

$$Min\sum_{i=1}^{n}e_{i}^{2}$$

NOTE: We will ignore the subscript 'i' for convenience

Remember that  $e = Y - \hat{Y}$  and  $\hat{Y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2$  (subscript 'i' ignored) Also remember that for 'Optimization' we take the first derivative and set it equal to zero Important: Here although  $X_1$ ,  $X_2$  and Y are variables but for this minimization problem only we will consider  $\beta_0$ ,  $\beta_1$  and  $\beta_2$  to be the unknowns as we are trying to estimate their values. The minimization problem is

$$Min\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Y - \hat{Y})^2 = \sum_{i=1}^{n} (Y - \beta_0 - \beta_1 X_1 - \beta_2 X_2)^2$$

Where  $\beta_0'$ ,  $\beta_1'$  and  $\beta_2'$  are the unknowns we focus on.

Differentiating w.r.t. the unknown parameters and setting equal to zero, we get THREE normal equations. (If you have difficulty then refer to the lecture with minimization problem of the simple regression line)

$$\sum Y = n\beta_0 + \beta_1 \sum X_1 + \beta_2 \sum X_2$$
$$\sum X_1 Y = \beta_0 \sum X_1 + \beta_1 \sum X_1^2 + \beta_2 \sum X_1 X_2$$
$$\sum X_2 Y = \beta_0 \sum X_2 + \beta_1 \sum X_1 X_2 + \beta_2 \sum X_2^2$$

Solving the above **three normal equations** will provide the values of the parameters.

#### The Deviation form in Regression

We can derive expression to estimate the parameters of the multiple regression equation using the three normal equations.

For making calculations and working easy, we sometimes use what we call deviation form where deviations are taken from the arithmetic mean.

Here we will use SMALL letters to indicate a variable in deviation form.

$$x_{1i} = X_{1i} - \overline{X}$$
$$x_{2i} = X_{2i} - \overline{X}$$
$$y_i = Y_i - \overline{Y}$$

Then the Regression equation (ignoring subscript 'i') can be written as

$$Y = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 X_1 + \boldsymbol{\beta}_2 X_2$$

And (Applying Summations and dividing first normal equation by N

$$\overline{Y} = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \overline{X_1} + \boldsymbol{\beta}_2 \overline{X_2}$$

First minus second equation gives (note that  $\beta_0$  is cancelled out)

$$Y - \overline{Y} = \boldsymbol{\beta}_1(X_1 - \overline{X_1}) + \boldsymbol{\beta}_2(X_2 - \overline{X_2})$$

That can be written in deviation form as

$$y = \beta_1 x_1 + \beta_2 x_2$$

The above is a regression equation in deviation form.

Now, as we have a regression equation in deviation form

$$y = \beta_1 x_1 + \beta_2 x_2$$

where

$$x_{1i} = X_{1i} - \overline{X}$$
$$x_{2i} = X_{2i} - \overline{X}$$
$$y_i = Y_i - \overline{Y}$$

We can minimize the sum of squared residual in deviation form. The equation has two unknowns and, as a result, we have two normal equations (in deviation form)

$$\sum x_1 y = \beta_1 \sum x_1^2 + \beta_2 \sum x_1 x_2$$
$$\sum x_2 y = \beta_1 \sum x_1 x_2 + \beta_2 \sum x_2^2$$

Normal equations are derived by minimizing sum of squared residual

One option is to substitute the summation values and solve the equations to get  $\beta_1$  and  $\beta_2$  but we can find expression for  $\beta_1$  and  $\beta_2$ 

### Deriving Expression for $\beta$ coefficients

$$\sum x_1 y = \beta_1 \sum x_1^2 + \beta_2 \sum x_1 x_2$$
$$\sum x_2 y = \beta_1 \sum x_1 x_2 + \beta_2 \sum x_2^2$$

From the first equation, we get

$$\beta_2 = \frac{\sum x_1 y - \beta_1 \sum x_1^2}{\sum x_1 x_2}$$

Substituting this in the second equation and solving for  $\beta_1$  gives

$$\beta_1 = \frac{\sum x_1 y \sum x_2^2 - \sum x_2 y \sum x_1 x_2}{\sum x_1^2 \sum x_2^2 - (\sum x_1 x_2)^2}$$

Similarly

$$\beta_2 = \frac{\sum x_2 y \sum x_1^2 - \sum x_1 y \sum x_1 x_2}{\sum x_1^2 \sum x_2^2 - (\sum x_1 x_2)^2}$$

Also, using the first normal equation of the NORMAL form

$$\boldsymbol{\beta}_0 = \overline{\boldsymbol{Y}} - \boldsymbol{\beta}_1 \overline{\boldsymbol{X}_1} - \boldsymbol{\beta}_2 \overline{\boldsymbol{X}_2}$$

Notice the symmetry. If we just replace  $x_1 with x_2$ 

and  $x_2$  with  $x_1$  in the expression for  $\beta_1$  we get the expression for  $\beta_2$  and vice versa.

### Manual procedure to solve for Multiple Regression

The least time consuming manual procedure to estimate a regression line

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i$$

Is to use the expression (in deviation form)

$$\beta_{1} = \frac{\sum x_{1}y \sum x_{2}^{2} - \sum x_{2}y \sum x_{1}x_{2}}{\sum x_{1}^{2} \sum x_{2}^{2} - (\sum x_{1}x_{2})^{2}}$$
$$\beta_{2} = \frac{\sum x_{2}y \sum x_{1}^{2} - \sum x_{1}y \sum x_{1}x_{2}}{\sum x_{1}^{2} \sum x_{2}^{2} - (\sum x_{1}x_{2})^{2}}$$

and

$$\boldsymbol{\beta}_0 = \overline{\boldsymbol{Y}} - \boldsymbol{\beta}_1 \overline{\boldsymbol{X}_1} - \boldsymbol{\beta}_2 \overline{\boldsymbol{X}_2}$$

Where

$$x_{1i} = X_{1i} - \overline{X}$$
$$x_{2i} = X_{2i} - \overline{X}$$
$$y_i = Y_i - \overline{Y}$$

You can either generate columns having the values in deviation form (like  $X_{1i} - \overline{X}$ ) or you can calculate the summations in deviation form, using expressions shown in the next slide

#### **Conversion from Normal to Deviation form**

Notice that we need several summations in deviation form to estimate the regression

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i$$

where

$$x_{1i} = X_{1i} - X$$
$$x_{2i} = X_{2i} - \overline{X}$$
$$y_i = Y_i - \overline{Y}$$

We need

# $\sum x_1 y$ , $\sum x_2 y$ , $\sum x_1 x_2$ , $\sum x_1^2$ , $\sum x_2^2$

We also would be needing  $\sum y^2$  in future although not required yet. Remember that we are using deviation form so

$$\sum x_1 y = \sum (X_1 - \overline{X_1}) (Y - \overline{Y})$$
$$\sum x_1^2 = \sum (X_1 - \overline{X_1})^2$$

etc.

We can use the following to convert summations from normal to deviation form

$$\sum x_1 y = \sum X_1 Y - \frac{\sum X_1 \sum Y}{n}$$
$$\sum x_2 y = \sum X_2 Y - \frac{\sum X_2 \sum Y}{n}$$
$$\sum x_1 x_2 = \sum X_1 X_2 - \frac{\sum X_1 \sum X_2}{n}$$
$$\sum x_1^2 = \sum X_1^2 - \frac{(\sum X_1)^2}{n}$$
$$\sum x_2^2 = \sum X_2^2 - \frac{(\sum X_2)^2}{n}$$
$$\sum y^2 = \sum Y^2 - \frac{(\sum Y)^2}{n}$$

As An exercise, you can try to prove these expression using summation algebra

## Example

Although we can use data analysis tool in Microsoft Excel but for better understanding, we present an example in Microsoft Excel that first manually estimates the regression line and then verifies it with the LINEST formula

|    | С   | D   | E              | Т        | U                | V                | W       | Х           | Y              |
|----|-----|-----|----------------|----------|------------------|------------------|---------|-------------|----------------|
| 6  | Y   | X1  | X <sub>2</sub> | $X_1X_2$ | X <sub>1</sub> Y | X <sub>2</sub> Y | $X_1^2$ | $X_{2}^{2}$ | Y <sub>2</sub> |
| 7  | 10  | 40  | 49             | 1960     | 400              | 490              | 1600    | 2401        | 100            |
| 8  | 20  | 63  | 47             | 2961     | 1260             | 940              | 3969    | 2209        | 400            |
| 9  | 30  | 52  | 45             | 2340     | 1560             | 1350             | 2704    | 2025        | 900            |
| 10 | 40  | 17  | 43             | 731      | 680              | 1720             | 289     | 1849        | 1600           |
| 11 | 50  | 55  | 41             | 2255     | 2750             | 2050             | 3025    | 1681        | 2500           |
| 12 | 60  | 55  | 39             | 2145     | 3300             | 2340             | 3025    | 1521        | 3600           |
| 13 | 75  | 50  | 37             | 1850     | 3750             | 2775             | 2500    | 1369        | 5625           |
| 14 | 80  | 90  | 35             | 3150     | 7200             | 2800             | 8100    | 1225        | 6400           |
| 15 | 90  | 91  | 33             | 3003     | 8190             | 2970             | 8281    | 1089        | 8100           |
| 16 | 100 | 110 | 31             | 3410     | 11000            | 3100             | 12100   | 961         | 10000          |
| 17 | 555 | 623 | 400            | 23805    | 40090            | 20535            | 45593   | 16330       | 39225          |
| 10 |     |     |                |          |                  |                  |         |             |                |

### Example

From the example, calculating using Microsoft Excel, we have

$$\sum x_1 y = \sum X_1 Y - \frac{\sum X_1 \sum Y}{n} = 5513.5, \quad \sum x_2 y = \sum X_2 Y - \frac{\sum X_2 \sum Y}{n} = -1665$$
$$\sum x_1 x_2 = \sum X_1 X_2 - \frac{\sum X_1 \sum X_2}{n} = -1115, \quad \sum x_1^2 = \sum X_1^2 - \frac{(\sum X_1)^2}{n} = 6780.1$$
$$\sum x_2^2 = \sum X_2^2 - \frac{(\sum X_2)^2}{n} = 330, \quad \sum y^2 = \sum Y^2 - \frac{(\sum Y)^2}{n} = 8422.5$$

Using these values, we compute

$$\beta_{1} = \frac{\sum x_{1}y \sum x_{2}^{2} - \sum x_{2}y \sum x_{1}x_{2}}{\sum x_{1}^{2} \sum x_{2}^{2} - (\sum x_{1}x_{2})^{2}} = -0.0372$$
$$\beta_{2} = \frac{\sum x_{2}y \sum x_{1}^{2} - \sum x_{1}y \sum x_{1}x_{2}}{\sum x_{1}^{2} \sum x_{2}^{2} - (\sum x_{1}x_{2})^{2}} = -5.1713$$

and

 $\beta_0 = \overline{Y} - \beta_1 \overline{X_1} - \beta_2 \overline{X_2} = 264.67$  $Y = 264.67 - 0.0372X_1 - 5.1713X_2$ 

## **Using LINEST in Multiple Regression**

Now we use the LINEST formula for multiple regression. It is used like as you did in simple regression but with additional columns. You need three columns (as you have three parameters) and five rows. So we Select Cells C19:E23

- Start Typing =LINEST(C7:C16,D7:E16,TRUE,TRUE)
- hold Ctrl + SHIFT and press ENTER (Ctrl + SHIFT + ENTER)

The results are displayed in the cells that you select like this

| -5.1713 | -0.0372 | 264.67  |
|---------|---------|---------|
| 0.1311  | 0.02892 | 6.71441 |
| 0.99791 | 1.5875  | #N/A    |
| 1667.53 | 7       | #N/A    |
| 8404.86 | 17.641  | #N/A    |
|         |         |         |

### Using LINEST in Multiple Regression

Values will be displayed like this

| value of $\beta_2$        | value of $eta_1$                     | value of $eta_0$          |
|---------------------------|--------------------------------------|---------------------------|
| standard Error of $eta_2$ | standard error of $eta_1$            | standard error of $eta_0$ |
| R-squared                 | standard error of estimate           |                           |
| F-statistic               | N-k                                  |                           |
| Regression Sum of Squares | Residual SS =Sum of square of errors |                           |

### Business Econometrics by Dr Sayyid Salman Rizavi

| 1       | 1       |         |
|---------|---------|---------|
| -5.1713 | -0.0372 | 264.67  |
| 0.1311  | 0.02892 | 6.71441 |
| 0.99791 | 1.5875  | #N/A    |
| 1667.53 | 7       | #N/A    |
| 8404.86 | 17.641  | #N/A    |
|         |         |         |

Values of t-statistic can be computed as a ratio of parameter and its standard error

### **Simple Vs Multiple Regression**

As the number of independent variable increases the degree of freedom decreases. In our examples the d.f. was 8. In the current example with 10 observations and two independent variables, the degree of freedom N-k = 7

In simple regression the coefficient of determination had a value identical to the square of the correlation coefficient. In multiple regressions, the coefficient of determination has a value different from the square of the correlation coefficient.

We performed a test of significance for the parameter 'b' in simple regression. Here we need to perform two tests of significance as we have two slope coefficients. The formula for standard error changes in case of multiple regressions.

### **Diagnostic Tests for Regression Analysis**

- We performed a test of significance for the parameter 'b' in simple regression. •
- Here we need to perform two tests of significance as we have two slope coefficients •
- The formula for standard error changes in case of multiple regression •

=T.INV.2T(0.05,7)  $t_{\frac{\alpha}{2},n-k} = t_{0.025,7} = 2.36$ 

We need to perform two tests for individual variable significance. One for  $\beta_1$  and the second for

$$\beta_2$$

Test for  $\beta_1$ 

$$t = \frac{\beta_1}{se(\beta_1)} = \frac{-0.0372}{0.02892} = -1.287$$

As  $|t| > t_{\frac{\alpha}{2},n-k}$  is not satisfied so  $\beta_1$  is not significant. The variable  $X_1$  does not seem to have a significant impact on Y.

Test for  $\beta_2$ 

$$t = \frac{\beta_2}{se(\beta_2)} = \frac{-5.1713}{0.1311} = -39.45$$

As  $|t| > t_{\frac{\alpha}{2},n-k}$  is satisfied so  $\beta_2$  issignificant. The variable  $X_2$  seems to have a significant impact on Y.

$$F_{\alpha,k-1,n-k} = F_{0.05,2,7} = 4.74$$

$$R^{2} = 1 - \frac{N \sum e^{2}}{N \sum Y^{2} - (\sum Y)^{2}} = 0.9979$$

$$F = \frac{R^{2}}{(1-R^{2})} \frac{N-k}{k-1} = 1667.53$$

$$F_{\alpha,k-1,N-k} = F_{0.05,1,3} = 4.74$$

As  $F > F_{\alpha, k-1, N-k}$  is satisfied, we conclude that the fit is good.

## Lecture 10

## Linear Regression Estimation with K-independent variables

We define a linear regression equation with K independent variables as

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \ldots + \beta_K X_{Ki} + e_i$$

Where 1 < K < M and M is a finite number. The variables have their usual meaning.

If we minimize the sum of squared residuals, we get K+1 normal equations to be solved simultaneously. The software may use Matrix algebra to solve these equations. There is nothing new in such regression. The usual process may be followed. We can use the LINEST formula or Data Analysis Add-in in Microsoft Excel. Other software also may be used.

However you may notice that some things change by adding independent variables

- The degree of freedom (N-k) decreases.
- You may observe some problems like multicollinearity
- The formula for standard errors of the coefficients change.
- You may need larger number of observations.
- The coefficient of determination  $(R^2)$  increases by adding more independent variables.
- The value of the regression coefficients may change by adding a new variable.
- Software have their limitations.

### Analysis ToolPak: DATA ANALYSIS Add-In in Microsoft Excel

To perform statistical and econometric analysis, we can save lot of time and effort by using software. The Analysis ToolPak in Microsoft Excel is an example of that. This tool uses the LINEST function to perform regressions. It produces and output containing basic regression statistics in tabular form. This tool has a limit of maximum 16 independent variables. This tool comes with Microsoft Excel but you need to install or add it from within Excel

## Analysis ToolPak: Installing or Adding

Typically it is already installed. You just need to add it for which you will not need a CD. If it is not installed, you may need an Office CD. This is required only once.

**Excel 2003 and earlier:** select in Excel the Tools Menu and the menu item Add-ins.



, Excel Options, Add-ins, Manage Excel Add-ins in the

selection box, then click GO

Excel 2010: Green File, Options, Manage Excel Add-ins in the selection box, then click GO

We will demonstrate in Microsoft Excel 2010

- 1. Click on FILE and you will see a list
- 2. Now click on Options (the second last item)



- 3. In the Excel options window, click on Add-In
- 4. Now Click on Analysis ToolPak (not with the VBA)
- 5. Click GO

| Excel Options                   |                                                                                                                                                                             |                                                                                                                                               | ? ×                                       |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| General<br>Formulas<br>Proofing | View and manage Micro                                                                                                                                                       | osoft Office Add-ins.                                                                                                                         |                                           |
| Save                            | Name 🔺                                                                                                                                                                      | Location                                                                                                                                      | Туре                                      |
| Language                        | Active Application Add-ins<br>Analysis ToolPak                                                                                                                              | C:\brany\Analysis\ANALYS32.XLL                                                                                                                | Excel Add-in                              |
| Advanced                        | Teaching Application Add inc                                                                                                                                                |                                                                                                                                               | E                                         |
| Customize Ribbon                | Analysis ToolPak - VBA                                                                                                                                                      | C:\ry\Analysis\ATPVBAEN.XLAM<br>C:\ffice\Office14\OFFRHD.DLI                                                                                  | Excel Add-in                              |
| Quick Access Toolbar            | Date (XML)                                                                                                                                                                  | C:\shared\Smart Tag\MOFL.DLL                                                                                                                  | Action                                    |
| Add-Ins                         | Euro Currency Tools<br>Financial Symbol (XML)                                                                                                                               | C:\14\Library\EUROTOOL.XLAM<br>C:\shared\Smart Tag\MOFL.DLL                                                                                   | Excel Add-in<br>Action                    |
| Trust Center                    | Headers and Footers<br>Hidden Rows and Columns                                                                                                                              | C:\ffice\Office14\OFFRHD.DLL<br>C:\ffice\Office14\OFFRHD.DLL                                                                                  | Document Inspector                        |
|                                 | Add-in: Analysis ToolPa<br>Publisher: Microsoft Corp<br>Compatibility: No compatibili<br>Location: C:\Program File<br>Description: Provides data a<br>Manage: Excel Add-ins | ak<br>poration<br>ty information available<br>es\Microsoft Office\Office14\Library\/<br>analysis tools for statistical and engir<br><u>Go</u> | Analysis\ANALYS32.XLL<br>neering analysis |
|                                 |                                                                                                                                                                             |                                                                                                                                               | OK Cancel                                 |

6. Check the box for Analysis ToolPak

## 7. Click OK

| Add-Ins                                                 | ? X                   |
|---------------------------------------------------------|-----------------------|
| Add-Ins available:                                      |                       |
| Analysis ToolPak                                        | ОК                    |
| Euro Currency Tools                                     | Cancel                |
|                                                         | Browse                |
|                                                         | Automation            |
|                                                         |                       |
|                                                         |                       |
|                                                         |                       |
| Ψ.                                                      |                       |
| Analysis ToolPak                                        |                       |
| Provides data analysis tools for<br>engineering analysi | statistical and<br>is |
|                                                         |                       |

8. You may be prompted that currently this is not installed, do you want to install it so here click YES

9. Installation will start. After few seconds you can see if it is installed by clicking on the DATA ribbon and seeing if you find Data Analysis



## **Regression with The Analysis ToolPak**

There are 19 options available in the Add-in but presently we will use and perform Regression. First Enter the following data (10 observations each) in your Excel Sheet. Use the same cells as we have done

|    | Α | В | С   | D              | E              | F              |  |
|----|---|---|-----|----------------|----------------|----------------|--|
| 1  |   |   |     |                |                |                |  |
| 2  |   |   | Y   | X <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> |  |
| 3  |   |   | 10  | 40             | 49             | 52             |  |
| 4  |   |   | 20  | 63             | 47             | 54             |  |
| 5  |   |   | 30  | 52             | 45             | 59             |  |
| 6  |   |   | 40  | 17             | 43             | 62             |  |
| 7  |   |   | 50  | 55             | 41             | 66             |  |
| 8  |   |   | 60  | 55             | 39             | 66             |  |
| 9  |   |   | 75  | 50             | 37             | 69             |  |
| 10 |   |   | 80  | 90             | 35             | 77             |  |
| 11 |   |   | 90  | 91             | 33             | 75             |  |
| 12 |   |   | 100 | 110            | 31             | 74             |  |
| 14 |   |   |     |                |                |                |  |

In the Data Ribbon, Click on Data Analysis (right most item)



In the window that appears, scroll down to Regression and click OK

| Data Analysis                                                                                                                                                                                  | ? ×                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Analysis Tools  Covariance Descriptive Statistics Exponential Smoothing F-Test Two-Sample for Variances Fourier Analysis Histogram Moving Average Random Number Generation Rank and Percentile | OK<br>Cancel<br><u>H</u> elp |
| Regression                                                                                                                                                                                     |                              |

In the window that appears now, click in the Input Y Range and select by dragging your mouse

on the Y values

| Y                                                         | X <sub>1</sub>                                            | X <sub>2</sub>                                           | X <sub>3</sub>                                     | Regression ? X                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10<br>20<br>30<br>40<br>50<br>60<br>75<br>80<br>90<br>100 | 40<br>63<br>52<br>17<br>55<br>55<br>50<br>90<br>91<br>110 | 49<br>47<br>45<br>43<br>41<br>39<br>37<br>35<br>33<br>31 | 52<br>54<br>59<br>62<br>66<br>69<br>77<br>75<br>74 | Input       OK         Input Y Range:       \$C\$3:\$C\$12         Input X Range:       Imput X Range:         Labels       Constant is Zero         Confidence Level:       95         Output options       Qutput Range:         Qutput Range:       Imput X Range:         New Worksheet Ply:       Imput Residuals         Residuals       Residual Plots         Standardized Residuals       Lipe Fit Plots         Normal Probability       Normal Probability Plots |

Now click in the Input X Range and select by dragging your mouse on the X values (all the

columns of X values)

Check (if not already selected) on New Worksheet. Then click OK

| Y                                                              | X <sub>1</sub>                                                              | X <sub>2</sub>                                                             | X <sub>3</sub>                                                             | Regression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ? <b>x</b>                   |
|----------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Y<br>10<br>20<br>30<br>40<br>50<br>60<br>75<br>80<br>90<br>100 | X <sub>1</sub><br>40<br>63<br>52<br>17<br>55<br>55<br>50<br>90<br>91<br>110 | X <sub>2</sub><br>49<br>47<br>45<br>43<br>41<br>39<br>37<br>35<br>33<br>31 | X <sub>3</sub><br>52<br>54<br>59<br>62<br>66<br>66<br>69<br>77<br>75<br>74 | Input         Input Y Range:       \$C\$3:\$C\$12         Input X Range:       \$D\$3:\$F\$12         Labels       Constant is Zero         Confidence Level:       95         %       Output options         Qutput Range:       Imput Mange:         New Worksheet Ply:       Imput Mange:         New Worksheet Ply:       Imput Mange:         New Workbook       Residuals         Residuals       Residual Plots         Standardized Residuals       Line Fit Plots         Normal Probability       Mormal Probability Plots | OK<br>Cancel<br><u>H</u> elp |

The results will be displayed in a new worksheet. Just resize the columns to see the results in a

better way.

You have got all your usual regression statistics in a tabular form

| Regression Statistics |              |                |             |            |                |             |             |             |
|-----------------------|--------------|----------------|-------------|------------|----------------|-------------|-------------|-------------|
| Multiple R            | 0.99899351   |                |             |            |                |             |             |             |
| R Square              | 0.99798803   |                |             |            |                |             |             |             |
| Adjusted R Squ        | 0.99698205   |                |             |            |                |             |             |             |
| Standard Error        | 1.68056506   |                |             |            |                |             |             |             |
| Observations          | 10           |                |             |            |                |             |             |             |
| ANOVA                 |              |                |             |            |                |             |             |             |
|                       | df           | SS             | MS          | F          | Significance F |             |             |             |
| Regression            | 3            | 8405.55421     | 2801.8514   | 992.052008 | 1.7803E-08     |             |             |             |
| Residual              | 6            | 16.9457934     | 2.82429891  |            |                |             |             |             |
| Total                 | 9            | 8422.5         |             |            |                |             |             |             |
|                       |              |                |             |            |                |             |             |             |
|                       | Coefficients | Standard Error | t Stat      | P-value    | Lower 95%      | Upper 95%   | Lower 95.0% | Upper 95.0% |
| Intercept             | 280.397206   | 32.4852795     | 8.63151589  | 0.00013317 | 200.908591     | 359.885821  | 200.908591  | 359.885821  |
| X Variable 1          | -0.04039006  | 0.03127092     | -1.29161738 | 0.24401066 | -0.11690724    | 0.03612712  | -0.11690724 | 0.03612712  |
| X Variable 2          | -5.35487862  | 0.39524661     | -13.5481962 | 1.0031E-05 | -6.32201224    | -4.38774501 | -6.32201224 | -4.38774501 |
| X Variable 3          | -0.12516453  | 0.25227513     | -0.49614297 | 0.6374421  | -0.74245954    | 0.49213048  | -0.74245954 | 0.49213048  |
## **Understanding the Regression Results**

In the third part of the table given above, we have the values of the coefficients, the standard errors, the t-statistic, the significance of t-statistic etc. Look at the P-values. These values show the level of significance at which, based on the t-statistic, we can reject the  $H_0$  that the coefficient is not significant. Only the value corresponding to the variable  $X_2$  is below 1% (it is 0.00001003). This shows that, at 1% level of significance, the coefficient of  $X_2$  is significant. Other coefficients are not significant. However, the intercept is also significant as the p-value is below 1%.

| Regression Statistics |                           |  |  |  |  |
|-----------------------|---------------------------|--|--|--|--|
| Multiple R            | 0.99899351                |  |  |  |  |
| R Square              | 0.99798803                |  |  |  |  |
| Adjusted R Square     | 0.99698205                |  |  |  |  |
| Standard Error        | 1.680565 <mark>0</mark> 6 |  |  |  |  |
| Observations          | 10                        |  |  |  |  |
|                       |                           |  |  |  |  |

Multiple correlations is computable form partial correlation coefficients and is the Square Root of  $R^2$ . Coefficient of Determination is Explanatory power of the model. Here it is 0.99 or 99%. Adjusted Coefficient of Determination (Adjusted to degrees of freedom)

Adjusted  $R^2$ =  $R^2 - (1 - R^2) * \frac{k - 1}{N - k}$ 

As the number of independent variables increases the coefficient of determination is overstated so it may be sometimes better to use the adjusted  $R^2$  for goodness of fit test

| ANOVA      |    |            |            |            |                |
|------------|----|------------|------------|------------|----------------|
|            | df | SS         | MS         | F          | Significance F |
| Regression | 3  | 8405.55421 | 2801.8514  | 992.052008 | 1.7803E-08     |
| Residual   | 6  | 16.9457934 | 2.82429891 |            |                |
| Total      | 9  | 8422.5     |            |            |                |

The above table shows the sums of square. If we divide the SS (Sum of square) by the df (degree of freedom), we get the MS (Means Sum of Square). The Value of F-statistic that is required in the goodness of fit test is also given. The value under the significance of F which is 0.0000000178 (approximately zero) shows that the F-Statistic is significance below 1% so we can conclude at 1% level of significance that the model is a good fit.

P-value equals the  $Pr{|t| > t-Stat}$  where t is a t-distributed random variable with n-k degrees of freedom and t-Stat is the computed value of the t-statistic given in the previous column.

You can say that it is the level of significance at which the calculated t-statistic becomes larger than the table value of t-statistic

# LIMITATIONS of working with Data Analysis Toolpak

- Excel restricts the number of independent variables to 16.
- Excel requires that all the independent variables variables be in adjoining columns.
- Excel standard errors and t-statistics and p-values are based on the assumption that the error is independent with constant variance.
- Excel does not provide alternative models like the ones with robust standard errors So more powerful software such as STATA, EVIEWS, SPSS may be needed

# **Practicing Regression Estimation**

Let us practice regression on real life data.

Go to http://data.worldbank.org/data-catalog/world-development-indicators

|                                     | Resources               |
|-------------------------------------|-------------------------|
|                                     | Available in the API    |
|                                     |                         |
| THE WORLD BANK                      | WDI (Excel)-ZIP (72 MB) |
| Working for a World Free of Poverty | WDI (CSV)-ZIP (39 MB)   |

On the right, under RESOURCES, click on DATA BANK. When the page loads, select PAKISTAN in COUNTRY. Click on SERIES and when it loads, select the following variables:

- GDP (constant 2005 US\$)
- Labor force, total
- Gross fixed capital formation (constant 2005 US\$)
- Exports of goods and services (constant 2005 US\$)

You can use the filter given to search for variables. Now click on TIME and select the years from 1991 to 2012. Now on top right of the page, click DOWNLOAD. You will be asked about the data format; Select EXCEL and click DOWLNOAD.

#### **Practicing Regression Estimation**

Save the file on your hard disk. Open the file and you will have the data you downloaded. First you need to reshape the data for use in Data Analysis ToolPak. Select all data and copy. Now press Ctrl+V to paste but use paste special and check on TRANSPOSE. Now you can use the DATA ANALYSIS ToolPak. REMEMBER: All independent variables should be in adjacent columns. Let us run a regression where we think that GDP has a linear relationship with Labor Force, Stock of Capital (proxy is GFCF), and Exports. The result is displayed below (for discussion view the video lecture)

# Business Econometrics by Dr Sayyid Salman Rizavi

| PUT          |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 Statistics |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.998506037  |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.997014306  |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.996542881  |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1498197454   |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 23           |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| df           | SS                                                                                                                                                       | MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Significance F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3            | 1.42412E+22                                                                                                                                              | 4.74708E+21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2114.893518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.71727E-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 19           | 4.26473E+19                                                                                                                                              | 2.2446E+18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 22           | 1.42839E+22                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Coefficients | Standard Error                                                                                                                                           | t Stat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -23802579365 | 2618608963                                                                                                                                               | -9.089779995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.39245E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2081.750854  | 90.24559828                                                                                                                                              | 23.06761652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.34473E-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | 0.00007646                                                                                                                                               | 5 010000005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 9425E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.164387588  | 0.223327616                                                                                                                                              | J.21300323J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.04201-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | PUT<br>Statistics<br>0.998506037<br>0.997014306<br>0.996542881<br>1498197454<br>23<br>df<br>3<br>19<br>22<br>Coefficients<br>-23802579365<br>2081.750854 | PUT   Image: Construct struct stru | PUT   Instant   Instant     0.5tatistics   Instant   Instant     0.998506037   Instant   Instant     0.998506037   Instant   Instant     0.997014306   Instant   Instant     0.996542881   Instant   Instant     1498197454   Instant   Instant     23   Instant   Instant     1498197454   Instant   Instant     23   Instant   Instant     1498197454   Instant   Instant     23   Instant   Instant     3   Instant   Instant     3   Instant   Instant     20   Instant   Instant | PUT   Instantistics   Instantistics     0.998506037   Instantistics   Instantistics     0.998506037   Instantistics   Instantistics     0.997014306   Instantistics   Instantistics     0.996542881   Instantistics   Instantistics     1498197454   Instantistics   Instantistics     23   Instantistics   Instantistics     1498197454   Instantistics   Instantistics     23   Instantistics   Instantistics     1498197454   Instantistics   Instantistics     1498197454   Instantistics   Instantistics     23   Instantistics   Instantistics   Instantistics     1498197454   Instantistics   Instantistics   Instantistics     1498197454< |

## **Possible Problems**

- The relationship may not be linear. (Wrong specification)
- We may have missed some important variables
- Some of the indicators may not be appropriate
- There may be outliers (e.g. abnormal years)
- The errors may not be normally distributed
- There may be problems like multicollinearity, heterskedasticity or autocorrelation (to be discussed later)

# Lecture 11

# **Transformation for Regression**

Linear in the 'Linear Regression' means that the model is 'linear in parameters' and not necessarily linear in variables. Linearity is a poor approximation of truth. This is because the relationships may be non-linear e.g. quadratic, cubic, logarithmic etc. The scatter plot may indicate the type of relation.

# **Examples:**

- Marginal Cost Curves: U shaped curve; a quadratic relationship
- Total Cost Curves: The curve is upward sloping, changes its nature at a point of inflection. This may be shown by a cubic equation
- Firms face diminishing returns: This means that the total product curve is not linear. There are three stages of production (study law of variable proportions for detail). In each stage the relationship may be different
- Diminishing marginal utility
- Elasticity changes with price (Demand Curve is not linear)

# **Other Functional Forms**

• The scatter plot may indicate the type of relation.





# Exponential



# **Exponential and Logarithmic Function**

- The exponential functional form is  $y = b^x$  where b > 0 It can be estimated as  $\ln y = x \ln b$
- $y^* = b^* x$  ( $b^* = \ln b$ ,  $y^* = \ln y$ )
- This is a regression equation without an intercept(another case:  $y = ab^x$  would be with intercept)
- When estimated, we need to compute the *inverse log* to get the original parameter b

- Logarithmic functions are related to exponential functions
- From the above case, by the definition of logarithm to the base *a* logarithmic function can be written as  $x = log_a y$
- Uses
  - When looking at growth or decay like models of economic growth
  - investment that increases by a constant percentage each time period
  - sales of a company that increase at a constant percentage each year
  - models of the spread of an epidemic

# Logs of variables

Linear-log, log-linear and log-log forms

- Linear log form:  $y = a + b \ln x + e$
- Log-linear or semi-log model:  $\ln y = a + bx + e$
- For log-log form please refer to the Cobb-Douglas production function discussed earlier
- The graph of y against x is curved
- The graph of y against  $\ln x$  is a straight line
- Example:
  - Short run production: Y experiences diminishing marginal returns with respect to increases in X
  - Bends a concave curve to a straight line



#### Polynomial functions of higher order

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \dots + \beta_k x^k + e$$



The model is linear in parameters and not in variables. Explanation of the squared term with some examples

#### Dynamic Models: Models with lagged independent Variable

Example 1.

Some times we see that a variable has an impact that continues in time e.g. the multiplier effect (EXPLAIN). Suppose that a change in investment took place in the period t - 2. It had an impact in time t - 2, in t - 1 and t

$$\Delta Q = \beta_0 + \beta_1 \Delta I_t + \beta_2 \Delta I_{t-1} + \beta_3 \Delta I_{t-2} + e$$

Example 2. Consider the Supply of an agricultural crop depends on the price of the previous time period. The farmers sow keeping in mind the price that they observed last year

$$Q_s = a + bP_{t-1} + e$$

Example 3. A variable may depend on the previous value of itself

$$y_t = a + b y_{t-1} + e$$

#### What is Interaction term?

#### Example 1:

Suppose that the impact of one independent variable on the dependent variable depends on another independent variable. For example suppose that marks in econometrics (M) depend on your IQ level (I) and on your hard work (H =time spend on study). What if the impact of hard work on marks of econometrics depends on the IQ level. (More intelligent student may need less hard work to achieve the same result).

This can be captured by an interaction term (I \* H)

$$M = a + b I + c H + d (I * H) + e$$

(I \* H) is a new variable computed as the product of *I* and *H*.

The derivative of M w.r.t. H depends on I. (c + dI)

#### Example 2:

Consider the impact of hypertension (B = blood pressure) and diabetes (S= average level of blood sugar) on the heart of individuals (H = some index of health of the heart). Both are *'Risk Factors'*. The impact of having both risk factors may be greater than the total of the average impact of individual risk factors. This can be captured by an interaction term (B \* S)

$$H = a + b B + c S + d (B * S) + e$$

(B \* S) is a new variable computed as the product of *B* and *S*.

The coefficient of the interaction term captures the additional impact of having BOTH risk factors

# Lecture 12

# **Regression on standardized variables**

The units in which the regressand and the regressor are expressed effect the interpretation of the coefficients. (diff functional forms). We can avoid this if we standardize our variables. A variable is standardized if we subtract its mean from it and divide by the standard deviation

$$X_i^* = rac{X_i - \overline{X}}{S_X}$$
 ,  $Y_i^* = rac{Y_i - \overline{Y}}{S_Y}$ 

Then the variables will have zero means and unit variances

$$\overline{X_{\iota}^*} = \overline{Y_{\iota}^*} = \mathbf{0}$$
$$Var(X_{\iota}^*) = Var(Y_{\iota}^*) = \mathbf{1}$$

It does not matter in what unit the variables are expressed

Running the regression  $Y_i^* = a + b X_i^* + e$  will give 'a' and 'b' as standardized coefficients often called BETA coefficients. The intercept term will always be zero as  $\overline{X_i^*} = \overline{Y_i^*} = \mathbf{0}$ 

$$(As \ a = \overline{Y_{\iota}^*} - b\overline{X_{\iota}^*})$$

Interpretation: if the (standardized) regressor increases by one standard deviation, on average, the standardized) regressand increases by  $\beta$  standard deviation units.

#### Advantages

Standard coefficients' advocates note that the coefficients ignore the independent variable's scale of units, which makes comparisons easy.

#### Disadvantages

Such standardization can be misleading. The meaning of a standard deviation may vary markedly between non-normal distributions (e.g. skewed)

# Theory behind regression

Regression makes sense if there is a sound theory behind. Make Sure to include all necessary predictor variables (depends on problem statement, theory and previous knowledge)

Some variables may measure the same things. Either keep one of them or combine them.

Also, Consider the possible interactions

#### **Summary Statistics**

After you have entered your data, click Data Analysis in the Data Ribbon in Microsoft Excel,

select Descriptive Statistics and click OK

| Data Analysis                                                                                                                                                                                                                                                    | ? ×                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Analysis Tools    Anova: Single Factor   Anova: Two-Factor With Replication   Anova: Two-Factor Without Replication   Correlation   Covariance   Descriptive Statistics   Exponential Smoothing   F-Test Two-Sample for Variances   Fourier Analysis   Histogram | OK<br>Cancel<br><u>H</u> elp |
|                                                                                                                                                                                                                                                                  |                              |

#### Summary Statistics before regression

Click in the Input Range. Select your data including variable names by dragging your mouse. Check the option Labels in First Row. Check the option Summary Statistics and click OK

| Descriptive Statistics   |                | ? ×    |
|--------------------------|----------------|--------|
| Input                    |                |        |
| Input Range:             | \$B\$4:\$F\$78 |        |
| Grouped By:              | Olumns         | Cancel |
|                          | © <u>R</u> ows | Help   |
| Labels in First Row      |                |        |
| Output options           |                |        |
| Output Range:            | <b>1</b>       |        |
| • New Worksheet Ply:     |                |        |
| New Workbook             |                |        |
| ✓ Summary statistics     |                |        |
| Confidence Level for Mea | n: 95 %        |        |
| Kth Largest:             | 1              |        |
| Kth Smallest:            | 1              |        |
|                          |                |        |
|                          |                |        |

You will get the summary statistics in a new worksheet.

| price              |            | mpg         |            | weight      |            | length       |            | Foreign      |            |
|--------------------|------------|-------------|------------|-------------|------------|--------------|------------|--------------|------------|
|                    |            |             |            |             |            |              |            |              |            |
| Mean               | 6165.25676 | Mean        | 21.2972973 | Mean        | 3019.45946 | Mean         | 187.932432 | Mean         | 0.2972973  |
| Standard Error     | 342.871932 | Standard Er | 0.67255109 | Standard Er | 90.346917  | Standard Eri | 2.58840944 | Standard Eri | 0.05349582 |
| Median             | 5006.5     | Median      | 20         | Median      | 3190       | Median       | 192.5      | Median       | 0          |
| Mode               | #N/A       | Mode        | 18         | Mode        | 3690       | Mode         | 170        | Mode         | 0          |
| Standard Deviation | 2949.49588 | Standard De | 5.78550321 | Standard De | 777.193567 | Standard De  | 22.2663399 | Standard De  | 0.46018846 |
| Sample Variance    | 8699525.97 | Sample Vari | 33.4720474 | Sample Vari | 604029.841 | Sample Vari  | 495.789893 | Sample Vari  | 0.21177342 |
| Kurtosis           | 2.03404768 | Kurtosis    | 1.12991983 | Kurtosis    | -0.8585178 | Kurtosis     | -0.9408177 | Kurtosis     | -1.2137607 |
| Skewness           | 1.68784099 | Skewness    | 0.96846014 | Skewness    | 0.15119863 | Skewness     | -0.0418272 | Skewness     | 0.90542616 |
| Range              | 12615      | Range       | 29         | Range       | 3080       | Range        | 91         | Range        | 1          |
| Minimum            | 3291       | Minimum     | 12         | Minimum     | 1760       | Minimum      | 142        | Minimum      | 0          |
| Maximum            | 15906      | Maximum     | 41         | Maximum     | 4840       | Maximum      | 233        | Maximum      | 1          |
| Sum                | 456229     | Sum         | 1576       | Sum         | 223440     | Sum          | 13907      | Sum          | 22         |
| Count              | 74         | Count       | 74         | Count       | 74         | Count        | 74         | Count        | 74         |

# **Correlation Matrix**

After you have entered your data. Click Data Analysis in the Data Ribbon in Microsoft Excel, select Correlation and click OK

| Data Analysis                                                                                                                       | ? ×          |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------|
| <u>A</u> nalysis Tools                                                                                                              | OK           |
| Anova: Single Factor<br>Anova: Two-Factor With Replication<br>Anova: Two-Factor Without Replication                                 | Cancel       |
| Correlation<br>Covariance<br>Descriptive Statistics<br>Exponential Smoothing<br>F-Test Two-Sample for Variances<br>Fourier Analysis | <u>H</u> elp |
| Histogram                                                                                                                           |              |

Click in the Input Range. Select your data including variable names by dragging your mouse. Check the option Labels in First Row and click OK.

| Correlation                                                                          |                                                               | ? ×                          |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------|
| Input<br>Input Range:<br>Grouped By:<br>I Labels in First Row                        | \$ <u>8\$4:\$F\$78</u><br>© <u>C</u> olumns<br>© <u>R</u> ows | OK<br>Cancel<br><u>H</u> elp |
| Output options<br>Output Range:<br>New Worksheet <u>Ply:</u><br>New <u>W</u> orkbook |                                                               |                              |

|         | price    | mpg      | weight   | length  | Foreign |
|---------|----------|----------|----------|---------|---------|
| price   | 1        |          |          |         |         |
| mpg     | -0.4686  | 1        |          |         |         |
| weight  | 0.538611 | -0.80717 | 1        |         |         |
| length  | 0.431831 | -0.79578 | 0.946009 | 1       |         |
| Foreign | 0.048719 | 0.393397 | -0.59283 | -0.5702 | 1       |
|         |          |          |          |         |         |

The resulting matrix of correlations may help you to understand the relation between variables

# Graphs

Some Graphs before regression include Scatter Diagrams, Scatter Diagrams with line plots, Histograms, Pie Charts etc.

In the Insert Ribbon, click on the chart that your require, provide the required information and get your chart



## How to present Regression Results in research papers

Every paper uses slightly different strategy. Standard information to report in a regression table includes:

- Dependent variable
- Explanatory variables
- Number of observations, sample period, data labels etc.
- Estimates of intercept and other coefficients
- Standard errors of estimate
- Significance of variables/coefficients
- R-squared and other required statistics

It is common to present more than one regression results.

You can add or drop variables and perform regressions.

# **Keeping or Dropping Variables**

Regression results by adding or including variables vary markedly between non-normal distributions (e.g. skewed). A good strategy would be:

- Keep significant predictors
- Keep insignificant predictors with the expected sign
- Drop insignificant predictors with unexpected sign
- For significant predictors with unexpected sign, keep after review and including or excluding other variables

# **Examples of presented results**

| Dependent Variable             | Model 1   | Model 2   |
|--------------------------------|-----------|-----------|
|                                | Car Price | Car Price |
| Millage                        | 855.25 *  | 852.55 *  |
| Weight                         | 1256.9 ** | 1246.1 ** |
| Foreign (=1 for imported cars) | 950.5 *   | 855.25 *  |
| Price of Oil                   | -         | -132.25   |
| _constant                      | 46.5*     | 41.5 *    |
| Number of observations         | 2500      | 2500      |
| R-Squared                      | 0.65      | 0.69      |

\*, \*\* significance at 1% and 5% respectively

# **Regression related function in Microsoft Excel: A Brief review**

- 1. The LINEST (50 independent Variables)
- 2. Data Analysis ToolPak (16 independent variables) RSQ
- 3. Basic Formulas that are available include: INTERCEPT, SLOPE, TREND

# **Steps before Regression**

- Theory
- Graphs

- Summary statistics
- Model specification
- Regression
- Estimation
- Change of scale if required
- Different functional forms
- Interaction
- Post Regression: Change of scale if required, Different functional forms, Interaction

# Lecture 13

# **Qualitative Independent Variable / Dummy Variables**

Remember that we are yet NOT considering Qualitative DEPENDENT variable

Dummy variables have different names

- Categorical Variable
- Qualitative Independent variables (mostly called dummy variables)
- Indicator variable
- Binary variable / dichotomous variable (most often cases)
- Polytomous dummy variables

Such variable may divide the data into mutually exclusive Categories

#### **Dummy Variables**

Dummy variables are the variables that help encoding the qualitative variables. They may be binary (with values zero or one)

#### **Examples:**

- Gender: We can create a variable with value 0 for female and 1 for male
- Yes/No for existence of a fact (win, admit, disease, marital status. specific years etc.)
- Control group / experiment group / treatment group
- Race
- Educational Categories

It does not matter for what status you assign zero and for what one. For example, We can assign zero for females as well as males in the Gender variable

#### What happens if we ignore Gender?

Scenario 1: Education and Gender are not correlated

We will have correct Slope estimate but larger errors

Scenario 2: Education and Gender correlated

We will have Biased Slope Estimates and larger errors

#### **Possible Solutions**

1. Run separate regression for male and female

What if we need to test the gender difference?

2. Solution

Use dummy variables to capture the influence of gender

#### Example of binary dummy variable:

- Consider the hourly wages (W) as a function of years of education (E), years of experience (X) and gender (G). Set G=1 if gender="FEMALE" else G=0
- Gender is a qualitative variable (binary) encoded as 0 = male, 1 = female

$$G = \begin{cases} 1 & for Women \\ 0 & for Men \end{cases}$$

• Performing a linear regression

$$W = \beta_0 + \beta_1 E + \beta_2 X + \beta_3 G + e$$

The data dummy.xlsx provided with lecture notes gives the result as

$$W = 77.76 + 8.29 E + 28.52 X - 26.6 G$$

Interpret other variable

 -26.6 means that female respondent's wage, on the average, is 26.6 rupees less than males

Suppose that E=14, X=5

For a female W = 77.76 + 8.29 (14) + 28.52 (5) - 26.6 (1) = 309.82

For a male W = 77.76 + 8.29 (14) + 28.52 (5) - 26.6 (0) = 336.42

336.42 - 309.82 = 26.6 is the average difference in wages of male and female with identical characteristics

## **Exam Model Question**

The file in your lesson notes (dummy.xlsx) provides the following information after applying the LINEST function for the regression

| -26.869143  | 26.92131443 | 9.56630262 | 68.48962199 |
|-------------|-------------|------------|-------------|
| 12.59410484 | 3.958664082 | 5.24813727 | 66.42244505 |
| 0.787428706 | 35.74053401 |            |             |
| 38.27780854 | 31          |            |             |
| 146686.584  | 39598.95891 |            |             |

$$W = \beta_0 + \beta_1 E + \beta_2 X + \beta_3 G + e$$

Interpret the results and apply the individual variable significance test and goodness of fit test

For the regression, remember how LINEST provides the results. You need to calculate t-statistic and the table values of t-statistic and the F-statistic. For this, use Microsoft Excel. The results are as follows:

| β <sub>3</sub>                   | β <sub>2</sub>        | β1                       | β <sub>0</sub> |       |                |
|----------------------------------|-----------------------|--------------------------|----------------|-------|----------------|
| -26.869143                       | 26.92131443           | 9.56630262               | 68.48962199    | Stand | dard Errors of |
| 12.59410484                      | 3.958664082           | 5.24813727               | 66.42244505    | T-sta | atistic can be |
| 0.787428706                      | 35.74053401           |                          |                | со    | mputed by      |
| 38.27780854                      | 31                    | $R^2$                    |                | divid | ling row 1 by  |
| 146686.584                       | 39598.95891           | F                        |                |       | 10112          |
|                                  |                       |                          |                | _     |                |
| -2.1334698                       | 6 6.80060593          | 1.82279962               | 1.03112166     | 3 🚛   | Calculated     |
|                                  |                       |                          |                |       | t-values       |
| $t_{0.025(\frac{\alpha}{2}),31}$ | 2.039513446           | 5 F <sub>0.05,3,31</sub> | 2.91133401     | 4     |                |
| Values                           | of 't' and 'F' are ca | Iculated using Exc       | cel functions  |       |                |
| $t_{0.05(\frac{\alpha}{2}),31}$  | 1.695518783           | F <sub>0.1,3,31</sub>    | 2.26954802     |       |                |

Now you can interpret your results using the above calculations (the coefficient of the dummy variable is significant). Female earn, on average 26.87 less than the 'reference' i.e. Males

# Polytomous qualitative variables: Qualitative variables with more than two categories

Race: White, Black, Asian

- We need 3 (binary) dummy variables
- $D_1 = \begin{cases} 1 & if Black \\ 0 & in NOT Black \end{cases}$

• 
$$D_2 = \begin{cases} 1 & if Asian \\ 0 & in NOT Asian \end{cases}$$

• 
$$D_3 = \begin{cases} 1 & if white \\ 0 & in NOT white \end{cases}$$

| D1 (Black=1) | D2 (Asian=1) | D3 (White=1) | Race         |
|--------------|--------------|--------------|--------------|
| 0            | 0            | 1            | White        |
| 0            | 1            | 0            | Asian        |
| 0            | 1            | 0            | Asian        |
| 0            | 1            | 0            | Asian        |
| 0            | 0            | 1            | White        |
| 1            | 0            | 0            | Black        |
| 0            | 1            | 0            | Asian        |
| $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| $\downarrow$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |

We will include 2 dummy variables in the regression i.e. one less than the total categories. We will include 2 dummy variables in the regression i.e. one less than the total categories. If we include on two dummies in regression the third one is called reference variable.

| Race  | <i>D</i> <sub>1</sub> | <i>D</i> <sub>2</sub> |
|-------|-----------------------|-----------------------|
| White | 0                     | 0                     |
| Asian | 0                     | 1                     |
| Black | 1                     | 0                     |

$$W = \beta_0 + \beta_1 E + \beta_2 X + \beta_3 G + \beta_4 D_1 + \beta_5 D_2 + \epsilon$$

For White

$$W = \beta_0 + \beta_1 E + \beta_2 X + \beta_3 G + \beta_4(0) + \beta_5(0) + e$$
$$W = \beta_0 + \beta_1 E + \beta_2 X + \beta_3 G + e$$

For Asian

$$W = \beta_0 + \beta_1 E + \beta_2 X + \beta_3 G + \beta_4(0) + \beta_5 D_2 + e$$
$$W = \beta_0 + \beta_1 E + \beta_2 X + \beta_3 G + \beta_5 D_2 + e$$

For Black

$$W = \beta_0 + \beta_1 E + \beta_2 X + \beta_3 G + \beta_4 D_1 + \beta_5(0) + e$$
$$W = \beta_0 + \beta_1 E + \beta_2 X + \beta_3 G + \beta_4 D_1 + e$$

## Interpretation

Example: dummy.xlsx provided with your lecture notes is used to perform such regression

$$W = \beta_0 + \beta_1 E + \beta_2 X + \beta_3 G + \beta_4 D_1 + \beta_5 D_2 + e$$

Reference variable is 'White'

#### The results are

| Dependent Variable: hourly wages          |             |           |          |
|-------------------------------------------|-------------|-----------|----------|
| Observations                              | 35          | R-squared | 0.85     |
|                                           |             | F         | 33.83    |
|                                           | Coefficient | S. Error  | t-values |
| constant                                  | 74.84       | 60.11     | 1.25     |
| Education                                 | 11.53**     | 4.67      | 2.47     |
| Experience                                | 26.11*      | 3.51      | 7.44     |
| Female                                    | -31.49*     | 11.10     | -2.84    |
| Black (ref. White)                        | -45.17*     | 13.15     | -3.44    |
| Asian (ref. White)                        | -35.43**    | 13.96     | -2.54    |
| *, ** significant at 1% & 5% respectively |             |           |          |

# **Interaction with Dummy Variables**

#### Interaction:

• Use the interaction when the effect of one independent variable depends on the value of the other independent variable.

#### Example:

- Effect of race may be greater in case of black race
- Effect of education on hourly wages may be different for males and female respondents

#### Interaction & Correlation:

- Correlation: If independent variables are related to each other
- Interaction: If the effect of one independent variable depends on some other independent variable

• Variables may interact weather they are correlated or no

#### Example:

$$W = \beta_0 + \beta_1 E + \beta_2 X + \beta_3 G + \beta_4 (G * E) + e$$

The new regressor is a function of G and E but not a linear function so we should not fear of perfect collinearity

For Men (G = 0)

$$W = \beta_0 + \beta_1 E + \beta_2 X + \beta_3(0) + \beta_4(0 * E) + e$$

Or

$$W = \beta_0 + \beta_1 E + \beta_2 X + e$$

For Women (G = 1)

$$W = \beta_0 + \beta_1 E + \beta_2 X + \beta_3(1) + \beta_4(1 * E) + e$$

Or

$$W = (\beta_0 + \beta_3) + (\beta_1 + \beta_4)E + \beta_2 X + e$$

In this case we need to take interaction as a product with all dummy variables

#### Example:

$$W = \beta_0 + \beta_1 E + \beta_2 X + \beta_3 G + \beta_4 D_1 + \beta_5 D_2 + e$$

With interaction of race and gender becomes

$$W = \beta_0 + \beta_1 E + \beta_2 X + \beta_3 G + \beta_4 D_1 + \beta_5 D_2 + \beta_6 (G * D_1) + \beta_7 (G * D_2) + e$$

For Men (G = 0)

White Men:  $W = \beta_0 + \beta_1 E + \beta_2 X + e$  (as both  $D_1 \& D_2$  are zero)

Black Men:  $W = (\beta_0 + \beta_4) + \beta_1 E + \beta_2 X + e$  (as  $D_1 = 1$ )

Asian Men:  $W = (\beta_0 + \beta_5) + \beta_1 E + \beta_2 X + e$  (as  $D_2 = 1$ )

For Women (G = 1)

White Women:  $W = (\beta_0 + \beta_3) + \beta_1 E + \beta_2 X + e$ 

Black Women:  $W = (\beta_0 + \beta_3 + \beta_4 + \beta_6) + \beta_1 E + \beta_2 X + e$  (as  $G = D_1 = 1$ )

Asian Women:  $W = (\beta_0 + \beta_3 + \beta_5 + \beta_7) + \beta_1 E + \beta_2 X + e$  (as  $G = D_2 = 1$ )

# Lecture 14

# **Transforming Variables in Regression**

# Using logs in regression analysis

Logarithms could be used because of:

- Positively Skewed Distribution of Variable (take natural log)
- When residuals are skewed
- When change in either or both (LHS & RHS) are related in percentage terms (when theory indicates)
- To linearize a relationship





# Logs in regression

Consider relation of wages with tenure and a dummy 'race' using nlsw88.dta (provided with stata)

| Dependent           | Wage         | In(Wage) | In(Wage) |
|---------------------|--------------|----------|----------|
| R-squared           | 0.039        | 0.1043   | 0.1244   |
| F-Statistic         | 45.56        | 129.66   | 154.69   |
| variable            | coefficients |          |          |
| tenure              | 0.1898*      | 0.0317*  |          |
| ln(tenure)          |              |          | 0.1624*  |
| race                | -1.07        | -0.144*  | -0.1366* |
| * Significant at 1% |              |          |          |

# **Treatment of Missing Data**

## Why data may be missing?

- Attrition due to natural process
  - Death (panels)
  - Dropouts
  - Migration
  - New entries (like new countries)
- Data not available legally (in some countries)
- No Response / Refusal of respondents
- Conditional questions in surveys
  - If student then - -
  - If employed then - -
  - If living in couple then - -
- Data Collection Issues
- Encoding and Recoding

#### **Probability of Missing Data**

- Some groups are more likely to have missing values
  - Businessmen (particularly service) as compared to salaried individuals
  - Rural areas as compared to Urban (in developing countries)
  - Less education as compared to educated
  - Developing vs developed countries (documentation)
- Some Variables may have more missing values

- Income (high income groups)
- Area-specific variable (like use of AC in rural areas)
- Variables related to Certain taboos (e.g. drinking in Pakistan, prostitution, drugs)

# Missing Data Mechanism: probability distributions

## 1. MCAR: Missing Completely at Random

Probability that Y values missing is neither dependent on Y nor on X

$$Pr(Y \text{ is missing } | X, Y) = Pr(Y \text{ is missing})$$

#### 2. MAR: Missing at Random

Probability that Y values missing does not depend on Y but depends on X

$$Pr(Y \text{ is missing } | X, Y) = Pr(Y \text{ is missing } | X)$$

*Example:* the probability of missing income depends on occupation, but within each occupation, the probability is not dependent on income

# 3. Ignorable MAR

Missing data mechanism is said to be ignorable if data is Missing At Random but the parameters governing the missing data are distinct from them ones being estimated

• It is, in fact , MAR

# 4. MNAR: Missing Not at Random

Probability that Y values missing depends on a variable that is missing

- Heckman Regression for sample selection
- Estimation of NMAR missing data
  - Data contains no information
  - Results are sensitive to choice of model

# Dealing with missing data: Deletion Methods

## 1. List wise deletion (complete case analysis)

Only analyze row of data where there are no missing values

i.e. delete or do not include the row in which there are missing values (software like stata may automatically do that)

Example: all variable of the response with even one missing is deleted all together

Advantages: Simple

Disadvantages: Reduces statistical power

#### 2. Pairwise deletion (available case analysis; analysis to analysis)

We do not only delete the row in which there is missing value but we delete on analysis to analysis base

Example: diff observations for correlation, regression

Advantages: uses all information possible with each case

Disadvantages: Sample is different each time

#### Imputation

1. Single Imputation

#### a) Substitute Mean / Median / Mode

Method:

• Just substitute constant in place of missing values

Problems:

- Run complete case
- Weaker covariance & Reduced variability

#### b) Dummy variable control

Method:

- Generate indicator of rows with missing value
- Use single imputation to fill in
- Perform regression with dummy variable control

#### Problems:

• Estimates are biased and this method is not theoretically driven

#### c) Regression Imputation

Method:

• Use regression to estimate value to substitute

#### Problems:

- Overestimates model fit
- Weaker variance

#### Model Based Imputation

#### 1. Maximum Likelihood

Method:

• Identify set of parameters that produces the maximum log likelihood.

ML: value most likely to have resulted in the observed data

- Uses full estimation; unbiased estimates
- Standard Errors biased downwards

#### 2. Multiple Imputation

Method:

• Data filled-in by applying specific regressions

- Experiment is repeated n number of times generating separate data sets
- Perform regression on each dataset
- Pool the datasets to performed regression

# Advantages

• Good variability

#### Disadvantages

• Errors possible when specifying regression models

# Lecture 15 Multicollinearity

#### **Perfect Multicollinearity: Definition**

The above can be defined as Perfect or exact linear relationship between a pair or more of the explanatory variables. K-variable linear regression ( $X_0 = 1$  for all observations to allow the intercept term)

$$Y = \beta_0 X_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \dots \dots \beta_k X_k + e_i$$

where we are going to ignore subscripts for convenience. Exact or perfect linear relationship exists if  $\lambda_0 X_0 + \lambda_1 X_1 + \lambda_2 X_2 + \cdots + \lambda_k X_k = 0$  Where  $\lambda i$  cannot be zero at the same time.

#### Near or Imperfect Multicollinearity: Definition

In practice, we rarely observe perfect Multicollinearity but a degree of Multicollinearity

For  $Y = \beta_0 X_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \dots + \beta_k X_k + e_i$  where we are going to ignore subscripts for convenience.

Near or imperfect linear relationship exists if  $\lambda_0 X_0 + \lambda_1 X_1 + \lambda_2 X_2 + \cdots + \lambda_k X_k + v_i = 0$ 

#### **Understanding Perfect Multicollinearity**

Exact or perfect linear relationship exists if  $\lambda_0 X_0 + \lambda_1 X_1 + \lambda_2 X_2 + \cdots + \lambda_k X_k = 0$ 

Where  $\lambda i$  can not all be zero at the same time. If we solve for any variable, it will be in a perfect linear combination of other independent variables e.g. for convenience, let all  $\lambda i$  be zero except  $\lambda 1$  and  $\lambda 2$ 

Then 
$$X1 = \frac{\lambda^2}{\lambda 1} X2$$
 (e.g.  $X1 = 5X2$ )

Then both variables can be expressed in linear combinations of each other. Let us see what happens in this case

$$X1 = \frac{\lambda^2}{\lambda 1} X2$$
 (e.g.  $X1 = 5X2$ ) Or  $X2 = \frac{1}{5} X1$ 

Then  $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + e_i$  becomes

$$Y = \beta_0 + \beta_1(5X_2) + \beta_2X_2 + e_i$$
$$Y = \beta_0 + (5\beta_1 + \beta_2)X_2 + e_i$$
$$Y = \beta_0 + \beta_mX_2 + e_i$$

i.e. a simple regression where Y depends on  $X_2$ . Hence we cannot estimate all the parameters. Also Software may drop one of the variables. In the example the variable  $X_1$  ( $X_2 = 5X_1$ ) has been dropped and a zero coefficient is shown. In fact a simple regression line Y on  $X_2$  has been estimated.

| Y                                              | <b>X</b> <sub>1</sub> | X <sub>2</sub> |  |  |
|------------------------------------------------|-----------------------|----------------|--|--|
| 10                                             | 10                    | 50             |  |  |
| 20                                             | 11                    | 55             |  |  |
| 30                                             | 16                    | 80             |  |  |
| 40                                             | 15                    | 75             |  |  |
| 50                                             | 19                    | 95             |  |  |
| 60                                             | 21                    | 105            |  |  |
| 70                                             | 22                    | 110            |  |  |
| 80                                             | 24                    | 120            |  |  |
| 90                                             | 27                    | 135            |  |  |
| 100                                            | 31                    | 155            |  |  |
| Function used =LINEST(F8:F17,G8:H17,TRUE,TRUE) |                       |                |  |  |
| 0.882638215                                    | 0                     | -31.4985451    |  |  |
| 0.051409833                                    | 0                     | 5.301697428    |  |  |
| 0.973576698                                    | 5.220060351           |                |  |  |
| 294.7630701                                    | 8                     |                |  |  |
| 8032.007759                                    | 217.9922405           |                |  |  |
| t-statistic calculated by us are below         |                       |                |  |  |
| 17.16866536                                    |                       | -5.94121893    |  |  |

## Business Econometrics by Dr Sayyid Salman Rizavi

| Y                                      | X <sub>1</sub> | X <sub>2</sub> |  |
|----------------------------------------|----------------|----------------|--|
| 10                                     | 10             | 52             |  |
| 20                                     | 11             | 54             |  |
| 30                                     | 16             | 77             |  |
| 40                                     | 15             | 78             |  |
| 50                                     | 19             | 93             |  |
| 60                                     | 21             | 104            |  |
| 70                                     | 22             | 109            |  |
| 80                                     | 24             | 119            |  |
| 90                                     | 27             | 136            |  |
| 100                                    | 31             | 153            |  |
| =LINEST(J8:J17,K8:L17,TRUE,TRUE)       |                |                |  |
| 1.49                                   | -2.93          | -33.31         |  |
| 0.86                                   | 4.24           | 4.85           |  |
| 0.98                                   | 4.67           |                |  |
| 185.94                                 | 7.00           |                |  |
| 8097.58                                | 152.42         |                |  |
| t-statistic calculated by us are below |                |                |  |
| 1.74                                   | -0.69          | -6.86          |  |

Let us now slightly change the values of X. The new data is:

Note the following:

- We have slightly changed the values of X<sub>2</sub>
- This time all the parameters are estimated
- Standard errors are large (less precision in estimating parameters)
- t-statistic are low
- R-square is high but the t-statistic are low
- Coefficients of parameters do not seem to be significant but he F-Test show a good fit.
# **Sources of Multicollinearity**

- Narrow Subspace or The data collection method: sampling over a limited range or subgroups of population (correlation may exist only in the subgroup
- 2. Natural Constraints on the model or population :
  - e.g. If we regress GDP on exports and imports, high imports normally means high exports as well in most of the countries
  - in a sample survey both income and status of house are included as explanatory variables.
  - Model specification: for example, adding polynomial terms especially when X has a small range
- Over-determined model: Large number of explanatory variables with very low degree of freedom
- 4. Common Time Series Trend: the explanatory variables may share a common trend in time.

# **Theoretical consequences of Multicollinearity**

- 1. OLS estimators remain unbiased: no violation of BLUE property
- Interpretation of coefficients is not independent: simple interpretation does not seem to be valid
- 3. Multicollinearity is a data deficiency problem: sometimes it is difficult to increase the sample size (cost, time)
- Multicollinearity is a sample phenomenon: especially with non-experimental data (occurring naturally like GDP and its determinants.
- 5. We need larger samples: larger than without MC

# Practical consequences of Multicollinearity

- Large variances and standard errors of coefficients: when correlation between pairs of explanatory variables is high; or there is fall in precision of estimators
- Wider confidence intervals: as a consequence of larger standard errors
- Insignificant t-ratios: as a consequence of larger standard errors (H<sub>0</sub> accepted)
- High R<sup>2</sup> but low t: seem to be contradictory results.
- Estimators and standard errors are very sensitive to changes in data: unstable
- Wrong signs of coefficients: May not be according to economic and finance theory.
- Difficulty in assessing the individual contribution of regressors to the explained variation: due to correlated regressors

# **Detecting Multicollinearity**

### Remember that

- 1. Multicollinearity is question of DEGREE not of Presence alone
- 2. Multicollinearity is a sample phenomenon
- 3. It is a data deficiency problem

# There are three ways.

- 1. Look at the symptoms
- 2. Look at the correlation matrix
- 3. Calculate VIF or Tolerance

### 1. Look at the symptoms / indicators

- High R<sup>2</sup> but low t-statistic
- Large standard errors
- Individual variables are not significant but model seems to be a good fit

# Business Econometrics by Dr Sayyid Salman Rizavi

| _  |                  | -            | -              | -        | _       |                |     | -        |
|----|------------------|--------------|----------------|----------|---------|----------------|-----|----------|
| 1  | SUMMARY OUTP     | UT           |                |          |         | Y              | X1  | X2       |
| 2  |                  |              |                |          |         | 10             | 10  | 52       |
| 3  | Regression St    | atistics     |                |          |         | 20             | 11  | 54       |
| 4  | Multiple R       | 0.9907       |                |          |         | 30             | 16  | 77       |
| 5  | R Square         | 0.9815       |                |          |         | 40             | 15  | 78       |
| 6  | Adjusted P Squar | 0.9762       |                |          |         | 50             | 19  | 93       |
| 0  | Aujusteu K Squai | 0.5702       |                |          |         | 60             | 21  | 104      |
| 7  | Standard Error   | 4.6663       |                |          |         | 70             | 22  | 109      |
| 8  | Observations     | 10.0000      |                |          |         | 80             | 24  | 119      |
| 9  |                  |              |                |          |         | 90             | 27  | 136      |
| 10 | ANOVA            |              |                |          |         | 100            | 31  | 153      |
| 11 |                  | df           | SS             | MS       | F       | Significance F |     |          |
| 12 | Regression       | 2            | 8097.579       | 4048.790 | 185.943 | 0.0000086      |     |          |
| 13 | Residual         | 7            | 152.421        | 21.774   |         |                |     |          |
| 14 | Total            | 9            | 8250.000       |          |         |                |     |          |
| 15 |                  |              |                |          |         |                |     |          |
| 16 |                  | Coefficients | Standard Error | t Stat   | P-value | Lower 95%      | Upp | per 95%  |
| 17 | Intercept        | -33.3083     | 4.8527         | -6.8639  | 0.0002  | -44.7831       |     | -21.8336 |
| 18 | X Variable 1     | -2.9289      | 4.2372         | -0.6912  | 0.5117  | -12.9482       |     | 7.0904   |
| 19 | X Variable 2     | 1.4945       | 0.8612         | 1.7353   | 0.1263  | -0.5420        |     | 3.5310   |

# 2. Look at the Correlation Matrix

High pairwise correlations between the explanatory variables (e.g. greater than 0.8)

| Y   | X1 | X2  | Х3 |
|-----|----|-----|----|
| 10  | 10 | 52  | 26 |
| 20  | 11 | 54  | 23 |
| 30  | 16 | 77  | 23 |
| 40  | 15 | 78  | 25 |
| 50  | 19 | 93  | 22 |
| 60  | 21 | 104 | 21 |
| 70  | 22 | 109 | 19 |
| 80  | 24 | 119 | 18 |
| 90  | 27 | 136 | 19 |
| 100 | 31 | 153 | 17 |

|            | Y       | X1     | X2      | ХЗ |
|------------|---------|--------|---------|----|
| Y          | 1       |        |         |    |
| X1         | 0.9867  | 1      |         |    |
| <b>X</b> 2 | 0.9901  | 0.999  | 1       |    |
| <b>X</b> 3 | -0.9295 | -0.923 | -0.9108 | 1  |

# 3. Estimate and look at VIF or Tolerance

# Method

- Auxiliary Regressions: Regress each explanatory variable on other explanatory variables and find the coefficient of determination
- You can test the significance of R<sup>2</sup> (F or goodness of fit)
- Estimate Tolerance or VIF

$$Tolerance = 1 - R^2$$

• Variance Inflation Factor

$$VIF = \frac{1}{1 - R^2}$$

• Decide according to the values of Tolerance / VIF

# Decision about the degree of Multicollinearity

|                               | Tolerance     | VIF                       |
|-------------------------------|---------------|---------------------------|
| Problematic Multicollinearity | $\leq 0.1$    | ≥ 10                      |
| Mild Multicollinearity        | 0.1 < T < 0.2 | 5 <i>&lt; VIF &lt;</i> 10 |
| Nearly No Multicollinearity   | ≥ 0.2         | ≤ 5                       |

# Important Points to note

- VIF or Tolerance for the variable is calculated by the R<sup>2</sup> of the auxiliary regression of the variable regressed on all other explanatory variables
- One single variable is not responsible so we may estimate auxiliary regressions one less than the explanatory variable

# Lecture 16 Multicollinearity: Remedial Measures

### 1. Do nothing

If Multicollinearity is mild or If the purpose is only forecasting. If data deficiency is the problem, we have no choice over data. It is better to try to increase the data by extending the sample if possible. Multicolinearity is not a problem if theory permits us to estimate the missing coefficient e.g. in Cobb-Douglas production function, if we assume constant returns to scale the either of alpha and beta can be estimated if one is estimated by regression.

#### 2. Drop one of the variables

Drop the one that is less significant or drop the one with larger VIF. But this may lead to wrong model specification or may go against theoretical considerations (e.g. dropping price of substitute in demand function). An example of dropping variables is of import and export in GDP equation

#### 3. Transform the variable

Combine the variables (we just add exports and imports to get a new variable labeled as openness). Another option is to convert the variables (import = f(GNP, CPI) we can divide by CPI (real imports = f (real GNP)); but error term may become heteroskedastic. Another way is to use first difference form (loss of one observation)

$$Yt - Yt - 1 = \beta 2(X2t - X2, t - 1) + \beta 3(X3t - X3, t - 1) + \nu t$$

(may not be appropriate in cross sectional data; has no sense)

Other options include:

4. Get additional data and increase the sample size or 5. Combine cross section and time series (pool) or

6. Use of panel data or 7. Use ridge regression, factor analysis etc.

#### **Multicollinearity**

### **Examples from Business and Economics**

Consider the data given in **MC.xlsx**. It contains data on quantity demanded, prices, and monthly income in thousands and prices of two different substitutes. First example has 50 observations in total. But first let us consider a small example

The data is as follows:

| Y   | X1 | X <sub>2</sub> | X <sub>3</sub> |
|-----|----|----------------|----------------|
| 10  | 10 | 52             | 26             |
| 20  | 11 | 54             | 23             |
| 30  | 16 | 77             | 23             |
| 40  | 15 | 78             | 25             |
| 50  | 19 | 93             | 22             |
| 60  | 21 | 104            | 21             |
| 70  | 22 | 109            | 19             |
| 80  | 24 | 119            | 18             |
| 90  | 27 | 136            | 19             |
| 100 | 31 | 153            | 17             |

Auxiliary regressions are produce using Microsoft Excel:

| Auxiliary Regressions             |                  |   | nt                          |
|-----------------------------------|------------------|---|-----------------------------|
| Regression: X1 on X2 & X3         |                  |   | First two variables show MC |
| X1 = 4.977 + 0.18                 | 38 X2 - 0.176 X3 |   |                             |
| $R^2 = 0.998$                     | F=1848.5         | • | LOOK at F                   |
| Tolerance =                       | 0.002            | • | Look at T/VIF               |
| VIF =                             | 500              |   |                             |
| Regression: $X_2$ on $X_1 \& X_3$ |                  |   |                             |
| X2 = -22.11 + 5.                  | 24 X1 + 0.794 X3 |   |                             |
| $R^2 = 0.9978$                    | F= 1608.6        | - |                             |
| Tolerance =                       | 0.0022           |   |                             |
| VIF =                             | 454.5455         |   |                             |
| Regression: $X_3$ on $X_1 \& X_2$ |                  |   |                             |
| X3 = 28.97 - 2.03 X1 + 0.3296 X2  |                  |   |                             |
| $R^2 = 0.89$                      | F= 28.43         |   |                             |
| Tolerance = 0.11                  |                  |   |                             |
| VIF =                             | 9.090909         |   |                             |

# Multicollinearity: Example-1 from Business and Economics

Let us use the file MC.xlsx and Fit different Regressions. First Look at the correlation matrix.

|               |          |          | income   | price of | price of |
|---------------|----------|----------|----------|----------|----------|
|               | Q        | price    | (000)    | sub1     | sub2     |
| Q             | 1        |          |          |          |          |
| Price         | -0.94144 | 1        |          |          |          |
| income (000)  | -0.04567 | 0.309407 | 1        |          |          |
| price of sub1 | 0.071323 | 0.234771 | 0.793596 | 1        |          |
| price of sub2 | 0.017076 | 0.274298 | 0.79072  | 0.960501 | 1        |

#### **Correlation Matrix**

Below are different models that we ran. The first one contains only 10 observations. The second increases the sample size and the third is when we drop a variable. Let us see what happens.

#### Model 1 (N=10)

|              | R Square=0.9106 | F=12.73** |                   |
|--------------|-----------------|-----------|-------------------|
|              | Coefficients    | VIF       | Comment           |
| Intercept    | 977.7725 ***    |           |                   |
| Price        | -0.2560***      | 2.5       | No MC             |
| Income       | 2.33**          | 5.12      | No MC             |
| Price of     |                 |           | MC, wrong sign,   |
| Substitute-1 | -0.2384         | 33.04     | insignificant     |
| Price of     |                 |           |                   |
| Substitute-2 | 0.6310          | 22.75     | MC, insignificant |

| Model | 2 | (N=50) |
|-------|---|--------|
|-------|---|--------|

|                       | R Square=0.978 | F=508.41* |                |
|-----------------------|----------------|-----------|----------------|
|                       | Coefficients   | VIF       | Comment        |
| Intercept             | 993.6106 *     |           |                |
| Price                 | -0.499*        | 1.13      | No MC          |
| Income                | 0.498***       | 2.88      | No MC          |
| Price of Substitute-1 | 0.1924*        | 13.74     | MC             |
| Price of Substitute-2 | -0.0912        | 13.6      | MC, wrong sign |

In the second model note that the VIF has decreases but still is greater than 10. Now let us drop one variable.

|                       | wodel 3 (N=50) |           |         |
|-----------------------|----------------|-----------|---------|
|                       | R Square=0.978 | F=687.98* |         |
|                       | Coefficients   | VIF       | Comment |
| Intercept             | 985.77*        |           |         |
| Price                 | -0.5*          | 1.13      | No MC   |
| Income                | .4768***       | 2.88      | No MC   |
| Price of Substitute-1 | 0.1663*        | 13.6      | No MC   |

# Model 2 (NI-EO)

# Multicollinearity Example-2 from Business and Economics

- Data on GDP, Population, GFCF, Exports, Imports (2000-2012 Pakistan)
- Downloaded from WDI ٠

# Business Econometrics by Dr Sayyid Salman Rizavi

| Dependent Variable | GDP         |              |       |
|--------------------|-------------|--------------|-------|
| R-square           | 0.9927      | F            | 271.4 |
| Expl Variables     |             | significance | VIF   |
| Population         | 1367.5      | *            | 4.61  |
| GFCF               | 0.196       |              | 7.45  |
| Exports            | -0.247      |              | 10.28 |
| Imports            | 0.879       |              | 14.36 |
| Openness           |             |              |       |
| constant           | large value |              |       |

Result: No significance, high VIF, wrong signs

After dropping imports the situation becomes:

| Dependent Variable | GDP         |              |        |
|--------------------|-------------|--------------|--------|
| R-square           | 0.9897      | F            | 289.17 |
| Expl Variables     |             | significance | VIF    |
| Population         | 1307.9      | *            | 4.53   |
| GFCF               | 1.118       | **           | 4.15   |
| Exports            | 0.254       |              | 2.82   |
| Imports            |             |              |        |
| Openness           |             |              |        |
| constant           | large value | *            |        |

New Results show: better significance, low VIF, signs correct now

Another option is to transform the variables. Let us generate a new variable, volume of trade as a proxy for openness and define it as the sum of imports and exports.

| Dependent Variable | GDP         |              |       |
|--------------------|-------------|--------------|-------|
| R-square           | 0.7947      | F            | 19.36 |
| Expl Variables     |             | significance | VIF   |
| GFCF               | 1.06        |              | 5.36  |
| Openness           | 1.809       | **           | 5.36  |
| constant           | large value |              |       |

Results: openness is significance, low VIF indicates no Multicollinearity, the signs of the coefficients are also correct now however we may need other variables.

# Lecture 17

# Heteroskedasticity

#### Heteroskedasticity: Background

Consider the multiple regression line

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \dots \dots \dots \beta_k X_k + e_i$$

If we estimate the coefficients by OLS, we assume that

$$Var(e_j) = \sigma^2 for all j$$

or

$$Var(e_j|X_1, X_1, \ldots, X_1) = \sigma^2$$

This is called Homoskedasticity (Absence of Heteroskedasticity). The alternative spelling is use are Homoscedasticity.

### **Heteroskedasticity: Meaning**

$$Var(e_j|X_1,X_1,\ldots,X_1)=\sigma^2$$

This may means that the variance of errors in subgroups of the sample may not remain the same

So if

$$Var(e_j|X_1, X_2, \dots, X_K) \neq \sigma^2$$
  
or

$$Var(e_i|X_1, X_2, \ldots, X_K) = \sigma_i^2$$

The subscript 'i' shows the variance to be variable and this is called Heteroskedasticity.

*Hetero* means 'different' and *Skedasis* means 'dispersion', Spread or variance. A *homoskedastic* error is one that has constant variance. Equivalently, this means that the dispersion of the observed values of Y

### Business Econometrics by Dr Sayyid Salman Rizavi

around the regression line is the same across all observations. Hence a *heteroskedastic* error is one that has a non-constant variance.

### Heteroskedasticity: Causes and Examples

#### I- Variance of Errors may increase as the value of explanatory variable increases

#### Examples 1:

Expenditure on vacation = f (family income)

Low income  $\rightarrow$  low expenditure on vacation

High income  $\rightarrow$  possibly greater expenditure on vacation

With high income the variability as well as errors increases. High income is a necessary but not sufficient condition for greater expenditure on education. HSK is likely in such situation.

#### Examples 2:

Profitability = f (annual sales, liquidity, CCC)

small firms  $\rightarrow$  smaller annual sales  $\rightarrow$  less variation

Large Firms  $\rightarrow$  Larger sales  $\rightarrow$  greater variation

Being a large firm is a necessary but not sufficient condition for greater annual sales. HSK is likely in such situation.

#### II- Subpopulation may have different effect

#### Examples 1:

Expenditure on vacation = f (family income)

The Effect of income on expenditure on vacation may be different in different Localities or may be different for different races so we need to use dummy variables to capture this difference.

#### Examples 2:

Profitability = f (annual sales, liquidity, CCC)

The Effect of sales on profitability may be different in different types of organizations due to different cost conditions or may be different for different areas due to different tax regulations so here also we need to use dummy variables

### III- Measurement Errors

### Example:

Some respondents may provide more accurate information for example high income groups may report income less than actual

### IV- Wrongly specified model

### Examples:

Instead of using Log of Y, you may be using Y. Instead of using both X and square of X, you may be using only X

### V- Missing Variables

### Examples:

Important Variables may be missing or instead of using both X and square of X, you may be using only X

### VI- HSK is more likely in Cross-sectional data

#### Examples:

```
Savings = f (income, wealth)
```

People with higher income are likely to save a greater percentage of income

### VII- Different Quality of Data

### Examples:

In cross country data, different quality of data may be reported e.g. some developing countries may provide lower or higher values than actual.

### VIII- Time Dependence of variables

### Examples:

Seasonal component in variables: In some countries the variation in electricity prices increases in summer

# Heteroskedasticity: Summary of Causes

I- Variance of Errors may increase with explanatory variable

# Business Econometrics by Dr Sayyid Salman Rizavi

- II- Subpopulation may have different effect
- III- Measurement Errors
- IV- Wrongly specified model
- V- Missing Variables
- VI- HSK is more likely in Cross-sectional data
- VII- Different Quality of Data
- VIII- Time Dependence of variables

# **Consequences of Heteroskedasticity**

- 1. OLS estimators remain unbiased and consistent
- 2. However the distribution of estimators is effected increasing the variance of the distributions

(Inefficient estimators: minimum variance property violated)

- 3. Estimates of Variance are biases (formula require changes)
- 4. Standard Errors / Confidence intervals not correct
  - i. wrong conclusions on t and F
  - ii. significance tests too high or too low
  - OLS gives more weight to larger errors (min Sum E square) SO IF HSK then overemphasized extreme values
  - iv. Extreme values, in fact, contain less information so should be given less importance

# **Detection of Heteroskedasticity**

The following can be used to detect Heteroskedasticity

- 1. Visual Inspection (Graphs)
- 2. Formal Tests (Various Tests are available)

# **Detection of Heteroskedasticity: Visual Inspection**

Normally graphs are used to detect Heteroskedasticity

- Without HSK the errors do not vary with the independent variable
- With HSK errors may systematically be correlated with an independent variable
- With HSK we may get variety of patterns
- We can plot Y and X and look at the channel of errors
- We can use either of error or the square of error on the Y-axis and plot it against each independent variable

**Homoskedasticity (No HSK):** note that dots are evenly spread around the regression line. In the right panel X and square of error do not show any pattern.



**Heteroskedasticity:** the following diagrams show the presence of Heteroskedasticity due to patterns or trend that is clearly visible.







# Lecture 18

# **Detection of Heteroskedasticity: Formal Tests**

### The Goldfeld-Quandt Test: Stephen Goldfeld, Richard Quandt

The following steps are performed for this test.

#### Step 1.

Arrange the data from small to large values of the explanatory variable  $X_j$  (the one we suspect responsible for HSK).

#### Step 2.

Omit the middle C observations (C = roughly 20% observations)

#### Step 3.

Run two separate regressions, one for small values of  $X_j$  and one for large values of  $X_j$ , omitting C middle observations and record the residual sum of squares RSS for each regression: RSS<sub>1</sub> for large values of  $X_j$  and RSS<sub>2</sub> for small values of  $X_j$ 

#### Step 4.

Calculate the ratio

$$F = \frac{RSS1}{RSS2}$$

Degree of Freedom  $=\frac{N-C}{2} - K$  both in the numerator and the denominator, where N = total number of observations, C is the number of omitted observations, and K is the Number of explanatory variables + one.

#### Step 5.

Test if  $F > F_{\alpha, \frac{N-C}{2}-K, \frac{N-C}{2}-K}$  to reject homoskedasticity (H0)

### **Example: GoldFeld-Quandt Test**

 $H_0$ : Homoskedasticity

 $H_1$ : Heteroskedasticity

 $\alpha = 0.05 \ or \ 0.01$ 

Test Statistic

$$F = \frac{RSShigh}{RSSlow}$$

If you think that var(e) is increasing function of X

Region of Rejection

$$F > F_{\alpha, \frac{N-C}{2}-K, \frac{N-C}{2}-K}$$

RSS = Residual Sum of Squares

N = Number of observations

C = central observations excluded

K = Number of parameters estiamted = Number of explanatory variables plus one

# The Goldfeld-Quandt Test: Example

| Goldfeld-Quandt Test for Heteroskedasticity |        |                    |                                           |  |
|---------------------------------------------|--------|--------------------|-------------------------------------------|--|
| Results of LINEST on first part             | Saving | Income             |                                           |  |
| 0.1368407 21.8769347                        | 360    | 2455               | First RSS = 8644.38191                    |  |
| 0.02637283 103.600825                       | 534    | 3566               |                                           |  |
| 0.89974134 53.6792384                       | 550    | 3666               | Second RSS = 100938.519                   |  |
| 26.9226021 3                                | 510    | 4159               |                                           |  |
| 77576.4181 8644.38191                       | 770    | 5261               | F = RSShigh/RSSLow                        |  |
| Observations Excluded                       | 921    | <mark>662</mark> 5 | =100938.5192/8644.381909= <b>11.67678</b> |  |
| 7                                           | 1250   | <mark>678</mark> 9 |                                           |  |
| Results of LINEST on first part             | 1650   | 7198               | C = 3                                     |  |
| 1.75928832 -12298.379                       | 2045   | 8125               | d.f.1= [(n-c)/2]-K= <b>3</b>              |  |
| 0.16167183 1433.62959                       | 2598   | 8456               | d.f.2= [(n-c)/2]-K= <b>3</b>              |  |
| 0.97529128 183.428932                       | 3254   | 8995               |                                           |  |
| 118.414616 3                                | 3897   | 9125               | =F.INV.RT(0.05,3,3) = 9.276628            |  |
| 3984198.68 100938.519                       | 4589   | 9564               |                                           |  |
|                                             |        |                    |                                           |  |

As F> F(0.05,3,3) so we reject H0 (homoskedasticity) and conclud that there is Heteroskedasticity.

#### The Goldfeld-Quandt Test: Drawbacks

It cannot handle situations where several variables jointly cause Heteroskedasticity. There is no fix rule to know how many middle observations should be excluded. It is also possible that the difference in variance of errors may be observed in subsamples with different number of observations. The middle C observations are lost. It accounts only for linear relationship of independent variable and the variance of errors.

#### **The Park LM Test**

The following steps are performed in this test.

**Step 1.** Run the required regression e.g.  $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots \beta_K X_K + e$ , obtain residuals e, compute  $\ln e^2$ 

Step 2. Run the auxiliary regression

$$lne^{2} = \alpha_{0} + \alpha_{1}lnX_{1} + \alpha_{2}lnX_{2} + \dots + \alpha_{K}lnX_{K} + u$$

**Step 3.** Compute  $LM = N.R^2$  (*N* and  $R^2$  are from the auxiliary regression)

**Step 4.** If  $LM > \chi^2_{K-1}$  then reject Null hypothesis and conclude that there is significant evidence of Heteroskedasticity

#### **Harvey-Godfrey Test**

The following steps are performed in this test.

**Step 1.** Run the required regression e.g.  $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots \beta_K X_K + e$ , obtain residuals *e*, compute  $\ln e^2$ 

**Step 2.** Run the auxiliary regression [assume  $\sigma^2 = \exp(\alpha_0 + \alpha_K X_K)$ ]

$$lne^2 = \alpha_0 + \alpha_1 X_1 + \alpha_2 X_2 + \dots + \alpha_K X_K + u$$

**Step 3.** Compute  $LM = N.R^2$  (*N* and  $R^2$  are from the auxiliary regression)

**Step 4.** If  $LM > \chi^2_{K-1}$  then reject Null hypothesis and conclude that there is significant evidence of Heteroskedasticity

### **Glesjer Test**

The following steps are performed in this test.

**Step 1.** Run the required regression e.g.  $Y = \beta_0 + \beta_1 X_1 + e$ , obtain residuals *e*, compute  $\ln e^2$ 

**Step 2.** Run the auxiliary regressions [assume  $\sigma^2 = \exp(\alpha_0 + \alpha_K X_K)$ ]

$$|e_i| = \alpha_0 + \alpha_1 X_1 + u_i$$
$$|e_i| = \alpha_0 + \alpha_1 \sqrt{X_1} + u_i$$
$$|e_i| = \alpha_0 + \alpha_1 \frac{1}{X_1} + u_i$$

**Step 3.** Compute  $LM = N.R^2$  (*N* and  $R^2$  are from the auxiliary regression)

**Step 4.** If  $LM > \chi^2_{K-1}$  then reject Null hypothesis and conclude that there is significant evidence of Heteroskedasticity

#### **Breusch - Pagan Test**

The following steps are performed in this test.

**Step 1.** Run the required regression e.g.  $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots \beta_K X_K + e$ , obtain residuals e, compute  $\ln e^2$ 

**Step 2.** Run the auxiliary regression [assume  $\sigma^2 = \exp(\alpha_0 + \alpha_K X_K)$ ]

$$e^2 = \alpha_0 + \alpha_1 X_1 + \alpha_2 X_2 + \dots + \alpha_K X_K + u$$

**Step 3.** Compute  $LM = N.R^2$  (*N* and  $R^2$  are from the auxiliary regression)

**Step 4.** If  $LM > \chi^2_{K-1}$  then reject Null hypothesis and conclude that there is significant evidence of Heteroskedasticity

OR

test F-statistic for the above regression in step 2. (Goodness of fit)

#### **Problems with Breusch-Pagan and others**

Specification of model for variance dependence is needed e.g. Breusch Pagan assume linear relation. If the errors are not normally distributed, then these tests may not be valid. Breusch Pagan Test has been

shown to be sensitive to any violation of the normality assumption. Three other popular LM tests: the Glejser test; the Harvey-Godfrey test, and the Park test, are also sensitive to such violations

#### The White Test: Most popular

The following steps are performed in this test.

**Step 1.** Run the required regression e.g.  $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + e$ , obtain residuals *e*, compute  $e \mathbb{Z} 2$ 

Step 2. Run the auxiliary regression

$$e^{2} = \alpha_{0} + \alpha_{1}X_{1} + \alpha_{2}X_{2} + \alpha_{2}X_{1}^{2} + \alpha_{2}X_{2}^{2} + \alpha_{2}X_{1}X_{2} + u$$

(Include all square and product terms)

OR

Run the regression

$$e^2 = \gamma_0 + \gamma_1 \hat{Y} + \gamma_2 \hat{Y}^2 + v$$

Step 3.

Compute  $LM = N.R^2$  (*N* and  $R^2$  are from the auxiliary regression)

#### OR

#### Compute the F-Statistic

#### Step 4.

If  $LM > \chi^2_{K-1}$  then reject Null hypothesis and conclude that there is significant evidence of Heteroskedasticity

#### OR

test F-statistic for the above regression in step 2. (Goodness of fit)

# Lecture 19

# **Examples of detecting Heteroskedasticity**

# **General Procedure for all the tests**

 $H_0$ : Homoskedasticity

 $H_1$ : Heteroskedasticity

 $\alpha = 0.05 \ or \ 0.01$ 

Test Statistic

 $LM = N. R^2$ 

$$OR \quad F = \frac{R^2}{1 - R^2} \frac{N - K}{K - 1}$$

 $OR \quad (for \ Goldfeld \ Quandt \ Test) \ F = \frac{RSShigh}{RSSlow}$ 

Region of Rejection

 $LM > \chi_K^2 \quad OR \quad F > F_{\alpha,K-1,N-K}$ 

OR (for Goldfeld Quandt Test)

$$F > F_{\alpha, \frac{N-C}{2}-K, \frac{N-C}{2}-K}$$

# Examples

For the below examples use the file **HSK.xlsx** for data

| Goldfeld-Quandt Test for Heteroskedasticity |          |                    |                                           |  |
|---------------------------------------------|----------|--------------------|-------------------------------------------|--|
| Results of LINEST on first par              | t Saving | Income             |                                           |  |
| 0.1368407 21.8769347                        | 360      | 2455               | First RSS = 8644.38191                    |  |
| 0.02637283 103.600825                       | 534      | 3566               |                                           |  |
| 0.89974134 53.6792384                       | 550      | 3666               | Second RSS = 100938.519                   |  |
| 26.9226021 3                                | 510      | 4159               |                                           |  |
| 77576.4181 8644.38191                       | 770      | 5261               | F = RSShigh/RSSLow                        |  |
| Observations Excluded                       | 921      | <mark>662</mark> 5 | =100938.5192/8644.381909= <b>11.67678</b> |  |
|                                             | 1250     | <mark>678</mark> 9 |                                           |  |
| Results of LINEST on first par              | t 1650   | 7198               | C = 3                                     |  |
| 1.75928832 -12298.379                       | 2045     | 8125               | d.f.1= [(n-c)/2]-K= <b>3</b>              |  |
| 0.16167183 1433.62959                       | 2598     | 8456               | d.f.2= [(n-c)/2]-K= <b>3</b>              |  |
| 0.97529128 183.428932                       | 3254     | 8995               |                                           |  |
| 118.414616 3                                | 3897     | 9125               | =F.INV.RT(0.05,3,3) = 9.276628            |  |
| 3984198.68 100938.519                       | 4589     | 9564               |                                           |  |
|                                             |          |                    |                                           |  |

# The Goldfeld - Quandt Test: Example Revision

# As F> F(0.05,3,3) so we reject H0 (homoskedasticity) and conclud that there is Heteroskedasticity.

# Example: The Park LM Test (ln (square of errors) and the ln(income)

First we run the regression savings on income, find ln (square of errors) and the ln(income), while Square of errors are generated from the regression line Saving on Income.

| Saving | Income | In (income) | Square of Errors | Ln e-square |
|--------|--------|-------------|------------------|-------------|
| 360    | 2455   | 7.80588204  | 497370.7375      | 13.1171     |
| 534    | 3566   | 8.179199798 | 86591.3042       | 11.3690     |
| 550    | 3666   | 8.206856428 | 66363.1361       | 11.1029     |
| 510    | 4159   | 8.33302994  | 1761.6205        | 7.4740      |
| 770    | 5261   | 8.568076402 | 131198.9807      | 11.7845     |
| 921    | 6625   | 8.798605651 | 863800.5063      | 13.6691     |
| 1250   | 6789   | 8.823058934 | 471640.0397      | 13.0640     |
| 1650   | 7198   | 8.881558489 | 252118.1070      | 12.4377     |
| 2045   | 8125   | 9.002701007 | 354277.5972      | 12.7778     |
| 2598   | 8456   | 9.042631528 | 46870.3204       | 10.7551     |
| 3254   | 8995   | 9.104424146 | 24243.0246       | 10.0959     |
| 3897   | 9125   | 9.118773178 | 533268.0951      | 13.1868     |

|     | 4589                                                                                         | 9564                   | 9.165761329                          | 1418726.1336                        | 14.1653    |  |  |
|-----|----------------------------------------------------------------------------------------------|------------------------|--------------------------------------|-------------------------------------|------------|--|--|
| Now | vwe run The Pa                                                                               | ark LM Test: au        | xiliary regression: lne <sup>2</sup> | $= \alpha_0 + \alpha_1 \ln(income)$ | + <i>u</i> |  |  |
|     |                                                                                              | Park Te                | st for Heteroskedastici              | ty (LM test and F-Test)             |            |  |  |
|     | Run a regressio                                                                              | on In(square of        | Errors) on In(income)                |                                     |            |  |  |
|     | $R_2 = 0.0634$                                                                               |                        |                                      |                                     |            |  |  |
|     | We can use bo                                                                                | oth LM and the         | F-statistic for framing              | the conclusion.                     |            |  |  |
|     | $LM = N. R^2 = 13$                                                                           | (0.0634) = <b>0.82</b> | 43                                   |                                     |            |  |  |
|     | ChSQ(0.05,1) =                                                                               | = CHISQ.INV.RT         | (0.05,1)= 3.841458821                |                                     |            |  |  |
|     | As LM > Chi-SC                                                                               | Q is not met, we       | e cannot reject $H_0$ and            | conclude that errors are            | not        |  |  |
|     | $F = [R^2/(1-R^2)]/$                                                                         | /[11/1] = 0.744        | 6                                    | -                                   |            |  |  |
|     | F <sub>0.05,1,11</sub> = F.IN\                                                               | /.RT(0.05,1,11)        | = 4.844335675                        |                                     |            |  |  |
|     | As F > $F_{0.05,1,11}$ is not met so we cannot reject $H_0$ and conclude that errors are not |                        |                                      |                                     |            |  |  |

In the above table both LM and F-test are applied and the result is that the errors are not Heteroskedastic.

# Example: Harvey-Godfrey Test for Heteroskedasticity

For the following results, see the file HSK.xlsx for detailed data

Harvey-Godfrey Test for Heteroskedasticity

1. Run a regression Savings on Income, Find error, then In (square of error)

2. Auxiliary Regression: Now Run a regression In(square of Errors) on Income and obtain R<sup>2</sup>

 $R^2$  obtained from the auxiliary Regression using LINEST() = 0.087076159

$$LM = N. R^2 = 1.13199$$

ChSQ(0.05,1) = CHISQ.INV.RT(0.05,1) = 3.84146

As LM > Chi-square value, we reject H<sub>0</sub> and conclude that errors are Heteroskedastic

 $F = [R^2/(1-R^2)]/[11/1] = 1.04919786607434$ 

 $F_{0.05,1,11} = F.INV.RT(0.05,1,11) = 4.84434$ 

As  $F < F_{0.05,1,11}$  so we cannot reject  $H_0$  and conclude that errors are not Heteroskedastic

# Example: Glesjer's Test for Heteroskedasticity

| Glesjer's Test for Heteroskedasticity                                                             |                                     |                                          |  |  |  |
|---------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------|--|--|--|
| 1. Run a regression Savings or                                                                    | n Income (X), Find error, then find | d (1/X) and SQRT(X)                      |  |  |  |
| 2. Auxiliary Regression: Now I                                                                    | Run the following auxiliary regree  | ssions and obtain their R <sub>2</sub> : |  |  |  |
| Regression 1: $ e_i  = \alpha_0 + \alpha_1 X + u_i$                                               |                                     |                                          |  |  |  |
| R-SQR of reg.1 = 0.11666                                                                          | R-SQR of reg. 2 = 0.10218           | R-SQR of reg. 3 = 0.04528                |  |  |  |
| $LM = N. R^2 = 13 R^2$                                                                            |                                     |                                          |  |  |  |
| LM-1 = 1.51657 LM-2 = 1.3284 LM-3 = 0.5887                                                        |                                     |                                          |  |  |  |
| ChSQ(0.05,1) = CHISQ.INV.RT(0.05,1) = 3.84146                                                     |                                     |                                          |  |  |  |
| As LM > Chi-square is not met in all three cases, we have strong evidence not to reject $H_0$ and |                                     |                                          |  |  |  |

# **Example: Breusch Pagan Test for Heteroskedasticity**

| Breusch Pagan Test for Heteroskedasticity                                                          |  |  |  |  |
|----------------------------------------------------------------------------------------------------|--|--|--|--|
| 1. Run a regression Savings on Income, Find error, then find square of errors                      |  |  |  |  |
| 2. Auxiliary Regression: Now Run a regression square of Errors on Income and obtain R <sup>2</sup> |  |  |  |  |
| R <sup>2</sup> obtained from the auxiliary Regression using LINEST()= 0.143181795                  |  |  |  |  |
| $LM = N. R^2 = 1.86136$                                                                            |  |  |  |  |
| ChSQ(0.05,1) = CHISQ.INV.RT(0.05,1) = 3.84146                                                      |  |  |  |  |
| As LM > Chi-square value, we reject $H_0$ and conclude that errors are Heteroskedastic             |  |  |  |  |
| $F = [R^2/(1-R^2)]/[11/1] = 1.83819594108222$                                                      |  |  |  |  |
| $F_{0.05,1,11} = F.INV.RT(0.05,1,11) = 4.84434$                                                    |  |  |  |  |

As F<  $F_{\rm 0.05,1,11}$  so we accept  $H_0$  and conclude that errors are not Heteroskedastic

# Example: White Test for Heteroskedasticity - version 1

White Test for Heteroskedasticity - version 1

1. Run a regression Savings on Income and interest rate, Find error, then square of error

2. Auxiliary Regression: Now Run a regression square of Errors on X<sub>1</sub>, X<sub>2</sub>, X<sub>1</sub>.X<sub>2</sub>, X<sub>1</sub> square and

 $R^2$  obtained from the auxiliary Regression using LINEST()=
 0.5021

  $LM = N. R^2 =$  6.5273 

 ChSQ(0.05,5) = CHISQ.INV.RT(0.05,5) = 11.0705  $As LM > Chi-square value, we can not reject H_0 . We conclude that errors are not

 <math>F = [R^2/(1-R^2)]/[7/5] =$  0.470603200107117 

  $F_{0.05,4,7} = F.INV.RT(0.05,4,7) = 4.12031$  

 As F < F\_{0.05,1,11} so we cannot reject H\_0 . There is no HSK</td>

### Handling Heteroskedasticity

#### Method 1: Change the model specification / transform variables

The Relation of variables may not be linear; change the model. Some important variable may be missing; find & use them. If there are subgroup differences, use dummy variables. If possible use panel data techniques

#### Method 2: Use Huber / White Standard Errors

This type of standard error is also called Heteroskedasticity consistent standard errors. With Heteroskedasticity our standard errors are incorrect so t would be incorrect (Another formula is required for SE). White's idea: Use simple OLS and correct the SE. For a simple regression line, the *white* estimator of error variance is

White Variance 
$$(\beta_1) = \frac{\sum (X - \bar{X})^2 \sigma_i^2}{\left(\sum (X - \bar{X})^2\right)^2}$$

Estimate  $\sigma_i^2 = \hat{e}_i^2$  (using the squared residual for each observation as the estimate of its variance)

### Method 3: GLS / WLS

Two cases; One where the variance of errors is known, Second where variance of errors is not known

#### GLS / WLS (variance of errors known)

Consider the model

$$Y_i = \beta_0 + \beta_1 X_i + e_i$$

• Suppose we know  $\sigma_i^2$  i.e. *Variance* ( $\beta_1$ )

• Divide all by this error Standard Deviation,

$$\frac{Y_i}{\sigma_i} = \frac{\beta_0}{\sigma_i} + \frac{\beta_1}{\sigma_i} X_i + \frac{e_i}{\sigma_i}$$

• New model variance

$$Var\left(\frac{\boldsymbol{e}_{i}}{\sigma_{i}}\right) = \frac{1}{\sigma_{i}^{2}} var(\boldsymbol{e}_{i}) = \frac{1}{\sigma_{i}^{2}} \sigma_{i}^{2} = 1$$

#### GLS / WLS (Variance of errors NOT known)

Make assumptions about the variance. Always transform the model dividing by the Standard Deviation of errors

#### What does WLS do?

OLS minimizes the sum of squared errors. OLS gives equal weight (importance) to all observations. WLS: observations with larger error variance will get less weight. WLS minimizes a weighted sum of square of errors

e.g. minimizes 
$$\frac{\sum e^2}{var(e_i)}$$

| Transformation Examples     |                        |                                                                                                                             |  |  |
|-----------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|
| Assumption                  | Comments               | Transformation                                                                                                              |  |  |
| $Var(e_i) = \sigma^2 X_i$   | Variance increases     | $\frac{Y_i}{\overline{X_i}} = \frac{\beta_0}{\overline{X_i}} + \frac{\beta_1}{\overline{X_i}} + \frac{e_i}{\overline{X_i}}$ |  |  |
|                             | linearly with X        | $\sqrt{X_i}$ $\sqrt{X_i}$ $\sqrt{X_i}$ $\sqrt{X_i}$                                                                         |  |  |
| $Var(e_i) = \sigma^2 X_i^2$ | Variance is related to | $\frac{Y_i}{Y_i} = \frac{\beta_0}{\beta_0} + \frac{\beta_1}{\gamma_i} X_i + \frac{e_i}{\beta_i}$                            |  |  |
|                             | square of X            | $X_i  X_i  X_i  X_i$                                                                                                        |  |  |

# **Example: Handling Heteroskedasticity**

Consider the model  $Y_i = \beta_0 + \beta_1 X_i + e_i$ , from the file **HSK-Removal.xlsx** 

| observations | 20 |                        |           |
|--------------|----|------------------------|-----------|
| К            | 2  | F0.05, к-1, n-к        | 4.4138734 |
| N-K          | 18 | <b>ChiSQ</b> 0.05, к-1 | 3.8414588 |
| K-1          | 1  |                        |           |

| Breusch Pagan test                                        |                                           |                 |               |  |  |
|-----------------------------------------------------------|-------------------------------------------|-----------------|---------------|--|--|
|                                                           | From Reg e-                               | squared on X    |               |  |  |
| R <sup>2</sup> =                                          | $R^2 = 0.2283669$ LM=N. $R^2 = 4.56733$   |                 |               |  |  |
|                                                           |                                           | F =             | 5.3271473     |  |  |
| Both F and LIV                                            | I indicate the pr                         | esence of Heter | oskedasticity |  |  |
|                                                           | Whit                                      | e Test          |               |  |  |
|                                                           | From Reg e-squ                            | ared on X and X | 2             |  |  |
| R <sup>2</sup> =                                          | $R^2 = 0.3495372$ LM=N. $R^2 = 6.9907444$ |                 |               |  |  |
| F = 4.5676194                                             |                                           |                 |               |  |  |
| Both F and LM indicate the presence of Heteroskedasticity |                                           |                 |               |  |  |
| in non-linear fashion.                                    |                                           |                 |               |  |  |

*Now let us try to estimate without heteroskedastic errors* 

Consider the model  $Y = \beta_0 + \beta_1 X_i + e_i$ 

Assume the relation  $Var(e_i) = \sigma^2 X_i^2$ 

Transform the model to estimate  $\frac{Y_i}{X_i} = \frac{\beta_0}{X_i} + \frac{\beta_1}{X_i}X_i + \frac{e_i}{X_i}$ 

Or 
$$\left(\frac{Y_i}{X_i}\right) = \frac{\beta_0}{X_i} + \beta_1 + \frac{e_i}{X_i}$$
  
Or  $\frac{Y_i}{X_i} = \beta_1 + \beta_0 \frac{1}{X_i} + \frac{e_i}{X_i}$ 

Note the intercept is  $oldsymbol{eta}_1$  and the slope here is  $oldsymbol{eta}_0$ 

This can be estimated by OLS

For 
$$\frac{Y_i}{x_i} = \beta_1 + \beta_0 \frac{1}{x_i} + \frac{e_i}{x_i}$$
  
We get  $\frac{Y_i}{x_i} = 11.51 + 25.61 \frac{1}{x_i}$ 

The intercept 11.51 is in fact the slope of the original equation and the slope in this regression line is the intercept of the original regression line. But they may now be Heteroskedasticity Free (this can be checked by applying the White test to this regression)

# Business Econometrics by Dr Sayyid Salman Rizavi

Test for Heteroskedasticity for the new transformed regression  $\frac{Y_i}{X_i} = 11.51 + 25.61 \frac{1}{X_i}$  (data in HSK-**Removal.xisx**). Now testing for Heteroskedasticity for the new model gives the following results that are free from the problem.

| observatio                              | ns                    | 20          |    |                     |
|-----------------------------------------|-----------------------|-------------|----|---------------------|
| К                                       |                       | 3           |    |                     |
| N-K                                     |                       | 17          |    |                     |
| K-1                                     |                       | 2           |    |                     |
| F0.05, к-1, N                           | -K                    | 3.5915306   | 5  |                     |
| ChiSQ0.05, к-1                          |                       | 5.9914645   | 5  |                     |
|                                         |                       |             |    |                     |
| White Test                              |                       |             |    |                     |
| From R                                  | eg e                  | e-squared o | nî | $L/X$ and $(1/X^2)$ |
|                                         | $R^2 =$               |             |    | 0.0389161           |
|                                         | LM=N.R <sup>2</sup> = |             |    | 0.7783225           |
|                                         | F =                   |             |    | 0.3441812           |
| Conclusion: Heteroskedasticity does not |                       |             |    |                     |

# Lecture 20

# Autocorrelation

# What is Autocorrelation / Serial Correlation?

Gauss Markov Assumptions: BLUE include

- Errors are normally distributed with zero mean and constant variance
- Errors are independent
- Independence: one error term is not correlated to any other error term
- Violation of above is called serial correlation

# **But with Serial Correlation**

- Error terms are correlated with one another
- Error term of different time periods (usually adjacent) or different cross sectional observations are correlated
- if we know something about the error term of one observation, we know something about the error term of another observation
- Errors associated in one time period carry over to future time periods (example of lagged models)
- Serial correlation is usually associated with time series data so we will use a subscript *t* instead of *i*

Error terms may be correlated more with nearby observations as compared to distant observations

$$\rho(e_t, e_{t-i}) > \rho(e_t, e_{t-j})$$
 where  $i < j$ 

Where ho (rho) is the autocorrelation coefficient

In case serial correlation exists (in time or space),

 $\rho(e_t, e_{t-i}) \neq 0$  where  $t \neq 0$  in time series data

 $\rho(e_i, e_j) \neq 0$  where  $i \neq j$  in cross sectional data

 $-1 \le \rho \le 1$ 

# **First Order Serial Correlation**

Let us consider one specific type i.e. first order (linear) serial correlation. In this case Error in one time period are correlated with the previous time period

In case of first order serial correlation

```
\rho(e_t, e_{t-1}) \neq 0
where -1 \leq \rho \leq 1
```

In dynamic models  $e_t = \rho e_{t-1} + u_t$ 

Where  $u_t$  is called white noise and is independently and identically distributed with zero mean and constant variance

### **Possible Causes of Autocorrelation**

# **1. Missing Variables**

Error term may include all the variables not included in the regression equation. Change in any of the unobserved variable in one time period may impact the errors in different time periods. Errors may follow the patterns/ trends of the unobserved variables.

**Examples:** Y depends on  $X_{t1}$  and  $X_{t2}$  and  $X_{t2}$  is not included OR Sales depend on seasonal changes and it is not included

# 2. Inertia or sluggishness

Speed of Change in variables depends on time. Business Cycles (GDP, Prices etc. follow) are an example. Speed of change in price may depend on how far it is from the equilibrium price. This is a common phenomenon in time series data

# **3. Incorrect Functional Form**

Autocorrelation may exist if Linear models are specified when non-linear are required. Linearin-variable or simple models are used when log form is needed. This is called model specification error

# 4. Cobweb phenomenon / reaction with lag

When the dependent variable acts with a lag, we may observe Autocorrelation.

# Examples

$$Q_{st} = a + bP_{t-1} + e_t$$
$$C_t = ay_{t-1} + by_{t-2} + e_t$$

Overproduction in one year may lead to underproduction in the next

# 5. Lagged Relationship

One reason may be that dependent variable may depend on its previous value

# Examples

- Stock Prices
- Consumption  $C_t = a + bC_{t-1} + e_t$

# 6. Ratchet effect

Tendency of people to be influenced by the previous (high, low or best) level of a variable may cause the ratchet effect to exist. Another example is of consumption. Consumption changes quickly upward (when income goes up) but does not come down easily if income declines (over or underestimation)

# 7. Data Manipulation

- Data manipulated in the following ways may cause the problem:
- Averaging or smoothing
- Converting quarterly data to annual
- Converting monthly data to quarterly
- Finding mid-points when faced with ranges
- Sometimes we need to do the above because of measurement error in, e.g., monthly data but the byproduct is autocorrelation

# 8. Systematic Measurement Error

Measurement error in one time period may be carried forward. Measurement error in inventories, Measurement error in stock of capital, Measurement error in asset value all can cause the problem of autocorrelation. This is why Time series is a noisy proxy.

### 9. Variable Behavior

Electricity consumption in different hours of the day; similar temperature patterns may cause patterns in errors.

### **Spatial Autocorrelation**

This is a special cause of autocorrelation in cross sectional data.

"Everything is related to everything else but near things are more related than distant things" First law of Geography by WALDO TOBLER

Spatial autocorrelation is a correlation of a variable with itself through space. It is due to systematic pattern of spatial distribution of a variable. Sometimes the nearby areas are more alike: positive Sp. AC. Values in sample do not remain independent. Occurrence of one event in an area makes it more likely in other areas. Areas with higher concentration of events will have more impact on results (spatially clustered observations)

### Example:

- In Karachi, due to high crime rate, more Police and Rangers are deployed
- Due to Karachi operation the crime rate decreases in Karachi
- Crime rate in nearby cities will increase although they did not decrease Police etc.

# **Consequences of Autocorrelation**

- Estimators remain unbiased and consistent
- Estimators are no more efficient
- Standard Error of Estimate / variance of error is likely to be underestimated resulting in Overestimated R-square

- Variances of estimators are biased (see next slide)
- Forecasts are unbiased but inefficient (with larger variances)
- In case of positive AC, standard errors (of coefficients) are too small resulting in overestimation of t-statistic
- In case of negative AC, standard errors (of coefficients) are too large resulting in underestimation of t-statistic

# Lecture 21

# **Detection of Autocorrelation**

# **Detection (Testing for serial correlation)**

- Graphic method
- AR(1) test with strictly exogenous regressors
- AR(1) test without strictly exogenous regressors
- Durbin Watson *d* Test
- Durbin *h* Test
- LM Test

Looking at the graph, we may see patterns or trends in residuals w.r.t. time or w.r.t. previous values of the errors.



The above errors are plotted against time. You can see that a pattern is visible. This shows that the errors are not random. The graphs below show the errors of residuals plotted agains the past values of errors. In this case also we can observe some patterns and trends which is an indication of serial correlation.



### **Detecting Autocorrelation by formal tests**

# AR(1) test with strictly exogenous regressors

This tests first order AC with exogenous regressors

Procedure

- Run the regression Y on X1, X2, ... XK and obtain residual  $e_t$
- Run the regression  $\hat{e}t$  on  $\hat{e}t 1$  for N = 2 to n

$$e_t = \rho e_{t-1} + u_t$$

• Apply t-test (individual variable significance test) to test the hypothesis  $H_0: \rho = 0$ 

The data and some estimated columns are given below:

| Time Period | Y  | Х   | e <sub>t</sub> | e <sub>t-1</sub> |
|-------------|----|-----|----------------|------------------|
| 1           | 41 | 3.1 | -6.69226       |                  |
| 2           | 51 | 3   | 3.57925        | -6.69226         |
| 3           | 55 | 3.3 | 6.76473        | 3.579245         |
| 4           | 58 | 4   | 7.86418        | 6.764725         |
| 5           | 56 | 4.3 | 5.04966        | 7.864179         |

# Business Econometrics by Dr Sayyid Salman Rizavi

| 6  | 51 | 4.7 | -1.03637 | 5.049659 |
|----|----|-----|----------|----------|
| 7  | 46 | 5.4 | -7.93691 | -1.03637 |
| 8  | 46 | 4.9 | -6.57938 | -7.93691 |
| 9  | 48 | 6   | -7.56595 | -6.57938 |
| 10 | 57 | 7.5 | -2.63855 | -7.56595 |
| 11 | 58 | 6.9 | -0.00951 | -2.63855 |
| 12 | 57 | 7.7 | -3.18157 | -0.00951 |
| 13 | 62 | 7.9 | 1.27542  | -3.18157 |
| 14 | 64 | 8.1 | 2.73241  | 1.27542  |
| 15 | 71 | 8.6 | 8.37487  | 2.732407 |

# 1. Example of AR(1) test with strictly exogenous regressors

The test is given below with all the required steps performed using Microsoft Excel.

| AR(1) test with strictly exogenous regressors                                                                                                           |           |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|
| Step 1: Run a Regression Y on X and obtain residuals                                                                                                    |           |  |  |  |
| Step 2: Run a Regression $e_{t} = a + \rho e_{t-1} + u_{t}$                                                                                             |           |  |  |  |
| Results of using '=linest(E52:E65,F52:F65,true,true)'                                                                                                   |           |  |  |  |
| 0.6494361                                                                                                                                               | 0.8665148 |  |  |  |
| 0.2328061                                                                                                                                               | 1.2152534 |  |  |  |
| 0.393384                                                                                                                                                | 4.5171056 |  |  |  |
| 7.7818704                                                                                                                                               | 12        |  |  |  |
| 158.78317                                                                                                                                               | 244.85092 |  |  |  |
| Compute t-value = beta/se(beta) = 0.6494/0.2328= 2.789600395                                                                                            |           |  |  |  |
| Testing $H_0: \rho = 0$                                                                                                                                 |           |  |  |  |
| t = 2.7896004 , $t_c$ =T.INV.2T(0.05,13) = 2.160368656                                                                                                  |           |  |  |  |
| As the calculated value of <i>t</i> is larger than the tabulated value so we reject $H_0$ and conclude that the coefficient $\rho$ is significant. This |           |  |  |  |
| means that there is a problem of Autocorrelation.                                                                                                       |           |  |  |  |
# 2. Example of AR(1) test without strictly exogenous regressors

This tests first order AC without exogenous regressors (where we suspect that explanatory variables may be correlated to residuals)

### Procedure

- Run the regression *Y* on *X*1, *X*2, ... *XK* and obtain residual *e*<sub>t</sub>
- Run the regression  $\hat{e}t$  on X1, X2, ... XK and  $\hat{e}t 1$  for N = 2 to n
- $e_t = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_K X_K + \rho e_{t-1} + u_t$
- Apply t-test (individual variable significance test) to test the hypothesis  $H_0: 
  ho=0$

| AR(1) test without strictly exogenous regressors                                                                                                                  |                               |                                         |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------|--|--|--|
| Step 1: Run a Reg                                                                                                                                                 | ression Y on X and            | d obtain residuals                      |  |  |  |
| Step 2: Run a Reg                                                                                                                                                 | ression $e_t = a + b \lambda$ | X + ρ e <sub>t-1</sub> + u <sub>t</sub> |  |  |  |
| You will need to r                                                                                                                                                | earrange the colur            | nns to put et-1 and X together          |  |  |  |
| The regression re                                                                                                                                                 | sults are                     |                                         |  |  |  |
| -0.05608296                                                                                                                                                       | 0.645754025                   | 1.193999801                             |  |  |  |
| 0.700460158                                                                                                                                                       | 0.247399143                   | 4.282505484                             |  |  |  |
| 0.393737269                                                                                                                                                       | 4.716588768                   |                                         |  |  |  |
| 3.571974441                                                                                                                                                       | 11                            |                                         |  |  |  |
| 158.9257843                                                                                                                                                       | 244.7083057                   |                                         |  |  |  |
| Compute t-value                                                                                                                                                   |                               |                                         |  |  |  |
| beta/se(beta) = 0.                                                                                                                                                | .64575/0.247399 =             | 2.610170824                             |  |  |  |
| Testing $H_0^{\circ}$ : $\rho$ =0                                                                                                                                 |                               |                                         |  |  |  |
| t= 2.610170824                                                                                                                                                    |                               |                                         |  |  |  |
| Critical value of t=T.INV.2T(0.05,11) = 2.20098516                                                                                                                |                               |                                         |  |  |  |
| As the calculated value of t is larger than the tabulated value so we reject $H_0$ and conclude that the coefficient $\rho$ is significant. This means that there |                               |                                         |  |  |  |
| is a problem of Autocorrelation.                                                                                                                                  |                               |                                         |  |  |  |

# 3. Example of Durbin Watson d Test

This tests first order AC with exogenous regressors. It is not good when regressors are not exogenous. It is not good when the model contains lagged dependent variable

Assumptions:

- Regression Model has an intercept
- Errors are generated by first order autoregressive scheme

$$e_t = \rho e_{t-1} + u_t$$

- Regression Model does not have lagged dependent variable as regressor
- There are no missing observations

### Procedure:

 $H_0:\,\rho=0$ 

 $H_A: \, \rho \neq 0$ 

 $\alpha = 0.05 (5\%)$ 

Test Statistic

$$d = \frac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=1}^{n} e_t^2}$$

This has an inconclusive region, rejection and acceptance region

It has some limit or range of values:

$$d = \frac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=1}^{n} e_t^2}$$
$$d = \frac{\sum e_t^2 + \sum e_{t-1}^2 - 2\sum e_t \sum e_{t-1}}{\sum e_t^2}$$

For large samples

$$\sum e_t^2 = \sum e_{t-1}^2$$

So 
$$d = 2(1 - \frac{\sum e_t e_{t-1}}{\sum e_t^2})$$
  
 $d = 2(1 - \frac{\sum e_t e_{t-1}}{\sum e_t^2})$   
But  $\rho = \frac{\sum e_t \sum e_{t-1}}{\sum e_t^2}$  So  
 $d = 2(1 - \rho)$ 

As we know that  $-1 \leq 
ho \leq 1$ , So d will range from zero to four

$$0 \le d \le 4$$
  
 $if \rho = 0, d = 2(1 - 0) = 2$   
 $if \rho = -1$  (negative),  $d = 2(1 - (-1)) = 4$   
 $if \rho = 1$  (positive),  $d = 2(1 - (1)) = 0$ 

The table of d at 0.05 level of significance and K - 1 degrees of freedom will provide two values of d. A lower value dL and an upper value dU.

Example: dL=1, dU=1.68 (at 5% and k-1=3)



Based on the previous diagram, we may frame our conclusions as follows

Accept  $H_0$  if  $d_u < d < 4 - d_u$  (no autocorrelation)

Reject  $H_0$ 

| if $d < d_L$     | (positive autocorrelation) |
|------------------|----------------------------|
| if $d > 4 - d_L$ | (negative autocorrelation) |

Test is inconclusive if

 $\text{if } d_L < d < d_U \\ \text{if } 4 - d_U < d < 4 - d_L \\ \label{eq:delta_linear_state}$ 

# **General Rules about Durbin Watson Statistic**

- d lies between 0 and 4. As d is closer to 2, the chances of AC decrease
- If d < 2, This may indicate positive AC, IF d > 2, This may indicate negative AC

Use the file AC.xlsx for data, run regression Y on X, obtain residuals

| e <sub>t</sub> is in cells E51:E65, e                                                                      | is in cells F52:F65   | Formula used                             |  |  |  |
|------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------|--|--|--|
| $\sum e_t^2 =$                                                                                             | 451.6195              | =SUMSQ(E51:E65)                          |  |  |  |
| $\sum (e_t - e_{t-1})^2 =$                                                                                 | 307.333               | =SUMXMY2(E52:E65,F52:F65)                |  |  |  |
|                                                                                                            |                       |                                          |  |  |  |
| $d = \frac{\sum (e_t - e_{t-1})^2}{\sum e_t^2}$                                                            | d = 0.680513          | =SUMXMY2(E52:E65,F52:F65)/SUMSQ(E51:E65) |  |  |  |
|                                                                                                            |                       |                                          |  |  |  |
|                                                                                                            | d <sub>L</sub> = 1.08 | Value read from table (n=15, K=2)        |  |  |  |
|                                                                                                            | d <sub>U</sub> = 1.36 | Value read from table (n=15, K=2)        |  |  |  |
|                                                                                                            |                       | K= number of parameters estimated        |  |  |  |
| As d < d <sub>L</sub> , we reject H <sub>0</sub> and conclude that there exists autocorrelation (positive) |                       |                                          |  |  |  |

## Durbin h Test

#### Procedure

Run the regression

$$Y_{t} = \beta_{0} + \beta_{1}X_{1} + \beta_{2}X_{2} + \dots + \beta_{K}X_{K} + \gamma Y_{t-1} + u_{t}$$

Compute Durbin *h*, where

$$h = \hat{\rho} \sqrt{\frac{N}{1 - N(Var(\gamma))}}$$

Where  $\hat{\rho} = 1 - \frac{d}{2}$  (provided the sample is large)

Note: h is normally distributed with unit variance so conclusions may be formed by looking at the normal distribution table.

Problem: Cannot be computed if  $N(Var(\gamma)) > 1$ 

## Simple LM Test: Testing for AR(1) model

### Procedure

To test first order serial correlation

• Run the regression

$$Y_t = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_K X_K + e_t$$

- Obtain the residuals  $\hat{e}t$
- Regress  $\hat{e}t$  on all explanatory variables and  $\hat{e}t 1$
- Now compute LM = (n-1) R2 (because we loose one observation so n-1
- Test using Chi-square (0.05, 1)

Similar to AR(1) in case of NOT Exogenous regressors but uses LM instead of F.

# Lecture 22

# **Treating Autocorrelation**

Some consequences of ignoring autocorrelation are

- Coefficients unbiased and consistent but not efficient (not BLUE) even in large samples. (like if there is heteroskedasticity )
- Standard error estimates are inappropriate which leads to wrong inferences.
- t-statistic overestimated
- Regression coefficients appearing significant are, in fact, not significant.
- R<sup>2</sup> inflated and residual variance underestimated for positively correlated residuals (if X grows over time).
- Forecasts are unbiased but with large variances

# Remedial Measures for the problem of Autocorrelation

We may have two situations

- When  $\rho$  is known....GLS
- When  $\rho$  is not known.....estimate rho.....GLS

# **Generalized Differencing / Generalized Least Square**

Consider a two variable model

$$Y_t = \beta_0 + \beta_1 X_t + e_t$$

Assume that the error term follows AR(1) scheme

$$e_t = \rho e_{t-1} + v_t$$

Where

 $-1 < \rho < 1$ 

Where  $v_t$  satisfies OLS assumptions and  $\rho$  is either known or estimated

For estimation without autocorrelation, transform the model

#### Procedure

write the regression with one period lag

$$Y_{t-1} = \beta_0 + \beta_1 X_{t-1} + e_{t-1}$$

Multiplying by  $\rho$ 

$$\rho Y_{t-1} = \rho \beta_0 + \rho \beta_1 X_{t-1} + \rho e_{t-1}$$

Subtracting this equation from the original regression (without lags)

$$Y_t - \rho Y_{t-1} = \beta_0 - \rho \beta_0 + \beta_1 X_t - \rho \beta_1 X_{t-1} + e_t - \rho e_{t-1}$$

Which gives us

$$Y_t - \rho Y_{t-1} = \beta_0 (1 - \rho) + \beta_1 (X_t - \rho X_{t-1}) + e_t - \rho e_{t-1}$$

Or

$$Y_t^* = \beta_0^* + \beta_1 X_t^* + v_t$$

Now we can estimate the AC free model

$$Y_t^* = \beta_0^* + \beta_1 X_t^* + v_t$$

Where

$$Y_t^* = Y_t - \rho Y_{t-1}$$
$$\beta_0^* = \beta_0 (1 - \rho)$$
$$X_t^* = X_t - \rho X_{t-1}$$

### **Generalized Differencing: Special Cases**

### Special Case: $\rho = +1$ :

write the regression with one period lag

$$Y_{t-1} = \beta_0 + \beta_1 X_{t-1} + e_{t-1}$$

Multiplying by  $\rho$ 

 $Y_{t-1} = \beta_0 + \beta_1 X_{t-1} + e_{t-1}$ 

Subtracting this equation from the original regression (without lags)

$$Y_t - Y_{t-1} = \beta_0 - \beta_0 + \beta_1 X_t - \beta_1 X_{t-1} + e_t - e_{t-1}$$

Which gives us

$$\Delta Y_t = \beta_1 \Delta X_t + \Delta e_t$$

Where

$$\Delta Y_t = Y_t - Y_{t-1}, \ \Delta X_t = X_t - X_{t-1}$$

And we estimate an equation without intercept

Special Case:  $\rho = -1$ :

write the regression with one period lag

$$Y_{t-1} = \beta_0 + \beta_1 X_{t-1} + e_{t-1}$$

Multiplying by  $\rho$ 

$$Y_{t-1} = \beta_0 + \beta_1 X_{t-1} + e_{t-1}$$

Subtracting this equation from the original regression (without lags)

$$Y_t + Y_{t-1} = \beta_0 + \beta_0 + \beta_1 X_t + \beta_1 X_{t-1} + e_t + e_{t-1}$$

Which gives us

$$Y_t^* = 2\beta_0 + \beta_1 X_t^* + v_t$$

Where

$$Y_t^* = Y_t + Y_{t-1}, X_t^* = X_t - X_{t-1}$$

### **Prais-Winsten Transformation**

We lose one observation due to differencing. Usually the first observation is lost. In small samples we may estimate the first observation as

$$Y_1^* = \sqrt{1 - \rho^2} Y_1$$
$$X_1^* = \sqrt{1 - \rho^2} X_1$$

However this does not need to be done in large samples. We can estimate the AC free model

$$Y_t^* = \beta_0^* + \beta_1 X_t^* + v_t$$

Suppose we know that

$$\rho = 0.6$$
$$Y_t^* = Y_t - \rho Y_{t-1}$$
$$X_t^* = X_t - \rho X_{t-1}$$

Where  $\beta_0^* = \beta_0(1-\rho)$ 

The following example is a small sample (Prais-Winsten transformation may be required)

| Time<br>Period | Y  | X e <sub>t</sub> |          | Y*    | х*   |
|----------------|----|------------------|----------|-------|------|
| 1              | 41 | 3.1              | -6.69226 |       |      |
| 2              | 51 | 3                | 3.57925  | 26.40 | 1.14 |
| 3              | 55 | 3.3              | 6.76473  | 24.40 | 1.50 |
| 4              | 58 | 4                | 7.86418  | 25.00 | 2.02 |
| 5              | 56 | 4.3              | 5.04966  | 21.20 | 1.90 |
| 6              | 51 | 4.7              | -1.03637 | 17.40 | 2.12 |
| 7              | 46 | 5.4              | -7.93691 | 15.40 | 2.58 |
| 8              | 46 | 4.9              | -6.57938 | 18.40 | 1.66 |
| 9              | 48 | 6                | -7.56595 | 20.40 | 3.06 |
| 10             | 57 | 7.5              | -2.63855 | 28.20 | 3.90 |
| 11             | 58 | 6.9              | -0.00951 | 23.80 | 2.40 |
| 12             | 57 | 7.7              | -3.18157 | 22.20 | 3.56 |
| 13             | 62 | 7.9              | 1.27542  | 27.80 | 3.28 |
| 14             | 64 | 8.1              | 2.73241  | 26.80 | 3.36 |
| 15             | 71 | 8.6              | 8.37487  | 32.60 | 3.74 |

We knew that  $\rho = 0.6$ 

We transformed the model accordingly and estimated

$$Y_t^* = \beta_0^* + \beta_1 X_t^* + v_t$$

Using Microsoft Excel functions of intercept and slope we find the regression line to be

$$Y_t^* = 17.995 + 2.1554 \, X_t^*$$

The slope 2.1554 is the value of  $\beta_1$ . As  $\beta_0^* = \beta_0(1-\rho)$ ,

We can estimate  $\beta_0$  as  $\beta_0 = \frac{\beta_0^*}{1-\rho} = \frac{17.995}{1-0.6} = 44.9877$ 

REMEMBER that the above procedure is based on an assumed value of  $\rho$  to explain the procedure which may not be true.

### Removing Autocorrelation when $\rho$ is not know

When is not known, we need to estimate it first (before treating autocorrelation). We will discuss three methods here

- Durbin Watson *d*
- Cochrane-Orcutt Method
- Hildreth-Lu Procedure

### Using Durbin-Watson d

A relationship already established between ho and d is

$$d = 2(1 - \rho)$$
  
So  $\rho \cong 1 - \frac{d}{2}$   
As  $0 \le d \le 4$   
 $-1 \le \rho \le 1$ 

Above relation is approximate. For small samples Theil-Nagar suggest

$$\rho = \frac{N^2 \left(1 - \frac{d}{2}\right) + K^2}{N^2 + K^2}$$

Now perform GLS.

### EXAMPLE (use ACRemoval.xlsx)

As this is a small sample, we use Theil-Nagar estimation

$$\rho = \frac{N^2 \left(1 - \frac{d}{2}\right) + K^2}{N^2 + K^2}$$

N = 14, K = 2, Durbin-Watson d is estimated as 0.6805

$$\rho = \frac{14^2 \left(1 - \frac{0.6805}{2}\right) + 2^2}{14^2 + 2^2} = 0.667$$

The value of  $\rho$  can be used to apply Generalized difference model as described in the procedure for known-rho

### **Cochrane-Orcutt Method**

This method uses Residuals to estimate  $\rho$ . It is an iterative process and is applicable with First-Order Autocorrelation only

### STEPS

Consider  $Y_t = \beta_1 + \beta_2 X_t + e_t$ 

- Round 1: apply OLS, find residuals, compute  $\rho = \frac{\sum e_t e_{t-1}}{\sum e_t^2}$
- Round 2: Perform GLS

$$Y_t - \rho Y_{t-1} = \beta_0 (1 - \rho) + \beta_1 (X_t - \rho X_{t-1}) + e_t - \rho e_{t-1}$$

Now obtain second order residual and  $\rho$  again

• Round 3 (if required): Perform GLS again with the new  $\rho$  and continue in the same way

We continue until the estimated  $\rho$  from two successive rounds is almost equal. We also may perform Durbin Watson test and stop iteration if AC is not detected.

### **Cochrane-Orcutt Method: EXAMPLE**

We will just demonstrates some rounds for your help

| Cochraine-Orcutt me |    | Round 1 |              |              |                                         |                |
|---------------------|----|---------|--------------|--------------|-----------------------------------------|----------------|
| Time Period         | Y  | Х       | et           | et-1         | <b>e</b> <sub>t</sub> .e <sub>t-1</sub> | e <sup>2</sup> |
| 1                   | 41 | 3.1     | -<br>6.69226 |              |                                         | 44.78636       |
| 2                   | 51 | 3       | 3.57925      | -<br>6.69226 | -23.95325                               | 12.81100       |
| 3                   | 55 | 3.3     | 6.76473      | 3.57925      | 24.21261                                | 45.76151       |
| 4                   | 58 | 4       | 7.86418      | 6.76473      | 53.19901                                | 61.84531       |
| 5                   | 56 | 4.3     | 5.04966      | 7.86418      | 39.71142                                | 25.49906       |
| 6                   | 51 | 4.7     | -<br>1.03637 | 5.04966      | -5.23330                                | 1.07406        |
| 7                   | 46 | 5.4     | -<br>7.93691 | -<br>1.03637 | 8.22556                                 | 62.99460       |
| 8                   | 46 | 4.9     | -<br>6.57938 | -<br>7.93691 | 52.21998                                | 43.28825       |
| 9                   | 48 | 6       | -<br>7.56595 | -<br>6.57938 | 49.77929                                | 57.24366       |
| 10                  | 57 | 7.5     | -<br>2.63855 | -<br>7.56595 | 19.96317                                | 6.96196        |
| 11                  | 58 | 6.9     | -<br>0.00951 | -<br>2.63855 | 0.02510                                 | 0.00009        |
| 12                  | 57 | 7.7     | -<br>3.18157 | -<br>0.00951 | 0.03027                                 | 10.12237       |
| 13                  | 62 | 7.9     | 1.27542      | -<br>3.18157 | -4.05783                                | 1.62670        |
| 14                  | 64 | 8.1     | 2.73241      | 1.27542      | 3.48497                                 | 7.46605        |
| 15                  | 71 | 8.6     | 8.37487      | 2.73241      | 22.88356                                | 70.13851       |
|                     |    |         |              |              | 240.49056                               | 406.83312      |
|                     |    |         |              |              | Sum                                     | Sum            |

Consider  $Y_t = \beta_1 + \beta_2 X_t + e_t$ 

We have just demonstrates some rounds for your help

| Run OLS Y on X and obtain e |                  |  |  |  |  |
|-----------------------------|------------------|--|--|--|--|
| OLS:Y on X                  |                  |  |  |  |  |
| Intercept                   | 39.27556         |  |  |  |  |
| Slope                       | 2.715066         |  |  |  |  |
| First Round                 | l Rho = 0.591128 |  |  |  |  |
| round 2: tr                 | ransformed model |  |  |  |  |
| OLS:Y on X                  | OLS:Y on X       |  |  |  |  |
| Intercept                   | 18.33661         |  |  |  |  |
| Slope                       | 2.166349         |  |  |  |  |
| Second Round Rho = 0.520366 |                  |  |  |  |  |
| round 3:transformed model   |                  |  |  |  |  |
| Intercept                   | 19.55304         |  |  |  |  |
| Slope                       | 2.794671         |  |  |  |  |

We will transform the model again and continue till the rho from two consecutive iterations is almost the same. This may be a lengthy process.

| Cochraine Orcutt Transformed variables & Round 2 |          |          |          |          |          |  |  |
|--------------------------------------------------|----------|----------|----------|----------|----------|--|--|
| Y*                                               | X*       | et       | et-1     | et.et-1  | et2      |  |  |
| 26.76374                                         | 1.167502 | 5.89791  |          |          |          |  |  |
| 24.85246                                         | 1.526615 | 3.208663 | 5.89791  | 18.9244  | 10.29552 |  |  |
| 25.48794                                         | 2.049277 | 2.711883 | 3.208663 | 8.701517 | 7.354307 |  |  |
| 21.71456                                         | 1.935487 | -0.81499 | 2.711883 | -2.21017 | 0.664215 |  |  |
| 17.89682                                         | 2.158148 | -5.1151  | -0.81499 | 4.168775 | 26.16425 |  |  |
| 15.85246                                         | 2.621697 | -8.16367 | -5.1151  | 41.75797 | 66.64546 |  |  |
| 18.8081                                          | 1.707907 | -3.22844 | -8.16367 | 26.35589 | 10.42281 |  |  |
| 20.8081                                          | 3.103471 | -4.25172 | -3.22844 | 13.7264  | 18.0771  |  |  |
| 28.62584                                         | 3.95323  | 1.725152 | -4.25172 | -7.33486 | 2.97615  |  |  |
| 24.30569                                         | 2.466538 | 0.625692 | 1.725152 | 1.079415 | 0.391491 |  |  |
| 22.71456                                         | 3.621215 | -3.46687 | 0.625692 | -2.16919 | 12.01918 |  |  |
| 28.30569                                         | 3.348312 | 2.715461 | -3.46687 | -9.41415 | 7.37373  |  |  |
| 27.35005                                         | 3.430087 | 1.582668 | 2.715461 | 4.297674 | 2.504838 |  |  |
| 33.16779                                         | 3.811861 | 6.573355 | 1.582668 | 10.40344 | 43.209   |  |  |
|                                                  |          |          |          | 108.2871 | 208.098  |  |  |

# Hildreth-Lu Search Procedure

Step 1: Choose a grid of possible values (between -1 and +1) of  $\rho$ 

Step 2: For each value of the grid, estimate the Generalized difference model and find the sum of square residuals

Step 3: The equation with min SS will be considered the best equation

*Modified Step 1*: Choose a grid of possible values (between -1 and +1) of  $\rho$ 

We can select a simple grid like 0, 0.1, 0.2, 0.3 - - - 0.9, 1. After repeating the previous process, select a further grid. For example if the first grid gives us 0.7, we start with another grid based on this information around 0.7 like 0.66, 0.67, 0.68, 0.69, 0.71, 0.72, 0.73, 0.74 and repeat the above procedure.

### Problems:

- Time consuming and long process
- Grid values must be carefully selected to have a global minimum SS (not just a local min)

### Comparison:

- Hildreth-Lu procedure is computer-time-intensive as compared to Cochrane-Orcutt
   procedure
- The Cochrane-Orcutt procedure iterates to a local minimum and may miss the global minimum SS or residuals

# Lecture 23 Estimating Non-Linear equation by OLS

### **Estimating Quadratic Equation by OLS**

Consider the relations of variables that provide U-shaped or inverted U-shaped curves. Some time we must use quadratic equations to capture the relationship. We introduce the square of the independent variable and include in regression. For U-shaped (convex) curves the coefficient of the quadratic term is positive. For Inverted-U-shaped (or concave) curves the coefficient of the quadratic term is negative.

Consider the quadratic equation (subscripts ignored)

$$Y = a + b X + c X^2 + e$$

Applying optimization (minimize the sum of squared residuals)

$$Min Z = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Y - \hat{Y})^2 = \sum_{i=1}^{n} (Y - a - bX - cX^2)^2$$

We have three parameters (a, b and c) so we need three partial derivatives set equal to zero First partial derivative w.r.t. a

$$Z_{a} = \sum (Y - a - bX - cX^{2})^{2-1} \cdot \frac{\partial}{\partial a} (Y - a - bX - cX^{2}) = 0$$
$$\sum (Y - a - bX - cX^{2})(-1) = 0$$

This gives the first normal equation as

$$\sum Y = na + b \sum X + c \sum X^2$$

Differentiating w.r.t. b & c we get the other normal equations

$$\sum XY = a \sum X + b \sum X^2 + c \sum X^3$$

And

$$\sum X^2 Y = a \sum X^2 + b \sum X^3 + c \sum X^4$$

Hence for estimating a regression equation

We need to solve three normal equations

$$\sum Y = na + b \sum X + c \sum X^{2}$$
$$\sum XY = a \sum X + b \sum X^{2} + c \sum X^{3}$$
$$\sum X^{2}Y = a \sum X^{2} + b \sum X^{3} + c \sum X^{4}$$

For which we need all the columns and sums shown in the three normal equations. However, in the example, we will use LINEST function of Microsoft Excel.



Example I:

# Example I Modified: Centering X

| Y      | x=X-Xbar       | x <sup>2</sup> | Old Result of =LINEST() with quadratic term |
|--------|----------------|----------------|---------------------------------------------|
| 16     | -7             | 49             | 0.443842922 -4.019343891 18.26373626        |
| 9      | -6             | 36             | 0.048788309 0.802761669 2.791214341         |
| 11     | -5             | 25             | 0.967180725 3.133612459                     |
| 7      | -4             | 16             | 176.8193957 12                              |
| 11     | -3             | 9              | 3472.565676 117.8343245                     |
| 12     | -2             | 4              |                                             |
| 16     | -1             | 1              | Result of =LINEST()                         |
| 10     | 0              | 0              | 0.443842922 3.082142857 14.51493213         |
| 19     | 1              | 1              | 0.048788309 0.187269163 1.218210622         |
| 23     | 2              | 4              | 0.967180725 3.133612459                     |
| 29     | 3              | 9              | 176.8193957 12                              |
| 34     | 4              | 16             | 3472.565676 117.8343245                     |
| 35     | 5              | 25             | Regression line                             |
| 48     | 6              | 36             | $Y = 14.51 - 3.082 X + 0.44 X^2$            |
| 62     | 7              | 49             | SSR from linear equation: 930.5107          |
| . Y ca | n be better p  | redicted       | $Correl(X,X^2) = 0.97$                      |
| . No c | correlation in | expl vars      | $Correl(x,x^2) = 0$                         |

Example II:

| Y  | Х  | X <sup>2</sup> | 80                                 |                                   |            |    |             |
|----|----|----------------|------------------------------------|-----------------------------------|------------|----|-------------|
| 56 | 1  | 1              | <b>60</b> ·                        | ****                              | ****       |    |             |
| 52 | 2  | 4              | 40 -                               | · ·                               | <u> </u>   |    |             |
| 65 | 3  | 9              |                                    |                                   | ÷ *        | •  |             |
| 58 | 4  | 16             | 20 -                               |                                   |            | •  |             |
| 60 | 5  | 25             | 0 -                                |                                   | 1          |    |             |
| 65 | 6  | 36             |                                    | 0 5                               | 10         | 15 | 20          |
| 58 | 7  | 49             | I                                  | Result of =LINEST() with qua      |            |    | ratic term  |
| 58 | 8  | 64             | -0.49                              | 95475113                          | 5.09903038 | 31 | 48.96703297 |
| 59 | 9  | 81             | 0.0                                | 77250272                          | 1.27107414 | 15 | 4.419543828 |
| 55 | 10 | 100            | 0.92                               | 16745492                          | 4.96168903 | 88 |             |
| 44 | 11 | 121            | 66.0                               | 66.06816929 12                    |            | 2  |             |
| 27 | 12 | 144            | 3252.979703 295.4202973            |                                   | '3         |    |             |
| 36 | 13 | 169            | Regression line                    |                                   |            |    |             |
| 25 | 14 | 196            | $Y = 48.97 + 5.099 X - 0.4955 X^2$ |                                   |            |    |             |
| 14 | 15 | 225            | SSR f                              | SSR from linear equation: 1308.17 |            |    |             |

### **Estimating Cubic Equation by OLS**

Consider the relations of Cubic nature like the Total Cost function. We introduce the square and cube of the independent variable and include in regression. For Total Cost function, to get the required shape the coefficient of quadratic term is expected to be negative and that of cubic term should be non-zero. Consider the quadratic equation (subscripts ignored)

$$Y = a + b X + c X^2 + d X^3 + e$$

Applying optimization (minimize the sum of squared residuals)

$$Min Z = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Y - \hat{Y})^2 = \sum_{i=1}^{n} (Y - a - bX - cX^2 - dX^3)^2$$

This time we have four parameters (a, b, c and d) so we need four partial derivatives set equal to zero. First partial derivative w.r.t. a

$$Z_{a} = \sum (Y - a - bX - cX^{2} - dX^{3})^{2-1} \cdot \frac{\partial}{\partial a} (Y - a - bX - cX^{2} - dX^{3}) = 0$$
$$\sum (Y - a - bX - cX^{2} - dX^{3})(-1) = 0$$

This gives the first normal equation as

$$\sum Y = na + b \sum X + c \sum X^2 + d \sum X^3$$

Differentiating w.r.t. b & c we get the other normal equations. Hence for estimating a regression equation  $Y = a + b X + c X^2 + d X^3 + e$ , We need to solve four normal equations

$$\sum Y = na + b \sum X + c \sum X^2 + d \sum X^3$$
$$\sum XY = a \sum X + b \sum X^2 + c \sum X^3 + d \sum X^4$$
$$\sum X^2Y = a \sum X^2 + b \sum X^3 + c \sum X^4 + d \sum X^5$$
$$\sum X^3Y = a \sum X^3 + b \sum X^4 + c \sum X^5 + d \sum X^6$$

For which we need all the columns and sums shown in the three normal equations. However, in the example, we will use LINEST function of Microsoft Excel.

|      |    |                |                | 5000             |            |               |                     | _                  |
|------|----|----------------|----------------|------------------|------------|---------------|---------------------|--------------------|
| Y    | Х  | X <sup>2</sup> | X <sup>3</sup> | 4000             |            |               | •                   | _                  |
| 1241 | 1  | 1              | 1              | 4000             |            |               | <b>**</b>           |                    |
| 1470 | 2  | 4              | 64             | 3000             |            | · • • · · ·   |                     | _                  |
| 1680 | 3  | 9              | 729            | 2000             |            |               |                     | _                  |
| 1900 | 4  | 16             | 4096           | 1000             | •          |               |                     |                    |
| 2100 | 5  | 25             | 15625          | 1000             |            |               |                     | _                  |
| 2290 | 6  | 36             | 46656          | o —              | 1          | 1             |                     | 7                  |
| 2500 | 7  | 49             | 117649         | 0                | 5          | 10            | 15                  | 20                 |
| 2680 | 8  | 64             | 262144         | Result c         | of =LINES  | T() with qua  | dratic and cubi     | c term             |
| 2900 | 9  | 81             | 531441         | -9.8497E-06      | -1.3       | 805954071     | 221.8711228         | 1023.7397          |
| 3150 | 10 | 100            | 1000000        | 1.33877E-05      | 1.6        | 511087348     | 18.97304895         | 48.58616           |
| 3350 | 11 | 121            | 1771561        | 0.998021737      | 43         | .86210487     |                     |                    |
| 3450 | 12 | 144            | 2985984        | 1849.811606      |            | 11            |                     |                    |
| 3650 | 13 | 169            | 4826809        | 10676470.21      | 21         | 162.72668     |                     |                    |
| 3700 | 14 | 196            | 7529536        | Regresssion: Y = | = 1023.7 + | 221.87 X - 1. | $306 X^2 + 0.00000$ | 984 X <sup>3</sup> |
| 4000 | 15 | 225            | 11390625       | SSR from linea   | ir equatio | on: 45562.3   | 3                   |                    |

Consider the following example:

## **Estimating Cobb-Douglas Production Function**

Consider the Cobb-Douglas Production Function

 $Q = A l^{\alpha} k^{\beta}$ 

Taking log on both sides

$$\ln Q = \ln A + \beta \ln l + \gamma \ln k$$

Let  $Y = \ln Q$ ,  $\alpha = \ln A$  and  $L = \ln l$ ,  $K = \ln k$  then the above can be written as

$$Y = \alpha + \beta L + \gamma K$$

That can be estimated by OLS.

Consider the following example:

| Cobb | -Dοι | iglas Pi | roduction | Function |      | $y = 2 L^a K^b$      |       |
|------|------|----------|-----------|----------|------|----------------------|-------|
| Y    | L    | К        | ln Y      | ln L     | ln K | Estimates of Cobb-Do | uglas |
| 2.5  | 2    | 1.1      | 0.40      | 0.30     | 0.04 | Production Function  | on    |
| 2.8  | 3    | 1.1      | 0.45      | 0.48     | 0.04 | 0.4098673 0.3191     | 0.283 |
| 3.6  | 3    | 2        | 0.56      | 0.48     | 0.30 | 0.0086869 0.015      | 0.007 |
| 4    | 4    | 2        | 0.60      | 0.60     | 0.30 | 0.999333 0.0038      |       |
| 4.7  | 4    | 3        | 0.67      | 0.60     | 0.48 | 5243.9969 7          |       |
| 5.3  | 4    | 4        | 0.72      | 0.60     | 0.60 | 0.1490903 1E-04      |       |
| 4.3  | 5    | 2        | 0.63      | 0.70     | 0.30 |                      |       |
| 5    | 5    | 3        | 0.70      | 0.70     | 0.48 | Elasticity (labor)   | 0.41  |
| 5.6  | 5    | 4        | 0.75      | 0.70     | 0.60 | Elasticity (Capital) | 0.32  |
| 6.2  | 5    | 5        | 0.79      | 0.70     | 0.70 | Returns to scale     | 0.73  |

# Transformation of models and Use of OLS

| Method            | Transformation                | <b>Regression equation</b>       |
|-------------------|-------------------------------|----------------------------------|
| Standard linear   | Not required                  | y = b_ + b_x                     |
| Exponential model | Dependent variable = log(y)   | log(y) = b + b x                 |
| Logarithmic model | Independent variable = log(x) | y= b_ + b_log(x)                 |
| Double log        | Dependent variable = log(y),  | log(y)= b  + b log(x)            |
| Cobb Douglas      | $Y = A L^{\alpha} K^{\beta}$  | $\ln Y = \ln A + \alpha \ln L +$ |

# Interpretation of different functional forms using OLS

| Model                            | Interpretation                                                            | Marginal<br>Effect | Elasticity     |
|----------------------------------|---------------------------------------------------------------------------|--------------------|----------------|
| Linear in variable<br>Y = a + bX | One unit change in X will cause, on the average, 'b' units of change in Y | b                  | $b\frac{X}{Y}$ |
| Double log form<br>(log-log)     | One percent change in X will cause, on the average, 'b' % change in Y     | $b\frac{Y}{X}$     | b              |
| Level-Log<br>$Y = a + b \ln X$   | One percent change in X is expected to change Y by $\frac{100}{b}$ units  | $\frac{b}{X}$      | $\frac{b}{Y}$  |
| Log-Level form<br>lnY = a + b X  | When X changes by one unit, Y will change by approximately (b*100)%       | bY                 | bX             |
| For interpretation, we a         | ssume that Gauss Markov assumption hold and                               | parameters are s   | ignificant     |
| Marginal effect of X is de       | efined as the partial derivative of Y w.r.t. X                            |                    |                |
| marginal effect and elas         | ticity $\left(\frac{dy X}{dx Y}\right)$ may be computed at mean values of | X and Y            |                |

# **Problems with OLS**

We must take care of

- Outliers
- Non linearity
- Wrong specification
- Missing Variables
- Multicollinearity
- Heteroskedasticity
- Autocorrelation

## Taking care in use of OLS: 7 Questions

- 1. Are the explanatory variables helping the model?
- 2. Are the relationships what we expect?
- 3. Are any of the explanatory variables redundant?
- 4. Are the residuals normal?
- 5. Have all important variables been included?
- 6. How well the model explains the dependent variable?
- 7. Are the results free form MC, HSK & AC?

### Remember that

- Explanatory variables can have categories
- We can use dummy variables for the above
- But if the dependent variable is categorical, do not use simple regression (Examples)
- Take care of origin and scale (magnitude of coefficients is better interpretable)
- Model not linear in parameters cannot be transformed for OLS

# Lecture 24 Introduction to Stata- I

The stat environment looks as follows:



We have five windows visible. The main window is the output window in which you see all the output. Below that you will see a command window in which we can type and enter/execute the commands. Although stata has a good graphic user interface, we can efficiently use the command line for quick and efficient work. On the right you have a variable window in which all the variables will be displayed and below that there is a Properties window which will give the properties of all variables like their names, storage types, display format etc.

The review window on the left will give all the commands that have been executed in the current session. We can just click on any of them to execute them again instead of retyping the command. We have several type of files that we use in Stata. Data files have extension .dta although we can type file names without this extension and they will be treated as dta files. Log files can be also be used to record our session (.smcl or .log). We have also Do files that

perform several operations at a time (.do). These files provide a list of commands that can be executed at one click.

The data files (.dta) are of three types:

- Sample data files Shipped with Stata (opened by sysuse command)
- Files available on the web (using the webuse command)
- Files that you create and save on your hard disk (use command)

Other data files (like MS Excel) can be imported into stata.

### The graphic use interface

A strong graphic user interface is available where we can perform operations by clicking on different icons. This is very user friendly. See some example below:

| File Edit Data Graphics St  | tatistics User Window Help                                 |   |                                             |   |
|-----------------------------|------------------------------------------------------------|---|---------------------------------------------|---|
| 🎽 🗟 🖨 i 🗐 🖻 • 📠 • i i       | Summaries, tables, and tests                               | + |                                             |   |
| Review <b>T</b> # X         | Linear models and related                                  |   | Linear regression                           |   |
| Command _rc                 | Binary outcomes                                            | • | Regression diagnostics                      | • |
| There are no items to show. | Ordinal outcomes                                           | + | ANOVA/MANOVA                                | • |
|                             | Categorical outcomes<br>Count outcomes                     | * | Constrained linear regression               | _ |
|                             | Exact statistics<br>Endogenous covariates                  | * | Censored regression<br>Truncated regression | • |
|                             | Sample-selection models<br>Multilevel mixed-effects models |   | Box-Cox regression                          |   |
|                             | Generalized linear models                                  |   | Quantile regression                         | • |
|                             | Nonparametric analysis                                     | , | Francis in and black and and                |   |

#### The Command window

We can use the command window to type and execute different commands. All that can be performed by the graphic user interface can be performed in the command window. This is undoubtedly very quick way of using stata.

This is useful in many ways

- Typing Commands is less time consuming
- You remember the commands in this way
- It may be helpful if you need to program in Stata

### For the commands

- Use small letters; Stata is case sensitive
- Short names can be used (e.g. d / des instead of describe)
- Syntax can be viewed in the help window
- Underlined part in the syntax is the shortcut
- Commands have options (after typing comma ,)
- We can use conditions with commands (e.g. if, in etc.)

### The 'help' command

The syntax is

### <u>h</u>elp [command or topic] [,options]

The underlined part is the minimum that you should write for help. If we just type *h* describe , we will get a window showing help for 'describe'.

From the graphic user interface, we can click in this order

Help > Stata Command...

and write the command in the window that appears.

Typing '*help help*' in the command window opens the following window:



Typing 'help describe' opens the following window:



Almost all the help windows have the same structure. They show the command, its shortcut, its syntax, description and practical example of the use of the command.

### **Opening files in Stata**

Sample data files Shipped with Stata (type in the command window: sysuse filename)

For the files on the web type *webuse filename*. On the hard disk of your computer (*use path and file name*)

We can use *,clear* as an option.

To open file on your computer using the graphic user interface,

*File > open (brows, find file and open)* 

Alternatively type: use "path and file name" or use "path and file name", clear

To know the files already available with stata type sysuse dir

| sysuse dir  |               |                          |                |
|-------------|---------------|--------------------------|----------------|
| auto.dta    | citytemp.dta  | nlsw88.dta               | tsline2.dta    |
| auto2.dta   | citytemp4.dta | nlswide1.dta             | uslifeexp.dta  |
| autornd.dta | educ99gdp.dta | pop2000.dta              | uslifeexp2.dta |
| bplong.dta  | gnp96.dta     | <pre>sandstone.dta</pre> | voter.dta      |
| bpwide.dta  | lifeexp.dta   | sp500.dta                | xtline1.dta    |
| cancer.dta  | network1.dta  | surface.dta              |                |
| census.dta  | network1a.dta | tsline1.dta              |                |
|             |               |                          |                |

A list of files will be seen in the output window. Any one of them can be opened.

For example, to open the first file type sysuse auto

File will open; a message will appear in the output window. Variables will be show in the variable window. Variable description also will be shown in the properties window. Note that all commands that you have been typing are visible in the review window on the left.

| Stata/IC 13.1 - C:\Program File | es\Stata13\ado\base\a\ | auto.dta - [Results] |               |               |             | _       | _           |                      |
|---------------------------------|------------------------|----------------------|---------------|---------------|-------------|---------|-------------|----------------------|
| File Edit Data Graphics         | Statistics User Wi     | ndow Help            |               |               |             |         |             |                      |
| 📂 🔒 🔿 🗐 💽 • 📖 • 🗈               | 🛃 •   📷 🕋   🛄   @      | 3                    |               |               |             |         |             |                      |
| Review <b>T</b> म ×             |                        |                      |               |               |             | 🔺 Varia | ables       | Ť                    |
| # Command _rc                   | Notes:                 |                      |               |               |             | V       | ariable     | Label                |
| 1 help des                      | help des               |                      |               |               |             | n       | nake        | Make and Model       |
| 2 help dir                      | . help des             |                      |               |               |             | р       | rice        | Price                |
| 3 sysuse dir                    | . help dir             |                      |               |               |             | n       | npg         | Mileage (mpg)        |
| 4 sysuse dir                    |                        |                      |               |               |             | n e     | ep78        | Repair Record 1978   |
| 5 sysuse auto                   | . sysuse dir           |                      |               |               |             | h       | eadroom     | Headroom (in.)       |
|                                 | auto.dta               | bpwide.dta           | citytemp4.dta | network1.dta  | pop2000.dta | t       | runk        | Trunk space (cu. ft. |
|                                 | autornd.dta            | census.dta           | mp96.dta      | nlsw88.dta    | sp500.dta   | - v     | /eight      | Weight (lbs.)        |
|                                 | bplong.dta             | citytemp.dta         | lifeexp.dta   | nlswide1.dta  | surface.dta | le      | ength       | Length (in.)         |
|                                 |                        |                      |               |               |             | t       | urn         | Turn Circle (ft.)    |
|                                 | . sysuse dir           |                      |               |               |             | d       | isplacement | Displacement (cu     |
|                                 | auto.dta               | citytemp.dta         | nlsw88.dta    | tsline2.dta   |             | g       | ear_ratio   | Gear Ratio           |
|                                 | auto2.dta              | citytemp4.dta        | niswidel.dta  | uslifeerp.dta |             | f       | oreign      | Car type             |
|                                 | bplong.dta             | mp96.dta             | sandstone.dta | voter.dta     |             | E       |             |                      |
|                                 | bpwide.dta             | lifeexp.dta          | sp500.dta     | xtline1.dta   |             |         |             |                      |
|                                 | cancer.dta             | network1.dta         | surface.dta   |               |             |         |             |                      |
|                                 | census.dta             | network1a.dta        | tsline1.dta   |               |             |         |             |                      |
|                                 |                        |                      |               |               |             |         |             |                      |
|                                 | . sysuse auto          | Data                 |               |               |             |         |             |                      |
|                                 | (1576 Aucomobile       | Daca)                |               |               |             |         |             |                      |
|                                 |                        |                      |               |               |             | -       |             |                      |
|                                 | 1                      |                      |               |               |             |         |             |                      |
|                                 |                        |                      |               |               |             |         |             |                      |
|                                 | Command                |                      |               |               |             | 4       |             |                      |
|                                 | 1                      |                      |               |               |             | Prop    | ercies      |                      |

### The *describe* command

Describe provides a description of data in the current file.

We use the 'describe' command for description of data in a file. The describe command lists the variables, labels, formats, storage type, number of observations, and date file was created

It can be used mainly in three ways

- *describe*: it will describe all the variables in memory
- *describe variable-names*: this will describe only the variables specified
- *describe variable1-variablen*: this will describe all the variables in range

To use the graphic user interface click as follows:

Data > Describe data > Describe data in memory or in a file

A window will appear asking variable names etc. You need to use the pull-down menu to give the variable names (if file is open)

| File Edit                  | Data Graphics Statistics User                     | Window Help                                            |
|----------------------------|---------------------------------------------------|--------------------------------------------------------|
| 🚰 🗟 🖨 🛛                    | Describe data                                     | Describe data in memory or in a file                   |
| Review<br># Commar         | Data Editor  Create or change data                | Describe data contents (codebook)<br>Inspect variables |
| 1 help help<br>2 help desc | Variables Manager<br>Data utilities               | List data<br>Compactly list variable names 3.1         |
|                            | Sort<br>Combine datasets                          | Summary statistics                                     |
|                            | Matrices, Mata language<br>Matrices, ado language |                                                        |
|                            | Other utilities                                   |                                                        |

Here is what you may see:

| make                                    | A        |
|-----------------------------------------|----------|
| price                                   |          |
| mpg                                     |          |
| headroom                                | E        |
| trunk                                   |          |
| weight                                  |          |
| length                                  |          |
| tum                                     |          |
| displacement                            | <b>v</b> |
| Do not abbreviate valiable fiames       |          |
| Display variable number along with name |          |

Write the variable names with the help of pull down menu and click OK.

## EXAMPLES

sysuse auto

describe

describe mpg price

*describe price – length* 

Typing describe will give the following output:

| . describe    |           |             |            |                        |
|---------------|-----------|-------------|------------|------------------------|
| Contains data | from C:\l | Program Fil | es\Stata13 | \ado\base/a/auto.dta   |
| obs:          | 74        |             |            | 1978 Automobile Data   |
| vars:         | 12        |             |            | 13 Apr 2013 17:45      |
| size:         | 3,182     |             |            | (_dta has notes)       |
|               | storage   | display     | value      |                        |
| variable name | type      | format      | label      | variable label         |
| make          | str18     | %-18s       |            | Make and Model         |
| price         | int       | %8.0gc      |            | Price                  |
| mpg           | int       | %8.0g       |            | Mileage (mpg)          |
| rep78         | int       | %8.0g       |            | Repair Record 1978     |
| headroom      | float     | %6.1f       |            | Headroom (in.)         |
| trunk         | int       | %8.0g       |            | Trunk space (cu. ft.)  |
| weight        | int       | %8.0gc      |            | Weight (lbs.)          |
| length        | int       | %8.0g       |            | Length (in.)           |
| turn          | int       | %8.0g       |            | Turn Circle (ft.)      |
| displacement  | int       | %8.0g       |            | Displacement (cu. in.) |
| gear_ratio    | float     | %6.2f       |            | Gear Ratio             |
| foreign       | byte      | €8.0g       | origin     | Car type               |

Sorted by: foreign

This gives the variable names, the data type, the display type, and any labels if provided with the variables. We get to know the current file at a glance with all variables.

#### The *list* command

The list command lists rows and columns of the data file.

The list command provides the values of observations of data

It can be used mainly in three ways (as in describe)

- *list*: it will list values of all the variables in memory
- *list variable-names*: this will list the values of only the variables specified
- *list variable1-variablen*: this will list values of all the variables in range

Form the Graphic interface:



A window will appear asking variable names etc. You need to use the pull-down menu to give the variable names (if file is open)

| Varial                                        | bles: (leave empty for all variables)        |                            |
|-----------------------------------------------|----------------------------------------------|----------------------------|
|                                               |                                              |                            |
| make                                          | 8                                            | <u>^</u>                   |
| mpg<br>rep7<br>head<br>trunk<br>weig<br>lengt | 8<br>Iroom<br>t<br>ht                        | E                          |
| tum                                           | acement                                      | -                          |
| 6                                             | Truncate string variables                    |                            |
|                                               | o oct liet obeenvation numbers 🔲 Dienlaw all | levels of factor variables |

Select the variables and click OK

|    | price | mpg | rep78 |
|----|-------|-----|-------|
| 1. | 4,099 | 22  | 3     |
| 2. | 4,749 | 17  | 3     |
| 3. | 3,799 | 22  |       |
| 4. | 4,816 | 20  | 3     |
| 5. | 7,827 | 15  | 4     |
|    |       |     |       |
| 6. | 5,788 | 18  | 3     |
| 7. | 4,453 | 26  |       |
| 8. | 5,189 | 20  | 3     |

#### . list price mpg rep78

# Using list with in and if

We can impose conditions for filtered data to be displayed (using 'if'). We can specify rows of data to be displayed ( data 'in' specific rows)

. list price mpg rep78 in 1/5 . list price mpg rep78 in 16/20

|    | price | mpg | rep78 |     | price | mpg | rep78 |
|----|-------|-----|-------|-----|-------|-----|-------|
| 1. | 4,099 | 22  | 3     | 16. | 4,504 | 22  | 3     |
| 2. | 4,749 | 17  | 3     | 17. | 5,104 | 22  | 2     |
| з. | 3,799 | 22  |       | 18. | 3,667 | 24  | 2     |
| 4. | 4,816 | 20  | 3     | 19. | 3,955 | 19  | 3     |
| 5. | 7,827 | 15  | 4     | 20. | 3,984 | 30  | 5     |
|    |       |     |       |     |       |     |       |

Conditions also may be attached

. list price mpg rep78 in 1/20 if price <4000

|     | price | mpg | rep78 |
|-----|-------|-----|-------|
| з.  | 3,799 | 22  |       |
| 14. | 3,299 | 29  | 3     |
| 18. | 3,667 | 24  | 2     |
| 19. | 3,955 | 19  | 3     |
| 20. | 3,984 | 30  | 5     |
|     |       |     |       |

# Lecture 25 Introduction to Stata- II

### The *summarize* Command

The syntax is

<u>Summarize</u> [varlist] [if] [in] [weight] [, options]

From the menu click:

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Summary

statistics

| stics User Window Help       |   |                                    |     |                    |
|------------------------------|---|------------------------------------|-----|--------------------|
| Summaries, tables, and tests | • | Summary and descriptive statistics | • [ | Summary statistics |
| Linear models and related    | • | Frequency tables                   | •   | Means              |
| Binary outcomes              | • | Other tables                       | •   | Proportions        |
| Ordinal outcomes             | • | Classical tests of hypotheses      | •   | Ratios             |
| Categorical outcomes         | • | Newsymptotic tools of humathered   |     | Totals             |

If the file auto is open (*sysuse auto*), summarize will give the following results containing the summary statistics of the variables in the currently open file.

| Obs | Mean                                                                                         | Std. Dev.                                                                                                                                                                                                                                                                                                                                                       | Min                                            | Max                                                        |
|-----|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------|
| 0   |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                 |                                                |                                                            |
| 74  | 6165.257                                                                                     | 2949.496                                                                                                                                                                                                                                                                                                                                                        | 3291                                           | 15906                                                      |
| 74  | 21.2973                                                                                      | 5.785503                                                                                                                                                                                                                                                                                                                                                        | 12                                             | 41                                                         |
| 69  | 3.405797                                                                                     | .9899323                                                                                                                                                                                                                                                                                                                                                        | 1                                              | 5                                                          |
| 74  | 2.993243                                                                                     | .8459948                                                                                                                                                                                                                                                                                                                                                        | 1.5                                            | 5                                                          |
| 74  | 13.75676                                                                                     | 4.277404                                                                                                                                                                                                                                                                                                                                                        | 5                                              | 23                                                         |
| 74  | 3019.459                                                                                     | 777.1936                                                                                                                                                                                                                                                                                                                                                        | 1760                                           | 4840                                                       |
| 74  | 187.9324                                                                                     | 22.26634                                                                                                                                                                                                                                                                                                                                                        | 142                                            | 233                                                        |
| 74  | 39.64865                                                                                     | 4.399354                                                                                                                                                                                                                                                                                                                                                        | 31                                             | 51                                                         |
| 74  | 197.2973                                                                                     | 91.83722                                                                                                                                                                                                                                                                                                                                                        | 79                                             | 425                                                        |
| 74  | 3.014865                                                                                     | .4562871                                                                                                                                                                                                                                                                                                                                                        | 2.19                                           | 3.89                                                       |
| 74  | .2972973                                                                                     | .4601885                                                                                                                                                                                                                                                                                                                                                        | 0                                              | 1                                                          |
|     | Obs<br>0<br>74<br>74<br>69<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74 | Obs         Mean           0         74         6165.257           74         21.2973         69         3.405797           74         2.993243         2.993243         3019.459           74         13.75676         74         3019.459           74         187.9324         74         39.64865           74         197.2973         74         2.972973 | Obs         Mean         Std. Dev.           0 | Obs         Mean         Std. Dev.         Min           0 |

Like the previous commands, summarize can be used as standalone, with variables or with a range of variables.

### EXAMPLES

sysuse auto, clear

summarize

summarize price mpg length

summarize price-length

### The *tabulate* command

The command tabulate provides one way or two way frequency tables.

Syntax of the command is:

tabulate varname [if] [in] [weight] [, tabulate1\_options]

From the menu, the command can be executed by clicking as:

Statistics > Summaries, tables, and tests > Frequency tables > One-way table



The command 'tabulate' needs a variable name. See the following examples:

| . tabulate rep?       | 78    |         |        |
|-----------------------|-------|---------|--------|
| Repair<br>Record 1978 | Freq. | Percent | Cum.   |
| 1                     | 2     | 2.90    | 2.90   |
| 2                     | 8     | 11.59   | 14.49  |
| 3                     | 30    | 43.48   | 57.97  |
| 4                     | 18    | 26.09   | 84.06  |
| 5                     | 11    | 15.94   | 100.00 |
| Total                 | 69    | 100.00  |        |

| tabulate foreign, summarize (mpg) |           |            |       |  |  |  |
|-----------------------------------|-----------|------------|-------|--|--|--|
| Car type                          | Summary   | of Mileage | (mpg) |  |  |  |
|                                   | Mean      | Std. Dev.  | Freq. |  |  |  |
| Domestic                          | 19.826923 | 4.7432972  | 52    |  |  |  |
| Foreign                           | 24.772727 | 6.6111869  | 22    |  |  |  |
| Total                             | 21.297297 | 5.7855032  | 74    |  |  |  |

The above command provides summary statistics of the variable *mpg* according to categories in the variable *foreign*. In this way we use *summarize* as an option of the *tabulate* command. Remember that all options for any command in stata must be given after a comma (,).

In the tabulate command we can tabulate one variable at a time. For example if we need frequency tables for *rep78* and *foreign* (in the file auto), we need to type and execute the tabulate command separately for both the variables.

We have a command *tab1* that does this by specifying both the variable names in one go.

| . tab1 rep78 f | foreign    |         |        |
|----------------|------------|---------|--------|
| -> tabulation  | of rep78   |         |        |
| Repair         |            |         |        |
| Record 1978    | Freq.      | Percent | Cum.   |
| 1              | 2          | 2.90    | 2.90   |
| 2              | 8          | 11.59   | 14.49  |
| 3              | 30         | 43.48   | 57.97  |
| 4              | 18         | 26.09   | 84.06  |
| 5              | 11         | 15.94   | 100.00 |
| Total          | 69         | 100.00  |        |
| -> tabulation  | of foreign |         |        |
| Car type       | Freq.      | Percent | Cum.   |
| Domestic       | 52         | 70.27   | 70.27  |
| Foreign        | 22         | 29.73   | 100.00 |
| Total          | 74         | 100.00  |        |
|                |            |         |        |

# Two way frequency tables

Two way tables can also be created. For this we should not have many categories for the variables (at least one). The following example provides a two way table.

| . tabulate foreign rep78 |   |        |            |    |    |       |  |  |
|--------------------------|---|--------|------------|----|----|-------|--|--|
|                          |   | Repair | Record 197 | 8  |    |       |  |  |
| Car type                 | 1 | 2      | 3          | 4  | 5  | Total |  |  |
| Domestic                 | 2 | 8      | 27         | 9  | 2  | 48    |  |  |
| Foreign                  | 0 | 0      | 3          | 9  | 9  | 21    |  |  |
| Total                    | 2 | 8      | 30         | 18 | 11 | 69    |  |  |

# The tabstat command

The command *tabstat* displays summary statistics for a series of numeric variables. It is a good alternative to *'summarize'* as it allows us to specify the list of statistics to be displayed

# The syntax is

tabstat varlist [if] [in] [weight] [,options]

You can call this command from the menu by clicking:

Statistics > Summaries, tables, and tests > Other tables > Compact table of summary statistics

| 1 | Statistics User Window Help                  |   |   |                                    |   |  |                                       |
|---|----------------------------------------------|---|---|------------------------------------|---|--|---------------------------------------|
| l | Summaries, tables, and tests                 | • |   | Summary and descriptive statistics | • |  |                                       |
|   | Linear models and related<br>Binary outcomes |   |   | Frequency tables                   |   |  |                                       |
| 1 |                                              |   | - | Other tables                       |   |  | Compact table of summary statistics   |
|   | Ordinal outcomes                             | • |   | Classical tests of hypotheses      | • |  | Flexible table of summary statistics  |
|   | Categorical outcomes                         | • |   | Nonparametric tests of hypotheses  | • |  | Table of means, std. dev., and freque |

### EXAMPLES

| • | tabstat | price mpg r | ep78 forei | gn       |          |
|---|---------|-------------|------------|----------|----------|
|   | stats   | price       | mpg        | rep78    | foreign  |
|   | mean    | 6165.257    | 21.2973    | 3.405797 | .2972973 |

The above command (used without specifying any options) provides the means of the variables specified. If you need other statistics, you must use the stats option (after comma) as follows:

| • | tabstat | price mpg, | stats(n m | ean s | d | min | max) |
|---|---------|------------|-----------|-------|---|-----|------|
|   | stats   | price      | mpg       |       |   |     |      |
|   | N       | 74         | 74        |       |   |     |      |
|   | mean    | 6165.257   | 21.2973   |       |   |     |      |
|   | sd      | 2949.496   | 5.785503  |       |   |     |      |
|   | min     | 3291       | 12        |       |   |     |      |
|   | max     | 15906      | 41        |       |   |     |      |
|   |         |            |           |       |   |     |      |

You can do the same by any categorical variable (e.g. the variable *foreign* has two categories)
| . tabstat price weight mpg rep78, by(foreign)                    |                      |                      |                      |                      |  |  |  |  |
|------------------------------------------------------------------|----------------------|----------------------|----------------------|----------------------|--|--|--|--|
| Summary statistics: mean<br>by categories of: foreign (Car type) |                      |                      |                      |                      |  |  |  |  |
| foreign                                                          | price                | weight               | mpg                  | rep78                |  |  |  |  |
| Domestic<br>Foreign                                              | 6072.423<br>6384.682 | 3317.115<br>2315.909 | 19.82692<br>24.77273 | 3.020833<br>4.285714 |  |  |  |  |
| Total                                                            | 6165.257             | 3019.459             | 21.2973              | 3.405797             |  |  |  |  |

Bothe the above options can be used together as follows:

| by categ | ories of: f | oreign (Ca | ar type) |
|----------|-------------|------------|----------|
| foreign  | price       | mpg        |          |
| Domestic | 52          | 52         |          |
|          | 6072.423    | 19.82692   |          |
|          | 3097.104    | 4.743297   |          |
| Foreign  | 22          | 22         |          |
|          | 6384.682    | 24.77273   |          |
|          | 2621.915    | 6.611187   |          |
| Total    | 74          | 74         |          |
|          | 6165.257    | 21.2973    |          |
|          | 2949.496    | 5,785503   |          |

### The *correlate* command

This command provides the correlation or covariance matrix of the variables specified.

The syntax is

correlate [varlist] [if] [in] [weight] [,correlate\_options]

If you want to use the graphic user interface instead, click on:

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Correlations and covariances

| Summaries, tables, and tests                                                            | •     | Summary and descriptive statistics                                | •      | Summary statistics                              |
|-----------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------|--------|-------------------------------------------------|
| inear models and related<br>Binary outcomes<br>Ordinal outcomes<br>Categorical outcomes | * * * | Frequency tables<br>Other tables<br>Classical tests of hypotheses | ><br>> | Means<br>Proportions<br>Ratios                  |
| Count outcomes                                                                          | •     | Distributional plots and tests                                    |        | Pairwise comparisons of means                   |
| Generalized linear models<br>Treatment effects                                          | •     | Multivariate test of means, covariances, and normality            |        | Confidence intervals<br>Normal CI calculator    |
| Endogenous covariates<br>Sample-selection models                                        |       |                                                                   |        | Binomial CI calculator<br>Poisson CI calculator |
| Exact statistics                                                                        | •     |                                                                   | 6      | Correlations and coupring or                    |

### EXAMPLES

| <pre>. correlate price mpg weight length (obs=74)</pre> |         |         |        |        |  |  |  |  |
|---------------------------------------------------------|---------|---------|--------|--------|--|--|--|--|
|                                                         | price   | mpg     | weight | length |  |  |  |  |
| price                                                   | 1.0000  |         |        |        |  |  |  |  |
| mpg                                                     | -0.4686 | 1.0000  |        |        |  |  |  |  |
| weight                                                  | 0.5386  | -0.8072 | 1.0000 |        |  |  |  |  |
| length                                                  | 0.4318  | -0.7958 | 0.9460 | 1.0000 |  |  |  |  |

If you need summary statistics along with correlations, do the following

| . correlate pr<br>(obs=74)       | rice mpg we                           | ight        | lengt                | th, means        |        |    |        |
|----------------------------------|---------------------------------------|-------------|----------------------|------------------|--------|----|--------|
| Variable                         | М                                     | lean        | Sto                  | i. Dev.          | Mi     | .n | Max    |
| price                            | 6,165                                 | .26         | 2                    | 2,949.5          | 3,29   | 1  | 15,906 |
| mpg                              | 21.2                                  | 973         | 5.                   | 785503           | 1      | .2 | 41     |
| weight                           | 3,019                                 | .46         | 77                   | 7.1936           | 1,76   | 0  | 4,840  |
| length                           | 187.9                                 | 324         | 22                   | 2.26634          | 14     | 2  | 233    |
|                                  | price                                 |             | mpg                  | weight           | length |    |        |
| price<br>mpg<br>weight<br>length | 1.0000<br>-0.4686<br>0.5386<br>0.4318 | 1.0<br>-0.0 | 0000<br>8072<br>7958 | 1.0000<br>0.9460 | 1.0000 |    |        |

Use the covariance option if you need the covariance matrix instead.

| <ul> <li>correlate price mpg weight length, covariance<br/>(obs=74)</li> </ul> |                      |          |         |        |  |  |  |
|--------------------------------------------------------------------------------|----------------------|----------|---------|--------|--|--|--|
|                                                                                | price                | mpg      | weight  | length |  |  |  |
| price                                                                          | 8.7 <del>e+</del> 06 |          |         |        |  |  |  |
| mpg                                                                            | -7996.28             | 33.472   |         |        |  |  |  |
| weight                                                                         | 1.2e+06              | -3629.43 | 604030  |        |  |  |  |
| length                                                                         | 28360.3              | -102.514 | 16370.9 | 495.79 |  |  |  |

# Lecture 26 Introduction to Stata- III

#### Data Management in Stata

#### **Importing Data**

Data can be imported into stata from various types of files including Microsoft Excel files, raw data files, text files, csv files etc.

We can use the following commands in Stata to import files

• import excel: for importing .xls or .xlsx files

it has the syntax: import excel [using] filename [, import\_excel\_options]

- infix: is used for fixed format files
- Infile: is used for free format files
- insheet: to import ASCII text data
- input: enter data from keyboard

For example let us import an Excel file

From the menu click on:

#### File > Import > Excel spread sheet (or others)



Now brows, select your file and open

| 📰 Imp  | oort Exce                                                                                             | el        |          |          |                              |  |  |
|--------|-------------------------------------------------------------------------------------------------------|-----------|----------|----------|------------------------------|--|--|
| Excel  | file:                                                                                                 | avi\Deskt | on\lectu | re26Vide | leos\import vlsv             |  |  |
| Works  | Worksheet:                                                                                            |           |          |          |                              |  |  |
| Shee   | t1 A1:D1                                                                                              | 6         |          |          | <ul> <li>✓ A1:D16</li> </ul> |  |  |
| Im     | ✓ Import first row as variable names     Variable case: preserve ▼       □ Import all data as strings |           |          |          |                              |  |  |
| Previe | ew: (shov                                                                                             | ving rows | 2-16 o   | f 16)    |                              |  |  |
|        | У                                                                                                     | x1        | x2       | x3       | <u>^</u>                     |  |  |
| 2      | 1                                                                                                     | 69        | 25       | 2        | =                            |  |  |
| 3      | 5                                                                                                     | 68        | 23       | 5        |                              |  |  |
| 4      | 8                                                                                                     | 69        | 26       | 2        |                              |  |  |
| 5      | 9                                                                                                     | 65        | 29       | 6        |                              |  |  |
| 6      | 10                                                                                                    | 67        | 24       | 3        |                              |  |  |
| 7      | 11                                                                                                    | 62        | 28       | 5        |                              |  |  |
| 8      | 12                                                                                                    | 63        | 15       | 2        | <b>T</b>                     |  |  |
|        |                                                                                                       |           |          |          | OK Cancel                    |  |  |

Select import variables names as first row and click OK

#### **Entering Data**

Click on the icon 'data editor (edit)'



Start entering data (as in Excel). Variable names may be changed

| Fi   | Data Editor (Edit)<br>le Edit View<br>; 🛃   📭 🛝 | - [Untitled]<br>Data Tools | -            | -      |       |           |            |         |         | Variable names<br>can be changed<br>here |
|------|-------------------------------------------------|----------------------------|--------------|--------|-------|-----------|------------|---------|---------|------------------------------------------|
|      | v                                               | ar1[2]                     | 30           |        |       |           |            |         |         |                                          |
| 0    | var1                                            |                            |              | *      | Var   | riables   |            |         | Ļ       |                                          |
| Sng  | 1 3                                             | 20                         |              |        | 4     | Filter va | riables he | re      |         |                                          |
| psh  | 2 :                                             | 30                         |              |        |       | Variable  | Lai        | bel     |         |                                          |
| l St |                                                 |                            |              |        |       | var1      |            |         |         |                                          |
|      |                                                 |                            |              | =      |       |           |            |         |         |                                          |
|      |                                                 |                            |              |        | Pro   | operties  |            |         | <b></b> |                                          |
|      |                                                 |                            |              |        | E.    | variables |            |         |         |                                          |
|      |                                                 |                            |              |        |       | Name      |            | var1    |         |                                          |
|      |                                                 |                            |              |        |       | Lauc      |            |         |         |                                          |
|      |                                                 |                            |              |        |       | Туре      |            | float   | _       |                                          |
|      |                                                 |                            |              | *      | F     | Format    |            | %9.0g   | *       |                                          |
| Rea  | dy                                              | Vars: 1 Or                 | der: Dataset | Obs: 2 | Filte | er: Off   | Mode: Ed   | lit CAP | NUM     |                                          |

### Variable Names

Variable name in Stata should be according to some conventions:

- Up to 32 characters, 12 displayed
- 0 to 9, A to Z, \_ ,
- First letter cannot be number
- Variable names are Case sensitive

Valid examples include

- mpg
- mpg2
- mpg\_domestic
- \_2014

Variable manager is used to change variable names. We can also use the *rename* command (*rename oldname newname*)

### **Creating Variables**

Variables are created and/or modified using the *generate* and *replace* commands.

The command generate creates a new variable. The value of new variable is given by the =exp

It has a syntax:

generate [type] newvar[:lblname] =exp [if] [in]

The command can also be executed using the menu:

Data > Create or change data > Create new variable

| File Edit    | Data Graphics | Statistics | User | Window | Help                          |  |
|--------------|---------------|------------|------|--------|-------------------------------|--|
| 💕 🖬 🛤 l      | Describe d    | ata        | •    | 00     |                               |  |
| Review       | Data Editor   | r.         | •    |        |                               |  |
| # Comman     | Create or c   | hange data | •    | Crea   | ste new variable              |  |
| 10 set obs 1 | Variables N   | lanager    |      | Crea   | ate new variable (extended)   |  |
| 11 generate  | Data utiliti  | 24         |      | Oth    | er variable-creation commands |  |
| 12 set obs 2 |               |            | -    | - Cl   |                               |  |

A window will open in which you need to fill the required information

| 🗐 generate - Create a new variable    |        |
|---------------------------------------|--------|
| Main if/in                            |        |
| Variable type:<br>Float               |        |
| Contents of variable                  |        |
| Specify a value or an expression      |        |
|                                       | Create |
| Fill with missing data                |        |
| Attach value label:                   |        |
| · · · · · · · · · · · · · · · · · · · |        |
|                                       | Submit |

#### EXAMPLES

generate income = 0

gen income = 0

*gen income = salary + bonus* 

gen int agesquare = age^2

gen Ingdp = In(gdp)

### The replace command

The *replace* is used along with generate creates a new variable or modify existing variables

The use of the command 'in' is helpful.

It has the syntax:

replace oldvar =exp [if] [in] [, nopromote]

From the menu click on:

Data > Create or change data > Change contents of variable

| File Edit    | Data Graphics Statistics User | Window Help                                                                                                    |
|--------------|-------------------------------|----------------------------------------------------------------------------------------------------------------|
| 💕 🔒 📾        | Describe data                 | 100                                                                                                            |
| Review       | Data Editor                   |                                                                                                                |
| # Comman     | Create or change data         | Create new variable                                                                                            |
| 10 set obs 1 | Variables Manager             | Create new variable (extended)                                                                                 |
| 11 generate  | Data utilities                | Other variable-creation commands                                                                               |
| 12 set obs 2 |                               |                                                                                                                |
| 13 replace v | Sort                          | Change contents of variable                                                                                    |
| 14 rename v  | Combine datasets              | Other variable-transformation commands                                                                         |
| 15 help gen  | Matrices, Mata language       | Drop or keep observations                                                                                      |
| 16 help gen  | Matrices ado Janguage         | Belleville and a second se |

The following window will open

| 🗐 replace - Replace contents of    | existing variable |        | _   □   <del>×</del> |
|------------------------------------|-------------------|--------|----------------------|
| Main if/in                         |                   |        |                      |
| Variable:                          |                   |        |                      |
| New contents: (value or expression | n)                |        | Crasta               |
|                                    |                   |        |                      |
| Preserve type                      |                   |        |                      |
|                                    |                   |        |                      |
|                                    |                   |        |                      |
|                                    |                   |        |                      |
| 0 B 🗈                              | ОК                | Cancel | Submit               |

Fill in the variable name and then click on the if/in ribbon to type a condition to change the variable values and click OK.

#### EXAMPLE

The following are examples to use from the command window:

replace income = 1 in 5

```
replace income = 1000 if income == 0
```

replace highincome = 1 if income > 5000

gen age2 = 0

replace age2 = age^2

replace age2 = age^2 , nopromote

### **Operators in stata**

| Arithmetic                           | Logical                | Relational                  |  |  |  |
|--------------------------------------|------------------------|-----------------------------|--|--|--|
| + add                                | ! not (also ~ is used) | == equal                    |  |  |  |
| - subtract                           | or                     | != not equal (or $\sim$ =)  |  |  |  |
| * multiply                           | & and                  | < less than                 |  |  |  |
| / divide                             |                        | > greater than              |  |  |  |
| <ul> <li>raise to a power</li> </ul> |                        | <= less than or equal to    |  |  |  |
| + (In strings)                       |                        | >= greater than or equal to |  |  |  |

The following usual operators are used in Stata

### Functions

Type *help mathfun* to know all functions. Here are some examples

| abs(x)   | Absolute value of x            |
|----------|--------------------------------|
| int(x)   | Integer of x                   |
| log(x)   | Logarithm                      |
| sqrt(x)  | Square root of x               |
| round(x) | Round x to the nearest integer |

### Assigning labels to variables

Variable labels are useful to understand what the variables contain. Label provides *data labels* and *variable labels*. They are helpful in understanding the data

We use the *label variable* command for assigning labels to variables.

To label the dataset as a whole use the following command

label data ["label"]

Example: label data "1978 Automobile Data"

To create variable labels use the following: *label variable varname ["label"]* Example: label variable make "Make and Model" **Creating Notes** The command 'note' places a note in the data. It can be general or attached to specific variable. To create notes for a variable, use the following command: notes [evarname]: text **Examples:** Creating notes for variables sysuse auto note make: this is a note for variable make To see the note type and enter: note make Examples: Creating general notes sysuse auto note: this version is from June 2014 To see the note type and enter: notes or notes dta **Dropping or Keeping Variables** The commands *drop* and *keep* are used to drop specific rows of data or entire variables. Syntax To Drop variables drop varlist To Drop observations drop if exp To Drop a range of observations drop in range [if exp]

To Keep variables

keep varlist

To Keep observations that satisfy specified condition

keep if exp

To Keep a range of observations

keep in range [if exp]

### Using log files and do files

Log files are used to record your session. You can use .smcl or .log or .txt depending on needs

On the other hand, do files are used to run several commands at a time or replicate your results.

To open log files click on the icon similar to notepad on the menue



You can create file of extension .smcl or .log (.log can be opened in notepad)



Log files record all what you do. You can suspend log files in order to stop recording the session. The file can be resumed later. Finally we can close a log file to see it later. The files of extension .do are text editor files that can execute several commands at a time. You can click on the following icon in order to open a do file. In the file you can type a list of command and execute those in one go.

| File     | Edit | Data | Graphics       | Statistics | User      | Window | Help |
|----------|------|------|----------------|------------|-----------|--------|------|
| <u> </u> |      |      | • <u>   </u> • | 2 - 2      | 3 I 💷     | 00     |      |
| leview   | ,    | T    | 4 ×            |            |           | -      |      |
| Co       | mman | d    | _rc p          | New Do-t   | ile Edito | or     |      |

Here is a snap of a do file editor with a list of commands.

| 🛃 Do   | -file Editor - Untitled.do* | -                |     | - 0    | X    | 3 |
|--------|-----------------------------|------------------|-----|--------|------|---|
| File   | Edit View Project Tools     |                  |     |        |      |   |
| 00     | 🤊 🕫 🔊 🖉 🖌 🗛 🛤 💭 🗧           | <b>€</b> . §' ±· |     | ÷      |      |   |
|        | ntitled.do*                 |                  | E   | xecute | (do) | × |
| 1      | *we can run all the fol     | lowing comma     | nds | at on  | e go |   |
| 2      | sysuse auto, clear          |                  |     |        |      | 6 |
| 3      | describe mpg length         |                  |     |        |      |   |
| 4      | tabstat mpg length, sta     | ts (n mean sd    | )   |        |      |   |
| 5      | summarize mpg length if     | price < 500      | 0   |        |      |   |
| 6      | notes                       |                  |     |        |      |   |
| •      | III                         |                  |     |        |      | Þ |
| Execut | te (do)                     | Line: 1, Col: 48 | CAP | NUM    | OVR  |   |

# Lecture 27

# Introduction to Stata- IV

### Video learning modules

*Lecture*27 *is based on video tutorials for Stata. The students are required to consult the videos in lecture* 27 *in order to revise them.* 

# Lecture 28

## Introduction to Stata- V

### Graphs in Stata

Stata has a very good capability to produce graphs with the following properties

- Rich set of tools
- Publishable quality of graphs
- GUI / Command line both
- Graph Editor
- Graphs can be copied/saved

You can create graphs by clicking on:



### Examples

#### Histograms

We can create Histograms for both continuous and categorical variables

Syntax: <u>histogram varname [if] [in] [weight] [, [continuous\_opts | discrete\_opts] options]</u>

From the menu: *Graphics > Histogram* 



Specify the variable and click OK

|                                                                                         |          |                                      |                               |                |                                         | There                                 | Logona      |            | 0, |  |
|-----------------------------------------------------------------------------------------|----------|--------------------------------------|-------------------------------|----------------|-----------------------------------------|---------------------------------------|-------------|------------|----|--|
| Data<br>Variable:<br>price                                                              |          |                                      | ata are cont<br>ata are discr | inuous<br>rete |                                         |                                       |             |            |    |  |
| mpg<br>rep78<br>headroon<br>trunk<br>weight<br>length<br>tum<br>displacen<br>gear_ratio | n E      | f bins<br>f bins<br>mit of first bin |                               |                | ● Y axis<br>● D<br>● Fr<br>● Fr<br>● Pe | ensity<br>action<br>equency<br>ercent | r           |            |    |  |
| Bar pro                                                                                 | operties |                                      |                               |                | Add                                     | height la<br>Bar labe                 | abels to ba | r <b>s</b> |    |  |

It would be better to use the command window as well to practice.

#### EXAMPLES:

#### sysuse auto

#### histogram price



sysuse auto

### histogram length



The following example produces a normal curve as well (using the option 'normal')

sysuse auto

histogram rep78, discrete normal



The following example shows how to create histogram by specifying grids etc.

### sysuse auto

histogram mpg, discrete freq addlabels ylabel(,grid) xlabel(10(5)40)



### **PIE Charts**

Syntax: graph pie varlist [if] [in] [weight] [, options]

Menu: *Graph > Pie* 



The following window will open. Fill the required information and click OK.

| Main    | if/in            | Weights    | Options   | Slices    | Titles    | Legend | Overall | By |      |      |
|---------|------------------|------------|-----------|-----------|-----------|--------|---------|----|------|------|
| Pie     | chart            |            |           |           |           |        |         |    |      |      |
| 0       | Graph by         | categories |           |           |           |        |         |    |      |      |
|         | Graph by         | vanables   |           |           |           |        |         |    |      |      |
| C       | ategory v        | variable:  |           | Variable: | (optional | 0      |         |    |      |      |
|         |                  |            | •         |           |           |        |         |    |      |      |
| p       | nake             |            | Â         |           |           |        |         |    |      |      |
| 1       | npg<br>ep78      |            |           |           |           |        |         |    |      |      |
| h       | ieadroom<br>runk | 1          | THE STATE |           |           |        |         |    |      |      |
| w<br>le | veight<br>ength  |            |           |           |           |        |         |    |      |      |
| tu      | um<br>lisplacem  | ent        | -         |           |           |        |         |    |      |      |
|         |                  |            |           |           |           |        |         |    |      |      |
|         |                  |            |           |           |           |        |         |    |      |      |
|         |                  |            |           |           |           |        |         |    |      |      |
| 0.00    |                  |            |           |           |           | -      |         |    | <br> | <br> |

### EXAMPLES

### sysuse auto

graph pie, over(rep78) plabel(\_all name) title("Repair Record 1978")



### An Example of PIE chart

Enter the following data in a new file and use the commands *list* and *describe* and *summarize* to practice summary statistics.

### . list

|    | Statis~s | Mathem~s | Econom~s | Accoun~g | Law |
|----|----------|----------|----------|----------|-----|
| 1. | 52       | 66       | 56       | 84       | 84  |
| 2. | 56       | 69       | 58       | 86       | 86  |
| 3. | 68       | 87       | 59       | 89       | 77  |
| 4. | 85       | 78       | 62       | 69       | 75  |
| 5. | 66       | 82       | 85       | 78       | 72  |

Type and enter the following in the command window:

graph pie\_all

Or type

graph pie Statistics Mathematics Economics Accounting Law



Typing the following will produce a pied chart with labels:



graph pie\_all, plabel(\_all name) title("Distribution of marks")

### Two way graphs

When more than one variable is involved, we create twoway graphs like scatter plots

They can be created by using the menu as:

Graphics > Twoway graph



In the window that appears, click on create

| 💼 twoway - Twoway grapł                                     | 15                                                          | states, Same 1        | - • ×  |
|-------------------------------------------------------------|-------------------------------------------------------------|-----------------------|--------|
| Plots if/in Yaxis X                                         | axis Titles Legend (                                        | Overall By            |        |
| Plot definitions:                                           | Create<br>Edit<br>Disable<br>Enable<br>Move Up<br>Move Down | )                     |        |
| Press "Create" to define a s<br>constructed by creating mul | catter, line, range, or other<br>tiple plot definitions.    | plot. Overlaid graphs | may be |
| 00                                                          | ОК                                                          | Cancel                | Submit |

The following will appear, select a scatter plot, specify variables and click *Accept*.

| I Plot 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | test in                                                                                              | x     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------|
| Plot if/in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                      |       |
| Choose a plot category and type<br>Basic plots<br>Category and type<br>Category and type<br>Categ | Basic plots: (select type)       Scatter       Line       Connected       Area       Bar       Spike |       |
| Plot type: (scatterplot)<br>Y variable:<br>price<br>Add a second y axis on right<br>Marker properties<br>Marker water                                                                                                                                                                                                              | Sort on x variable                                                                                   |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Accept Cancel Su                                                                                     | ıbmit |

To select titles of axis use the ribbons identified below:

| 💼 twoway - Twoway graph |                               |
|-------------------------|-------------------------------|
| Plots if/in Yaxis X     | axis Titles Legend Overall By |
| Plot definitions:       |                               |
| Plot 1<br>Plot 2        | Create                        |
|                         | Edit                          |
|                         |                               |
|                         |                               |
|                         | Move Op                       |
|                         |                               |
| (scatter price length ) |                               |
| 00                      | OK Cancel Submit              |

The result will be a scatter plot



The above scatter plot can also be created by the following command: twoway (scatter price length), ytitle(Price) xtitle(Length) title(Price and Length)

**Examples of Scatter Plots** (type *sysuse auto, clear* to open the file auto.dta) *twoway (scatter price length), by(foreign)* 



twoway (scatter price length), by(rep78)



twoway (scatter price length) (lfit price length)



twoway (scatter price length) (lfit price length), by(foreign)



### LINE plots

Using the menu, Line plots are created in the same way as scatter plots. Open the file sp500 which is a file available with stata.

Syntax: [twoway] line varlist [if] [in] [, options]

sysuse sp500

twoway (line open date)



sysuse sp500

*twoway (connected close date)* 



Other twoway plots also can be produced in the same way.

# Lecture 29 Introduction to Stata- VI

#### **Regression with Stata**

Regression analysis in stata is mainly done by the *regress* command.

Syntax:

regress depvar [indepvars] [if] [in] [weight] [, options]

The menu also can be used by clicking on:

Statistics > Linear models and related > Linear regression

| File Edit Data Graphics | Statis | tics User Window Help                  |   |                                                          |   |
|-------------------------|--------|----------------------------------------|---|----------------------------------------------------------|---|
| 🚰 🖟 🌒 🗐 💽 • 📖 •         |        | Summaries, tables, and tests           | • |                                                          |   |
| Review <b>T 4</b> ×     |        | Linear models and related              | • | Linear regression                                        |   |
| # Command _rc           |        | Binary outcomes                        |   | Regression diagnostics                                   | • |
| 1 help reg              | 1      | Ordinal outcomes                       | • | ANOVA/MANOVA                                             | • |
|                         |        | Categorical outcomes<br>Count outcomes | • | Constrained linear regression<br>Nonlinear least squares |   |

A window will appear that requires to specify the dependent and independent variables and other information.



Fill in the information and click OK.

#### STEP by STEP example of regression

First open a file auto.dta

sysuse auto, clear

Summarize and analyze the data using related commands

Look at various two-way graphs

graph matrix price mpg length weight, half



For several related variables perform the following:

To get a Scatter with a line fit:

twoway (scatter price weight) (Ifit price weight)



twoway (scatter price mpg) (lfit price mpg)



Check for outliers:

graph matrix price mpg length weight, half



Now let us perform a regression by using the regress command:

### regress price rep78 weight foreign

You will get the following result that has the usual interpretation as you did with the regression in Microsoft Excel. (see the relevant lectures)

| Source                              | SS                                            | df                                           | MS                            |                                  | Number of obs                                  | =            | 69                                       |
|-------------------------------------|-----------------------------------------------|----------------------------------------------|-------------------------------|----------------------------------|------------------------------------------------|--------------|------------------------------------------|
| Model<br>Residual                   | 286198394<br>290598565                        | 3 95<br>65 44                                | 399464.8<br>70747.15          |                                  | F( 3, 65)<br>Prob > F<br>R-squared             | =<br>=       | 21.34<br>0.0000<br>0.4962                |
| Total                               | 576796959                                     | 68 84                                        | 82308.22                      |                                  | Root MSE                                       | =            | 2114.4                                   |
| price                               | Coef.                                         | Std. Err                                     | . t                           | P> t                             | [95% Conf.                                     | In           | terval]                                  |
| rep78<br>weight<br>foreign<br>_cons | 150.5706<br>3.388606<br>3444.848<br>-5689.552 | 321.5908<br>.4238388<br>824.5214<br>1776.277 | 0.47<br>8.00<br>4.18<br>-3.20 | 0.641<br>0.000<br>0.000<br>0.002 | -491.6905<br>2.542141<br>1798.165<br>-9237.021 | 7<br>5<br>-2 | 92.8318<br>4.23507<br>091.531<br>142.083 |

regress price mpg length foreign

| Source                            | SS                                         | df                                       | MS                                      |                                  | Number of obs                                   | = 74                                          |
|-----------------------------------|--------------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------|-------------------------------------------------|-----------------------------------------------|
|                                   |                                            |                                          |                                         |                                  | F(3, 70)                                        | = 12.14                                       |
| Model                             | 217367689                                  | 3 7                                      | 72455896.3                              |                                  | Prob > F                                        | = 0.0000                                      |
| Residual                          | 417697707                                  | 70                                       | 5967110.1                               |                                  | R-squared                                       | = 0.3423                                      |
|                                   |                                            |                                          |                                         |                                  | Adj R-squared                                   | = 0.3141                                      |
| Total                             | 635065396                                  | 73 8                                     | 3699525.97                              |                                  | Root MSE                                        | = 2442.8                                      |
|                                   |                                            |                                          |                                         |                                  |                                                 |                                               |
|                                   |                                            |                                          |                                         |                                  |                                                 |                                               |
| price                             | Coef.                                      | Std. Er                                  | rr. t                                   | P> t                             | [95% Conf.                                      | Interval]                                     |
| price<br>mpg                      | Coef.<br>-139.0814                         | Std. E:                                  | rr. t<br>56 -1.69                       | P> t                             | [95% Conf.<br>-303.0434                         | Interval]<br>24.88062                         |
| price<br>mpg<br>length            | Coef.<br>-139.0814<br>59.61193             | Std. En<br>82.2096<br>23.9052            | rr. t<br>56 -1.69<br>25 2.49            | P> t <br>0.095<br>0.015          | [95% Conf.<br>-303.0434<br>11.93442             | Interval]<br>24.88062<br>107.2894             |
| price<br>mpg<br>length<br>foreign | Coef.<br>-139.0814<br>59.61193<br>2644.771 | Std. En<br>82.2090<br>23.9052<br>761.893 | rr. t<br>56 -1.69<br>25 2.49<br>12 3.47 | P> t <br>0.095<br>0.015<br>0.001 | [95% Conf.<br>-303.0434<br>11.93442<br>1125.227 | Interval]<br>24.88062<br>107.2894<br>4164.315 |

#### **Post regression Analysis**

Use the following to get your trend values and residuals:

Predict phat

predict e, residual

*list price phat e in 1/20* 

The above will create new variables phat (the trend values through the predict command) and the variable 'e' for the residuals. You can use the list command to see the new columns of variables.

|          | price          | phat                 | е                      |
|----------|----------------|----------------------|------------------------|
| 1.<br>2. | 4,099<br>4,749 | 5166.044<br>5086.496 | -1067.045<br>-337.4963 |
| 3.       | 3,799          | 4093.03              | -294.0297              |
| 4.<br>5. | 4,816          | 6040.327<br>8285.644 | -1224.327<br>-458.6438 |
|          | .,             |                      |                        |
| 6.       | 5,788          | 7629.952             | -1841.952              |
| 7.       | 4,453          | 3655.928             | 797.072                |
| 8.       | 5,189          | 6278.774<br>7050 292 | -1089.774              |
| 10.      | 4,082          | 6417.856             | -2335.856              |
|          |                |                      |                        |

See if the residuals follow the assumption of normality

### histogram e,normal



The above shows that the residuals are not normally distributed.

One reason of errors not being normally distributed is that the outcome (dependent) variable is not normally distributed.





We can transform the variable price.

Let us try to transform price to be normally distributed by trying taking log or square or other powers (*ladder* and *gladder* commands can help us)

| Transformation  | formula       | chi2(2) | P(chi2) |
|-----------------|---------------|---------|---------|
| cubic           | price^3       | 44.97   | 0.000   |
| square          | price^2       | 33.77   | 0.000   |
| identity        | price         | 21.77   | 0.000   |
| square root     | sqrt(price)   | 15.82   | 0.000   |
| log             | log(price)    | 10.49   | 0.005   |
| 1/(square root) | 1/sqrt(price) | 6.62    | 0.037   |
| inverse         | 1/price       | 4.71    | 0.095   |
| 1/square        | 1/(price^2)   | 1.75    | 0.416   |
| 1/cubic         | 1/(price^3)   | 6.77    | 0.034   |
|                 |               |         |         |

. ladder price

The inverse and 1/square have the smallest chi-square but let us look at the graphs The gladder gives a graph to analyze the situation (it may take some time to display the graph)

gladder price



Let us transform the variable price.

gen priceinv=1/price

reg priceinv mpg length foreign

predict e1, residual

histogram e1, normal

First you will get the regression results, then the following diagram.



Now the residuals form regressing inverse of price looks somehow normal so we use it in our regression. To have the kernel density,type:

### Kdensity e, normal



Post regression tests

To test for Multicollinearity and other problems, look at the following:

We have two different tests for Heteroskedasticity; the IM test and the hottest commands are used.

#### IM TEST (White Test)

. estat imtest

Cameron & Trivedi's decomposition of IM-test

| Source                                     | chi2                 | df          | р                          |
|--------------------------------------------|----------------------|-------------|----------------------------|
| Heteroskedasticity<br>Skewness<br>Kurtosis | 5.44<br>3.54<br>0.01 | 8<br>3<br>1 | 0.7099<br>0.3152<br>0.9402 |
| Total                                      | 8.99                 | 12          | 0.7040                     |

This shows that there is heteroskedasticity.

The second test is hettest

```
. estat hettest
```

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of priceinv

chi2(1) = 0.05 Prob > chi2 = 0.8215

This also shows that there is heteroskedasticity.

To check for Multicollinearity use the VIF (variance inflation factor) command

| Variable                 | VIF                  | 1/VIF                            |
|--------------------------|----------------------|----------------------------------|
| length<br>mpg<br>foreign | 3.47<br>2.77<br>1.50 | 0.288507<br>0.361338<br>0.664942 |
| Mean VIF                 | 2.58                 |                                  |

### . vif

As the values of VIF are less than 5, there is no multicollinearity detected.

Another test the linktest is used. The linktest command performs a model specification test for single-equation models.

The null hypothesis is that the model is specified correctly. As the variable \_hatsq is significant so the model is not specified correctly.

#### . linktest

| Source                | SS                               | df                              | MS                     |                         | Number of obs                     | =             | 74                            |
|-----------------------|----------------------------------|---------------------------------|------------------------|-------------------------|-----------------------------------|---------------|-------------------------------|
| Model<br>Residual     | 1.4404e-07<br>1.2585e-07         | 2 7.20<br>71 1.77               | 019e-08<br>726e-09     |                         | F(2, /1)<br>Prob > F<br>R-squared | =             | 40.63<br>0.0000<br>0.5337     |
| Total                 | 2.6989e-07                       | 73 3.69                         | 971e-09                |                         | Root MSE                          | =             | 4.2e-05                       |
| priceinv              | Coef.                            | Std. Err.                       | t                      | P> t                    | [95% Conf.                        | Int           | terval]                       |
| hat<br>hatsq<br>_cons | 4.065435<br>-7724.915<br>0002905 | .9123827<br>2279.33<br>.0000888 | 4.46<br>-3.39<br>-3.27 | 0.000<br>0.001<br>0.002 | 2.246196<br>-12269.77<br>0004675  | 5<br>-3:<br>( | .884675<br>180.059<br>0001135 |

There is another test (missing variable). The command is ovtest. Here it shows that there may be some missing variables in the model that has been specified.

. ovtest

```
Ramsey RESET test using powers of the fitted values of priceinv
Ho: model has no omitted variables
F(3, 67) = 3.87
Prob > F = 0.0129
```

#### Testing for autocorrelation

As autocorrelation is normally a time series phenomenon, we change our file an open a time series data file and use the Durbin Watson test. Type and enter the following:

webuse klein, clear

tsset yr

regress consump wagegovt

estat dwatson

estat dwatson

Durbin-Watson d-statistic( 2, 22) = .3217998

estat durbinalt, small

Durbin's alternative test for autocorrelation

| lags (p) | F      | df        | Prob > F |
|----------|--------|-----------|----------|
| 1        | 35.035 | ( 1, 19 ) | 0.0000   |

H0: no serial correlation

There is evidence that autocorrelation exists as we can reject the H0 of absence of autocorrelation (P value for F is less than 5%)
#### **REMEDIES for Heteroskedasticity**

White developed an estimator for standard errors that is robust to the presence of heteroskedasticity. Use the robust option with regression.

Remember we had transformed the outcome variable to 1/p. Now let us just use price. The errors will be heteroskedastic.

| Source   | SS        | df     |      | MS     |       | Number of obs | =   | 74      |
|----------|-----------|--------|------|--------|-------|---------------|-----|---------|
|          |           |        |      |        |       | F( 3, 70)     | =   | 12.14   |
| Model    | 217367689 | 3      | 7245 | 5896.3 |       | Prob > F      | =   | 0.0000  |
| Residual | 417697707 | 70     | 596  | 7110.1 |       | R-squared     | =   | 0.3423  |
|          |           |        |      |        |       | Adj R-squared | =   | 0.3141  |
| Total    | 635065396 | 73     | 8699 | 525.97 |       | Root MSE      | =   | 2442.8  |
|          | •         |        |      |        |       |               |     |         |
| price    | Coef.     | Std. 1 | Err. | t      | P> t  | [95% Conf.    | Int | cerval] |
| mpg      | -139.0814 | 82.20  | 966  | -1.69  | 0.095 | -303.0434     | 24  | 1.88062 |
| length   | 59.61193  | 23.90  | 525  | 2.49   | 0.015 | 11.93442      | 10  | 07.2894 |
| foreign  | 2644.771  | 761.8  | 912  | 3.47   | 0.001 | 1125.227      | 41  | 164.315 |
| _cons    | -2861.984 | 602    | 6.6  | -0.47  | 0.636 | -14881.66     | 9   | 9157.69 |

. reg price mpg length foreign

### . estat hettest

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of price
```

| chi2(1)     | = | 6.61   |
|-------------|---|--------|
| Prob > chi2 | = | 0.0102 |

This shows heteroskedasticity.

We can not run the regression with robust option

reg price mpg length foreign, robust

Standard errors will change, coefficients remain the same

## Remedy for autocorrelation

Run the analysis with the Prais-Winston command, specifying the Cochran-Orcutt option.

### Business Econometrics by Dr Sayyid Salman Rizavi

Iteration 99: rho = 0.9343 Iteration 100: rho = 0.9343

Cochrane-Orcutt AR(1) regression -- iterated estimates

| Source            | SS                       | df            |                | MS               |                | Number of obs                      | = 21                                       |
|-------------------|--------------------------|---------------|----------------|------------------|----------------|------------------------------------|--------------------------------------------|
| Model<br>Residual | .793843269<br>160.925175 | 1<br>19       | .7938<br>8.469 | 343269<br>974606 |                | F( 1, 19)<br>Prob > F<br>R-squared | = 0.09<br>= 0.7628<br>= 0.0049<br>= 0.0475 |
| Total             | 161.719018               | 20            | 8.085          | 95092            |                | Root MSE                           | = -0.0475<br>= 2.9103                      |
| consump           | Coef.                    | Std. 1        | Err.           | t                | P> t           | [95% Conf.                         | Interval]                                  |
| wagegovt<br>_cons | .4785928<br>69.74173     | 1.56<br>17.56 | 327<br>433     | 0.31<br>3.97     | 0.763<br>0.001 | -2.793369<br>32.97917              | 3.750555<br>106.5043                       |
| rho               | .9342685                 |               |                |                  |                |                                    |                                            |

Durbin-Watson statistic (original) 0.321800 Durbin-Watson statistic (transformed) 0.848176

After iterations dw has improved a bit. It is better to use models other than least square (AR1,

ARIMA, lagged variable, GLS)

# Lecture 30

### **Simultaneous Equation Models**

OLS deals with single equations. We have a response variable and some explanatory variables. In fact, variables in real life may be a cause as well as an effect. The interdependence of variables may give rise to simultaneity bias if OLS is used. If we consider the demand and supply model or the national income model, we can quickly observe that variables may depend on each other. For example income is influenced by consumption level but consumption level itself depends on income levels.

To handle such relationships, we use simultaneous models with multiple equations where dependent variable in one equation may be the explanatory variable in some other equation. Consider the following examples of simultaneous models:

#### The Market Model

$$Q_d = \alpha_0 + \alpha_1 P + \alpha_2 I + e_1$$
$$Q_s = \beta_0 + \beta_1 P + \beta_2 T + e_2$$
$$Q_d = Q_s$$

#### Liquidity and Profitability

 $\begin{aligned} PROFITABILITY &= \alpha_0 + \alpha_1 LIQUIDITY + \alpha_i F_i + e_1 \\ LIQUIDITY &= \beta_0 + \beta_1 PROFITABILITY + \alpha_i G_i + e_2 \\ F_i \text{ AND } G_i \text{ are matrices of determinants of prof and liq} \end{aligned}$ 

The National Income (Macroeconomic) Model

$$Y_t = C_t + I_t + G_t$$
$$I_t = \alpha_0 + \alpha_1 Y_t$$
$$C_t = \beta_0 + \beta_1 Y_t + e_2$$

#### **Endogenous and Exogenous Variables**

Consider the following model

$$Y_1 = \alpha_0 + \alpha_1 Y_2 + \alpha_2 X_1 + e_1$$
$$Y_2 = \beta_0 + \beta_1 Y_1 + \beta_2 X_2 + e_2$$

The number of unknowns is 4 and the number of equations is 2. To solve the model, the number of equations should be equal to No of unknowns. Note that  $Y_1$  and  $Y_1$  cause each other. Let us assume that  $X_1$  and  $X_1$  are already given. Then we are left with two variables to be solved by two equations which is possible. The already given variables or the variables whose values externally (from outside the model) determined are called exogenous variables. The remaining variables whose values we seek by solving the model are called endogenous variables. Here  $X_1$  and  $X_2$  are exogenous and  $Y_1$  and  $Y_2$  are endogenous variables.

#### **Practice Question:**

Consider

$$Q_d = \alpha_0 + \alpha_1 P + \alpha_2 I + e_1$$
$$Q_s = \beta_0 + \beta_1 P + \beta_2 T + e_2$$
$$Q_d = Q_s$$

Identify Exogenous and endogenous variables.

#### Example:

$$Y_{1} = \alpha_{0} + \alpha_{1}Y_{2} + \alpha_{2}Y_{3} + \alpha_{3}X_{1} + e_{1}$$
$$Y_{2} = \beta_{0} + \beta_{1}Y_{1} + \beta_{2}Y_{3} + \beta_{3}X_{2} + e_{2}$$
$$Y_{3} = \gamma_{0} + \gamma_{1}Y_{1} + \gamma_{2}Y_{2} + \gamma_{3}X_{3} + e_{3}$$

• We have three equations so must have three endogenous variables

•  $Y_1$ ,  $Y_2$  and  $Y_3$  are endogenous

• All remaining variables X<sub>1</sub>, X<sub>2</sub> and X<sub>3</sub> are exogenous

#### **Identification Problem**

An equation (not model) can be Unidentified or Under-identified, exactly identified or Over identified. What do we need to do if OLS cannot be applied? we need to transform the model to reduced form.

**Reduced form equation:** equations that express endogenous variables as functions only of exogenous variables and disturbances. OLS can be applied to reduced-from equation ( no endogenous variables on RHS). We need to solve and get reduced from equation for each Endogenous Variable.

No of endogenous variables in a model = no of reduced form equations

Example of simultaneous model is

$$Y_1 = \alpha_0 + \alpha_1 Y_2 + \alpha_2 X_1 + e_1$$
$$Y_2 = \beta_0 + \beta_1 Y_1 + \beta_2 X_2 + e_2$$

After identifying the endogenous variables, we transform the model in to reduced form which

may be like this

$$Y_1 = \pi_{10} + \pi_{11}X_1 + \pi_{12}X_2 + v_1$$
$$Y_2 = \pi_{20} + \pi_{21}X_1 + \pi_{22}X_2 + v_2$$

 $\beta_i$  are called structural parameters.  $\pi_{ij}$  are called reduced form coefficients.

- Unidentified or Under-identified: if we cannot express the structural parameters of an equation in terms of reduced form coefficients
- Exactly identified: if we CAN express the structural parameters of an equation in terms of reduced form coefficients in one way
- Over identified: if we CAN express the structural parameters of an equation in terms of reduced form coefficients in more than one way

**Exclusion principle:** consider a two equation system; For an equation to be identified, there should be at least one exogenous variable that is excluded from the equation i.e. the variable

does not exist in the equation but must be found on the RHS of the other equation.

### Example:

Consider the model

$$Y_{1} = \alpha_{0} + \alpha_{1}Y_{2} + \alpha_{2}X_{1} + e_{1} \dots \dots \dots \dots (1)$$
$$Y_{2} = \beta_{0+}\beta_{1}Y_{1} + \beta_{2}X_{2} + e_{2} \dots \dots \dots \dots (2)$$

Substituting the value of  $Y_2$  from equation 2 in equation 1 and solving for  $Y_1$  gives

$$Y_1 = \frac{\alpha_0 + \alpha_1 \beta_0}{1 - \alpha_1 \beta_1} + \frac{\alpha_2}{1 - \alpha_1 \beta_1} X_1 + \frac{\alpha_1 \beta_2}{1 - \alpha_1 \beta_1} X_2 + u_1$$

Where  $u_1$  contains expressions with residuals

The above can be written as

$$Y_1 = \pi_{10} + \pi_{11}X_1 + \pi_{12}X_2 + u_1$$

$$Y_1 = \pi_{10} + \pi_{11}X_1 + \pi_{12}X_2 + u_1$$

is a reduced from equation. Now substituting this expression for in equation 2, we get

$$Y_2 = (\beta_0 + \beta_1 \pi_{11}) + \beta_1 \pi_{11} X_1 + (\beta_1 \pi_{12} + \beta_2) X_2 + \beta u_1 + e_2$$

$$Y_{2} = \frac{\beta_{0} + \alpha_{0}\beta_{1}}{1 - \alpha_{1}\beta_{1}} + \frac{\beta_{1}\alpha_{2}}{1 - \alpha_{1}\beta_{1}}X_{1} + \frac{\beta_{2}}{1 - \alpha_{1}\beta_{1}}X_{2} + u_{2}$$
$$Y_{2} = \pi_{20} + \pi_{21}X_{1} + \pi_{22}X_{2} + u_{2}$$

**Results:** 

$$Y_1 = \alpha_0 + \alpha_1 Y_2 + \alpha_2 X_1 + e_1$$
$$Y_2 = \beta_{0+} \beta_1 Y_1 + \beta_2 X_2 + e_2$$

The above model is now transformed into reduced form equations

$$Y_1 = \pi_{10} + \pi_{11}X_1 + \pi_{12}X_2 + u_1$$
$$Y_2 = \pi_{20} + \pi_{21}X_1 + \pi_{22}X_2 + u_1$$

Where reduced form coefficients are symbols for some expression in the structural parameters

The reduced form coefficients

Business Econometrics by Dr Sayyid Salman Rizavi

$$\pi_{10} = \frac{\alpha_0 + \alpha_1 \beta_0}{1 - \alpha_1 \beta_1}, \\ \pi_{11} = \frac{\alpha_2}{1 - \alpha_1 \beta_1}, \\ \pi_{12} = \frac{\alpha_1 \beta_2}{1 - \alpha_1 \beta_1}, \\ \pi_{20} = \frac{\beta_0 + \alpha_0 \beta_1}{1 - \alpha_1 \beta_1}, \\ \pi_{21} = \frac{\beta_1 \alpha_2}{1 - \alpha_1 \beta_1}, \\ \pi_{22} = \frac{\beta_2}{1 - \alpha_1 \beta_1}$$

Solving the above, we can see that we can express the structural parameters ( $\alpha_i$  and  $\beta_i$ ) in the form of reduced form coefficients.

We can easily see that

$$\beta_1 = \frac{\pi_{21}}{\pi_{11}}, \quad \beta_0 = \pi_{20} - \frac{\pi_{21}}{\pi_{11}} \pi_{10}$$
  
and 
$$\beta_2 = \pi_{22} - \frac{\pi_{21}}{\pi_{11}} \pi_{12}$$

As the structural parameters of equation 2 can be expressed in one way in terms of reduced

form coefficients, Equation 2 is exactly identified. Also

$$\alpha_1 = \frac{\pi_{12}}{\pi_{22}}, \quad \alpha_0 = \pi_{10} - \frac{\pi_{12}}{\pi_{22}}\pi_{20}$$
  
and  $\alpha_2 = \pi_{11} - \frac{\pi_{12}}{\pi_{22}}\pi_{21}$ 

As the structural parameters of equation 1 can be expressed in one way in terms of reduced

form coefficients, Equation 1 is also exactly identified

# Lecture 31

# **Simultaneous Equation Models-II**

Let us take another example of identification

#### Example:

Consider the market model

$$Q_d = \alpha_0 + \alpha_1 P + \alpha_2 I + e_1$$
$$Q_s = \beta_0 + \beta_1 P + \beta_2 T + e_2$$
$$Q_d = Q_s$$

This time it is not simple to identify the endogenous variable. We do that with the help of market equilibrium analysis

- Use equilibrium condition  $Q_d = Q_s$
- Remember that in the market model we solve for price and quantity

Endogenous variables are Q and P and Exogenous variables are I and T

To solve, we use the equilibrium condition  $Q_d = Q_s$ 

$$\alpha_0 + \alpha_1 P + \alpha_2 I + e_1 \qquad = \beta_0 + \beta_1 P + \beta_2 T + e_2$$

Now solve for the endogenous variable P

$$P = \frac{(\beta_0 - \alpha_0)}{(\alpha_1 - \beta_1)} + \frac{\beta_2}{(\alpha_1 - \beta_1)}T - \frac{\alpha_2}{(\alpha_1 - \beta_1)}I + \frac{(e_2 - e_1)}{(\alpha_1 - \beta_1)}$$
  
Labeling

$$P = \pi_{10} + \pi_{11}T + \pi_{12}I + v_1$$
$$P = \pi_{10} + \pi_{11}T + \pi_{12}I + v_1$$

Substituting in the demand equation

$$Q = \alpha_0 + \alpha_1(\pi_{10} + \pi_{11}T + \pi_{12}I + v_1) + \alpha_2I + e_1$$
  
Or

$$= (\alpha_0 + \alpha_1 \pi_{10}) + \alpha_1 \pi_{11} T + (\alpha_1 \pi_{12} + \alpha_2) I + (e_1 + \alpha_1 v_1)$$
  
Labeling, we get

$$Q = \pi_{20} + \pi_{21}T + \pi_{22}I + v_2$$

Now we have both reduced forms

$$P = \pi_{10} + \pi_{11}T + \pi_{12}I + v_1$$

$$Q = \pi_{20} + \pi_{21}T + \pi_{22}I + v_2$$
Where  $\pi_{10} = \frac{(\beta_0 - \alpha_0)}{(\alpha_1 - \beta_1)}, \ \pi_{11} = \frac{\beta_2}{(\alpha_1 - \beta_1)}, \ \pi_{12} = -\frac{\alpha_2}{(\alpha_1 - \beta_1)}$ 
And  $\pi_{20} = \alpha_0 + \alpha_1\pi_{10}, \ \pi_{21} = \alpha_1\pi_{11},$ 
 $\pi_{22} = \alpha_1\pi_{12} + \alpha_2$ 

All structural parameters may be expressed in terms of reduced form coefficients (solve to get

the following)

$$\beta_1 = \frac{\pi_{22}}{\pi_{12}}, \beta_0 = \pi_{20} - \frac{\pi_{22}}{\pi_{12}} \pi_{10}, \beta_2 = \pi_{21} - \frac{\pi_{22}}{\pi_{12}} \pi_{11}$$
$$\alpha_1 = \frac{\pi_{21}}{\pi_{11}}, \alpha_2 = \pi_{22} - \frac{\pi_{21}}{\pi_{11}} \pi_{12}, \alpha_0 = \pi_{20} - \frac{\pi_{21}}{\pi_{11}} \pi_{10}$$

Hence both equations are exactly identified

#### Example: under-identified equation

Now let us see a model with one under-identified equation. Consider the model

$$Y_{1} = \alpha_{0} + \alpha_{1}Y_{2} + \alpha_{2}X_{1} + e_{1}$$
$$Y_{2} = \beta_{0} + \beta_{1}Y_{1} + e_{2}$$

Exogenous variables:  $X_1$ ; Endogenous variables:  $Y_1$  and  $Y_2$ 

Substituting value of  $Y_2$  in equation 1

$$Y_1 = \frac{(\alpha_0 + \alpha_1 \beta_0)}{(1 - \alpha_1 \beta_1)} + \frac{\alpha_2}{(1 - \alpha_1 \beta_1)} X_1 + \frac{(\alpha_1 e_2 + e_1)}{(1 - \alpha_1 \beta_1)}$$

Labeling

$$Y_1 = \pi_{10} + \pi_{11}X_1 + V_1$$
$$\pi_{10} = \frac{(\alpha_0 + \alpha_1\beta_0)}{(1 - \alpha_1\beta_1)}, \ \pi_{11} = \frac{\alpha_2}{(1 - \alpha_1\beta_1)}$$

Substituting reduced form of  $Y_1$  in equation 2

$$Y_2 = \beta_0 + \beta_1(\pi_{10} + \pi_{11}X_1 + V_1) + e_2$$

Or 
$$Y_2 = (\beta_0 + \beta_1 \pi_{10}) + \beta_1 \pi_{11} X_1 + (\beta_1 V_1 + e_2)$$
  
Labeling  
 $Y_2 = \pi_{20} + \pi_{21} X_1 + V_2$   
 $\pi_{20} = \beta_0 + \beta_1 \pi_{10}$ 

 $\pi_{21} = \beta_1 \pi_{11}$ 

• The parameters of an unidentified equation have no interpretation, because you do not have enough information to obtain meaningful estimates

#### **Example: One over identified equation**

A model with one over identified equation

$$Y_1 = \alpha_0 + \alpha_1 Y_2 + e_1$$
$$Y_2 = \beta_0 + \beta_1 Y_1 + \beta_2 X_1 + \beta_3 X_2 + e_2$$

Substituting the first equation in second and rearranging,

$$Y_2 = \frac{\beta_0 + \beta_1 \alpha_0}{1 - \alpha_1 \beta_1} + \frac{\beta_2}{1 - \alpha_1 \beta_1} X_1 + \frac{\beta_3}{1 - \alpha_1 \beta_1} X_2 + \beta_1 e_1 + e_2$$

Labeling, we get reduced form for  $Y_2$ 

$$Y_2 = \pi_{20} + \pi_{21}X_1 + \pi_{22}X_2 + \nu_2$$

where

$$\pi_{20} = \frac{\beta_0 + \beta_1 \alpha_0}{1 - \alpha_1 \beta_1}$$
$$\pi_{21} = \frac{\beta_2}{1 - \alpha_1 \beta_1}$$
$$\pi_{22} = \frac{\beta_3}{1 - \alpha_1 \beta_1}$$

Substituting the reduced form for  $Y_2$  in the first structural equation

$$Y_{1} = \alpha_{0} + \alpha_{1}(\pi_{20} + \pi_{21}X_{1} + \pi_{22}X_{2} + v_{2}) + e_{1}$$

$$Y_{1} = \alpha_{0} + \alpha_{1}\pi_{20} + \alpha_{1}\pi_{21}X_{1} + \alpha_{1}\pi_{22}X_{2} + \alpha_{1}v_{2} + e_{1}$$

$$Y_{1} = \pi_{10} + \pi_{11}X_{1} + \pi_{12}X_{2} + e_{1}$$
Where

$$\pi_{10} = \alpha_0 + \alpha_1 \pi_{20}$$
$$\pi_{11} = \alpha_1 \pi_{21}$$
$$\pi_{12} = \alpha_1 \pi_{22}$$

This means that we can find or express  $\alpha_1$  in terms of reduced from coefficients in two ways, as

follows:

$$\alpha_1 = \frac{\pi_{11}}{\pi_{21}}$$

And in another way as,

$$\alpha_1 = \frac{\pi_{12}}{\pi_{22}}$$

Hence equation 1 is over-identified.

Equation 2 is under-identified.

#### **Order Condition for Identification status**

We can know the identification status by applying order condition without solving or using reduced forms. We compare two parameters (call them  $P_1$  and  $P_2$ ).

•  $P_1$ : Number of exogenous variables excluded from the equation

(number of exogenous variables in the model – number of exogenous variables in the equation)

• P<sub>2</sub>: Number of endogenous variable in the model minus 1

If  $P_1 < P_2$ , the equation is under-identified

If  $P_1 = P_2$ , the equation is exactly identified

If  $P_1 > P_2$ , the equation is over-identified

- If the equation is under-identified, we cannot find its parameters
- If the equation is exactly identified, we use ILS
- If the equation is over-identified, we may use 2SLS

#### Example:

$$Y_1 = \alpha_0 + \alpha_1 Y_2 + \alpha_2 X_1 + e_1$$
$$Y_2 = \beta_{0+} \beta_1 Y_1 + \beta_2 X_2 + e_2$$

Identification status of equation 1

 $P_1 = 1$  ( $X_2$  is the only exog. variable excluded from equation 1)

 $P_2 = 2 - 1 = 1$  (Y<sub>1</sub> and Y<sub>2</sub> are two endogenous variables)

 $P_1 = P_2$  So equation 1 is exactly identified (apply ILS)

Identification status of equation 2

 $P_1 = 1$  ( $X_1$  is the only exog. variable excluded from equation 2)

 $P_2 = 2 - 1 = 1$  (Y<sub>1</sub> and Y<sub>2</sub> are two endogenous variables)

 $P_1 = P_2$  So equation 1 is exactly identified (apply ILS)

Example:

$$Q_d = \alpha_0 + \alpha_1 P + \alpha_2 I + e_1$$
$$Q_s = \beta_0 + \beta_1 P + \beta_2 T + e_2$$
$$Q_d = Q_s$$

Identification status of equation 1

 $P_1 = 1$  (*T* is the only exog. variable excluded from equation 1)  $P_2 = 2 - 1 = 1$  (*Q* and *P* are two endogenous variables)  $P_1 = P_2$  So equation 1 is exactly identified (apply ILS) Identification status of equation 2

262

 $P_1 = 1$  (*I* is the only exog. variable excluded from equation 2)  $P_2 = 2 - 1 = 1$  (*Q* and *P* are two endogenous variables)  $P_1 = P_2$  So equation 1 is exactly identified (apply ILS)

Example:

$$Y_{1} = \alpha_{0} + \alpha_{1}Y_{2} + \alpha_{2}X_{1} + e_{1}$$
$$Y_{2} = \beta_{0} + \beta_{1}Y_{1} + e_{2}$$

Identification status of equation 1

 $P_1 = 0$  (*No exogenous variable is excluded from equation 1*)

 $P_2 = 2 - 1 = 1$  (Y<sub>1</sub> and Y<sub>2</sub> are two endogenous variables)

 $P_1 < P_2$  So equation 1 is under- identified (no method can be applied) Identification status of equation 2

 $P_1 = 1$  ( $X_1$  is the only exog. variable excluded from equation 2)

 $P_2 = 2 - 1 = 1$  (Y<sub>1</sub> and Y<sub>2</sub> are two endogenous variables)

 $P_1 = P_2$  So equation 1 is exactly-identified (apply ILS)

Example:

$$Y_1 = \alpha_0 + \alpha_1 Y_2 + e_1$$
  
$$Y_2 = \beta_0 + \beta_1 Y_1 + \beta_2 X_1 + \beta_3 X_2 + e_2$$

Identification status of equation 1

 $P_1 = 2$  (No. of exogenous variable excluded from equation 1)

 $P_2 = 2 - 1 = 1$  (Y<sub>1</sub> and Y<sub>2</sub> are two endogenous variables)

 $P_1 > P_2$  So equation 1 is over- identified (apply 2SLS)

Identification status of equation 2

 $P_1 = 0$  (no exog. variable excluded from equation 2)

 $P_2 = 2 - 1 = 1$  (Y<sub>1</sub> and Y<sub>2</sub> are two endogenous variables)

 $P_1 < P_2$  So equation 1 is under-identified (no method can be applied)

Example:

$$Y_{1} = \alpha_{0} + \alpha_{1}Y_{2} + \alpha_{2}Y_{3} + \beta_{2}X_{1} + e_{1}$$
$$Y_{2} = \beta_{0} + \beta_{1}Y_{1} + \beta_{2}Y_{3} + \beta_{3}X_{2} + e_{2}$$
$$Y_{3} = \gamma_{0} + \gamma_{1}Y_{1} + \gamma_{2}Y_{2} + \gamma_{3}X_{3} + e_{3}$$

*Identification status of equation 1:* 

 $P_1 = 2$  (two exogenous variables are excluded from equation 1, one is found in equation 2 and the other in equation 3)

 $P_2 = 3 - 1 = 2$  (Y<sub>1</sub>, Y<sub>2</sub> and Y<sub>3</sub> are three endogenous variables)

 $P_1 = P_2$  So equation 1 is exactly identified (apply ILS)

Identification status of equation 2 & 3:

Applying similar process, we can find that both equation 2 and 3 are exactly identified and we can apply ILS to find the parameters.

# Lecture 32

# **Indirect Least Square (ILS)**

Indirect least square may be applied when an equation is exactly identified. ILS will provide consistent estimates of the structural parameters. Applying OLS to individual equation of a simultaneous equation model does not provide consistent results (simultaneity bias).

#### STEPS

- Apply order condition
- Find the reduced from equations
- Express the structural parameters in terms of reduced form coefficients
- Estimate the reduced form coefficients by OLS
- Calculate the structural parameters

#### Example:

Consider:

$$Y_1 = \alpha_0 + \alpha_1 Y_2 + \alpha_2 X_1 + e_1$$
$$Y_2 = \beta_{0+} \beta_1 Y_1 + \beta_2 X_2 + e_2$$

Applying order condition shows that both equations are exactly identified

Reduced form equations are

$$Y_1 = \pi_{10} + \pi_{11}X_1 + \pi_{12}X_2 + u_1$$
$$Y_2 = \pi_{20} + \pi_{21}X_1 + \pi_{22}X_2 + u_1$$

Expressing the structural parameters in terms of reduced form coefficients :

$$\beta_1 = \frac{\pi_{21}}{\pi_{11}}, \quad \beta_0 = \pi_{20} - \frac{\pi_{21}}{\pi_{11}} \pi_{10}$$
  
and 
$$\beta_2 = \pi_{22} - \frac{\pi_{21}}{\pi_{11}} \pi_{12}$$

and

$$\alpha_1 = \frac{\pi_{12}}{\pi_{22}}, \ \ \alpha_0 = \pi_{10} - \frac{\pi_{12}}{\pi_{22}}\pi_{20}$$

Business Econometrics by Dr Sayyid Salman Rizavi

and 
$$\alpha_2 = \pi_{11} - \frac{\pi_{12}}{\pi_{22}} \pi_{21}$$

Now consider the data (*ILS.xlsx*)

| Y <sub>1</sub> | Y <sub>2</sub> | X1 | X <sub>2</sub> |
|----------------|----------------|----|----------------|
| 25             | 0.8            | 10 | 12             |
| 25             | 0.9            | 8  | 11             |
| 27             | 0.8            | 8  | 12             |
| 29             | 1.2            | 7  | 11             |
| 32             | 1.2            | 6  | 9              |
| 32             | 1.6            | 3  | 8              |
| 33             | 1.9            | 4  | 8              |
| 36             | 2.1            | 5  | 7              |
| 40             | 2              | 4  | 5              |
| 49             | 2              | 2  | 5              |

The OLS estimation of the reduced from equations are

 $Y_1$ =54.96 - 0.245  $X_1$  - 2.359  $X_2$  And  $Y_2$ =3.011 - 0.039  $X_1$  - 0.152  $X_2$ 

Comparing the results

$$Y_{1} = \alpha_{0} + \alpha_{1}Y_{2} + \alpha_{2}X_{1} + e_{1}$$

$$Y_{1}=54.96 - 0.245 X_{1} - 2.359 X_{2}$$

$$Y_{2} = \beta_{0+}\beta_{1}Y_{1} + \beta_{2}X_{2} + e_{2}$$

$$Y_{2}=3.011 - 0.039 X_{1} - 0.152 X_{2}$$

| π<br>10<br>54.96086 | π <sub>11</sub><br>-0.24518 | π<br>12<br>-2.35947 |
|---------------------|-----------------------------|---------------------|
| π                   | π                           | π                   |
| 20                  | 21                          | 22                  |
| 3.010546            | -0.03949                    | -0.15175            |

Using these estimations, we can compute the structural parameters indirectly.

Indirect estimation using the expression of structural parameters in terms of reduced form coefficients gives the following results.

| α                  | α                  | α                  |
|--------------------|--------------------|--------------------|
| <sub>0-ILS</sub>   | 1-ILS              | 2-ILS              |
| 8.152606           | 15.54809           | 0.368888           |
| β <sub>0-ILS</sub> | β <sub>1-ILS</sub> | β <sub>2-ILS</sub> |
| -5.8429            | 0.161086           | 0.228326           |

The estimated equations can thus be written as:

$$Y_1 = 8.15 + 15.55 Y_2 + 0.369 X_1$$
$$Y_2 = -5.84 + 0.161 Y_1 + 0.228 X_2$$

If we would have estimated the structural equations individually by OLS we would have got different and inconsistent results

#### Example:

Consider the demand and supply equations:

$$Q_d = \alpha_0 + \alpha_1 P + \alpha_2 I + e_1$$
$$Q_s = \beta_0 + \beta_1 P + \beta_2 T + e_2$$
$$Q_d = Q_s$$

Applying order condition shows that both equations are exactly identified

Reduced form equations are

$$P = \pi_{10} + \pi_{11}T + \pi_{12}I + v_1$$
$$Q = \pi_{20} + \pi_{21}T + \pi_{22}I + v_2$$

The structural parameters expressed in terms of the reduced from coefficients as:

$$\beta_1 = \frac{\pi_{22}}{\pi_{12}}, \beta_0 = \pi_{20} - \frac{\pi_{22}}{\pi_{12}} \pi_{10}, \beta_2 = \pi_{21} - \frac{\pi_{22}}{\pi_{12}} \pi_{11}$$
$$\alpha_1 = \frac{\pi_{21}}{\pi_{11}}, \alpha_2 = \pi_{22} - \frac{\pi_{21}}{\pi_{11}} \pi_{12}, \alpha_0 = \pi_{20} - \frac{\pi_{21}}{\pi_{11}} \pi_{10}$$

| Quantity | Price | level of | level of technology |
|----------|-------|----------|---------------------|
| Q        | Р     | I        | т                   |
| 5        | 3     | 5        | 0.2                 |
| 6        | 5     | 10       | 0.5                 |
| 7        | 2     | 6        | 0.5                 |
| 4        | 6     | 7        | 0.2                 |
| 6        | 10    | 15       | 0.2                 |
| 9        | 5     | 8        | 0.5                 |
| 11       | 6     | 10       | 0.9                 |
| 7        | 6     | 8        | 0.5                 |
| 6        | 12    | 12       | 0.2                 |
| 12       | 12    | 16       | 0.9                 |

Now consider the data (*ILS.xlsx*)

The OLS estimation of the reduced from equations are

$$P = -0.82 - 2.62 T + 0.9 I$$

$$Q = 2.12 + 8.2 T + 0.15 I$$
Comparing the results
$$P = \pi_{10} + \pi_{11}T + \pi_{12}I + v_1$$

$$P = -0.82 - 2.62 T + 0.9 I$$

$$Q = \pi_{20} + \pi_{21}T + \pi_{22}I + v_2$$

$$Q = 2.12 + 8.2 T + 0.15 I$$

| π <sub>10</sub> | π <sub>11</sub> | $\pi_{12}$      |
|-----------------|-----------------|-----------------|
| -0.82           | -2.62           | 0.9             |
| $\pi_{20}$      | π <sub>21</sub> | π <sub>22</sub> |
| 2.12            | 8.2             | 0.15            |

Using these estimations, we can compute the structural parameters indirectly

Indirect estimation using the expression of structural parameters in terms of reduced form coefficients gives the following results

| $\alpha_{0-ILS}$   | $\alpha_{1-ILS}$   | $\alpha_{2-ILS}$   |
|--------------------|--------------------|--------------------|
| -0.45087           | -3.12665           | 2.958705           |
| β <sub>0-ILS</sub> | β <sub>1-ILS</sub> | β <sub>2-ILS</sub> |
| 2.250948           | 0.161495           | 8.623996           |

With these ILS estimations, the estimated equations can be written as

$$Q_d = -0.45 - 3.13 P + 2.96 I$$
  
 $Q_s = 2.25 + 0.16 P + 8.62 T$ 

If we would have estimated the structural equations individually by OLS we would have got different and inconsistent results

### ILS using Stata

- *reg3* can be used. reg3 is a command for 3SLS (option 2sls can be used)
- For exactly Identified equations: 2SLS Results identical to ILS
- Example II can be done as follows:

```
reg3 q p i, exog(i t) endog (q p) 2sls
```

and

reg3 q p t, exog(i t) endog (q p) 2sls

From the Interface

Statistics  $\rightarrow$  Linear Models  $\rightarrow$  Multiple equation models  $\rightarrow$  three stage least square In a two equation system, at least one variable must be excluded from an equation to make it identified.

To identify the demand equation Technology must appear in the supply equation and Technology must NOT appear in the demand equation.

### **Understanding Identification: Exclusion Restriction**

Consider two points on the same demand curve. Two points on the demand curve show different supply curves. Supply curve shifts through 'shift factors' or 'supply shifters'. Technology is a supply shifter.



The two points on the same demand curve. It must not appear in the demand equation because if it is then it will shift the demand as well. To have two points on the same demand curve, we need an exogenous variable that does not shift the demand curve but only the supply curve. Now consider two points on the same supply curve. Two points on the supply curve show different demand curves. Demand curve shifts through 'shift factors' or 'demand shifters'.

Income level is a demand shifter.



To show both points (different demand curves) Income level must appear in the demand equation. It must not appear in the supply equation because if it is then it will shift the supply

as well. To have two points on the same supply curve, we need an exogenous variable that does not shift the supply curve but only the demand curve.

#### Some notes and assumption on ILS

We can directly write the reduced form equations without solving the model. We need to solve the model to derive the structural parameters from the reduced form coefficients. 2SLS also can be applied to exactly identified equations with the same results as ILS. ILS and 2SLS provide the same results when 2SLS is applied to a single equation. ILS and 3SLS may provide the same results when applied to a complete system. (Park, <u>Canadian Journal of Statistics</u> 01/1974)

#### Assumption of ILS:

- Equations must be exactly identified
- Error terms in all reduced from equations must satisfy all usual assumption of OLS estimation
- No Multicollinearity in exogenous variables
- Sample size not very small (ILS biased for small samples)

## Lecture 33

# **Two Stage Least Square**

We can use 2SLS to estimate the parameters of over-identified equations.

*Stage I:* Derive or write the reduced forms for all endogenous variables on the RHS of the overidentified equation and estimate them using OLS

*Stage II:* find trend value of the above estimated reduced form equations and replace with the variables in the over-identified equation and estimate it using OLS

Consider the model

$$Y_1 = \alpha_0 + \alpha_1 Y_2 + e_1$$
$$Y_2 = \beta_{0+} \beta_1 Y_1 + \beta_2 X_1 + \beta_3 X_2 + e_2$$

Stage I: First equation is over-identified (we will use order condition to verify). As  $Y_2$  is the endogenous variable on the RHS of the first (over-identified) equation, we need to estimate the reduced form for  $Y_2$ 

Stage II: Replace  $Y_2$  with  $\widehat{Y_2}$  (from the reduced form) and estimate it using OLS Let us do it in detail

$$Y_1 = \alpha_0 + \alpha_1 Y_2 + e_1$$
$$Y_2 = \beta_{0+} \beta_1 Y_1 + \beta_2 X_1 + \beta_3 X_2 + e_2$$

#### **Order Condition: Equation 1**

Number of exogenous variables excluded from the equation is 2 which is greater than the Number of endogenous variables in the model minus one (which gives 1) so equation 1 is over-identified. ILS cannot be used.

#### Stage 1

- We need the reduced form for the endogenous variable on the RHS of equation 1
- Y<sub>2</sub> is the variable

Reduced form equations contain only exogenous variables and they contain all the exogenous variables of the model.

$$Y_2 = \pi_{10} + \pi_{11}X_1 + \pi_{12}X_2 + \nu_1$$

272

For 2SLS We do not need to know what the  $\pi_i$  are equivalent to.

Now consider a small data set (2SLS.xlsx) to estimate

 $Y_2 = \pi_{10} + \pi_{11}X_1 + \pi_{12}X_2 + v_1$ 

| Y <sub>1</sub> | Y <sub>2</sub> | X <sub>1</sub> | X <sub>2</sub> |
|----------------|----------------|----------------|----------------|
| 25             | 0.8            | 10             | 12             |
| 25             | 0.9            | 8              | 11             |
| 27             | 0.8            | 8              | 12             |
| 29             | 1.2            | 7              | 11             |
| 32             | 1.2            | 6              | 9              |
| 32             | 1.6            | 3              | 8              |
| 33             | 1.9            | 4              | 8              |
| 36             | 2.1            | 5              | 7              |
| 40             | 2              | 4              | 5              |
| 49             | 2              | 2              | 5              |

After estimating, we need to compute the trend values for  $Y_2$ 

The estimates for  $Y_2 = \pi_{10} + \pi_{11}X_1 + \pi_{12}X_2 + v_1$  are  $Y_2 = 3.011 - 0.039 X_1 - 0.152 X_2$ 

| Trend (Y <sub>2</sub> ) |
|-------------------------|
| 0.794564                |
| 1.025306                |
| 0.873553                |
| 1.0648                  |
| 1.407801                |
| 1.678038                |
| 1.638543                |
| 1.750802                |
| 2.093803                |
| 2.172792                |

This gives the trend values. Stage I is complete now.

In Stage II, we replace the variable Y2 in the original over-identified equation with the trend values from the reduced form of Y2 and run the regression.

The original (over-identified) equation was

$$Y_1 = \alpha_0 + \alpha_1 Y_2 + e_1$$

After replacing Y2 with the estimated Y2, the equation becomes

$$Y_1 = \alpha_0 + \alpha_1 \widehat{Y}_2 + e_1$$

Estimating the following

$$Y_1 = \alpha_0 + \alpha_1 \widehat{Y}_2 + e_1$$

gives the following results

$$Y1 = 12.81 + 13.785 Y2$$

12.81 and 13.785 are the 2SLS estimates of  $\alpha_{0-2SLS}$  and  $\alpha_{1-2SLS}$ . If we would have directly regressed Y1 on Y2 we would have got (not appropriate estimates). 16.03 and 11.6 as  $\alpha_{0OLS}$  and  $\alpha_{1OLS}$ .

#### Example:

Consider the model

$$Q_d = \alpha_0 + \alpha_1 P + e_1$$
$$Q_s = \beta_0 + \beta_1 P + \beta_2 C + \beta_3 T + e_2$$
$$Q_d = Q_s$$

Where

P = Price, Q = Quantity (demanded or supplied)

C = Cost of production T = the level of technology.

- 2SLS is needed for the first equation
- Stage I: First equation is over-identified. As *P* is the endogenous variable on the RHS of the first (over-identified) equation, we need to estimate the reduced form for *P*

Stage II: Replace P with P
 (from the reduced form) in the demand equation and estimate
 it using OLS

Let us do it in detail

$$Q_d = \alpha_0 + \alpha_1 P + e_1$$
$$Q_s = \beta_0 + \beta_1 P + \beta_2 C + \beta_3 T + e_2$$
$$Q_d = Q_s$$

#### Order Condition: Demand equation

Number of exogenous variables excluded from the equation is 2 which is greater than the Number of endogenous variables in the model minus one (which gives 1) so demand equation is over-identified. Here ILS cannot be used.

#### Stage 1

- We need the reduced form for the endogenous variable on the RHS of demand equation
- Q and P are endogenous
- C and T are exogenous variables
- *P* is the variable for which reduced form is needed

Reduced form equations have the following properties

- They contains only exogenous variables
- They contains all the exogenous variables of the model

So the reduced form for P can be written as

$$P = \pi_{10} + \pi_{11}C + \pi_{12}T + v_1$$

For 2SLS we do not need to know what the  $\pi_i$  are equivalent to

Now consider a small data set (2SLS.xlsx) to estimate

$$P = \pi_{10} + \pi_{11}C + \pi_{12}T + v_1$$

After estimating, we need to compute the trend values for P

# Business Econometrics by Dr Sayyid Salman Rizavi

| Q  | Р  | с  | т   |
|----|----|----|-----|
| 5  | 3  | 10 | 0.2 |
| 6  | 5  | 10 | 0.5 |
| 7  | 2  | 9  | 0.5 |
| 4  | 6  | 12 | 0.2 |
| 6  | 10 | 9  | 0.2 |
| 9  | 5  | 8  | 0.5 |
| 11 | 6  | 7  | 0.9 |
| 7  | 6  | 9  | 0.5 |
| 6  | 12 | 9  | 0.2 |
| 12 | 12 | 12 | 0.9 |

The estimates for

$$P = \pi_{10} + \pi_{11}C + \pi_{12}T + v_1$$

are

P = 0.868 + 0.548 C + 1.3683 T

This gives the trend values. Stage I is complete now.

| Trend (P) |
|-----------|
| 6.618038  |
| 7.028532  |
| 6.480933  |
| 7.713237  |
| 6.070439  |
| 5.933333  |
| 5.933059  |
| 6.480933  |
| 6.070439  |
| 8.671056  |

In Stage II, we replace the variable P in the original over-identified equation with the trend values from the reduced form of P and run the regression.

The original (over-identified) equation was

$$Q_d = \alpha_0 + \alpha_1 P + e_1$$

After replacing P with the estimated P, the equation becomes

$$Q = \alpha_0 + \alpha_1 \hat{P} + e_1$$

Estimating the following

$$Q = \alpha_0 + \alpha_1 \hat{P} + e_1$$

gives the following results (parameters written for original equation)

$$Q = 4.1735 + 0.4667 P$$

4.1735 and 0.4667 are the 2SLS estimates of  $\alpha_{0-2SLS}$  and  $\alpha_{1-2SLS}$ . If we would have directly regressed Q on P we would have got (not appropriate estimates). 5.906 and 0.20799 as  $\alpha_{0OLS}$  and  $\alpha_{1OLS}$ 

#### Using Stata for Two Stage Least Square (2SLS)

On the Menu: Statistics > Endogenous covariates > Three-stage least squares

In the window, after providing required information, we need to check the option 2SLS. In the command window (for the model in the first example) type:

That is, reg3 (first over-identified equation)(second reduced from equation), option-2SLS.

|          | Two-stage least-squares regression |        |       |       |          |       |         |                |
|----------|------------------------------------|--------|-------|-------|----------|-------|---------|----------------|
|          | P                                  | F-Stat | -sq"  | "R    | RMSE     | Parms | Obs     | Equation       |
|          | 0.0005                             | 19.70  | 6562  | 0.    | 4.614816 | 1     | 10      | y1             |
|          | 0.0000                             | 24.32  | 8742  | 0.    | .2130211 | 2     | 10      | y2             |
|          |                                    |        |       |       |          |       |         |                |
| nterval] | Conf. I                            | [95%   | ₽≻ t  | t     | i. Err.  | f. St | Coe     |                |
|          |                                    |        |       |       |          |       |         | y1             |
| 20.40554 | 4461 :                             | 7.164  | 0.000 | 4.44  | 106121   | 85 3. | 13.7    | ¥2             |
| 22.90288 | 2061 :                             | 2.72   | 0.016 | 2.71  | 734401   | 75 4. | 12.811  | _cons          |
|          |                                    |        |       |       |          |       |         | y2             |
| .0939948 | 9837                               | 1729   | 0.538 | -0.63 | 526284 - | 44 .0 | 03949   | <b>x1</b>      |
| .0241663 | 7934 -                             | 21     | 0.023 | -2.54 | 598592 - | 32 .0 | 15179   | ж2             |
| 3.585973 | 3512 :                             | 2.43   | 0.000 | 1.15  | 599696 1 | 46 .2 | 3.0105  | _cons          |
|          |                                    |        |       |       |          | v1 v2 | iables: | Endogenous var |
|          |                                    |        |       |       |          | v1 v2 | ablest  | Evogenous veri |

# For example II

In the command window (for the model in the first example) type:

reg3 (q p) (p c t), 2sls

| quation | Obs Par   | ms RM     | ISE "R-            | -sq"  | F-Stat |       | ₽         |
|---------|-----------|-----------|--------------------|-------|--------|-------|-----------|
|         | 10        | 1 2 7004  | 15 -0              | 0499  | 0.00   | 0.000 | -         |
|         | 10        | 2 3.8360  | 15 -0.0<br>188 0.0 | 0644  | 0.24   | 0.788 | 9         |
|         |           |           |                    |       |        |       |           |
|         | Coef.     | Std. Err. | t                  | P≻∣t∣ | [95%   | Conf. | Interval] |
|         |           |           |                    |       |        |       |           |
| P       | . 4666447 | 1.051342  | 0.44               | 0.663 | -1.77  | 4238  | 2.707527  |
| _cons   | 4.173481  | 7.09941   | 0.59               | 0.565 | -10.9  | 5855  | 19.30551  |
|         |           |           |                    |       |        |       |           |
| c       | .5475994  | .8186416  | 0.67               | 0.514 | -1.19  | 7294  | 2.292493  |
| +       | 1.368313  | 4.765419  | 0.29               | 0.778 | -8.78  | 8936  | 11.52556  |
|         |           |           |                    |       |        |       | 10 00000  |

### Using ivregress

In some cases ivregress can be used but prefer reg3.

### For example I

In the command window (for the model in the first example) type:

ivregress 2sls y1 (y2= x1 x2)

*Ivregress 2sls dependent variable (instrumented variable=instruments)* 

| . ivregress 2s                | sls y1 (y2= x      | 1 x2)                |              |                |                                                                       |          |                                           |
|-------------------------------|--------------------|----------------------|--------------|----------------|-----------------------------------------------------------------------|----------|-------------------------------------------|
| Instrumental v                | variables (2S      | LS) regressio        | n            |                | Number of obs<br>Wald chi2(1)<br>Prob > chi2<br>R-squared<br>Root MSE |          | 10<br>24.62<br>0.0000<br>0.6562<br>4.1276 |
| уl                            | Coef.              | Std. Err.            | z            | P≻ z           | [95% Conf.                                                            | In       | terval]                                   |
| y2<br>_cons                   | 13.785<br>12.81175 | 2.778199<br>4.234577 | 4.96<br>3.03 | 0.000<br>0.002 | 8.339831<br>4.512129                                                  | 1:<br>2: | 9.23017<br>1.11137                        |
| Instrumented:<br>Instruments: | y2<br>x1 x2        |                      |              |                |                                                                       |          |                                           |

We can use the option 'first' to see the stage I results

ivregress 2sls y1 (y2= x1 x2), first

### For example II

In the command window (for the model in the first example) type:

ivregress 2sls q (p=ct)

*ilvregress 2sls dependent variable (instrumented variable=instruments)* 

| Instrumental                  | variables | (2SLS) | regression |      |       | Number of obs | =  | 10      |
|-------------------------------|-----------|--------|------------|------|-------|---------------|----|---------|
|                               |           |        |            |      |       | Wald chi2(1)  | =  | 0.25    |
|                               |           |        |            |      |       | Prob ≻ chi2   | =  | 0.6197  |
|                               |           |        |            |      |       | R-squared     | =  |         |
|                               |           |        |            |      |       | Root MSE      | =  | 2.5041  |
|                               |           |        |            |      |       |               |    |         |
| P                             | Coe       | f. S   | td. Err.   | z    | ₽≻≬z≬ | [95% Conf.    | In | terval] |
| р                             | .46664    | 47     | .940349    | 0.50 | 0.620 | -1.376406     | 2  | .309695 |
| _cons                         | 4.1734    | 81 6   | .349905    | 0.66 | 0.511 | -8.272104     | 1  | 6.61907 |
| Instrumented:<br>Instruments: | : p<br>ct |        |            |      |       |               |    |         |

We can use the option 'first' to see the stage I results: ivregress 2sls q (p=ct), first

# Lecture 34 2SLS & 3SLS Models

### Why to use 2SLS?

OLS has only one endogenous variable (dependent). When we have system of equations, we may have several endogenous variables. When a variable is endogenous, it may be correlated with the disturbance term (biased OLS). 2sls goal is to find a proxy of the endogenous variable that is not correlated to e. (like  $\hat{P}$ ).  $\hat{P}$  should not be correlated to  $e_1$ .

### **Testing Endogeneity: Durban and Wu-Hausman Tests**

After ivregress use the following post-estimation command:

estat endogeneity

Tests of endogeneity  
Ho: variables are exogenous  
Durbin (score) chi2(1) = 
$$5.4791$$
 (p = 0.0192)  
Wu-Hausman F(1,7) =  $8.48363$  (p = 0.0226)

As p-values are less than 5%, we can reject  $H_0$  of exogenous regressors and conclude that C and T can be used as endogenous variables.

### **Proof: 2SLS == ILS for exactly identified equations**

consider the model

$$Y_1 = \alpha_0 + \alpha_1 Y_2 + e_1$$
$$Y_2 = \beta_{0+} \beta_1 Y_1 + \beta_2 X_1 + e_2$$

The reduced form equations are

$$Y_1 = \pi_{10} + \pi_{11}X_1 + u_1$$
$$Y_2 = \pi_{20} + \pi_{21}X_1 + u_2$$

Where

$$\pi_{11} = \frac{\alpha_1 \beta_2}{(1 - \alpha_1 \beta_1)}, \quad \pi_{21} = \frac{\beta_2}{(1 - \alpha_1 \beta_1)}$$

Business Econometrics by Dr Sayyid Salman Rizavi

$$\alpha_{11LS} = \frac{\pi_{11}}{\pi_{21}}$$

Applying ILS

We estimate the two reduced forms by OLS

$$Y_1 = \pi_{10} + \pi_{11}X_1 + u_1$$
$$Y_2 = \pi_{20} + \pi_{21}X_1 + u_2$$

Where

$$\pi_{110LS} = \frac{\sum x_1 y_1}{\sum x_1^2}, \qquad \pi_{210LS} = \frac{\sum x_1 y_2}{\sum x_1^2}$$
$$\alpha_{11LS} = \frac{\pi_{11}}{\pi_{21}} = \frac{\sum x_1 y_1}{\sum x_1 y_2}$$

Applying 2LS

We estimate  $\hat{Y}^2$  and replace it in first equation

$$As Y_{2} = \pi_{20} + \pi_{21}X_{1} + u_{2}$$
$$\hat{Y}2 = \hat{\pi}_{21}X_{1}$$

Replacing in the original equation

$$Y_{1} = \alpha_{0} + \alpha_{1}\hat{Y}2 + e_{1}$$

$$\alpha_{12SLS} = \frac{\sum Y_{1}\hat{Y}2}{\sum \hat{Y}2^{2}} = \frac{\sum Y_{1}\hat{\pi}_{21}X_{1}}{\sum (\hat{\pi}_{21}X_{1})^{2}}$$

$$= \frac{\hat{\pi}_{21}\sum X_{1}Y_{1}}{(\hat{\pi}_{21})^{2}\sum (X_{1})^{2}}$$

$$= \frac{\hat{\pi}_{21}\sum X_{1}Y_{1}}{(\hat{\pi}_{21})^{2}\sum (X_{1})^{2}}$$

$$= \frac{\sum X_{1}Y_{1}}{\hat{\pi}_{21}\sum (X_{1})^{2}} = \frac{\sum (X_{1})^{2}}{\sum X_{1}Y_{2}} \frac{\sum X_{1}Y_{1}}{\sum (X_{1})^{2}}$$

$$\alpha_{12SLS} = \frac{\sum X_{1}Y_{1}}{\sum X_{1}Y_{2}} = \alpha_{11LS}$$

# Numerical Example

Consider the model

$$Y_1 = \alpha_0 + \alpha_1 Y_2 + e_1$$
$$Y_2 = \beta_{0+} \beta_1 Y_1 + \beta_2 X_1 + e_2$$

The reduced form equations are

$$Y_1 = \pi_{10} + \pi_{11}X_1 + u_1$$
$$Y_2 = \pi_{20} + \pi_{21}X_1 + u_2$$

We can estimate the above equations using data in ILS-2SLS.xlsx

| Y <sub>1</sub> | Y <sub>2</sub> | X1 |
|----------------|----------------|----|
| 25             | 0.8            | 10 |
| 25             | 0.9            | 8  |
| 27             | 0.8            | 8  |
| 29             | 1.2            | 7  |
| 32             | 1.2            | 6  |
| 32             | 1.6            | 3  |
| 33             | 1.9            | 4  |
| 36             | 2.1            | 5  |
| 40             | 2              | 4  |
| 49             | 2              | 2  |

Here 
$$\pi_{11} = \frac{\alpha_1 \beta_2}{(1 - \alpha_1 \beta_1)}$$
,  $\pi_{21} = \frac{\beta_2}{(1 - \alpha_1 \beta_1)}$ 

Using slope function in Excel

 $\pi_{11} = -2.45439$ 

$$\pi_{11} = -0.18158$$

$$\alpha_{1ILS} = \frac{\pi_{11}}{\pi_{21}} = 13.51659$$

Now 2SLS:

| Y2 hat   |
|----------|
| 0.669191 |
| 1.032358 |
| 1.032358 |
| 1.213941 |
| 1.395525 |
| 1.940275 |
| 1.758692 |
| 1.577108 |
| 1.758692 |
| 2.121859 |

Stage I: Y2 on Xi gives Y2hat

Stage II: replace y2hat in first equation

Estimate y1 on y2 haat

### $\alpha_{12LS} = 13.51659 = \alpha_{11LS}$

Hence ILS and 2SLS provide identical results if applied to exactly identified equations.

## **Three Stage Least Square**

### Background

- OLS: inconsistent for systems with simultaneous equations
- 2SLS: 'Cleans' the endogenous regressors
  - I: regress endogenous variables against all predetermined variables of the system (reduced form). This gives 'theoretical values'

### Business Econometrics by Dr Sayyid Salman Rizavi

• II: Use OLS for theoretical values replacing the original values

#### In 2SLS

• Endogenous variable may be related to error term of another equation.

Possible Problem with 2SLS

- Focus on single equation in the system
- Correlations between error terms of various equations is ignored
- This may give inefficient estimates

#### Solution:

Use Three Stage Least Square (Zellner & Theil (1962))

- After 2SLS, we add a third stage to account for correlations of error terms.
- 3SLS uses the results of 2SLS to estimate 'ALL' coefficients of the system simultaneously
- 3SLS is more efficient as compared to 2SLS
- 3SLS is better when correlation of error terms is not small

#### **3SLS using Stata**

Syntax is reg3 (depvar1 varlist1) (depvar2 varlist2) ......(depvarN varlistN) [if] [in] [weight]

Menu: Statistics > Endogenous Covariates > Three Stage Least Square

#### EXAMPLE:

webuse klein

describe

#### . describe

Contains data from http://www.stata-press.com/data/r13/klein.dta

| obs:     |      | 22      |         |       |                                 |
|----------|------|---------|---------|-------|---------------------------------|
| vars:    |      | 14      |         |       | 3 Mar 2013 14:14                |
| size:    |      | 1,232   |         |       |                                 |
|          |      | storage | display | value |                                 |
| variable | name | type    | format  | label | variable label                  |
| yr       |      | float   | €9.0g   |       | year                            |
| consump  |      | float   | €9.0g   |       | consumption                     |
| profits  |      | float   | %9.0g   |       | private profits                 |
| wagepriv |      | float   | %9.0g   |       | private wage bill               |
| invest   |      | float   | %9.0g   |       | investment                      |
| capital1 |      | float   | %9.0g   |       | lagged value of capital stock   |
| totinc   |      | float   | %9.0g   |       | total income/demand             |
| wagegovt |      | float   | %9.0g   |       | government wage bill            |
| govt     |      | float   | %9.0g   |       | government spending             |
| taxnetx  |      | float   | %9.0g   |       | indirect bus taxes + net export |
| wagetot  |      | float   | %9.0g   |       | total US wage bill              |
| year     |      | float   | €9.0g   |       | calendar year - 1931            |
| profits1 |      | float   | €9.0g   |       | last year's private profits     |
| totinc1  |      | float   | %9.0g   |       | last year's total income/demand |

#### EQ1: consump wagepriv wagegovt

### EQ2: wagepriv consump govt capital1

| Stata/IC 13.1 - [Results]        | and the second is                                                                        |                                                                                                    |
|----------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| File Edit Data Graphics          | Statistics User Window Help<br>Summaries, tables, and tests<br>Linear models and related | Varie                                                                                              |
| # Command _rc /<br>1 help reg3 / | Binary outcomes<br>Ordinal outcomes<br>Categorical outcomes<br>Count outcomes            | <pre>&gt;&gt;pyright 1985-2013 StataCorp LP The<br/>&gt; sataCorp<br/>&gt; 305 Lakeway Drive</pre> |
|                                  | Generalized linear models<br>Treatment effects                                           | )0-STATA-PC http://www.stata.com<br>9-696-4600 stata@stata.com                                     |
|                                  | Endogenous covariates                                                                    | Single-equation instrumental-variables regression                                                  |
| Si                               | Sample-selection models<br>Exact statistics                                              | Three-stage least squares     Generalized method of moments estimation                             |
| Equation   | ladions. |        | ependent | variables f | or equation | on 1:            |              |          |
|------------|----------|--------|----------|-------------|-------------|------------------|--------------|----------|
| Equation 2 | 2        |        | consump  |             |             |                  |              | <b>.</b> |
| Equation 4 | 4        | Ξ      | π        |             |             |                  |              |          |
| Equation 5 | 5        | C      | consump  |             |             |                  |              |          |
| Equation 6 | 5        | P      | profits  |             |             |                  |              |          |
| Equation   | 6        | - 4    | vagepriv |             |             |                  |              | E        |
| Lquation   |          |        | capital1 |             |             |                  |              |          |
| Ontinen    |          | te     | otinc    |             |             |                  |              |          |
| Options    |          | V      | vagegovt |             |             |                  |              |          |
| Label for  | equatio  | n 1: 9 | jovt     |             |             |                  |              | 4        |
|            |          | t      | axneb    |             | @ harr      | to d there a sta | an estimates |          |
|            |          |        |          |             | O itera     | ted three-sta    | ge estimator |          |
| Constrain  | its:     |        |          |             |             |                  |              |          |
|            |          |        |          |             |             |                  | - Ma         | nage     |
|            |          |        |          |             |             |                  | •            | ilugo    |
|            |          |        |          |             |             |                  |              |          |

# Select independent variable:

| odel                         | Model 2              | Est. method      | by/if/in                                                   | Weights           | df adj.     | Reporting | Optimization |
|------------------------------|----------------------|------------------|------------------------------------------------------------|-------------------|-------------|-----------|--------------|
| lultiple<br>Equati<br>Equati | equations            | s: (equation 1 i | s required<br>ependent                                     | )<br>variables fo | or equation | on 1:     |              |
| Equati<br>Equati<br>Equati   | on 3<br>on 4<br>on 5 | E In             | consump<br>depender                                        | t variables       | for equa    | tion 1:   |              |
| Equati<br>Equati<br>Equati   | on 6<br>on 7<br>on 8 | - 7              | wagepriv v<br>r                                            | wagegovt          |             |           | •            |
| Option<br>Label              | ns<br>I for equat    | ion 1:           | onsump<br>rofits<br>vagepriv<br>nvest<br>apital 1<br>otinc |                   |             |           | E            |
| Const                        | traints:             | g<br>ta          | vagegovt<br>ovt<br>axnetx                                  |                   |             |           | ▼ Manage     |
|                              |                      |                  |                                                            |                   |             |           |              |

| Equation | Obs Par  | ms   | RMS     | E "R  | -sq"  | chi2   |       | Р         |
|----------|----------|------|---------|-------|-------|--------|-------|-----------|
| consump  | 22       | 2    | 1.77629 | 7 0.9 | 9388  | 208.02 | 0.000 | 0         |
| wagepriv | 22       | 3    | 2.37244 | 3 0.1 | 8542  | 80.04  | 0.000 | 0         |
|          |          |      |         |       |       |        |       |           |
|          | Coef.    | Sto  | d. Err. | z     | P> z  | [95%   | Conf. | Interval] |
| consump  |          |      |         |       |       |        |       |           |
| wagepriv | .8012754 | .1   | 279329  | 6.26  | 0.000 | .550   | 5314  | 1.052019  |
| wagegovt | 1.029531 | .3   | 048424  | 3.38  | 0.001 | .43    | 2051  | 1.627011  |
| _cons    | 19.3559  | 3.   | 583772  | 5.40  | 0.000 | 12.3   | 3184  | 26.37996  |
| wagepriv |          |      |         |       |       |        |       |           |
| consump  | .4026076 | .2   | 567312  | 1.57  | 0.117 | 100    | 5764  | .9057916  |
| govt     | 1.177792 | .5   | 421253  | 2.17  | 0.030 | .115   | 2461  | 2.240338  |
| capital1 | 0281145  | . 03 | 572111  | -0.49 | 0.623 | 140    | 2462  | .0840173  |
| cons     | 14.63026 | 10   | .26693  | 1.42  | 0.154 | -5.49  | 2552  | 34.75306  |

Similarly now click on equation 2 and select variables. We can use various options. Click OK

Only important options of this stata procedure as an example

noconst

- omits constant term for an equation if specified in an equation
- omits constant term from instrument list (stage I) if specified overall

#### ireg3

• iterates over the estimated disturbance covariance matrix and parameter estimates until the parameter estimates converge

Sure

 performs a seemingly unrelated regression estimation of the system -even if dependent variables from some equations appear as regressors in other equations.

2sls

performs equation-by-equation two stage least squares on the full system of equations.

# first

• Requests display of first stage regression

# Corr (Correlations)

• specifies the assumed form of the correlation structure of the equation disturbances; rarely requested

# small

• Small sample statistics are also computed.

# 3sls

• Performs three stage least square; default

# Lecture 35 Panel Data Methods

Types of Econometric Data

Time Series Data: different points of time

Cross Sectional Data: different entities

Pooled Data: mixture of time series and cross sectional data;

Panel /longitudinal Data/Repeated Cross Sections: type of panel data; same cross sectional entities over time

Definition of **Pooled Data**: Randomly sampled cross sections of individuals at different points in

| Example of Pooled Data   | Example of Pooled Data |                      |                   |  |  |  |  |  |  |
|--------------------------|------------------------|----------------------|-------------------|--|--|--|--|--|--|
| Respondent               | Year                   | Income (Rs.)         | Expenditure (Rs.) |  |  |  |  |  |  |
| Ali                      | 2012                   | 12000                | 9500              |  |  |  |  |  |  |
| Arif                     | 2012                   | 15000                | 11500             |  |  |  |  |  |  |
| Sakina                   | 2012                   | 11500                | 9000              |  |  |  |  |  |  |
| Ali                      | 2013                   | 12500                | 10000             |  |  |  |  |  |  |
| Jameel                   | 2013                   | 11000                |                   |  |  |  |  |  |  |
| Fatima                   | 2013                   | 14000                | 12500             |  |  |  |  |  |  |
| Baqir                    | 2013                   | 9500                 | 8500              |  |  |  |  |  |  |
| Individuals may or may n | ot be repeat           | ed                   |                   |  |  |  |  |  |  |
| Different number of obse | rvations in d          | lifferent time perio | ods               |  |  |  |  |  |  |
| There may be missing val | ue                     |                      |                   |  |  |  |  |  |  |

Examples of pooled data include Women's Fertility over time, Population Survey, Labor Force Survey, Marketing Surveys, Consumer Surveys.

Definition of **Panel Data**: Observe cross sections of the same individuals at different points in time

Examples:

time

• Panel Survey of Income Dynamics (PSID)

- British Household Panel Survey (BHPS)
- US Time Use Surveys
- French Time Use Surveys
- German Socio-Economic Panel
- National Longitudinal Surveys (NLS)

# Panel data is also a pooled data set. All pooled Data should not be called panels

| Panel Dataset           |                    |                        |     |
|-------------------------|--------------------|------------------------|-----|
| Country                 | Year               | Y                      | х   |
| 1                       | 2012               | 6                      | 9   |
| 1                       | 2012               | 3                      | 8   |
| 1                       | 2012               | 5                      | 11  |
| 2                       | 2013               | 9                      | 12  |
| 2                       | 2013               | 5                      | 7   |
| 2                       | 2013               | 6                      | 14  |
| 3                       | 2014               | 11                     | 14  |
| 3                       | 2014               | 6                      | 5   |
| 3                       | 2014               | 8                      | 16  |
| Panel Data shows the I  | pehavior of indivi | dual entities across t | ime |
| The same set of indivic | luals are normally | observed               |     |
| There may be missing    | values             |                        |     |

# Types:

- Short and Long Panel
  - Short: Many entities, few time periods

- Balanced and Unbalanced Panel
  - Balanced: all entities have measurements in all time periods (no of observations is nT)
- Fixed and Rotating Panel
  - Fixed: individuals remain the same

Rotating panel may also be called Pseudo Panels

• Compact Panel: consecutive time periods

#### Panel Data benefits

- More degree of freedom (nT)
- Captures more complexities (blend both cross sectional and time series behavior)
- Better forecasts
- We can study heterogeneity and avoid omitted variable bias

#### Panel Data: Drawbacks

- Data collection issues
- Sampling design and coverage
- No response cases in micro panels
- Cross country correlation in case of macro panels (e.g. location or spacial correlation, gravity models)
- Attrition: dropping out of individuals leads to unbalance and/or uncompact panel

#### Rationale for using Panel data

- Unobserved Heterogeneity
  - Many individual characteristics are not observed; examples are: Risk taking behavior, Ability

They vary across individuals and are called unobserved heterogeneity. If they influence the response variable and are correlated to regressors, OLS results will be biased.

# **Examples of Unobserved Heterogeneity**

- Returns to Education
  - Ability is not observed
  - Returns may be influenced due to ability
- Discrimination: Race, Gender, Religion
- Unobserved characteristics of groups
  - Attitude to risk
  - Social behavior
  - Working habits
- Macro Panels (e.g.country GDP)
- Countries have some unobserved characteristics

# **Pooled Regression**

If we ignore the panel structure of the model and just run a regression, it is called a pooled regression or regression on pooled data. We have to assume that the error is

$$e_{it} \sim N(0, \sigma^2)$$

which may not be the case. We can pool the data with or without constraints on the disturbance term. We can use the Chow test (discussed with stata)

# Least Square Dummy Variable Model

Dummy Variables can be used for different individual or time entities or both. Regression could be run using the dummy variables on the RHS of the regression equation. We can capture different intercepts for different groups. Problems include lack of degree of freedom or dummy variable trap.





# Error component: one way and two way

Consider the model with  $e_{it} = \mu_i + u_{it}$ 

**Fixed Effect:** when we assume  $\mu_i$  to be constant (for one individual, different for different individuals)

**Random Effect:** when we assume the  $\mu_i$  is drawn independently from some probability distribution

# Lecture 36 Panel Data Models-II

#### **Fixed Effect Model**

Consider the model

$$Y_{it} = \beta_0 + \beta_1 X_{1it} + \beta_2 X_{2it} + e_{it}$$
  
with  $e_{it} = \mu_i + u_{it}$   
Then  
$$Y_{it} = \beta_0 + \beta_1 X_{1it} + \beta_2 X_{2it} + \mu_i + u_{it}$$

SO

$$Y_{it} = (\boldsymbol{\beta}_0 + \mu_i) + \boldsymbol{\beta}_1 X_{1it} + \boldsymbol{\beta}_2 X_{2it} + u_{it}$$

- $\mu_i$  is now a part of constant term but different for different individuals
- Individuals have different intercepts but common slope



Above diagrams shows three different classes with three different intercepts but a common slope as is the concept in fixed effect model.

Possible regressions with panel data are:



#### **Fixed Effect Model Estimation: First Difference**

Eliminating unobserved heterogeneity by first differencing

$$Y_{it} = (\boldsymbol{\beta}_0 + \mu_i) + \boldsymbol{\beta}_1 X_{1it} + \boldsymbol{\beta}_2 X_{2it} + u_{it}$$

With one time lag

$$Y_{it-1} = (\beta_0 + \mu_i) + \beta_1 X_{1it-1} + \beta_2 X_{2it-1} + u_{it-1}$$
$$Y_{it} - Y_{it-1} = \beta_1 (X_{1it} - X_{1it-1}) + \beta_2 (X_{2it} - X_{2it-1}) + (u_{it} - u_{it-1})$$
$$\Delta Y_{it} = \beta_1 \Delta X_{1it} + \beta_2 \Delta X_{2it} + \Delta u_{it}$$

- Which can be generalized for more variables
- Works fine for two time periods

#### Fixed Effect Model Estimation: Deviation from means (alternative approach)

We can use the deviations from means

$$\boldsymbol{Y}_{it} = (\boldsymbol{\beta}_0 + \mu_i) + \boldsymbol{\beta}_1 \boldsymbol{X}_{1it} + \boldsymbol{\beta}_2 \boldsymbol{X}_{2it} + \boldsymbol{u}_{it}$$

Taking deviations from mean, intercept will be eliminated

$$Y_{it-1} - \overline{Y}_{i.} = \beta_1 (X_{1it} - \overline{X}_{1i.}) + \beta_2 (X_{2it} - \overline{X}_{2i.}) + u_{it}$$

Constant part is eliminated again. Deviations from mean for each individual, averaged across all time periods. Model can be estimated by OLS, LSDV etc. This is called *'within'* estimator. This previous one is called *'within'* estimator. The 'between' estimator can be found by using the *individual averages*. The 'overall estimator' is the weighted average of within and between estimators.

#### **Random Effect Model**

If *correct weights* are used, combination of fixed (within) and between effect estimator is called random effect estimator

$$Y_{it} = \beta_0 + \beta_1 X_{1it} + \beta_2 X_{2it} + e_{it}$$
$$e_{it} = \mu_i + u_{it}$$

when we assume the  $\mu_i$  is drawn independently from some probability distribution we are dealing with the random effect model. When unobserved heterogeneity is uncorrelated with regressors, panel data techniques are not needed to produce a consistent estimator. We must correct for serial correlation between observations of the same entity (individual, firm, country etc.). If  $E(Xit, eit) \neq 0$ , Fixed Effect model may be used When E(Xit, eit) = 0, Random Effect model may be used to overcome the serial correlation of panel data.

To estimate the random effect model, we assume that  $\mu_i$  is part of the error term  $e_{it}$ . We evaluate the structure of the error and apply appropriate Generalized Least Square (with correct weights) to calculate efficient estimators. The following assumptions must hold:

$$E(\mu_i) = E(u_{it}) = 0$$

 $E(\boldsymbol{u}_{it}^2) = \sigma_{\boldsymbol{u}}^2 \boldsymbol{\&} E(\mu_{it}^2) = \sigma_{\boldsymbol{\mu}}^2$ 

$$E(u_{it}, \mu_i) = 0 \text{ for all } i \text{ and } t$$
$$E(e_{it}^2) = \sigma_u^2 + \sigma_\mu^2$$
$$E(X_{kit}, \mu_i) = 0 \text{ for all } k, i \text{ and } t$$

#### Panel Data Models using Stata

All panel data command will start with xt. We need to set the panel data first: xtset. If needed, we need to reshape our panel. We will use a file panel1.dta available with lecture notes. The following example uses data from world Development Indicators. Pakistan, India, SriLanka are included and data is from 1991 to 2012 which is a strongly balanced long panel.

*xtset* command is used to set the data as panel data where both variables of cross sectional and time should be numeric. Country is a string variable, We need to create a numeric ID. We use the command

encode country, generate(countryId) to create a numeric variable.

# . xtset countryId year

# panel variable: countryId (strongly balanced) time variable: year, 1991 to 2012 delta: 1 unit

xtsummarize provides summary statistics

. xtsum gdp-gfcf

| Variable |         | Mean                  | Std. Dev.             | Min       | Max      | Observa | tions |
|----------|---------|-----------------------|-----------------------|-----------|----------|---------|-------|
| gdp      | overall | 2.87e+11              | 3.74 <del>e+</del> 11 | 1.26e+10  | 1.39e+12 | N =     | 66    |
|          | between |                       | 3.96e+11              | 2.24e+10  | 7.42e+11 | n =     | 3     |
|          | within  |                       | 1.84e+11              | -1.01e+11 | 9.34e+11 | Τ =     | 22    |
| exports  | overall | 4.84 <del>c+</del> 10 | 7.81e+10              | 3.27e+09  | 3.25e+11 | N =     | 66    |
|          | between |                       | 6.65e+10              | 6.51e+09  | 1.25e+11 | n =     | 3     |
|          | within  |                       | 5.57e+10              | -5.19e+10 | 2.48e+11 | Τ =     | 22    |
| imports  | overall | 6.10 <del>c+</del> 10 | 1.00e+11              | 3.62e+09  | 4.40e+11 | N =     | 66    |
|          | between |                       | 8.30e+10              | 8.35e+09  | 1.57e+11 | n =     | 3     |
|          | within  |                       | 7.34 <b>e+1</b> 0     | -7.02e+10 | 3.45e+11 | Τ =     | 22    |
| gfcf     | overall | 7.96 <del>c+</del> 10 | 1.22e+11              | 2.33e+09  | 4.68e+11 | N =     | 66    |
|          | between |                       | 1.17e+11              | 5.09e+09  | 2.15e+11 | n =     | 3     |
|          | within  |                       | 7.42e+10              | -5.85e+10 | 3.33e+11 | T =     | 22    |

Let us think that gdp is a function of gfcf and exports and imports. Look at the dependent variable by country.



# xtline gdp

Use fixed-effects (FE) whenever you are only interested in analyzing the impact of variables that vary over time. FE explores the relationship between predictor and outcome variables within an entity (country, person, company, etc.). Each entity has its own individual characteristics that may or may not influence the predictor variables (for example being a male or female could influence the opinion toward certain issue or the political system of a particular country could have some effect on trade or GDP or the business practices of a company may influence its stock price).

Simple OLS may provide results like this:

| . *simple regres | ssion |
|------------------|-------|
|------------------|-------|

#### . reg gdp gfcf exports

| Source                   | SS                                             | df                               | MS                                             |                         | Number of obs                     | = 66                              |
|--------------------------|------------------------------------------------|----------------------------------|------------------------------------------------|-------------------------|-----------------------------------|-----------------------------------|
| Model<br>Residual        | 9.0167e+24<br>7.7188e+22                       | 2 4.3<br>63 1.3                  | 5084 <del>e+</del> 24<br>2252 <del>e+</del> 21 |                         | Prob > F<br>R-squared             | = 0.0000<br>= 0.9915<br>= 0.9912  |
| Total                    | 9.0939e+24                                     | 65 1.3                           | 3991e+23                                       |                         | Root MSE                          | = 3.5e+10                         |
| gdp                      | Coef.                                          | Std. Err                         | . t                                            | P> t                    | [95% Conf.                        | Interval]                         |
| gfcf<br>exports<br>_cons | 5.535097<br>-3.949022<br>3.74 <del>e+</del> 10 | .2359617<br>.3681319<br>5.21e+09 | 23.46<br>-10.73<br>7.17                        | 0.000<br>0.000<br>0.000 | 5.063565<br>-4.684675<br>2.70e+10 | 6.006629<br>-3.213369<br>4.78e+10 |

When using FE we assume that something within the individual may impact or bias the predictor or outcome variables and we need to control for this. This is the rationale behind the assumption of the correlation between entity's error term and predictor variables. FE removes the effect of those time-invariant characteristics from the predictor variables so we can assess the predictors' net effect.

Least Square dummy variable model may provide the following result:

| Source              | SS                                                 | df                   | MS                     |                | Number of obs             | = 66                  |
|---------------------|----------------------------------------------------|----------------------|------------------------|----------------|---------------------------|-----------------------|
| Model<br>Residual   | 9.0680 <del>e+</del> 24<br>2.5911 <del>e+</del> 22 | 4 2<br>61 4          | .2670e+24<br>.2477e+20 |                | Prob > F<br>R-squared     | = 0.0000<br>= 0.9972  |
| Total               | 9.0939 <del>c+</del> 24                            | 65 1                 | .3991e+23              |                | Adj K-squared<br>Root MSE | = 0.9970<br>= 2.1e+10 |
| gdp                 | Coef.                                              | Std. Er              | r. t                   | P> t           | [95% Conf.                | Interval]             |
| gfcf<br>exports     | 1.795965<br>.8960487                               | .3918228<br>.5216102 | 4.58<br>2 1.72         | 0.000<br>0.091 | 1.012467<br>1469753       | 2.579463<br>1.939073  |
| countryId<br>2<br>3 | 1.93e+11<br>-4.27e+10                              | 2.07e+10<br>6.43e+09 | 9.35<br>9 -6.65        | 0.000<br>0.000 | 1.52e+11<br>-5.56e+10     | 2.35e+11<br>-2.99e+10 |
| _cons               | 5.02e+10                                           | 4.44e+09             | 9 11.29                | 0.000          | 4.13e+10                  | 5.91e+10              |

#### . reg gdp gfcf exports i.countryId

Another important assumption of the FE model is that those time-invariant characteristics are unique to the individual and should not be correlated with other individual characteristics. Each entity is different therefore the entity's error term and the constant (which captures individual characteristics) should not be correlated with the others. If the error terms are correlated then FE is no suitable since inferences may not be correct and you need to model that relationship (probably using random-effects), this is the main rationale for the Hausman test (presented later on in this document).

Fixed effect model may provide:

| . xtreg gdp gf | fcf exports, f     | Ĩe -      |       |         |              |           |
|----------------|--------------------|-----------|-------|---------|--------------|-----------|
| Fixed-effects  | (within) reg       | ression   |       | Number  | of obs =     | 66        |
| Group variable | e: countryId       |           |       | Number  | of groups =  | 3         |
| R-sq: within   | = 0.9882           |           |       | Obs per | group: min = | 22        |
| betweer        | 1 = <b>0.998</b> 7 |           |       |         | avg =        | 22.0      |
| overall        | L = 0.9657         |           |       |         | max =        | 22        |
|                |                    |           |       | F(2,61) | =            | 2563.89   |
| corr(u_i, Xb)  | = 0.7674           |           |       | Prob >  | F =          | 0.0000    |
| gdp            | Coef.              | Std. Err. | t     | P> t    | [95% Conf.   | Interval] |
| gfcf           | 1.795965           | .3918228  | 4.58  | 0.000   | 1.012467     | 2.579463  |
| exports        | .8960487           | .5216102  | 1.72  | 0.091   | 1469753      | 1.939073  |
| _cons          | 1.00e+11           | 6.90e+09  | 14.53 | 0.000   | 8.65e+10     | 1.14e+11  |
|                |                    |           |       |         |              |           |

| sigma_u | 1.257e+11 |                                   |
|---------|-----------|-----------------------------------|
| sigma_e | 2.061e+10 |                                   |
| rho     | .97383471 | (fraction of variance due to u_i) |
|         |           |                                   |

F test that all u\_i=0: F(2, 61) = 60.36 Prob > F = 0.0000

# Random effect model

$$Y_{it} = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 X_{1it} + \boldsymbol{\beta}_2 X_{2it} + \boldsymbol{e}_{it}$$

Y = gdp,  $X_1 = gfcf$ ,  $X_2 = exports$ 

$$e_{it} = \mu_i + u_{it}$$

| . xtreg gdp g  | fcf exports, 1 | re        |        |         |          |       |           |
|----------------|----------------|-----------|--------|---------|----------|-------|-----------|
| Random-effect: | s GLS regress: | ion       |        | Number  | of obs   | =     | 66        |
| Group variable | e: countryId   |           |        | Number  | of group | )S =  | 3         |
| R-sq: within   | = 0.9729       |           |        | Obs per | group:   | min = | 22        |
| between        | n = 0.9989     |           |        |         |          | avg = | 22.0      |
| overal:        | l = 0.9915     |           |        |         |          | max = | 22        |
|                |                |           |        | Wald ch | i2(2)    | =     | 7359.34   |
| corr(u_i, X)   | = 0 (assumed   | i)        |        | Prob >  | chi2     | =     | 0.0000    |
|                |                |           |        |         |          |       |           |
| gdp            | Coef.          | Std. Err. | z      | P> z    | [95%     | Conf. | Interval] |
| gfcf           | 5.535097       | .2359617  | 23.46  | 0.000   | 5.072    | 2621  | 5.997573  |
| evporte        | -3 949022      | 3681319   | -10 73 | 0 000   | -4 670   | 1547  | -3 227497 |

| exports                   | -3.949022                        | .3681319  | -10.73   | 0.000     | -4.670547 | -3.227497 |
|---------------------------|----------------------------------|-----------|----------|-----------|-----------|-----------|
| _cons                     | 3.74 <del>e+</del> 10            | 5.21e+09  | 7.17     |           | 2.72e+10  | 4.76e+10  |
| sigma_u<br>sigma_e<br>rho | 0<br>2.061 <del>c+</del> 10<br>0 | (fraction | of varia | nce due t | :o u_i)   |           |

#### Fixed or Random? Hausman Test

Perform the following:

qui xtreg gdp gfcf exports, fe

estimates store fixed

qui xtreg gdp gfcf exports, re

estimates store random

hausman fixed random

Rejecting H<sub>0</sub> means that fixed effects should be used

# Business Econometrics by Dr Sayyid Salman Rizavi

. hausman fixed random

|         | Coeffi   | cients —— |            |                     |
|---------|----------|-----------|------------|---------------------|
|         | (b)      | (B)       | (b-B)      | sqrt(diag(V_b-V_B)) |
|         | fixed    | random    | Difference | S.E.                |
| gfcf    | 1.795965 | 5.535097  | -3.739132  | .3128054            |
| exports | .8960487 | -3.949022 | 4.845071   | .369535             |

b = consistent under Ho and Ha; obtained from xtreg

B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(2) = (b-B)'[(V\_b-V\_B)^(-1)](b-B) = 119.19 Prob>chi2 = 0.0000 (V\_b-V\_B is not positive definite)

# Lecture 37

# Panel Data Methods & Post Estimation Tests

For practice download the file nlswork from the web. Perform the following operations:

webuse nlswork, clear

the variables are shown in the variable window

| Variables | <b>T</b> 9           |
|-----------|----------------------|
| Variable  | Label                |
| idcode    | NLS ID               |
| year      | interview year       |
| birth_yr  | birth year           |
| age       | age in current year  |
| race      | race                 |
| msp       | 1 if married, spous  |
| nev_mar   | 1 if never married   |
| grade     | current grade co     |
| collgrad  | 1 if college gradua  |
| not_smsa  | 1 if not SMSA        |
| c_city    | 1 if central city    |
| south     | 1 if south           |
| ind_code  | industry of emplo    |
| occ_code  | occupation           |
| union     | 1 if union           |
| wks_ue    | weeks unemploye      |
| ttl_exp   | total work experie   |
| tenure    | job tenure, in years |
| hours     | usual hours worked   |
| wks_work  | weeks worked last    |
| In_wage   | In(wage/GNP defl     |

# Business Econometrics by Dr Sayyid Salman Rizavi

| . describe ln | wage tenu       | re age race       | south union    |                       |
|---------------|-----------------|-------------------|----------------|-----------------------|
| variable name | storage<br>type | display<br>format | value<br>label | variable label        |
| ln_wage       | float           | €9.0g             |                | ln(wage/GNP deflator) |
| age           | byte            | 89.0g<br>88.0g    |                | age in current year   |
| race<br>south | byte<br>byte    | ≹8.0g<br>≹8.0g    | raceibi        | race<br>1 if south    |
| union         | byte            | €8.Og             |                | 1 if union            |

# **Fixed Effect Estimation**

|                    | . xtreg ln_wage tenure age south union, fe |              |             |           |           |              |             |  |  |  |  |  |
|--------------------|--------------------------------------------|--------------|-------------|-----------|-----------|--------------|-------------|--|--|--|--|--|
|                    | Fixed-effects                              | (within) reg | Number      | of obs    | 19007     |              |             |  |  |  |  |  |
|                    | Group variable                             | : idcode     |             |           | Number    | of groups    | = 4134      |  |  |  |  |  |
|                    | R-sq: within                               | = 0.1274     |             |           | Obs per   | group: min : | - 1         |  |  |  |  |  |
|                    | betweer                                    | n = 0.1846   |             |           |           | avg :        | = 4.6       |  |  |  |  |  |
|                    | overall                                    | L = 0.1591   |             |           |           | max :        | = 12        |  |  |  |  |  |
|                    |                                            |              |             |           | F(4,148   | (69)         | 542.89      |  |  |  |  |  |
|                    | corr(u_i, Xb)                              | = 0.1611     |             |           | Prob >    | F :          | = 0.0000    |  |  |  |  |  |
|                    |                                            |              |             |           |           |              |             |  |  |  |  |  |
| sd of<br>residuals | ln_wage                                    | Coef.        | Std. Err.   | t         | P>(t)     | [95% Conf.   | . Interval] |  |  |  |  |  |
| within             | tenure                                     | .0174629     | .000811     | 21.53     | 0.000     | .0158733     | .0190525    |  |  |  |  |  |
| groups             | age                                        | .0097147     | .0004891    | 19.86     | 0.000     | .008756      | .0106735    |  |  |  |  |  |
|                    | south                                      | 0686035      | .0133546    | -5.14     | 0.000     | 0947801      | 0424268     |  |  |  |  |  |
|                    | union                                      | .0976885     | .0070076    | 13.94     | 0.000     | .0839527     | .1114242    |  |  |  |  |  |
|                    | _cons                                      | 1.387881     | .0150541    | 92.19     | 0.000     | 1.358373     | 1.417389    |  |  |  |  |  |
| <u>sd</u> of       | sigma u                                    | .400163      |             |           |           |              |             |  |  |  |  |  |
| overall            | sigma e                                    | 25630966     |             |           |           |              |             |  |  |  |  |  |
| error term         | rho                                        | .70909057    | (fraction   | of varian | nce due t | :o u_i)      |             |  |  |  |  |  |
|                    | F test that al                             | ll u_i=0:    | F(4133, 148 | (69) =    | 8.93      | Prob >       | F = 0.0000  |  |  |  |  |  |

# **Testing Time Fixed Effects**

| . xtreg ln_wag                           | ge tenure age                                                  | south union                                                          | i.year,f                                           | e                                                  |                                                               |                                                                     |
|------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|
| Fixed-effects<br>Group variable          | (within) regi<br>: idcode                                      | ression                                                              |                                                    | Number<br>Number                                   | of obs =<br>of groups =                                       | 19007<br>4134                                                       |
| R-sq: within<br>betweer<br>overall       | = 0.1302<br>n = 0.1252<br>. = 0.1229                           |                                                                      |                                                    | Obs per                                            | group: min =<br>avg =<br>max =                                | 1<br>4.6<br>12                                                      |
| corr(u_i, Xb)                            | = 0.0301                                                       |                                                                      |                                                    | F(15,14<br>Prob >                                  | 858) =<br>F =                                                 | 148.33<br>0.0000                                                    |
| ln_wage                                  | Coef.                                                          | Std. Err.                                                            | t                                                  | P> t                                               | [95% Conf.                                                    | Interval]                                                           |
| tenure<br>age<br>south<br>union          | .0171484<br>.0286558<br>0698623<br>.0985704                    | .0008142<br>.010491<br>.0133463<br>.0070208                          | 21.06<br>2.73<br>-5.23<br>14.04                    | 0.000<br>0.006<br>0.000<br>0.000                   | .0155525<br>.0080921<br>0960226<br>.0848087                   | .0187443<br>.0492195<br>0437019<br>.112332                          |
| year<br>71<br>72<br>73<br>77<br>78<br>80 | 0019754<br>0274729<br>0567187<br>1430139<br>1346299<br>2070794 | .0171189<br>.0245714<br>.0341685<br>.0740051<br>.0849156<br>.1052876 | -0.12<br>-1.12<br>-1.66<br>-1.93<br>-1.59<br>-1.97 | 0.908<br>0.264<br>0.097<br>0.053<br>0.113<br>0.049 | 0355307<br>0756358<br>1236932<br>2880731<br>301075<br>4134561 | .0315799<br>.0206901<br>.0102557<br>.0020452<br>.0318153<br>0007026 |
|                                          | . test                                                         | parm i.yea                                                           | ar                                                 |                                                    |                                                               |                                                                     |

| . test | parm i.year     |        |
|--------|-----------------|--------|
| (1)    | 71.year = 0     |        |
| (2)    | 72.year = 0     |        |
| (3)    | 73.year = 0     |        |
| (4)    | 77.year = 0     |        |
| (5)    | 78.year = 0     |        |
| (6)    | 80.year = 0     |        |
| (7)    | 82.year = 0     |        |
| (8)    | 83.year = 0     |        |
| (9)    | 85.year = 0     |        |
| (10)   | 87.year = 0     |        |
| (11)   | 88.year = 0     |        |
|        |                 |        |
|        | F( 11, 14858) = | 4.36   |
|        | Prob > F =      | 0.0000 |
|        |                 |        |

We reject the null that all years coefficients are jointly equal to zero therefore time fixed effects are needed. Time dummies can be used.

# **Testing for Fixed Effects: Hausman test**

xtreg In\_wage tenure age south union,fe

estimates store fixed

xtreg ln\_wage tenure age south union,re

estimates store random

hausman fixed random

| . hausman fixe | ed random        |                   |                 |                                |
|----------------|------------------|-------------------|-----------------|--------------------------------|
|                | Coeffi           | cients ——         |                 |                                |
|                | (b)              | (B)               | (b-B)           | <pre>sqrt(diag(V_b-V_B))</pre> |
|                | fixed            | random            | Difference      | S.E.                           |
| tenure         | .0174629         | .022356           | 0048931         | .0003066                       |
| age            | .0097147         | .0080036          | .0017111        | .0001845                       |
| south          | 0686035          | 1267497           | .0581462        | .0097011                       |
| union          | .0976885         | .1142279          | 0165394         | .0024225                       |
| в              | b                | = consistent      | under Ho and Ha | ; obtained from xtreg          |
| 5              | - 11001131300110 | under na, err     | icient under no | , obtained from Atrey          |
| Test: Ho:      | difference i     | n coefficients    | not systematic  |                                |
|                | chi2(4) =        | (b-B) ' [ (V_b-V_ | B)^(-1)](b-B)   |                                |
|                | =                | 344.79            |                 |                                |
|                | Prob>chi2 =      | 0.0000            |                 |                                |

Fixed effect model is better (H<sub>0</sub> rejected)

# Testing for random Effects: LM test (Breusch and Pagan LM test for random effects)

The LM test helps you decide between a random effects regression and a simple OLS regression.

Null hypothesis: variances across entities is zero / No significant difference across units / No panel effect.

Stata Command:

xttest0

Menu:

Statistics > Longitudinal/panel data > Linear models > Lagrange multiplier test for random effects

#### Prerequisite

- xtset
- Random effect model must be run first

#### Run the commands

xtreg In\_wage tenure age south union,re

#### xttest0

|                  | _                                                           |            |                |                 |         |  |  |  |  |  |
|------------------|-------------------------------------------------------------|------------|----------------|-----------------|---------|--|--|--|--|--|
| . xttest         | tO                                                          |            |                |                 |         |  |  |  |  |  |
|                  |                                                             |            |                |                 |         |  |  |  |  |  |
| Breusch          | and Paga                                                    | n Lagrangi | ian multiplier | test for random | effects |  |  |  |  |  |
|                  | <pre>ln_wage[idcode,t] = Xb + u[idcode] + e[idcode,t]</pre> |            |                |                 |         |  |  |  |  |  |
|                  | Estimated results:                                          |            |                |                 |         |  |  |  |  |  |
|                  |                                                             |            | Var            | sd = sqrt(Var)  |         |  |  |  |  |  |
|                  |                                                             | ln wage    | .2181647       | .467081         |         |  |  |  |  |  |
|                  |                                                             | e          | .0656946       | .2563097        |         |  |  |  |  |  |
|                  |                                                             | u          | .1206357       | .3473265        |         |  |  |  |  |  |
| Test: Var(u) = 0 |                                                             |            |                |                 |         |  |  |  |  |  |
|                  |                                                             |            | chibar2(01)    | = 17120.29      |         |  |  |  |  |  |
|                  |                                                             |            | Prob > chibar2 | = 0.0000        |         |  |  |  |  |  |

No random effects exist, simple OLS can be run

# Breusch-Pagan LM test for cross-sectional correlation in fixed effects model (contemporaneous correlation / cross sectional dependence)

- This is a tests for cross-sectional independence in the residuals of a fixed effect regression model.
- This is a problem in macro panels with long time series

Null hypothesis:

Business Econometrics by Dr Sayyid Salman Rizavi

• residuals across entities are not correlated

Stata Command:

xttset2

Prerequisite

xtset

Fixed effect model must be run first. Macro panel problem may exist so we reduce the entities.

xtreg In\_wage tenure age south union in 1/25,fe

xttest2

| . xttest2                                         |                      |
|---------------------------------------------------|----------------------|
| Correlation matrix of residuals:                  |                      |
| e1e2                                              |                      |
| e1 1.0000                                         |                      |
| e2 -0.0911 1.0000                                 |                      |
|                                                   |                      |
| Breusch-Pagan LM test of independence: chi2(1) =  | 0.058, Pr = $0.8096$ |
| Based on 6 complete observations over panel units |                      |

No correlations found (H<sub>0</sub> accepted)

# Testing for Heteroskedasticity

This calculates a modified Wald statistic for groupwise heteroskedasticity

Null hypothesis: Homoskedasticity (constant variance)

Stata Command: xttest3

# Prerequisite

xtset

Fixed effect model must be run first

xtreg ln\_wage tenure age south union, fe

xttest3

```
. xttest3
Modified Wald test for groupwise heteroskedasticity
in fixed effect regression model
H0: sigma(i)^2 = sigma^2 for all i
chi2 (4134) = 4.3e+36
Prob>chi2 = 0.0000
```

#### Conclusion

- Heteroskedasticity Exists
- Use robust option with regression (both fixed and random)

#### **Testing for serial correlation:**

#### Wooldridge test for serial correlation in panel-data models

This implements a test for serial correlation in the idiosyncratic errors of a linear panel-data

model discussed by Wooldridge (2002)

Null hypothesis: No Serial Correlation

Stata Command: xtserial depvar [varlist] [if exp] [in range] [, output]

Prerequisite: xtset

xtserial In\_wage tenure age south union

| •  | xts  | eria | al   | ln_  | wage | te  | nure  | age   | sou   | th ı | nion  |      |
|----|------|------|------|------|------|-----|-------|-------|-------|------|-------|------|
| We | old  | ridç | ge t | test | for  | au  | itoco | rrela | ation | in   | panel | data |
| ΗC | ): n | o fi | irst | t-or | der  | aut | ocor  | relat | ion   |      |       |      |
|    | F    | (    | 1,   |      | 518) | =   |       | 9.01  | L9    |      |       |      |
|    |      |      | I    | Prob | > F  | =   |       | 0.00  | 028   |      |       |      |

#### Conclusion:

- Serial Correlation Exists
- Use xtregar

#### **Remedy for Serial Correlation: xtregar**

xtregar fits regression models for panel data when the residual is first-order autoregressive.

xtregar offers a within estimator for fixed-effects models and a GLS estimator for randomeffects models.

Syntax:

For Fixed-effects (FE) model

xtregar depvar [indepvars] [if] [in] [weight] , fe [options]

For GLS random-effects (RE) model

xtregar depvar [indepvars] [if] [in] [, re options]

Prerequisites: xtset

As serial correlation exists in our example so we can use xtregar

xtregar In\_wage tenure age south union, fe

| . xtregar ln_wage tenure age south union,fe |               |              |           |           |              |            |  |  |  |  |
|---------------------------------------------|---------------|--------------|-----------|-----------|--------------|------------|--|--|--|--|
| FE (within) re                              | egression wit | h AR(1) dist | urbances  | Number o  | fobs =       | 14873      |  |  |  |  |
| Group variable                              | : idcode      |              |           | Number o  | f groups =   | 3461       |  |  |  |  |
| R-sq: within                                | = 0.2273      |              |           | Obs per   | group: min = | 1          |  |  |  |  |
| betweer                                     | n = 0.0243    |              |           |           | avg =        | 4.3        |  |  |  |  |
| overall                                     | 1 = 0.0368    |              |           |           | max =        | 11         |  |  |  |  |
|                                             |               |              |           | F(4,1140  | 8) =         | 838.89     |  |  |  |  |
| corr(u_i, Xb)                               | = -0.1582     |              |           | Prob > F  | =            | 0.0000     |  |  |  |  |
| ln_wage                                     | Coef.         | Std. Err.    | t         | P> t      | [95% Conf.   | Interval]  |  |  |  |  |
| tenure                                      | .0095254      | .0013025     | 7.31      | 0.000     | .0069724     | .0120784   |  |  |  |  |
| age                                         | .0379431      | .0007118     | 53.30     | 0.000     | .0365478     | .0393384   |  |  |  |  |
| south                                       | 0058374       | .0192214     | -0.30     | 0.761     | 0435148      | .0318399   |  |  |  |  |
| union                                       | .0601574      | .0073272     | 8.21      | 0.000     | .0457948     | .0745201   |  |  |  |  |
| _cons                                       | .5790934      | .0069014     | 83.91     | 0.000     | .5655655     | .5926213   |  |  |  |  |
| rho_ar                                      | .81379231     |              |           |           |              |            |  |  |  |  |
| sigma_u                                     | .44337936     |              |           |           |              |            |  |  |  |  |
| sigma_e                                     | .22235111     |              |           |           |              |            |  |  |  |  |
| rho_fov                                     | .79904498     | (fraction (  | of varian | ce becaus | e of u_i)    |            |  |  |  |  |
| F test that al                              | ll u_i=0:     | F(3460,1140  | 8) =      | 1.44      | Prob >       | F = 0.0000 |  |  |  |  |

# **Example of Panel Data**

Using the file grunfeld.dta from the web perform various steps to apply panel data models:

See the following stat code (*panelExample.do*):

set more off

webuse grunfeld, clear

xtset company year

```
. set more off
. webuse grunfeld, clear
. xtset company year
    panel variable: company (strongly balanced)
    time variable: year, 1935 to 1954
        delta: 1 year
```

\* run fixed effect model

xtreg invest mvalue kstock, fe

| . * run fixed<br>. xtreg invest | effect model<br>t mvalue ksto | ck, fe      |           |           |           |       |            |
|---------------------------------|-------------------------------|-------------|-----------|-----------|-----------|-------|------------|
| Fixed-effects                   | (within) reg                  | ression     |           | Number    | of obs    | =     | 200        |
| Group variable                  | e: company                    |             |           | Number    | of groups | =     | 10         |
| R-sq: within                    | = 0.7668                      |             |           | Obs per   | group: m  | in =  | 20         |
| betweer                         | n = 0.8194                    |             |           |           | a         | vg =  | 20.0       |
| overall                         | L = 0.8060                    |             |           |           | m         | ax =  | 20         |
|                                 |                               |             |           | F(2,188   | )         | =     | 309.01     |
| corr(u_i, Xb)                   | = -0.1517                     |             |           | Prob >    | F         | =     | 0.0000     |
| invest                          | Coef.                         | Std. Err.   | t         | P> t      | [95% C    | onf.  | Interval]  |
| mvalue                          | .1101238                      | .0118567    | 9.29      | 0.000     | .08673    | 45    | .1335131   |
| kstock                          | .3100653                      | .0173545    | 17.87     | 0.000     | .27583    | 08    | .3442999   |
| _cons                           | -58.74393                     | 12.45369    | -4.72     | 0.000     | -83.310   | 86    | -34.177    |
| sigma_u                         | 85.732501                     |             |           |           |           |       |            |
| sigma_e                         | 52.767964                     |             |           |           |           |       |            |
| rho                             | .72525012                     | (fraction   | of varian | nce due t | o u_i)    |       |            |
| F test that al                  | ll u i=0:                     | F(9, 188) = | 49.18     | 3         | Prol      | b > 1 | F = 0.0000 |

To test time fixed effects:

qui xtreg invest mvalue kstock i.year, fe

testparm i.year

| . test | parm i.year   |        |
|--------|---------------|--------|
| (1)    | 1936.vear = 0 |        |
| (2)    | 1937.year = 0 |        |
| (3)    | 1938.year = 0 |        |
| (4)    | 1939.year = 0 |        |
| (5)    | 1940.year = 0 |        |
| (6)    | 1941.year = 0 |        |
| (7)    | 1942.year = 0 |        |
| (8)    | 1943.year = 0 |        |
| (9)    | 1944.year = 0 |        |
| (10)   | 1945.year = 0 |        |
| (11)   | 1946.year = 0 |        |
| (12)   | 1947.year = 0 |        |
| (13)   | 1948.year = 0 |        |
| (14)   | 1949.year = 0 |        |
| (15)   | 1950.year = 0 |        |
| (16)   | 1951.year = 0 |        |
| (17)   | 1952.year = 0 |        |
| (18)   | 1953.year = 0 |        |
| (19)   | 1954.year = 0 |        |
|        | <b>R</b> ( 40 |        |
|        | r(19, 169) =  | 1.40   |
|        | Prob > F =    | 0.1309 |

H<sub>0</sub>: All year coefficients are zero

As p-value is greater than 5% or even 10%, we can not reject H0 so we accept that all year coefficients are zero and there are no time-FEs

# To test for Random effects?

qui xtreg invest mvalue kstock, re

xttest0

As prob > chibar2, we reject  $H_0$  and conclude that panel effects exist

#### **Fixed of Random effects?**

xtreg invest mvalue kstock, fe

estimates store fixed

xtreg invest mvalue kstock, re

estimates store random

hausman fixed random

| . hausman fixe                                                                                                                        | ed random   |          |            |              |         |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|------------|--------------|---------|--|--|--|--|--|--|
|                                                                                                                                       |             |          |            |              |         |  |  |  |  |  |  |
| Coefficients                                                                                                                          |             |          |            |              |         |  |  |  |  |  |  |
|                                                                                                                                       | (b)         | (B)      | (b-B)      | sqrt(diag(V_ | b-V_B)) |  |  |  |  |  |  |
|                                                                                                                                       | fixed       | random   | Difference | S.E.         |         |  |  |  |  |  |  |
| mvalue                                                                                                                                | .1101238    | .1097811 | .0003427   | .005521      | .3      |  |  |  |  |  |  |
| kstock                                                                                                                                | .3100653    | .308113  | .0019524   | .002451      | .6      |  |  |  |  |  |  |
| <pre>b = consistent under Ho and Ha; obtained from xtree<br/>B = inconsistent under Ha, efficient under Ho; obtained from xtree</pre> |             |          |            |              |         |  |  |  |  |  |  |
| Test: Ho: difference in coefficients not systematic                                                                                   |             |          |            |              |         |  |  |  |  |  |  |
| chi2(2) = $(b-B)'[(V_b-V_B)^{(-1)}](b-B)$<br>= 2.33                                                                                   |             |          |            |              |         |  |  |  |  |  |  |
|                                                                                                                                       | Prob>chi2 = | 0.3119   |            |              |         |  |  |  |  |  |  |

Random effect model seems to be appropriate

# Heteroskedasticity in FE

qui xtreg invest mvalue kstock, fe

xttest3

```
. xttest3
Modified Wald test for groupwise heteroskedasticity
in fixed effect regression model
H0: sigma(i)^2 = sigma^2 for all i
chi2 (10) = 1.7e+07
Prob>chi2 = 0.0000
```

It is Required to run FE model before xttest3

 $H_0\colon$  homoscedasticity; we reject H0 and conclude that there is Heteroskedasticity. Use robust

option for both FE & RE models

e.g. xtreg invest mvalue kstock, fe robust

# Test for serial correlation

xtserial invest mvalue kstock

. xtserial invest mvalue kstock Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F(1, 9) = 263.592Prob > F = 0.0000

- reject H<sub>0</sub>, serial correlation exists
- xtregar may be used

# **Remedy for serial correlation**

xtregar invest mvalue kstock,fe

xtregar invest mvalue kstock,re

| . xtregar invest mvalue kstock,re |               |              |           |           |         |       |           |  |  |  |
|-----------------------------------|---------------|--------------|-----------|-----------|---------|-------|-----------|--|--|--|
| RE GLS regress                    | sion with AR( | l) disturban | ces       | Number    | of obs  | =     | 200       |  |  |  |
| Group variable: company           |               |              |           | Number    | of grou | ps =  | 10        |  |  |  |
| R-sq: within                      | = 0.7649      |              |           | Obs per   | group:  | min = | 20        |  |  |  |
| betweer                           | n = 0.8068    |              |           |           |         | avg = | 20.0      |  |  |  |
| overall = 0.7967                  |               |              |           |           |         | max = | 20        |  |  |  |
|                                   |               |              |           |           |         |       |           |  |  |  |
|                                   |               |              |           | Wald ch   | i2(3)   | =     | 360.31    |  |  |  |
| corr(u_i, Xb)                     | = 0 (as:      | sumed)       |           | Prob >    | chi2    | =     | 0.0000    |  |  |  |
|                                   |               |              |           |           |         |       |           |  |  |  |
| invest                            | Coef.         | Std. Err.    | Z         | ₽> z      | [95%    | Conf. | Interval] |  |  |  |
| mvalue                            | .0949215      | .0082168     | 11.55     | 0.000     | .078    | 8168  | .1110262  |  |  |  |
| kstock                            | .3196589      | .0258618     | 12.36     | 0.000     | .268    | 9707  | .3703471  |  |  |  |
| _cons                             | -44.38123     | 26.97525     | -1.65     | 0.100     | -97.2   | 5175  | 8.489292  |  |  |  |
| rho ar                            | .67210608     | (estimated   | autocori  | celation  | coeffic | ient) |           |  |  |  |
| sigma u                           | 74.517098     | (00011110000 |           |           |         | ,     |           |  |  |  |
| sigma e                           | 41,482494     |              |           |           |         |       |           |  |  |  |
| rho fov                           | .7634186      | (fraction    | of varia  | ce due t  | 0 11 1) |       |           |  |  |  |
| theta                             | 67315699      | (114001011   | or variat | ioc due o | 0 u_1)  |       |           |  |  |  |
| checa                             | .07313033     |              |           |           |         |       |           |  |  |  |

Only the random effect model results are shown above

#### Panel Data: both HSK and SC!

xtreg invest mvalue kstock, fe cluster ( company)

Use cluster with individual ID variable as input (*cluster ( company)* ) option with xtreg . xtreg invest mvalue kstock, fe cluster ( company)

| Fixed-effects (within) regression<br>Group variable: company |                                      |                                  |                       | Number<br>Number        | of obs<br>of groups               | =            | 200<br>10                        |
|--------------------------------------------------------------|--------------------------------------|----------------------------------|-----------------------|-------------------------|-----------------------------------|--------------|----------------------------------|
| R-sq: within<br>betweer<br>overall                           | = 0.7668<br>h = 0.8194<br>L = 0.8060 |                                  |                       | Obs per                 | group: min<br>avg<br>max          | =<br>=       | 20<br>20.0<br>20                 |
| corr(u_i, Xb)                                                | = -0.1517                            | (Std. F                          | rr. adius             | F(2,9)<br>Prob >        | F<br>10 clusters                  | =<br>=<br>in | 28.31<br>0.0001                  |
|                                                              |                                      |                                  |                       |                         |                                   |              |                                  |
| invest                                                       | Coef.                                | Std. Err.                        | t                     | P> t                    | [95% Conf                         |              | Interval]                        |
| mvalue<br>kstock<br>_cons                                    | .1101238<br>.3100653<br>-58.74393    | .0151945<br>.0527518<br>27.60286 | 7.25<br>5.88<br>-2.13 | 0.000<br>0.000<br>0.062 | .0757515<br>.1907325<br>-121.1859 |              | .1444961<br>.4293981<br>3.698079 |
| sigma_u<br>sigma_e<br>rho                                    | 85.732501<br>52.767964<br>.72525012  | (fraction (                      | of variar             | nce due t               | :o u_i)                           |              |                                  |

The resulting standard errors are completely robust to any kind of serial correlation and/or

heteroskedasticity

# Lecture 38 Qualitative and limited dependent variable models-I (Categorical dependent variable models)

#### Variables with category:

- Variable that has categories
- Normally qualitative in nature
- binary, multivariate (ordinal, or nominal)

#### Examples

Gender, color of eyes, educational status, different outcomes of an event encoded in numbers are some examples. When dependent variable is categorical OLS is biased and inefficient.

# **Logistic Regression**

A type of regression analysis used to predict the outcome of a categorical variable (binary or others). The dependent variable has a limited number of outcomes. The dependent variable is predicted by using a logistic function (e.g. logistic regression). Logistic regression does not make any assumptions of normality, linearity, and homogeneity of variance for the independent variables. The minimum number of cases per independent variable is 10.

# **Logistic Function:**

$$F(t) = \frac{e^t}{e^t + 1} = \frac{1}{1 + e^{-t}}$$

Where t is a linear function of the explanatory variables.

$$\pi(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X)}}$$

Which can be interpreted as the probability of dependent variable equaling a 'success' or a 'case'

The logistic function is:

$$g(x) = \ln \frac{\pi(x)}{1 - \pi(x)} = \beta_0 + \beta_1 X$$

This is the log of odds

$$g(x) = \ln \frac{\pi(x)}{1 - \pi(x)} = \beta_0 + \beta_1 X$$

As a latent variable model this has an equivalent formulation. Let  $Y^*$  be a continuous latent variable (unobserved random variable) where  $Y^* = \beta_1 X + \in$ Where  $\in \sim Logistic(0,1)$ 



#### **Odd Ratio:**

The logistic function is:

$$g(x) = \ln \frac{\pi(x)}{1 - \pi(x)} = \beta_0 + \beta_1 X$$

This is the In of odds

Where odd ratio is defined as : ratio of probability of an event occurring to probability of an

event not occurring

#### Commands for logistic regression in Stata

Binary logit: logit

Ordered logit: *ologit* 

Multinomial logit: *mlogit* 

Syntax of the logit command is: *logit depvar [indepvars] [if] [in] [weight] [, options]* 

#### Menu: Statistics > Binary outcomes > Logistic regression

| nics Sta | atistics User Window Help                                  |             |                                                                                                       |  |
|----------|------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------|--|
| -11      | Summaries, tables, and tests                               | •           |                                                                                                       |  |
|          | Linear models and related                                  | •           |                                                                                                       |  |
|          | Binary outcomes                                            | •           | Logistic regression                                                                                   |  |
| netric   | Ordinal outcomes<br>Categorical outcomes<br>Count outcomes | )<br>)<br>) | Logistic regression (reporting odds ratios)<br>Exact logistic regression<br>Panel logistic regression |  |
|          | Generalized linear models                                  | •           | Multilevel logistic regression                                                                        |  |

#### Consider the file logitProbit.dta

#### **Binary logistic regression**

| . logit cgpm3  | gat age gende | er           |       |       |          |       |           |
|----------------|---------------|--------------|-------|-------|----------|-------|-----------|
| Iteration 0:   | log likeliho  | bod = -27.67 | 5866  |       |          |       |           |
| Iteration 1:   | log likeliho  | d = -9.012   | 8072  |       |          |       |           |
| Iteration 2:   | log likeliha  | bod = -8.394 | 5168  |       |          |       |           |
| Iteration 3:   | log likeliha  | bod = -8.372 | 4244  |       |          |       |           |
| Iteration 4:   | log likeliho  | bod = -8.37  | 2365  |       |          |       |           |
| Iteration 5:   | log likelih   | pod = -8.37  | 2365  |       |          |       |           |
|                |               |              |       |       |          |       |           |
| Logistic regre | ession        |              |       | Numbe | r of obs | =     | 40        |
|                |               |              |       | LR ch | i2(3)    | =     | 38.61     |
|                |               |              |       | Prob  | > chi2   | =     | 0.0000    |
| Log likelihood | d = -8.372363 | 5            |       | Pseud | o R2     | =     | 0.6975    |
|                |               |              |       |       |          |       |           |
|                | I             |              |       |       |          |       |           |
| cgpm3          | Coef.         | Std. Err.    | z     | P> z  | [95% (   | Conf. | Interval] |
|                |               |              |       |       |          |       |           |
| gat            | .1787685      | .0830936     | 2.15  | 0.031 | .01590   | 081   | .341629   |
| age            | 1.369097      | .6025718     | 2.27  | 0.023 | .1880    | 783   | 2.550116  |
| gender         | -1.800292     | 1.550428     | -1.16 | 0.246 | -4.8390  | 076   | 1.238491  |
| cons           | -40,97921     | 14.30238     | -2.87 | 0.004 | -69.01   | 135   | -12,94707 |
|                |               |              |       |       |          |       |           |

#### Interpreting Results

#### odds: odds mean ratio of favorable items to non-favorable items

Interpretation: The log of odds changes by the amount of the coefficient for one unit increase in the independent variable. Prob > Chi2 = 0.0000: our model as a whole fits significantly better than an empty model . we see the coefficients, their standard errors, the z-statistic, associated p-values, and the 95% confidence interval of the coefficients. For one unit increase in GAT score, the log odds of getting CGPA > 3 in Masters increases by 0.1787 (similar for other coefficients). Gender is not significant

#### **Pseudo Rsquare**

As equivalent statistic to R-squared does not exist because OLS not apply, pseudo R-squares are used because they look like R-squared (0 to 1). Higher values indicating better model fit different pseudo R-squars can give different values

#### To get odd ratios instead of log of odds

| . logit , or               |            |           |       |        |          |       |           |
|----------------------------|------------|-----------|-------|--------|----------|-------|-----------|
| Logistic regre             | ession     |           |       | Numbe  | r of obs | =     | 40        |
|                            |            |           |       | LR ch  | i2(3)    | =     | 38.61     |
|                            |            |           |       | Prob 3 | > chi2   | =     | 0.0000    |
| Log likelihood = -8.372365 |            |           |       | Pseud  | o R2     | =     | 0.6975    |
|                            |            |           |       |        |          |       |           |
| cgpm3                      | Odds Ratio | Std. Err. | z     | P> z   | [95%)    | Conf. | Interval] |
| gat                        | 1.195744   | .0993586  | 2.15  | 0.031  | 1.016    | 035   | 1.407238  |
| age                        | 3.9318     | 2.369192  | 2.27  | 0.023  | 1.206    | 928   | 12.80859  |
| gender                     | .1652506   | .2562091  | -1.16 | 0.246  | .0079    | 144   | 3.450403  |
| _cons                      | 1.60e-18   | 2.28e-17  | -2.87 | 0.004  | 1.07e    | -30   | 2.38e-06  |

# **Ordinal Logistic Regression**

Ordinal categorical dependent variable examples:

- Encoding in age brackets
- Educational Grades (enccoded numerically)
- Income brackets encoded numerically
- size (small, medium, large or extra large)
- decesion (unlikely, somewhat likely, or very likely)
- Opinion (strongly agree , agree -- - -)
- The actual values are irrelevant

• Larger values are assumed to correspond to "higher" outcomes.

In Stata Command Syntax: *ologit depvar [indepvars] [if] [in] [weight] [, options]* 

Menu:

Statistics > Ordinal outcomes > Ordered logistic regression

Follow the example given below:

| . sysuse auto  |             |                |      |        |            |           |  |  |  |
|----------------|-------------|----------------|------|--------|------------|-----------|--|--|--|
| (1978 Aut      | omobile     | Data)          |      |        |            |           |  |  |  |
| . tab rep      | 78          |                |      |        |            |           |  |  |  |
| -              |             |                |      |        |            |           |  |  |  |
| Repa           | ir          |                |      |        |            |           |  |  |  |
| Record 19      | 78          | Freq.          |      | Perce  | nt         | Cum.      |  |  |  |
|                | 1           | 2              |      | 2.     | 90         | 2.90      |  |  |  |
|                | 2           | 8              |      | 11.    | 59         | 14.49     |  |  |  |
|                | 3           | 30             |      | 43.4   | 48         | 57.97     |  |  |  |
|                | 4           | 18             |      | 26.1   | 09         | 84.06     |  |  |  |
|                | 5           | 11             |      | 15.9   | 94         | 100.00    |  |  |  |
| Tot            | al          | 69             |      | 100.   | 00         |           |  |  |  |
|                |             |                |      |        |            |           |  |  |  |
| . ologit rep78 | foreign le  | ngth mpg       |      |        |            |           |  |  |  |
| Iteration 0:   | log likeli  | hood93 692     | 061  |        |            |           |  |  |  |
| Iteration 1:   | log likeli  | hood = -76.890 | 334  |        |            |           |  |  |  |
| Iteration 2:   | log likeli  | hood = -75.861 | 126  |        |            |           |  |  |  |
| Iteration 3:   | log likeli  | hood = -75.842 | 863  |        |            |           |  |  |  |
| Iteration 4:   | log likeli  | hood = -75.84  | 285  |        |            |           |  |  |  |
| Iteration 5:   | log likeli  | hood = -75.84  | 285  |        |            |           |  |  |  |
| 1001001001 01  | iog iikcii  |                | 200  |        |            |           |  |  |  |
| Ordered logist | ic regressi | on             |      | Numbe: | rofobs =   | 69        |  |  |  |
|                | -           |                |      | LR ch  | i2(3) =    | 35.70     |  |  |  |
|                |             |                |      | Prob 3 | > chi2 =   | 0.0000    |  |  |  |
| Log likelihood | = -75.842   | 85             |      | Pseud  | 0 R2 =     | 0.1905    |  |  |  |
| -              |             |                |      |        |            |           |  |  |  |
| rep78          | Coef.       | Std. Err.      | z    | P> z   | [95% Conf. | Intervall |  |  |  |
|                |             |                |      |        |            |           |  |  |  |
| foreign        | 3.386723    | .8107449       | 4.18 | 0.000  | 1.797692   | 4.975754  |  |  |  |
| length         | .0442834    | .0216494       | 2.05 | 0.041  | .0018513   | .0867155  |  |  |  |
| mpg            | .1886168    | .0817381       | 2.31 | 0.021  | .028413    | .3488205  |  |  |  |
| /cut1          | 9.193326    | 5.588753       |      |        | -1.760428  | 20.14708  |  |  |  |
| /cut2          | 10.98896    | 5.556764       |      |        | .0979072   | 21.88002  |  |  |  |
| /cut3          | 13.66862    | 5.619971       |      |        | 2.653681   | 24.68356  |  |  |  |
| /cut4          | 15.84741    | 5.716623       |      |        | 4.643035   | 27.05178  |  |  |  |

**Multinomial Logistic Regression**
We use this model when no order to the categories of the outcome variable is found(i.e., the categories are nominal).

#### Examples

- Occupational choice (categories of job)
- Choice of specialization in Degrees (Accounting, Finance, marketing etc)

mlogit fits maximum-likelihood multinomial logit models, also known as polytomous logistic regression.

In Stata:

Menu: Statistics > Categorical outcomes > Multinomial logistic regression Command Syntax: mlogit depvar [indepvars] [if] [in] [weight] [, options] Please follow the example given below:

| (Health insura  | nce data) | 1           |             |                              |
|-----------------|-----------|-------------|-------------|------------------------------|
|                 |           |             |             |                              |
| . des           |           |             |             |                              |
|                 |           |             |             |                              |
| Contains data : | from http | p://www.sta | ta-press.co | om/data/r13/sysdsn1.dta      |
| obs:            | 644       |             |             | Health insurance data        |
| vars:           | 13        |             |             | 28 Mar 2013 13:10            |
| size:           | 14,168    |             |             |                              |
|                 |           |             |             |                              |
|                 | storage   | display     | value       |                              |
| variable name   | type      | format      | label       | variable label               |
| patid           | float     | €9.0g       |             |                              |
| noinsur0        | byte      | €8.0g       |             | no insurance at baseline     |
| noinsur1        | byte      | €8.0g       |             | no insurance at year 1       |
| noinsur2        | byte      | €8.0g       |             | no insurance at year 2       |
| age             | float     | %10.0g      |             | NEMC (ISCNRD-IBIRTHD)/365.25 |
| male            | byte      | %8.0g       |             | NEMC PATIENT MALE            |
| ppd0            | byte      | %8.0g       |             | prepaid at baseline          |
| ppd1            | byte      | %8.0g       |             | prepaid at year 1            |
| ppd2            | byte      | %8.0g       |             | prepaid at year 2            |
| nonwhite        | float     | %9.0g       |             |                              |
| ppd             | byte      | %8.0g       |             |                              |
| insure          | byte      | %9.0g       | insure      |                              |
| site            | byte      | %9.0g       |             |                              |

| Iteration 4:  | <pre>Iteration 4: log likelihood = -534.36165</pre> |           |       |       |          |       |           |
|---------------|-----------------------------------------------------|-----------|-------|-------|----------|-------|-----------|
| Multinomial 1 | ogistic regre                                       | ssion     |       | Numbe | r of obs | =     | 615       |
|               |                                                     |           |       | LR ch | i2(10)   | =     | 42.99     |
|               |                                                     |           |       | Prob  | > chi2   | =     | 0.0000    |
| Log likelihoo | d = -534.3616                                       | 5         |       | Pseud | lo R2    | =     | 0.0387    |
| insure        | Coef.                                               | Std. Err. | z     | P> z  | [95% 0   | Conf. | Interval] |
| Indomnitu     | (base outs                                          |           |       |       |          |       |           |
| Indemnicy     | (Dase Outo                                          | ome)      |       |       |          |       |           |
| Prepaid       |                                                     |           |       |       |          |       |           |
| age           | 011745                                              | .0061946  | -1.90 | 0.058 | 02388    | 62    | .0003962  |
| male          | .5616934                                            | .2027465  | 2.77  | 0.006 | .16431   | .75   | .9590693  |
| nonwhite      | .9747768                                            | .2363213  | 4.12  | 0.000 | .51159   | 55    | 1.437958  |
| site          |                                                     |           |       |       |          |       |           |
| 2             | .1130359                                            | .2101903  | 0.54  | 0.591 | 29892    | 96    | .5250013  |
| 3             | 5879879                                             | .2279351  | -2.58 | 0.010 | -1.0347  | 33    | 1412433   |
| _cons         | .2697127                                            | .3284422  | 0.82  | 0.412 | 37402    | 22    | .9134476  |
| Uninsure      |                                                     |           |       |       |          |       |           |
| age           | 0077961                                             | .0114418  | -0.68 | 0.496 | 03022    | 17    | .0146294  |
| male          | .4518496                                            | .3674867  | 1.23  | 0.219 | 2684     | 11    | 1.17211   |
| nonwhite      | .2170589                                            | .4256361  | 0.51  | 0.610 | 61717    | 25    | 1.05129   |
| site          |                                                     |           |       |       |          |       |           |
| 2             | -1.211563                                           | .4705127  | -2.57 | 0.010 | -2.1337  | 51    | 2893747   |
| 3             | 2078123                                             | .3662926  | -0.57 | 0.570 | 92573    | 327   | .510108   |
| CODS          | -1,286943                                           | .5923219  | -2.17 | 0.030 | -2.4478  | 372   | 1260134   |

The above is a result of using the *mlogit* command.

# Lecture 39

# Qualitative and limited dependent variable models-II (Categorical dependent variable models)

#### **Probit Regression**

A type of regression analysis used to predict the Probability of a categorical variable (binary or others). Examples of categorical variables: as in logit. The dependent variable has a limited number of outcomes. The dependent variable is predicted by using a probit function. The minimum number of cases per independent variable is 10.

#### **Probit Function:**

Recall the standard normal distribution/ Z-scores

Given any Z-score ,  $\phi(Z)$  is the cumulative normal distribution function

For any given Z,  $\phi(Z) \in [0,1]$ 

$$Y = \phi(\mathbf{X}\beta + \epsilon)$$
 then  $\phi^{-1}(Y) = \mathbf{X}\beta + \epsilon$ 

 $F(Y) = \Phi^{-1}(Y)$  is called the probit function

Probit may be a short for 'probability unit' P(Y)=1

 $X\beta$  is the Z-value of a normal distribution. Higher the estimation value, more likely is the event to happen. A one unit change in the value of X bring  $\beta$  change in the Z-score of Y. Estimated Curve in S-shaped.



- Red dots are actual value of categorical variable ('CGPA>3' =1)
- The curve shows the probit

#### Example of binary probit

Binary probit command in Stata: probit

Sytax: probit depvar [indepvars] [if] [in] [weight] [, options]

Menu: Statistics > Binary outcomes > Probit regression

| lessonN  | otes\logitProbit.dta - [Results]                           |   | And the second second second                                                                          |
|----------|------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------|
| aphics   | Statistics User Window Help                                |   |                                                                                                       |
| 11. × 1  | Summaries, tables, and tests                               | • |                                                                                                       |
|          | Linear models and related                                  | • |                                                                                                       |
|          | Binary outcomes                                            | • | Logistic regression                                                                                   |
| Notes\lc | Ordinal outcomes<br>Categorical outcomes<br>Count outcomes | * | Logistic regression (reporting odds ratios)<br>Exact logistic regression<br>Panel logistic regression |
|          | Generalized linear models<br>Treatment effects             | • | Multilevel logistic regression<br>Probit regression                                                   |

# Consider the file logitProbit.dta

Run the Binary Probit regression

| . probit cgpm3 | ) gat age hrs | gender       |       |       |          |       |           |
|----------------|---------------|--------------|-------|-------|----------|-------|-----------|
| Iteration 0:   | log likelih   | ood = -27.67 | 5866  |       |          |       |           |
| Iteration 1:   | log likelih   | ood = -9.092 | 9712  |       |          |       |           |
| Iteration 2:   | log likelih   | ood = -8.42  | 4636  |       |          |       |           |
| Iteration 3:   | log likelih   | ood = -8.368 | 6353  |       |          |       |           |
| Iteration 4:   | log likelih   | ood = -8.368 | 4338  |       |          |       |           |
| Iteration 5:   | log likelih   | ood = -8.368 | 4338  |       |          |       |           |
|                |               |              |       |       |          |       |           |
| Probit regress | ion           |              |       | Numbe | r of obs | ; =   | 40        |
|                |               |              |       | LR ch | i2(4)    | =     | 38.61     |
|                |               |              |       | Prob  | > chi2   | =     | 0.0000    |
| Log likelihood | i = -8.368433 | 8            |       | Pseud | o R2     | =     | 0.6976    |
|                |               |              |       |       |          |       |           |
| cgpm3          | Coef.         | Std. Err.    | z     | ₽> z  | [95%     | Conf. | Interval] |
| gat            | .1649003      | .07665       | 2.15  | 0.031 | .0146    | 691   | .3151315  |
| age            | .5937335      | .2460213     | 2.41  | 0.016 | .1115    | 405   | 1.075926  |
| hrs            | .1397012      | .0718164     | 1.95  | 0.052 | 0010     | 564   | .2804588  |
| gender         | 1.025611      | .8715859     | 1.18  | 0.239 | 6826     | 661   | 2.733888  |
| _cons          | -26.29432     | 8.871298     | -2.96 | 0.003 | -43.68   | 175   | -8.906899 |

### **Interpreting Results**

- Significance is almost as in logit
- Model, as a whole is statistically significant (Pr > chi2) < 0.05
- Coefficients: Change in Z-score or probit due to change in one unit of independent variable (they are less than one)

### Interpretation of the coefficients:

• Not as in OLS

- Not slope coefficient or marginal effects
- The increase in probability due to a one-unit increase in a given independent variable/predictor depends both on the values of the other predictors and the starting value of the given predictors (different for different rows of observation)
- The predicted probability of CGPA>3 can be calculated as
- $F(\beta_0 + \beta_1 GAT + \beta_2 AGE + \beta_3 HRS)$
- Where  $\beta_i$  are the coefficients generated by the probit regression.
- Effect of change in one variable on the probability of getting CGPA>3 depends on the current value of a variable under consideration and also on the GIVEN/CONSTANT values of the other variables

#### Tests after probit (fitness, different pseudo R squares)

If fitstat is not installed try ssc install fitstat

| . fitstat                           |          |                     |         |  |  |  |  |  |  |
|-------------------------------------|----------|---------------------|---------|--|--|--|--|--|--|
| Measures of Fit for probit of cgpm3 |          |                     |         |  |  |  |  |  |  |
| Log-Lik Intercept Only:             | -27.676  | Log-Lik Full Model: | -8.368  |  |  |  |  |  |  |
| D(35):                              | 16.737   | LR(4):              | 38.615  |  |  |  |  |  |  |
|                                     |          | Prob > LR:          | 0.000   |  |  |  |  |  |  |
| McFadden's R2:                      | 0.698    | McFadden's Adj R2:  | 0.517   |  |  |  |  |  |  |
| Maximum Likelihood R2:              | 0.619    | Cragg & Uhler's R2: | 0.826   |  |  |  |  |  |  |
| McKelvey and Zavoina's R2:          | 0.882    | Efron's R2:         | 0.714   |  |  |  |  |  |  |
| Variance of y*:                     | 8.455    | Variance of error:  | 1.000   |  |  |  |  |  |  |
| Count R2:                           | 0.900    | Adj Count R2:       | 0.789   |  |  |  |  |  |  |
| AIC:                                | 0.668    | AIC*n:              | 26.737  |  |  |  |  |  |  |
| BIC:                                | -112.374 | BIC':               | -23.859 |  |  |  |  |  |  |

#### **Ordinal Probit Regression**

Ordinal categorical dependent variable examples:

- Encoding in age brackets
- Educational Grades (enccoded numerically)
- Income brackets encoded numerically
- size (small, medium, large or extra large)

- decesion (unlikely, somewhat likely, or very likely)
- Opinion (strongly agree , agree -- - -)
- The actual values are irrelevant
- Larger values are assumed to correspond to "higher" outcomes.

#### In Stata

Menu: Statistics > Ordinal outcomes > Ordered probit regression

Command Syntax: oprobit depvar [indepvars] [if] [in] [weight] [, options]

| . oprobit rep           | 78 foreign le                    | ngth mpg                         |      |        |                        |                   |                                  |
|-------------------------|----------------------------------|----------------------------------|------|--------|------------------------|-------------------|----------------------------------|
| Iteration 0.            | log likelih                      | ood93 693                        | 0061 |        |                        |                   |                                  |
| Therefore 4.            | log likelih                      |                                  | 1001 |        |                        |                   |                                  |
| Iteration 1:            | log likelin                      | 00a = -/5./5l                    | 1485 |        |                        |                   |                                  |
| Iteration 2:            | log likelih                      | ood = -75.511                    | .639 |        |                        |                   |                                  |
| Iteration 3:            | log likelih                      | ood = -75.510                    | )455 |        |                        |                   |                                  |
| Iteration 4:            | log likelih                      | ood = -75.510                    | 455  |        |                        |                   |                                  |
| Ordered probin          | t regression                     |                                  |      | Numbe: | r of obs               | =                 | 69                               |
| -                       | -                                |                                  |      | LR ch  | i2(3)                  | =                 | 36.36                            |
|                         |                                  |                                  |      | Prob   | > chi2                 | =                 | 0.0000                           |
| Log likelihoo           | 475 51045                        | 5                                |      | Deeud  | - D2                   | _                 | 0 1941                           |
| 209 114011400           |                                  | -                                |      | 10cuu  |                        |                   | 0.10.11                          |
| rep78                   | Coef.                            | Std. Err.                        | z    | P> z   | [95%                   | Conf.             | Interval]                        |
| foreign                 | 1.952368                         | .4183195                         | 4.67 | 0.000  | 1.132                  | 477               | 2.772259                         |
| length                  | .0246549                         | .0120788                         | 2.04 | 0.041  | .0009                  | 808               | .048329                          |
| mpg                     | .1162093                         | .046381                          | 2.51 | 0.012  | .0253                  | 043               | .2071143                         |
|                         |                                  |                                  |      |        |                        |                   |                                  |
| /cut1                   | 5.368959                         | 3.154789                         |      |        | 8143                   | 136               | 11.55223                         |
| /cut1<br>/cut2          | 5.368959<br>6.280657             | 3.154789                         |      |        | 8143                   | 136<br>482        | 11.55223                         |
| /cut1<br>/cut2<br>/cut3 | 5.368959<br>6.280657<br>7.878031 | 3.154789<br>3.147052<br>3.165692 |      |        | 8143<br>.1125          | 136<br>482<br>389 | 11.55223<br>12.44877<br>14.08267 |
| /cut1<br>/cut2<br>/cut3 | 5.368959<br>6.280657<br>7.878031 | 3.154789<br>3.147052<br>3.165692 |      |        | 8143<br>.1125<br>1.673 | 136<br>482<br>389 | 11.55223<br>12.44877<br>14.08267 |

Magnitude of Coefficients differs from probit by a scale factor. Magnitude of Coefficients is not interpreted. The sign will matter.

#### Multinomial Probit Regression

No order to the categories of the outcome variable is found (i.e., the categories are nominal).

#### Examples

• Occupational choice (categories of job)

• Choice of specialization in Degrees (Accounting, Finance, marketing etc)

*mprobit* fits maximum-likelihood multinomial probit models, also known as polytomous probit regression.

## In Stata:

Menu: Statistics > Categorical outcomes > Independent multinomial probit Command Syntax: mprobit depvar [indepvars] [if] [in] [weight], [options] Follow the example below:

| . webuse sysds | sn1, clea: | r           |             |                              |
|----------------|------------|-------------|-------------|------------------------------|
| (Health insur  | ance data  | )           |             |                              |
| . des          |            |             |             |                              |
| Contains data  | from http  | p://www.sta | ta-press.co | om/data/r13/sysdsn1.dta      |
| obs:           | 644        |             |             | Health insurance data        |
| vars:          | 13         |             |             | 28 Mar 2013 13:10            |
| size:          | 14,168     |             |             |                              |
|                | storage    | display     | value       |                              |
| variable name  | type       | format      | label       | variable label               |
| patid          | float      | €9.0g       |             |                              |
| noinsur0       | byte       | €8.0g       |             | no insurance at baseline     |
| noinsur1       | byte       | %8.0g       |             | no insurance at year 1       |
| noinsur2       | byte       | %8.0g       |             | no insurance at year 2       |
| age            | float      | €10.0g      |             | NEMC (ISCNRD-IBIRTHD)/365.25 |
| male           | byte       | €8.0g       |             | NEMC PATIENT MALE            |
| ppd0           | byte       | %8.0g       |             | prepaid at baseline          |
| ppd1           | byte       | %8.0g       |             | prepaid at year 1            |
| ppd2           | byte       | €8.0g       |             | prepaid at year 2            |
| nonwhite       | float      | %9.0g       |             |                              |
| ppd            | byte       | €8.0g       |             |                              |
| insure         | byte       | %9.0g       | insure      |                              |
| site           | byte       | \$9.0g      |             |                              |

# Business Econometrics by Dr Sayyid Salman Rizavi

| . mprobit insu | ure age male n | nonwhite sit | e     |       |            |             |
|----------------|----------------|--------------|-------|-------|------------|-------------|
| Iteration 0:   | log likeliho   | ood = -543.4 | 3775  |       |            |             |
| Iteration 1:   | log likeliho   | bod = -542.  | 5454  |       |            |             |
| Iteration 2:   | log likeliho   | pod = -542.5 | 4378  |       |            |             |
| Iteration 3:   | log likeliho   | bod = -542.5 | 4378  |       |            |             |
|                |                |              |       |       |            |             |
| Multinomial p  | robit regress: | ion          |       | Numbe | r of obs = | 615         |
|                |                |              |       | Wald  | chi2(8) =  | 25.88       |
| Log likelihood | 1 = -542.54378 | 3            |       | Prob  | > chi2 =   | 0.0011      |
|                |                |              |       |       |            |             |
| insure         | Coef.          | Std. Err.    | z     | P> z  | [95% Conf. | . Interval] |
| Indemnity      | (base outco    | ome)         |       |       |            |             |
|                | -              |              |       |       |            |             |
| Prepaid        |                |              |       |       |            |             |
| age            | 0106517        | .0052504     | -2.03 | 0.042 | 0209422    | 0003612     |
| male           | .4639881       | .1710279     | 2.71  | 0.007 | .1287796   | .7991965    |
| nonwhite       | .7032026       | .1892129     | 3.72  | 0.000 | .3323522   | 1.074053    |
| site           | 231853         | .0942748     | -2.46 | 0.014 | 4166282    | 0470778     |
| _cons          | .634214        | .3171015     | 2.00  | 0.045 | .0127066   | 1.255721    |
| Uninsure       |                |              |       |       |            |             |
| age            | 0053146        | .0074696     | -0.71 | 0.477 | 0199548    | .0093256    |
| male           | .371961        | .2379191     | 1.56  | 0.118 | 0943518    | .8382739    |
| nonwhite       | .3880594       | .269135      | 1.44  | 0.149 | 1394355    | .9155542    |
| site           | 1002057        | .1303229     | -0.77 | 0.442 | 3556339    | .1552226    |
| cons           | -1.05565       | .4482422     | -2.36 | 0.019 | -1.934189  | 1771116     |
| -              |                |              |       |       |            |             |

# Lecture 40

# Qualitative and limited dependent variable models-III

# &

# **Censored Regression Models (Tobit Model)**

# Probability Vs. Odd Ratio

The following table maps the odd ratio and probability concepts.

| Probability   | Odd Ratio            | Ln (odds)      | Odds             |
|---------------|----------------------|----------------|------------------|
| 0             | 0                    | -              | -                |
| 1/5           | 1/4                  | Negative       | Against (1 to 4) |
| 1/4           | 1/3                  | Negative       | Against (1 to 3) |
| 1/3           | 1/2                  | Negative       | Against (1 to 2) |
| 1/2           | 1                    | Zero           | Even             |
| 2/3           | 2                    | Positive       | Favor (2 to one) |
| 3/4           | 3                    | Positive       | Favor (3 to one) |
| 1             | 8                    | Positive/∞     | -                |
| Range= 0 to 1 | Range= 0 to $\infty$ | -∞ <b>to</b> ∞ |                  |

Note that Probability ranges from 0 to 1 while Odds range from 0 to infinity and Log (odds) ranges from  $-\infty$  to  $\infty$ . Also:

$$Odd \ ratio = \frac{Probability \ of \ x}{1 - probability \ of \ x}$$
$$Probability = \frac{Odd \ Ratio}{1 + Odd \ ratio}$$

Remember that the coefficients are the CHANGE in probability or odd ratios, not the probability or Odds. Above formula are not for the coefficients.

# **Marginal Effects**

For simple regression, slopes are the derivative of dependent variable w.r.t. independent variable. This is not the case in probit models where

$$\frac{\partial \mathbb{P}[Y_i = 1 | X_{1i}, \dots, X_{ki}; \beta_{0,\dots}, \beta_k]}{\partial X_{ki}} = \beta_k \Phi \left(\beta_0 + \sum_{1}^{k} \beta_k X_{ki}\right)$$

Here  $\phi(\cdot)$  is the standard normal probability density function.

The increase in probability due to a one-unit increase in a given independent variable/predictor depends both on the values of the other predictors and the starting value of the given predictors (different for different rows of observation). Effect of change in one variable on the probability of getting CGPA>3 depends on the current value of a variable under consideration and also on the GIVEN/CONSTANT values of the other variables

#### Marginal Effects in Stata

Open the file logitProbit.dta and run the following Probit regression

probit cgpm3 gat age hrs gender

margins, dydx(\*)

| . margins, dyo                    | ix (*)                            |              |      |       |            |           |  |  |  |
|-----------------------------------|-----------------------------------|--------------|------|-------|------------|-----------|--|--|--|
| Average margin                    | hal effects                       |              |      | Numbe | r of obs = | 40        |  |  |  |
| Model VCE :                       | : OIM                             |              |      |       |            |           |  |  |  |
| Expression : Pr(cgpm3), predict() |                                   |              |      |       |            |           |  |  |  |
| dy/dx w.r.t. :                    | dy/dx w.r.t. : gat age hrs gender |              |      |       |            |           |  |  |  |
|                                   | 1                                 | Delta-method |      |       |            |           |  |  |  |
|                                   | dy/dx                             | Std. Err.    | Z    | P> z  | [95% Conf. | Interval] |  |  |  |
| gat                               | .0186434                          | .0060959     | 3.06 | 0.002 | .0066956   | .0305911  |  |  |  |
| age                               | .0671266                          | .0159629     | 4.21 | 0.000 | .0358399   | .0984133  |  |  |  |
| hrs                               | .0157944                          | .0062061     | 2.54 | 0.011 | .0036306   | .0279582  |  |  |  |
| gender                            | .115954                           | .0911978     | 1.27 | 0.204 | 0627904    | .2946984  |  |  |  |

One unit increase in gat increases the probability of CGPA>3 by 0.0128985.

## Tests after logit/probit models

### Likelihood ratio test

This test is used both for logit and probit models. It estimates two models and compares them (e.g. empty vs full OR restricted model vs. unrestricted model). This statistic is distributed chisquared with degrees of freedom equal to the difference in the number of degrees of freedom between the two models. Significance means that the model improves.

Open logitProbit.dta and run the following commands

| probit cgpm3                                           |                               |                 |
|--------------------------------------------------------|-------------------------------|-----------------|
| estimates store m1                                     |                               |                 |
| probit cgpm3 gat age hrs gender                        |                               |                 |
| estimates store m2                                     |                               |                 |
| lrtest m1 m2                                           |                               |                 |
| . 1rtest m1 m2                                         |                               |                 |
| Likelihood-ratio test<br>(Assumption: m1 nested in m2) | LR chi2(4) =<br>Prob > chi2 = | 38.61<br>0.0000 |
|                                                        |                               |                 |

Here the last line gives the result above. As the p-value is less than 0.01, including all variable together improves the model. We can use this test for two models where the first one is nested in the second one.

#### Wald Test

Wald test estimates the *Irtest* but is better as we need to run only one model. It tests if the parameters of interest are jointly equal to zero. For the file logitProbit.dta, run the following (Other combination of variables may also be tested):

probit cgpm3 gat age hrs

test gat age hrs



The above result shows that  $H_0$  is rejected at 10%: all coefficients of variables (gat, age, hrs) are not jointly zero.

### **Censored Data Regression Models: The Tobit Model**

OLS is inefficient when The dependent variable is incompletely observed or when the dependent variable is observed completely but the selected sample is not representative of the population.

#### Truncated and Censored Data

Truncated Data: observations on both dependent and independent variable are lost

*Example:* small firms only included, low income respondents only etc.

*Censored Data:* when observations on dependent variable only are lost (or limited)

*Examples:* Income top-coded to 50,000; time bottom-coded to 10 minutes chunks etc.

#### **Tobit Model: Structure**

Suppose  $y^*$  is a latent variable that is observed partially for values greater than  $\theta$ 

$$y^* = X_i\beta + \epsilon_i$$

And

$$\epsilon_i \sim N(0, \sigma^2)$$

Then the observed *y* is defined as

$$y = \begin{cases} y^* & if y^* > \theta \\ \theta_y & if y^* \le \theta \end{cases}$$

As the data is usually censured at zero, the model becomes

$$y = \begin{cases} y^* & if y^* > 0 \\ 0 & if y^* \le 0 \end{cases}$$

Examples where the Tobit model can be applied may include:

- Time use surveys: 10 minutes time chunks
- Glucometers to detect blood sugar give a reading Error or not more than a specific value (like, for example, 500 mg/dL)
- GAT (Gen): students answering all 100 questions may have different IQ levels and/or aptitude.

#### **Tobit Model using Stata**

Tobit Model Stata Command: tobit

Syntax: tobit depvar [indepvars] [if] [in] [weight], II[(#)] uI[(#)] [options]

Menu: Statistics > Linear models and related > Censored regression > Tobit regression



Open the file logitProbit.dta, use usual commands to know your data (sum, des, etc.)

| . des         |                 |                   |                |                                |
|---------------|-----------------|-------------------|----------------|--------------------------------|
| Contains data | a from D:\\     | /U\lessonNo       | tes\logitP     | robit.dta                      |
| obs:          | 40              |                   |                |                                |
| vars:         | 5               |                   |                | 20 Jul 2014 19:54              |
| size:         | 440             |                   |                |                                |
| variable name | storage<br>type | display<br>format | value<br>label | variable label                 |
| cgpm3         | byte            | \$8.0g            |                | CGPA in Masters >3             |
| gat           | byte            | %8.0g             |                | GAT (Gen) Score                |
| age           | byte            | €8.0g             |                | AGE at time of Masters         |
| hrs           | float           | €9.0g             |                | Average hours studies per week |
| gender        | float           | %9.0g             |                |                                |

Consider the variable 'gat'.

# histogram gat



Just for example, let us consider censoring data at different levels.

First let us consider left censoring at 60. There were 40 observations with 10 with gat<60. Even after censoring there are 40!

| . tobit gat age hrs gender, 11(60)                     |                |           |          |       |          |      |           |  |
|--------------------------------------------------------|----------------|-----------|----------|-------|----------|------|-----------|--|
| Tobit regressi                                         | ion            | Numbe     | r of obs | =     | 40       |      |           |  |
|                                                        | LR ch          | i2(3)     | =        | 13.23 |          |      |           |  |
|                                                        |                |           |          | Prob  | > chi2   | =    | 0.0042    |  |
| Log likelihood                                         | i = -115.58539 | 9         |          | Pseud | lo R2    | =    | 0.0541    |  |
|                                                        |                |           |          |       |          |      |           |  |
| gat                                                    | Coef.          | Std. Err. | t        | P> t  | [95% Co  | onf. | Interval] |  |
| age                                                    | 3.077696       | .9858873  | 3.12     | 0.003 | 1.08009  | 8    | 5.075293  |  |
| hrs                                                    | .0971216       | .2742364  | 0.35     | 0.725 | 458534   | 1    | .6527773  |  |
| gender                                                 | -7.03075       | 3.636392  | -1.93    | 0.061 | -14.3987 | 8    | .3372806  |  |
| _cons                                                  | 1.770574       | 22.69653  | 0.08     | 0.938 | -44.2169 | 6    | 47.75811  |  |
| /sigma                                                 | 10.69269       | 1.509454  |          |       | 7.63424  | 7    | 13.75114  |  |
| Obs. summary: 12 left-censored observations at gat<=60 |                |           |          |       |          |      |           |  |
| 28 uncensored observations                             |                |           |          |       |          |      |           |  |
| 0 right-censored observations                          |                |           |          |       |          |      |           |  |

Here lower/left censoring is used at 60

We can also use both left and right censor. Even after censoring there are 40 observations!

| . tobit gat age hrs gender, 11(60) ul(75) |                            |             |           |          |           |      |           |  |  |
|-------------------------------------------|----------------------------|-------------|-----------|----------|-----------|------|-----------|--|--|
| Tobit regression Number of obs = 40       |                            |             |           |          |           |      |           |  |  |
|                                           |                            |             |           | LR ch    | i2(3)     | =    | 13.29     |  |  |
|                                           |                            |             |           | Prob     | > chi2    | =    | 0.0041    |  |  |
| Log likelihood                            | d = -79.870647             | 7           |           | Pseud    | lo R2     | =    | 0.0768    |  |  |
|                                           |                            |             |           |          |           |      |           |  |  |
| gat                                       | Coef.                      | Std. Err.   | t         | P> t     | [95% C    | onf. | Interval] |  |  |
| age                                       | 3.232421                   | 1.141955    | 2.83      | 0.007    | .91860    | 08   | 5.546242  |  |  |
| hrs                                       | .0698998                   | .3017266    | 0.23      | 0.818    | 54145     | 63   | .6812559  |  |  |
| gender                                    | -8.615498                  | 4.228543    | -2.04     | 0.049    | -17.183   | 34   | 0476559   |  |  |
| _cons                                     | 3197607                    | 25.65498    | -0.01     | 0.990    | -52.301   | 69   | 51.66216  |  |  |
| /sigma                                    | 11.01641                   | 2.313406    |           |          | 6.3290    | 03   | 15.70381  |  |  |
| Obs. summary                              | y: 12                      | left-censo  | red obsei | rvations | at gat<=6 | 0    |           |  |  |
|                                           | 16 uncensored observations |             |           |          |           |      |           |  |  |
|                                           | 12                         | right-censo | red obsei | rvations | at gat>=7 | 5    |           |  |  |

Now let us look at various parts of the result using the following diagramatic representation.



# Lecture 41

# **Forecasting-I**

# Meaning and Types of Forecasting

• Variance of Unconditional and Conditional Forecasts

• Forecasting Performance

### Meaning

Prediction: inference from laws of nature

Forecasting is more 'probabilistic'

Forecast is any statement about the future. Econometric forecast has some basis; A systematic procedure to predict future events.

In Econometrics forecasting can be defined as "Predicting a known or unknown value of a dependent variable based on known or unknown values of the independent variables by using an econometric model.

*Fore – "in front" or "in advance"* 

Cast – dice, lots, spells, horoscopes are all cast

# **Good Forecasting requires that**

- There are some patterns or regularities or trends to be captured
- These patterns or regularities or trends provide some information about the future
- The econometric model used can capture the regular trends

However

• Irregular variations and shocks cannot be captured or predicted or forecasted.

# **Methods of Forecasting**

- Guess using some rules of thumbs
- Use leading indicators

- Extrapolation
- Time series models
- Econometric forecasting models

## Forecasting: Never 100% accurate

There are things we know but we may not Incorporated in the model

There are things we do not know which can be classified as

- What we know that we do not know
- What we do not know that we do not know

Another problem is using static models for dynamic world. Data problem also may influence the quality of forecast.

# **Types of Forecast**

# Ex Ante and Ex post forecast



#### Mean Forecast and Individual Forecast

- Individual Forecast: Forecasting the individual value of the dependent variable
- Mean Forecast: Forecasting the expected value of the dependent variable

#### Conditional and unconditional forecast

- Unconditional Forecast: Forecasting the dependent variable when the values of explanatory variables are known.
- Conditional Forecast: Forecasting dependent variable when the all values of explanatory variables are not known.

- Ex post forecasts are always unconditional
- Ex Ante forecasts may or may not be unconditional

$$Y_t = f(X_{t-3}, X_{t-4})$$

### **Qualitative and Quantitative Forecast**

Qualitative Forecast is based on opinion, emotion, personal experience, surveys etc. which is Subjective in nature while Quantitative Forecast: is based on Mathematical Models

# **Examples of forecasts**

# **Qualitative Forecasts**



# **Quantitative Forecast**



### Patterns in Time Series Data

Trend: Steady growth or decline over time in the long run.

Seasonal Variations: Variations in data normally in different parts of the year (short run)

Cyclical Variation: upward or downward movement in the data over the medium term. (e.g.

Business Cycle)

Irregular or Random Variations or Shocks: Unpredictable variation without any pattern (e.g.

due to war, natural disasters etc.)

# **Time Series Models for forecasting**

- a) Last Period: Last period value as a forecast
- b) Simple or Weighted Average: simple of weighted average (e.g. Arithmetic Mean) as a forecast

- c) Simple or weighted Moving Averages: moving averages (e.g. three years, five years, four years centered etc.)
- d) Seasonal Indices: Uses seasonal variation or seasonal patterns existing in the data
- e) Exponential Smoothing: Weighted technique; more weight for recent observation
- f) Trends: Uses least square method to fit a regression line to forecast

The examples for these models are given below.

#### **Examples of Forecasting Techniques**

Use data given in *forecast.xlsx* for the purpose of all examples. It is Demand Data (hypothetical)

| Year                     | Quarter | Time Q | Demand | Price |  |  |
|--------------------------|---------|--------|--------|-------|--|--|
| 2006                     | 1       | 1      | 12     | 9.9   |  |  |
|                          | 2       | 2      | 18     | 9.2   |  |  |
|                          | 3       | 3      | 17     | 9.65  |  |  |
|                          | 4       | 4      | 14     | 9.8   |  |  |
| 2007                     | 1       | 5      | 13     | 9.75  |  |  |
|                          | 2       | 6      | 18     | 9.4   |  |  |
|                          | 3       | 7      | 17     | 9.55  |  |  |
|                          | 4       | 8      | 14     | 9.4   |  |  |
| Data continues till 2013 |         |        |        |       |  |  |

with Quarterly Time series from 2006 to 2013 but We convert data to annual.

| year                        | time | Demand | price<br>(sums) | price (average) |  |  |
|-----------------------------|------|--------|-----------------|-----------------|--|--|
| 2006                        | 1    | 61     | 38.55           | 9.6375          |  |  |
| 2007                        | 2    | 62     | 38.1            | 9.525           |  |  |
| 2008                        | 3    | 66     | 38.8            | 9.7             |  |  |
| 2009                        | 4    | 68     | 38.5            | 9.625           |  |  |
| 2010                        | 5    | 74     | 38.2            | 9.55            |  |  |
| 2011                        | 6    | 74     | 38.9            | 9.725           |  |  |
| 2012                        | 7    | 83     | 37.45           | 9.3625          |  |  |
| 2013                        | 8    | 85     | 37.55           | 9.3875          |  |  |
| Reshaped / Transformed Data |      |        |                 |                 |  |  |

**Last Period Method** considers the value of the previous time period as a forecast for the current period.

**Last Period Method** 

| Description: We simply use the value of the last period as a forecast |      |      |          |                                    |                |  |  |  |  |
|-----------------------------------------------------------------------|------|------|----------|------------------------------------|----------------|--|--|--|--|
|                                                                       | year | time | Demand   | Forecasted Demand <sub>(t-1)</sub> | Remarks        |  |  |  |  |
|                                                                       | 2006 | 1    | 61       | -                                  |                |  |  |  |  |
|                                                                       | 2007 | 2    | 62       | 61                                 | previous value |  |  |  |  |
|                                                                       | 2008 | 3    | 66       | 62                                 |                |  |  |  |  |
|                                                                       | 2009 | 4    | 68       | 66                                 |                |  |  |  |  |
|                                                                       | 2010 | 5    | 74       | 68                                 |                |  |  |  |  |
|                                                                       | 2011 | 6    | 74       | 74                                 |                |  |  |  |  |
|                                                                       | 2012 | 7    | 83       | 74                                 |                |  |  |  |  |
|                                                                       | 2013 | 8    | 85       | 83                                 |                |  |  |  |  |
|                                                                       | 2014 |      | Forecast | 85                                 |                |  |  |  |  |

**Simple Average Method** uses the average of previous time periods as a forecast. Starting from the second period i.e. 2007, the first value is just the previous one. Next time the average of 2006 and 2007 is used as a forecast for 2008. For 2009 the average of 2006 to 2008 is used and this continues in the same way.

#### Simple Average Method

Description: the forecast for the next period is the average of the previous demands

| year | time | Demand   | Forecasted Demand | Remarks         |
|------|------|----------|-------------------|-----------------|
| 2006 | 1    | 61       | -                 |                 |
| 2007 | 2    | 62       | 61                |                 |
| 2008 | 3    | 66       | 61.5              | (61+62)/2       |
| 2009 | 4    | 68       | 63                | (61+62+66)/3    |
| 2010 | 5    | 74       | 64.25             | (61+62+66+68)/4 |
| 2011 | 6    | 74       | 66.2              |                 |
| 2012 | 7    | 83       | 67.5              |                 |
| 2013 | 8    | 85       | 69.71428571       |                 |
| 2014 |      | Forecast | 71.625            |                 |

**Moving Average Method** uses the moving average of previous (fixed e.g. 2) time periods. For example in 2008 the average demand of 2006 and 2007 is used. The years change dynamically e.g. for 2009, the average demand of 2007 and 2008 is used as a forecast.

#### Moving Average Method

Description:We use the moving average of the past (2 in this example) periods of time two years moving average

# Business Econometrics by Dr Sayyid Salman Rizavi

| year | time | Demand   | Forecasted Demand | Remarks   |
|------|------|----------|-------------------|-----------|
| 2006 | 1    | 61       | -                 |           |
| 2007 | 2    | 62       | -                 |           |
| 2008 | 3    | 66       | 61.5              | (61+62)/2 |
| 2009 | 4    | 68       | 64                | (62+66)/2 |
| 2010 | 5    | 74       | 67                | (66+68)/2 |
| 2011 | 6    | 74       | 71                |           |
| 2012 | 7    | 83       | 74                |           |
| 2013 | 8    | 85       | 78.5              |           |
| 2014 |      | Forecast | 84                |           |

**Weighted Moving Average** method is similar to the moving average method except that some weights are assigned to the values. In the example below, out of the two years that we consider for averaging, a weight of 0.6 is assigned to the first year and 0.4 to the second year.

| Weighted Moving Average Method                                       |
|----------------------------------------------------------------------|
| Description:We use the weighted moving average of the past specified |
| number of time periods (2 years in this example). [Weights: 0.6 for  |
| previous year and 0.4 for 2 years back]                              |

|      |      |          | two years weighted moving average |                      |
|------|------|----------|-----------------------------------|----------------------|
| year | time | Demand   | Forecasted Demand                 | Remarks              |
| 2006 | 1    | 61       | -                                 |                      |
| 2007 | 2    | 62       | -                                 |                      |
| 2008 | 3    | 66       | 61.6                              | 0.6*62+0.4*61        |
| 2009 | 4    | 68       | 64.4                              | 0.6*66+0.4*62        |
| 2010 | 5    | 74       | 67.2                              | 0.6*68+0.4*66        |
| 2011 | 6    | 74       | 71.6                              | Note: for computing  |
| 2012 | 7    | 83       | 74                                | weighted average, we |
| 2013 | 8    | 85       | 79.4                              | weights which is ONE |
| 2014 |      | Forecast | 84.2                              | here                 |

two years weighted moving average

**Exponential Smoothing Method** may be selected by minimizing the mean square error or any other technique. This is a forecasting technique and is different form the exponential smoothing. Do not be confused!

**Exponential Smoothing Method** 

Description: The forecast of a period is calculated as the last periods forecast plus a factor multiplied by the difference of the last periods actual  $F_t = F_{t-1} + \alpha(Y_{t-1} - F_{t-1})$ 

Where alpha is a smoothing coefficient having values between zero and one

| year | time | Demand   | Forecasted Demand | Remarks                 |
|------|------|----------|-------------------|-------------------------|
| 2006 | 1    | 61       | -                 |                         |
|      |      |          |                   | first forecast is prev. |
| 2007 | 2    | 62       | 61                | value                   |
| 2008 | 3    | 66       | 61.4              | 61+0.1(62-61)           |
| 2009 | 4    | 68       | 63.24             | 61.4+0.1(66-61.4)       |
| 2010 | 5    | 74       | 65.144            |                         |
| 2011 | 6    | 74       | 68.6864           |                         |
| 2012 | 7    | 83       | 70.81184          |                         |
| 2013 | 8    | 85       | 75.687104         |                         |
| 2014 |      | Forecast | 79.4122624        |                         |

smoothing constant may be selected by minimizing the mean square error or any other technique

This is a forecasting technique and is different form the exponential smoothing. Do not be confused!

Forecasting by Trend Method uses regression equation to forecast the values as we estimate

trend values.

#### Forecasting by Trend

Description: use regression on the time trend to forecast

#### Y = a + b T gives Y= 55.393 + 3.0607 T, use time value 9 for 2014

|      |      |          | Trend             |                    |
|------|------|----------|-------------------|--------------------|
| year | time | Demand   | Forecasted Demand | Remarks            |
| 2006 | 1    | 61       | 59                | intercept          |
| 2007 | 2    | 62       | 62.60714286       | 55.39285714        |
| 2008 | 3    | 66       | 66.21428571       | slope              |
| 2009 | 4    | 68       | 69.82142857       | 3.607142857        |
| 2010 | 5    | 74       | 73.42857143       |                    |
| 2011 | 6    | 74       | 77.03571429       |                    |
| 2012 | 7    | 83       | 80.64285714       |                    |
| 2013 | 8    | 85       | 84.25             |                    |
| 2014 |      | Forecast | 87.85714286       | 55.393 + 3.607 (9) |

Associative Causal Forecast depends on the values of the associated variables. It is similar to

the trend method but here the demand may depend on various variables in the system instead of being dependent on time.

#### Associative or Causal Forecast

Description: Forecast depends on the values of the associated variables e.g a regression line where demand may depend on price. This is possible in cross section as well.

| Der | nand = a + |      |        |                 |             |                      |
|-----|------------|------|--------|-----------------|-------------|----------------------|
|     | year       | time | Demand | price (average) | Trend       | Remarks              |
|     | 2006       | 1    | 61     | 9.6375          | 68.33200062 | intercept            |
|     | 2007       | 2    | 62     | 9.525           | 73.37659542 | 500.485622           |
|     | 2008       | 3    | 66     | 9.7             | 65.52944795 |                      |
|     | 2009       | 4    | 68     | 9.625           | 68.89251115 | slope                |
|     | 2010       | 5    | 74     | 9.55            | 72.25557435 | -44.84084269         |
|     | 2011       | 6    | 74     | 9.725           | 64.40842688 |                      |
|     | 2012       | 7    | 83     | 9.3625          | 80.66323235 |                      |
|     | 2013       | 8    | 85     | 9.3875          | 79.54221129 | price(2014) = 9.3    |
|     | 2014       |      |        | Forecast        | 83.46578502 | 500.49 - 44.84 (9.3) |



7

8

# Lecture 42

# **Forecasting-II**



# **Calculating Seasonal Index**

4 2 0

0

The following example shows how to calculate seasonal indices.

2

з

4

5

Values are high in the second quarter in general Values are least in the first quarter and slightly higher in third and fourth quarter and the highest in

6

1

the second quarter

# Business Econometrics by Dr Sayyid Salman Rizavi

| Quarterly Demand |             |                                                               |           |           |                   |  |
|------------------|-------------|---------------------------------------------------------------|-----------|-----------|-------------------|--|
|                  | Q1          | Q2                                                            | Q3        | Q4        | Annual Demand     |  |
| 2006             | 12          | 18                                                            | 17        | 14        | 61                |  |
| 2007             | 13          | 18                                                            | 17        | 14        | 62                |  |
| 2008             | 15          | 19                                                            | 17        | 15        | 66                |  |
| 2009             | 15          | 19                                                            | 18        | 16        | 68                |  |
| 2010             | 17          | 21                                                            | 18        | 18        | 74                |  |
| 2011             | 18          | 20                                                            | 19        | 17        | 74                |  |
| 2012             | 19          | 23                                                            | 21        | 20        | 83                |  |
| 2013             | 21          | 23                                                            | 21        | 20        | 85                |  |
| qaurterly        |             |                                                               |           |           | 573               |  |
| averages         | 16.25       | 20                                                            | 18.5      | 16.75     | 71.625            |  |
|                  |             |                                                               |           | AVG       | 71.625/4=17.90625 |  |
| Seasonal         | devide each | devide each quarterly average by average of the four averages |           |           |                   |  |
| index            | 0.9075044   | 1.1                                                           | 1.0331588 | 0.9354276 | 4                 |  |

First we need to reshape the data

Average of annual demands is equal to total of the quarterly averages. Sum of seasonal index equals FOUR

Now we need to adjust the forecast of each quarter multiplying by the relevant index. Any

forecasting method may be used

#### Example

Run a regression Demand on Time, Forecast the demand for four quarters of 2014, Adjust the

forecasts by multiplying them to the relevant seasonal index

Regression of Demand on time is

$$Demand = 14.24395 + 0.221957$$
 (Time)

Now we need to encoded time values for the four quarters of 2014 are 33,34,35 and 36

| Unadjust | ed Forecasts | Adjusted | l forecasts | computation         |
|----------|--------------|----------|-------------|---------------------|
| 2014-1   | 21.568531    | 2014-1   | 19.573536   | 21.56853 (0.907504) |
| 2014-2   | 21.790488    | 2014-2   | 24.490531   | 21.79049 (1.123909) |
| 2014-3   | 22.012445    | 2014-3   | 22.742352   | 22.01245 (1.033159) |
| 2014-4   | 22.234402    | 2014-4   | 20.798673   | 22.2344 (0.935428)  |

## **Measuring Forecasting Performance**

To see which forecasting technique works the best, we use various criteria. We look at the success of each method using performance measures.

Almost all the performance measures start by looking at the difference on the actual and forecasted values  $Y_t - F_t$ 

This is called the Forecast Error.

This enables us to see the reliability of different econometric models.

Different methods or measures are commonly used.

These methods relate to the *Ex Post* Forecast as we know the actual values of the dependent variable.

Some of the measures are listed below:

- 1. Mean Forecast Error (MFE)
- 2. Mean Absolute Error (MAE) or Mean Absolute Deviation (MAD)
- 3. Mean Absolute Percent Error (MAPE)
- 4. Root Mean Square Error (RMSE) [its square is Mean Square Error (MSE)]
- 5. Root Mean Square Percent Error (RMSPE)
- 6. Theil's Inequality Coefficient (TIC)

Let us look at them one by one considering the following (taken from previous data)

We are considering (just as an example) the values of 2008-2013 from two methods: weighted moving average to illustrate the calculations and later we will compare this with the forecasting performance of the projection by trend.

| Year | Actual | Forecast | Forecast Error |
|------|--------|----------|----------------|
|      | Y      | F        | Y - F          |
| 2008 | 66     | 61.6     | 4.4            |
| 2009 | 68     | 64.4     | 3.6            |

#### Business Econometrics by Dr Sayyid Salman Rizavi

| 2010 | 74 | 67.2 | 6.8 |
|------|----|------|-----|
| 2011 | 74 | 71.6 | 2.4 |
| 2012 | 83 | 74   | 9   |
| 2013 | 85 | 79.4 | 5.6 |

Let T denote the number of observations (or number of forecasted values)

1. Mean Forecast Error (MFE)

It is the arithmetic mean of the forecast error. It may be sometimes misleading as negative and positive errors cancel each other. This is why it may be better to used MEA.

$$MFA = \frac{\sum(Y_t - F_t)}{T}$$

2. Mean Absolute Error (MAE) or Mean Absolute Deviation (MAD)

$$MAD = \frac{\sum |Y_t - F_t|}{T}$$

3. Mean Absolute Percent Error (MAPE)

$$MAPE = \frac{\sum(\frac{|Y_t - F_t|}{Y_t})}{T}$$

4. Root Mean Square Error (RMSE) [its square is Mean Square Error (MSE)] This gives more weight to larger observations. It is commonly used. The weak point is that its value will be larger if values of the dependent variable are large. In such cases it is better to use RMSPE.

$$RMSE = \sqrt{\frac{\sum(Y_t - F_t)^2}{T}}$$

5. Root Mean Square Percent Error (RMSPE)

$$RMSPE = \sqrt{\frac{\sum (\frac{Y_t - F_t}{Y_t})^2}{T}}$$

6. Theil's Inequality Coefficient (TIC)

Concept was given by Theil in 1961.

$$U = \frac{\sqrt{\frac{1}{T}\sum(Y_t - F_t)^2}}{\sqrt{\frac{1}{T}\sum{Y_t}^2} + \sqrt{\frac{1}{T}\sum{F_t}^2}} = \frac{RMSE}{\sqrt{\frac{1}{T}\sum{Y_t}^2} + \sqrt{\frac{1}{T}\sum{F_t}^2}}$$

# **Example: Measuring Forecast Performance**

|      | 0      |          |                                  |                                    |
|------|--------|----------|----------------------------------|------------------------------------|
| year | Actual | Forecast | Forecast Error                   |                                    |
|      | Y      | F        | Y - F                            | Y-F                                |
| 2008 | 66     | 61.6     | 4.4                              | 4.4                                |
| 2009 | 68     | 64.4     | 3.6                              | 3.6                                |
| 2010 | 74     | 67.2     | 6.8                              | 6.8                                |
| 2011 | 74     | 71.6     | 2.4                              | 2.4                                |
| 2012 | 83     | 74       | 9                                | 9                                  |
| 2013 | 85     | 79.4     | 5.6                              | 5.6                                |
|      |        | Sum      | 31.8                             | 31.8                               |
|      |        |          |                                  |                                    |
|      |        |          | 5.3                              | 5.3                                |
|      |        | M        | $FA = \frac{\sum(Y_t - F_t)}{T}$ | $MAD = \frac{\sum  Y_t - F_t }{T}$ |

# weighted moving average method of forecasting

| weighte | d moving av |          |                |                                                  |
|---------|-------------|----------|----------------|--------------------------------------------------|
| year    | Actual      | Forecast | Forecast Error |                                                  |
|         | Y           | F        | Y - F          | Y-F /Y                                           |
| 2008    | 66          | 61.6     | 4.4            | 0.066666667                                      |
| 2009    | 68          | 64.4     | 3.6            | 0.052941176                                      |
| 2010    | 74          | 67.2     | 6.8            | 0.091891892                                      |
| 2011    | 74          | 71.6     | 2.4            | 0.032432432                                      |
| 2012    | 83          | 74       | 9              | 0.108433735                                      |
| 2013    | 85          | 79.4     | 5.6            | 0.065882353                                      |
|         |             | Sum      | 31.8           | 0.418248255                                      |
|         |             |          |                |                                                  |
|         |             |          |                | 0.069708043                                      |
|         |             |          |                | $MAPE = \frac{\sum(\frac{ Y_t - F_t }{Y_t})}{T}$ |

| weighted | moving av |          |                |                    |
|----------|-----------|----------|----------------|--------------------|
| year     | Actual    | Forecast | Forecast Error |                    |
|          | Y         | F        | Y - F          | (Y-F) <sup>2</sup> |
| 2008     | 66        | 61.6     | 4.4            | 19.36              |
| 2009     | 68        | 64.4     | 3.6            | 12.96              |
| 2010     | 74        | 67.2     | 6.8            | 46.24              |
| 2011     | 74        | 71.6     | 2.4            | 5.76               |
| 2012     | 83        | 74       | 9              | 81                 |
| 2013     | 85        | 79.4     | 5.6            | 31.36              |
|          |           | Sum      | 31.8           | 196.68             |
|          |           |          |                |                    |
|          |           |          |                | 5.725382083        |

| weighted | moving av |          |                |                                                           |
|----------|-----------|----------|----------------|-----------------------------------------------------------|
| year     | Actual    | Forecast | Forecast Error |                                                           |
|          | Y         | F        | Y - F          | [(Y-F)/Y] <sup>2</sup>                                    |
| 2008     | 66        | 61.6     | 4.4            | 0.004444444                                               |
| 2009     | 68        | 64.4     | 3.6            | 0.002802768                                               |
| 2010     | 74        | 67.2     | 6.8            | 0.00844412                                                |
| 2011     | 74        | 71.6     | 2.4            | 0.001051863                                               |
| 2012     | 83        | 74       | 9              | 0.011757875                                               |
| 2013     | 85        | 79.4     | 5.6            | 0.004340484                                               |
|          |           | Sum      | 31.8           | 0.032841554                                               |
|          |           |          |                |                                                           |
|          |           |          |                | 0.073983731                                               |
|          |           |          |                | $RMSPE = \sqrt{\frac{\sum (\frac{Y_t - F_t}{Y_t})^2}{T}}$ |

| weighted | moving av | verage meth | od of forecasting |                                                                                                                         |                                                                                 |
|----------|-----------|-------------|-------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| year     | Actual    | Forecast    | Forecast Error    |                                                                                                                         |                                                                                 |
|          | Y         | F           | Y - F             | γ²                                                                                                                      | F <sup>2</sup>                                                                  |
| 2008     | 66        | 61.6        | 4.4               | 4356                                                                                                                    | 3794.56                                                                         |
| 2009     | 68        | 64.4        | 3.6               | 4624                                                                                                                    | 4147.36                                                                         |
| 2010     | 74        | 67.2        | 6.8               | 5476                                                                                                                    | 4515.84                                                                         |
| 2011     | 74        | 71.6        | 2.4               | 5476                                                                                                                    | 5126.56                                                                         |
| 2012     | 83        | 74          | 9                 | 6889                                                                                                                    | 5476                                                                            |
| 2013     | 85        | 79.4        | 5.6               | 7225                                                                                                                    | 6304.36                                                                         |
|          |           | Sum         | 31.8              | 34046                                                                                                                   | 29364.68                                                                        |
|          |           |             |                   |                                                                                                                         |                                                                                 |
|          |           |             |                   | Theil's Coefficient                                                                                                     | 0.039407635                                                                     |
|          |           |             |                   | $U = \frac{\sqrt{\frac{1}{T}\Sigma(Y_t - F_t)^2}}{\sqrt{\frac{1}{T}\Sigma{Y_t}^2} + \sqrt{\frac{1}{T}\Sigma{F_t}^2}} =$ | $=\frac{RMSE}{\sqrt{\frac{1}{T}\Sigma Y_t^2} + \sqrt{\frac{1}{T}\Sigma F_t^2}}$ |

| Forecast Performance for projection by Trend |        |          |                |  |  |  |  |
|----------------------------------------------|--------|----------|----------------|--|--|--|--|
| year                                         | Actual | Forecast | Forecast Error |  |  |  |  |
|                                              | Y      | F        | Y - F          |  |  |  |  |
| 2008                                         | 66     | 66.21429 | -0.214285714   |  |  |  |  |
| 2009                                         | 68     | 69.82143 | -1.821428571   |  |  |  |  |
| 2010                                         | 74     | 73.42857 | 0.571428571    |  |  |  |  |
| 2011                                         | 74     | 77.03571 | -3.035714286   |  |  |  |  |
| 2012                                         | 83     | 80.64286 | 2.357142857    |  |  |  |  |
| 2013                                         | 85     | 84.25    | 0.75           |  |  |  |  |
|                                              | _      | Sum      | -1.392857143   |  |  |  |  |
|                                              |        |          |                |  |  |  |  |
|                                              |        | -        |                |  |  |  |  |
|                                              |        |          | -0.232142857   |  |  |  |  |
| $MFA = \frac{\sum(Y_t - F_t)}{T}$            |        |          |                |  |  |  |  |

| Y-F                                | Y-F /Y                                           | (Y-F) <sup>2</sup>                          |
|------------------------------------|--------------------------------------------------|---------------------------------------------|
| 0.214285714                        | 0.003246753                                      | 0.045918367                                 |
| 1.821428571                        | 0.026785714                                      | 3.317602041                                 |
| 0.571428571                        | 0.007722008                                      | 0.326530612                                 |
| 3.035714286                        | 0.041023166                                      | 9.215561224                                 |
| 2.357142857                        | 0.028399312                                      | 5.556122449                                 |
| 0.75                               | 0.008823529                                      | 0.5625                                      |
| 8.75                               | 0.116000482                                      | 19.02423469                                 |
|                                    |                                                  |                                             |
| 1.458333333                        | 0.019333414                                      | 1.780647574                                 |
| $MAD = \frac{\sum  Y_t - F_t }{T}$ | $MAPE = \frac{\sum(\frac{ Y_t - F_t }{Y_t})}{T}$ | $RMSE = \sqrt{\frac{\sum(Y_t - F_t)^2}{T}}$ |

| [(Y-F)/Y] <sup>2</sup> | Y <sup>2</sup> | F <sup>2</sup> |
|------------------------|----------------|----------------|
| 1.05414E-05            | 4356           | 4384.331633    |
| 0.000717474            | 4624           | 4875.031888    |
| 5.96294E-05            | 5476           | 5391.755102    |
| 0.0016829              | 5476           | 5934.501276    |
| 0.000806521            | 6889           | 6503.270408    |
| 7.78547E-05            | 7225           | 7098.0625      |
| 0.003354921            | 34046          | 34186.95281    |
|                        |                |                |

| 0.023646427                                               | Theil's Coefficient                                                                                               | 0.011807059                                                                     |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| $RMSPE = \sqrt{\frac{\sum (\frac{Y_t - F_t}{Y_t})^2}{T}}$ | $U = \frac{\sqrt{\frac{1}{T}\sum(Y_t - F_t)^2}}{\sqrt{\frac{1}{T}\sum{Y_t}^2} + \sqrt{\frac{1}{T}\sum{F_t}^2}} =$ | $=\frac{RMSE}{\sqrt{\frac{1}{T}\Sigma Y_t^2} + \sqrt{\frac{1}{T}\Sigma F_t^2}}$ |

| Comparison of Forecast Performance               |  |             |              |  |  |  |  |  |  |
|--------------------------------------------------|--|-------------|--------------|--|--|--|--|--|--|
|                                                  |  | Method - I  | Method - II  |  |  |  |  |  |  |
| MFA                                              |  | 5.3         | -0.232142857 |  |  |  |  |  |  |
| MAD                                              |  | 5.3         | 1.458333333  |  |  |  |  |  |  |
| MAPE<br>RMSE<br>RMSPE<br>Theil's Coefficient     |  | 0.069708043 | 0.019333414  |  |  |  |  |  |  |
|                                                  |  | 5.725382083 | 1.780647574  |  |  |  |  |  |  |
|                                                  |  | 0.073983731 | 0.023646427  |  |  |  |  |  |  |
|                                                  |  | 0.039407635 | 0.011807059  |  |  |  |  |  |  |
|                                                  |  |             |              |  |  |  |  |  |  |
| All the performance measures suggest that the    |  |             |              |  |  |  |  |  |  |
| second method (trend projection by regression on |  |             |              |  |  |  |  |  |  |
| time) is superior                                |  |             |              |  |  |  |  |  |  |
|                                                  |  |             |              |  |  |  |  |  |  |

# **Tracking Signals in Forecasting**

Tracking signals are used to monitor the accuracy of the forecast over time. An acceptable range according to situation is decided and we see if the tracking signal fall within this 'channel'

8.75

0.75

|                         |                         | Y           | F               | Y - F            | cumulative error  |
|-------------------------|-------------------------|-------------|-----------------|------------------|-------------------|
|                         | 2008                    | 66          | 66.21428571     | -0.214285714     | -0.214285714      |
|                         | 2009                    | 68          | 69.82142857     | -1.821428571     | -2.035714286      |
|                         | 2010                    | 74          | 73.42857143     | 0.571428571      | -1.464285714      |
|                         | 2011                    | 74          | 77.03571429     | -3.035714286     | -4.5              |
|                         | 2012                    | 83          | 80.64285714     | 2.357142857      | -2.142857143      |
|                         | 2013                    | 85          | 84.25           | 0.75             | -1.392857143      |
|                         |                         |             |                 |                  |                   |
|                         | Y-F                     |             | cumulative  Y-F | MAD (till point) | TS=cum. Error/MAD |
|                         | 0.214285714             |             | 0.214285714     | 0.214285714      | -1                |
|                         | 1.821428571             |             | 2.035714286     | 1.017857143      | -2                |
|                         | 0.571428571 2.607142857 |             | 2.607142857     | 0.869047619      | -1.684931507      |
| 3.035714286 5.642857143 |                         | 1.410714286 | -3.189873418    |                  |                   |
|                         | 2.357142857             |             | 8               | 1.6              | -1.339285714      |

# TS = cumulative error/MAD

Let us select a safe range of -5 to 5 and plot the TSs. In practice each point will be plotted each year when data is available.

1.458333333

-0.955102041



# Variance of Forecast Error

Consider the following multiple regression model.

Business Econometrics by Dr Sayyid Salman Rizavi

$$Y_{t+h} = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{2t} + \dots + \beta_K X_{Kt} + e_t$$

Its OLS estimate is

$$Y_{t+h} = \widehat{\beta}_0 + \widehat{\beta}_1 X_{1t} + \widehat{\beta}_2 X_{2t} + \dots + \widehat{\beta}_K X_{Kt} + \widehat{e}_t$$

And

$$Var(\widehat{Y}_{t+h}) = Var(\widehat{\beta}_0 + \widehat{\beta}_1 X_{1t} + \widehat{\beta}_2 X_{2t} \dots + \widehat{\beta}_K X_{Kt})$$

Predicted Standard Error is

$$se(\hat{Y}_{t+h}) = \sqrt{Var(\hat{Y}_{t+h})}$$

Computed in Stata by as: *predict s, stdp* 

• Forecast Error is

$$\hat{e}_{t+h} = \left(Y_{t+h} - \hat{Y}_{t+h}\right)$$

Variance of Forecast Error is

$$Var(\hat{e}_{t+h}) = (Var(Y_{t+h}) + Var(\hat{Y}_{t+h}))$$
$$= \sigma^2 + Var(\hat{Y}_{t+h})$$

Which has two components:

- Model variance ( $\sigma^2$ ) that is larger than estimated variance
- Estimated Variance,  $Var(\hat{Y}_{t+h})$  that tends to decrease with increase in T.

As

$$Var(\hat{e}_{t+h}) = \sigma^2 + Var(\hat{Y}_{t+h})$$
$$se(\hat{e}_{t+h}) = \sqrt{\sigma^2 + se(\hat{Y}_{t+h})^2}$$

Which can be computed in Stata as: *predict s, stdf* 

Consider the following example for explaining the concept discussed above:
| . webuse tsapp                                                                                                                | end1                                             |               |       |       |       |                        |                      |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------|-------|-------|-------|------------------------|----------------------|
| . tsset t<br>time v                                                                                                           | variable: t,<br>delta: 1 u                       | 521 to<br>nit | 1000  |       |       |                        |                      |
| . reg y L.y                                                                                                                   |                                                  |               |       |       |       |                        |                      |
| Source                                                                                                                        | SS                                               | df            |       | MS    |       | Number of obs          | = 479                |
| Model                                                                                                                         | 115.349555                                       | 1             | 115.3 | 49555 |       | F( 1, 477)<br>Prob > F | = 119.29<br>= 0.0000 |
| Residual                                                                                                                      | 461.241577                                       | 477           | .9669 | 63473 |       | R-squared              | = 0.2001             |
| Total                                                                                                                         | 576.591132                                       | 478           | 1.20  | 62576 |       | Root MSE               | = 0.1984<br>= .98334 |
|                                                                                                                               |                                                  |               |       |       |       |                        |                      |
| У                                                                                                                             | Coef.                                            | Std.          | Err.  | t     | P> t  | [95% Conf.             | Interval]            |
| y<br>L1.                                                                                                                      | .4493507                                         | .0411         | 417   | 10.92 | 0.000 | .3685093               | .5301921             |
| _cons                                                                                                                         | 11.11877                                         | .8314         | 581   | 13.37 | 0.000 | 9.484993               | 12.75254             |
| <ul> <li>predict sp,</li> <li>(1 missing val)</li> <li>predict sf,</li> <li>(1 missing val)</li> <li>gen s=e(rmse)</li> </ul> | stdp<br>Lue generated)<br>stdf<br>Lue generated) |               |       |       |       |                        |                      |

# From Data Editor



We can verify that  $sf^2 = \sqrt{sp^2 + s^2}$ 

## Lecture 43

## **Time Series, Cointegration and Error Correction-I**

### What is a time series?

An analysis of a single sequence of data is called univariate time-series analysis. An analysis of several sets of data for the same sequence of time periods is called multivariate time-series analysis or, more simply, multiple time-series analysis. For a long time there has been very little communication between econometricians and time-series analysts. Econometricians have emphasized economic theory and a study of contemporaneous relationships. Lagged variables were introduced but not in a systematic way, and no serious attempts were made to study the temporal structure of the data

Theories were imposed on the data even when the temporal structure of the data was not in conformity with the theories. The time-series analysts, on the other hand, did not believe in economic theories and thought that they were better off allowing the data to determine the model. Since the mid-1970s these two approaches—the time-series approach and the econometric approach—have been converging

Econometricians now use some of the basic elements of time-series analysis in checking the specification of their econometric models, and some economic theories have influenced the direction of time-series work.

## Stationary and Nonstationary time series

*Moments*: a **moment** is a specific quantitative measure of the shape of a set of points. Moments are of different types e.g. raw, about mean etc.

The first raw moment  $(\frac{\sum X}{n})$ ; do not confuse with the moments about mean) is the mean. First moment about mean is zero. Second moment about mean is the variance.

Joint distribution of  $X(t_1), X(t_2), X(t_3) \dots X(t_n)$  is complicated so we usually define the

$$mean = \mu(X) = E(X_t)$$

$$Variance = \sigma^2(t) = E(X_t^2)$$

AutoCovariance = 
$$\gamma(t1, t2) = Cov(X_{t1}, X_{t2})$$

The autocovariance is the covariance of the variable against a time-shifted version of itself. (is the variance if t1=t2=t)

**Strict or Strong Stationary:** a series is called strict stationary if the joint distribution of any set of n observations  $X(t_1), X(t_2), X(t_3) \dots X(t_n)$  is the same as joint distribution of  $X(t_1 + h), X(t_2 + h), X(t_3 + h) \dots X(t_n + h)$  for all n and h.

All moments are independent of t. The mean, variance, and all higher order moments of the joint distribution of any combination of variables  $X(t_1), X(t_2), X(t_3) \dots X(t_n)$  are constant & independent of t. (Very strong assumption)

Statistical Properties do not change over time.

Now define  $h = t_2 - t_1$  and call it a **lag**.

As joint distribution of  $X(t_1), X(t_2)$  and that of  $X(t_1 + h), X(t_2 + h)$  are the same and not dependent on  $t_1$  or  $t_2$  ( $t_2 = t_1 + h$ ) but on the difference h.

So autocovariance function  $\gamma(t1, t2) = \gamma(h) = Cov(X_t, X_{t+h})$  is the autocovariance function (acvf) at lag h.

 $Var(X_t) = Var(X_{t+h}) = \sigma^2 = \gamma(0)$ 

So the autocorrelation function at lag (*h*), is defined as  $\rho(h) = \frac{\gamma(h)}{\gamma(0)}$ 

A plot of  $\rho(h)$  is called correlogram.

**Second Order or Weak Stationary (covariance stationarity):** a series is called weakly stationary if its mean and variance do not depend on *t* (are constant) and the *acvf* depends only on the lag *h*.

Stationary series revert in the long run to their mean.

**Non-Stationarity:** In real life most of the data is non-stationary. Variables that increase over time are non-stationary.

Mean and variance are not constant over time.

We need differencing and/or detrending.

We can define a non-stationary model as  $X_t = \mu_t + e_t$  where mean  $\mu_t$  is a function of time (linear or non-linear) and  $e_t$  is second order stationary series.

Autoregressive Model specifies that the output variable depends linearly on its own previous values.

Time series models include ARMA, ARIMA (auto regressive integrated moving average) etc. (we are not going to discuss them). OLS should not be used on non-stationary data. (e.g. problem of spurious regression). We usually can transform variables by taking differences of using lags if the data becomes stationary at difference or lag.

#### **Types of Non-Stationarity**

- Random Walk with Drift:  $Y_t = \mu + Y_{t-1} + e_t$
- Deterministic Trend Process:  $Y_t = \beta_0 + \beta_1 t + e_t$

- To induce Stationarity both will require different treatment
  - o Differencing
  - o Detrending



If a non-stationary series  $Y_t$  is difference d times in order to become stationary, it is said to be *integrated* of order d.

If  $Y_t \sim I(d)$  then  $\Delta^d Y_t \sim I(0)$ 

I(0) is a stationary series. It will cross the mean frequently.

I(1) is a series containing one unit root

Most of the economic and financial series contain a single unit root (Some may be stationary)

However prices have been seen in various researches to have 2 unit roots.

#### **UNIT ROOT TEST**

A unit root test tests is used to know if a time series variable is non-stationary using an autoregressive model. The famous tests include augmented Dickey–Fuller test and the Phillipe-Perron test. The null hypothesis for these tests is the existence of a unit root.

#### Why do we need to test for Non-Stationarity?

- The stationarity or non-stationarity of a series can strongly influence its behavior and properties.
- Spurious regressions: If two variables are trending over time, a regression of one on the other could have a high R-square even if the two are totally unrelated.
- The parameters are misleading
- If variables in the model are not stationary, the usual "t-ratios" will not follow a t-distribution, so various tests will not be valid

## Augmented Dickey-Fuller unit-root test (dfuller)

*dfuller* performs the augmented Dickey-Fuller test that a variable follows a unit-root process. It adds lagged differences to the model. The null hypothesis is that the variable contains a unit root, and the alternative is that the variable was generated by a stationary process. You may optionally exclude the constant, include a trend term, and include lagged values of the difference of the variable in the regression.

Syntax: dfuller varname [if] [in] [, options]

Menu: Statistics > Time series > Tests > Augmented Dickey-Fuller unit-root test

#### **Characteristics of Non-Stationary Series**

| Characteristics of the series | Dickey-Fuller Regression Model                          |
|-------------------------------|---------------------------------------------------------|
| No Constant , No time Trend   | $\Delta Y_t = \gamma Y_{t-1} + u_t$                     |
| Constant, without time trend  | $\Delta Y_t = \alpha + \gamma Y_{t-1} + u_t$            |
| Constant and time trend       | $\Delta Y_t = \alpha + \gamma Y_{t-1} + \gamma t + u_t$ |

Use constant (drift) when series fluctuates against a non-zero mean.

### Phillips-Perron unit-root test (pperron)

pperron performs the Phillips-Perron test that a variable has a unit root. The null hypothesis is that the variable contains a unit root, and the alternative is that the variable was generated by a stationary process. pperron uses Newey-West standard errors to account for serial correlation, (so it allows for autocorrelated residuals) whereas the augmented Dickey-Fuller test implemented in dfuller uses additional lags of the first-difference variable.

Syntax: pperron varname [if] [in] [, options]

Menu: Statistics > Time series > Tests > Phillips-Perron unit-root test

Examples

webuse sunspot

tsset time

tsline spot



## Seems to be stationary

## dfuller spot

| . dfuller : | spot               |                    |               |              |  |  |
|-------------|--------------------|--------------------|---------------|--------------|--|--|
| Dickey-Ful: | ler test for unit  | root               | Number of obs | = 214        |  |  |
|             |                    | Inte               |               |              |  |  |
|             | Test               | 1% Critical        | 5% Critical   | 10% Critical |  |  |
|             | Statistic          | Value              | Value         | Value        |  |  |
| Z(t)        | -4.627             | -3.472             | -2.882        | -2.572       |  |  |
| MacKinnon a | approximate p-valu | e for Z(t) = 0.000 | 1             |              |  |  |

#### webuse dow1

#### des

tsline dowclose



Shows random Walk with non-zero drift (use drift option)

#### dfuller dowclose

| . dfuller ( | dowclose           |                     |                     |       |          |
|-------------|--------------------|---------------------|---------------------|-------|----------|
| Dickey-Ful: | ler test for unit  | root                | Number of obs       | =     | 9340     |
|             |                    | Inte                | rpolated Dickey-Ful | ler - |          |
|             | Test               | 1% Critical         | 5% Critical         | 10% ( | Critical |
|             | Statistic          | Value               | Value               |       | Value    |
| Z(t)        | 0.886              | -3.430              | -2.860              |       | -2.570   |
| MacKinnon a | approximate p-valu | ue for Z(t) = 0.992 | 9                   |       |          |

trend specifies that a trend term be included in the associated regression and that the process under the null hypothesis is a random walk, perhaps with drift. This option may not be used with the noconstant or drift option.

| . dfuller d | lowclose, trend    |        |              |                      |     |          |
|-------------|--------------------|--------|--------------|----------------------|-----|----------|
| Dickey-Full | er test for unit.  | root   |              | Number of obs        | =   | 9340     |
|             |                    |        | Inte         | erpolated Dickey-Ful | ler |          |
|             | Test               | 1%     | Critical     | 5% Critical          | 10% | Critical |
|             | Statistic          |        | Value        | Value                |     | Value    |
| Z(t)        | -0.544             |        | -3.960       | -3.410               |     | -3.120   |
| MacKinnon a | opproximate p-valu | ae for | Z(t) = 0.981 | 16                   |     |          |

drift indicates that the process under the null hypothesis is a random walk with nonzero drift. This option may not be used with the noconstant or trend option.

| . dfuller  | dowclose, drift   |               |                    |              |
|------------|-------------------|---------------|--------------------|--------------|
| Dickey-Ful | ler test for unit | Number of obs | = 9340             |              |
|            |                   | Z (t          | ) has t-distributi | .on ———      |
|            | Test              | 1% Critical   | 5% Critical        | 10% Critical |
|            | Statistic         | Value         | Value              | Value        |
| Z(t)       | 0.886             | -2.327        | -1.645             | -1.28        |
| p-value fo | r Z(t) = 0.8122   |               |                    |              |

regress specifies that the associated regression table appear in the output. By default, the regression table is not produced.

| . dfuller dow  | close, regress | 3            |         |          |              |              |
|----------------|----------------|--------------|---------|----------|--------------|--------------|
| Dickey-Fuller  | test for unit  | t root       |         | Numb     | er of obs    | = 9340       |
|                |                |              | — Inte: | rpolated | Dickey-Fulle | er ———       |
|                | Test           | 1% Criti     | cal     | 5% Cri   | tical 1      | .0% Critical |
|                | Statistic      | Valu         | le      | Va       | lue          | Value        |
| Z(t)           | 0.886          | -3.          | 430     | -        | 2.860        | -2.570       |
| MacKinnon app: | roximate p-va  | lue for Z(t) | = 0.992 | 9        |              |              |
| D.dowclose     | Coef.          | Std. Err.    | t       | ₽> t     | [95% Conf    | . Interval]  |
| dowclose       |                |              |         |          |              |              |
| L1.            | .000215        | .0002426     | 0.89    | 0.376    | 0002607      | .0006906     |
| _cons          | .0434757       | .2596838     | 0.17    | 0.867    | 4655611      | .5525126     |
|                | -              |              |         |          |              |              |

NOTE: see that coefficient of L1 is not significant

lags(#) specifies the number of lagged difference terms to include in the covariate list.

## Business Econometrics by Dr Sayyid Salman Rizavi

| . dfuller dow  | close, lags(2) | ) regress    |         |          |              |              |
|----------------|----------------|--------------|---------|----------|--------------|--------------|
| Augmented Dic  | key-Fuller te: | st for unit  | root    | Numb     | er of obs    | = 9338       |
|                |                |              | - Inte  | rpolated | Dickey-Fulle | er ———       |
|                | Test           | 1% Crit      | ical    | 5% Cri   | tical 1      | LO% Critical |
|                | Statistic      | Val          | ue      | Va       | lue          | Value        |
| Z(t)           | 0.940          | -3           | .430    | -        | 2.860        | -2.570       |
| MacKinnon app: | roximate p-va  | lue for Z(t) | = 0.993 | 6        |              |              |
| D.dowclose     | Coef.          | Std. Err.    | t       | P> t     | [95% Conf    | f. Interval] |
| dowclose       |                |              |         |          |              |              |
| L1.            | .000228        | .0002424     | 0.94    | 0.347    | 0002472      | .0007032     |
| LD.            | .0432395       | .0103447     | 4.18    | 0.000    | .0229616     | .0635173     |
| L2D.           | 0573342        | .010346      | -5.54   | 0.000    | 0776145      | 0370538      |
| cons           | .03483         | .2592728     | 0.13    | 0.893    | 4734013      | .5430613     |

dfuller D.dowclose

| . dfuller  | D.dowclose         |                    |                    |      |          |
|------------|--------------------|--------------------|--------------------|------|----------|
| Dickey-Ful | ller test for unit | root               | Number of obs      | . =  | 9339     |
|            |                    | Inte               | rpolated Dickey-Fu | ller |          |
|            | Test               | 1% Critical        | 5% Critical        | 10%  | Critical |
|            | Statistic          | Value              | Value              |      | Value    |
| Z(t)       | -92.669            | -3.430             | -2.860             |      | -2.570   |
| MacKinnon  | approximate p-valu | e for Z(t) = 0.000 | 0                  |      |          |

## Philip Perron Test Example

| . pperron d | owclose           |             |                    |       |          |
|-------------|-------------------|-------------|--------------------|-------|----------|
| Phillips-Pe | rron test for un: | it root     | Number of ob       | s =   | 9340     |
|             |                   |             | Newey-West 1       | ags = | 10       |
|             |                   | Inte        | erpolated Dickey-F | uller |          |
|             | Test              | 1% Critical | 5% Critical        | 10%   | Critical |
|             | Statistic         | Value       | Value              |       | Value    |
| Z(rho)      | 2.024             | -20.700     | -14.100            |       | -11.300  |
| Z(t)        | 0.896             | -3.430      | -2.860             |       | -2.570   |

MacKinnon approximate p-value for Z(t) = 0.9930

| . pperron D                        | .dowclose |             |                              |              |            |  |  |
|------------------------------------|-----------|-------------|------------------------------|--------------|------------|--|--|
| Phillips-Perron test for unit root |           |             | Number of ob<br>Newey-West l | s =<br>ags = | 9339<br>10 |  |  |
|                                    |           | Inte        | Interpolated Dickey-Fuller   |              |            |  |  |
|                                    | Test      | 1% Critical | 5% Critical                  | 10%          | Critical   |  |  |
|                                    | Statistic | Value       | Value                        |              | Value      |  |  |
| Z(rho)                             | -8605.874 | -20.700     | -14.100                      |              | -11.300    |  |  |
| Z(t)                               | -92.585   | -3.430      | -2.860                       |              | -2.570     |  |  |

## Lecture 44

## Time Series, Cointegration and Error Correction-II

## What to do in case of non-stationarity?

Differencing: throws out long term properties of the series and is good for short term modeling

Cointegration: Granger introduces this.

## Cointegration

Two series of variables may be integrated, but their difference (or any linear combination) may be stationary. This means that each variable wanders quite far from its mean, but the two series wander very near each other. The value/ location of one variable could be told by looking at the other variable. They have an equilibrium relationship (never expected to drift too far). Deviations from this equilibrium will be corrected over time.

## **Cointegration & Error Correction Model Using Stata**

### Engle-Granger Cointegration Analysis: STEPS

- Test individual variables for unit root
- Estimate the static regression
- Test for unit roots in the error of the static regression; if residuals are stationary, series are cointegrated.
- Finally we can use Error Correction Model

Granger: two or more integrated time series that are cointegrated have an error correction representation.

If x and y are cointegrated, then, by the Granger Representation Theorem, we can model y and x as being in an error correcting relationship.

Basically, it has y and x being in an equilibrium relationship, with the short run behavior of y being a function of the short run behavior of x and an equilibrating factor. It estimates the speed at which a dependent variable Y returns to equilibrium after a change in an independent variable - X.

The EC model is:

$$\Delta Y_t = \beta \Delta X_t + \rho \left( Y_{t-1} - \gamma X_{t-1} \right) + \epsilon_t$$

Where  $Y_{t-1} - \gamma X_{t-1}$  is the predicted error generated from a basic regression Y on X.

where  $\epsilon_t$  is stationary (test for this with Dickey-Fuller).  $\beta$  is the short run effect of x on y and  $\gamma$  is the speed of equilibration, with giving the long run relation between y and x.

NOTE: ECM is normally used on non-stationary data but can be used for stationary data.

### **Cointegration and Error Correction Model in Detail**

Stationary Data means that data has a finite mean and variance that do not depend on time. Data reverts to mean in the long run. It crossed the mean quite often.

Usually time series data is not stationary but is integrated.

Integrated time series data:

- Does not revert to the mean
- Usually moves in a random walk
- Previous changes are reflected in the current value
- May have infinite variance and no appropriate mean
- Shocks are permanently incorporated

If a non-stationary series  $Y_t$  is difference d times in order to become stationary, it is said to be *integrated* of order d.

#### Two series are cointegrated if

- They are integrated of the same order
- There is a linear combination of the two series that is stationary i.e. integrated of order zero I(0)
- Cointegrated data do not drift very far from each other.
- Deviation from equilibrium will be corrected over time

| Critical Values and Power |      |      |      |      |  |  |  |  |
|---------------------------|------|------|------|------|--|--|--|--|
| Statistics                | Name | 1%   | 5%   | 10%  |  |  |  |  |
| 1                         | DF   | 4.07 | 3.37 | 3.03 |  |  |  |  |
| 2                         | ADF  | 3.77 | 3.17 | 2.84 |  |  |  |  |

#### Example:

Consider the file ECM.dta provided to you.

It contains Pakistani data (GDP, GFCF, imports etc.) from WDI

Year 1983 to 2012

Suppose we focus on GFCF and IMPORTS

#### Are they 'integrated'?

| Dickey-Ful                           | ler test for unit                                                      | Number of obs                                            | =                                                                     | 29                 |                         |
|--------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------|--------------------|-------------------------|
|                                      |                                                                        | In                                                       | terpolated Dickey-Ful                                                 | ler ·              |                         |
|                                      | Test                                                                   | 1% Critical                                              | 5% Critical                                                           | 10%                | Critical                |
|                                      | Statistic                                                              | Value                                                    | Value                                                                 |                    | Value                   |
| 7(+)                                 | -1.379                                                                 | -3.723                                                   | -2.989                                                                |                    | -2.625                  |
| MacKinnon<br>. dfuller               | approximate p-valu                                                     | ue for Z(t) = 0.5                                        | 925                                                                   |                    |                         |
| MacKinnon<br>. dfuller<br>Dickey-Ful | approximate p-valu<br>D.gfcf<br>ler test for unit                      | ue for Z(t) = 0.5<br>root                                | 925<br>Number of obs                                                  | =                  | 28                      |
| MacKinnon<br>. dfuller<br>Dickey-Ful | approximate p-valu<br>D.gfcf<br>ler test for unit                      | ue for Z(t) = 0.5<br>root                                | 925<br>Number of obs<br>terpolated Dickey-Ful                         | =<br>ler ·         | 28                      |
| MacKinnon<br>. dfuller<br>Dickey-Ful | approximate p-valu<br>D.gfcf<br>ler test for unit<br>Test              | ne for Z(t) = 0.5<br>root<br>In<br>1% Critical           | 925<br>Number of obs<br>terpolated Dickey-Ful<br>5% Critical          | =<br>.ler ·<br>10% | 28<br>Critical          |
| MacKinnon<br>. dfuller<br>Dickey-Ful | approximate p-valu<br>D.gfcf<br>ler test for unit<br>Test<br>Statistic | ue for Z(t) = 0.5<br>root<br><u>1% Critical</u><br>Value | 925<br>Number of obs<br>terpolated Dickey-Ful<br>5% Critical<br>Value | =<br>.ler -<br>10% | 28<br>Critical<br>Value |

GFCF is integrated at first difference.

| Dickey-Ful | ler test for unit<br>Test<br>Statistic | root<br>Int<br>1% Critical<br>Value | Number of obs<br>perpolated Dickey-Ful<br>5% Critical<br>Value | =<br>ller<br>10% Critic<br>Value |
|------------|----------------------------------------|-------------------------------------|----------------------------------------------------------------|----------------------------------|
| Dickey-Ful | ler test for unit<br>Test              | root<br>——— Int<br>1% Critical      | Number of obs<br>cerpolated Dickey-Ful<br>5% Critical          | =<br>ller<br>10% Critic          |
| Dickey-Ful | ler test for unit                      | root                                | Number of obs                                                  | =                                |
| Dickey-Ful | ler test for unit                      | root                                | Number of obs                                                  | =                                |
|            |                                        |                                     |                                                                |                                  |
| . dfuller  | D.imports                              |                                     |                                                                |                                  |
| MacKinnon  | approximate p-valu                     | ue for Z(t) = 0.69                  | 956                                                            |                                  |
| Z(t)       | -1.148                                 | -3.723                              | -2.989                                                         | -2.0                             |
|            | Statistic                              | Value                               | Value                                                          | Value                            |
|            | Test                                   | Int 1% Critical                     | erpolated Dickey-Ful<br>5% Critical                            | ller                             |
|            |                                        |                                     | Number of obs                                                  | -                                |

Imports is also integrated at first difference. Both are integrated at the same level i.e. first difference

## Are GFCF and imports cointegrated?

We use Engle Granger Test. It has three steps.

- Run a basic regression (long run)
- Predict the errors
- Run the regression of First difference of residuals on lag of residuals and on lag of first difference of residuals

If the coefficient of lag of residuals is significant, the series are cointegrated.

IMPORTANT: the t-values reported in simple regression are not appropriate so we use the EG critical values.

#### Step I

| . reg gfcf imp | ports      |        |            |       |                            |                      |
|----------------|------------|--------|------------|-------|----------------------------|----------------------|
| Source         | SS         | df     | MS         |       | Number of obs              | = 30                 |
| Model          | 4.5174e+20 | 1      | 4.5174e+20 |       | F( 1, 28)<br>Prob > F      | = 322.97<br>= 0.0000 |
| Residual       | 3.9165e+19 | 28     | 1.3987e+18 |       | R-squared<br>Adj R-squared | = 0.9202<br>= 0.9174 |
| Total          | 4.9091e+20 | 29     | 1.6928e+19 |       | Root MSE                   | = 1.2e+09            |
|                |            |        |            |       |                            |                      |
| gfcf           | Coef.      | Std. E | rr. t      | P> t  | [95% Conf.                 | Interval]            |
| imports        | .8174846   | .04548 | 85 17.97   | 0.000 | .7243056                   | .9106636             |
| _cons          | 3.70e+09   | 7.65e+ | 08 4.83    | 0.000 | 2.13e+09                   | 5.26e+09             |

#### Step II

. predict rhat, residual

#### Step III

| . regress D.rh | nat L.rhat L.D | .rhat, noco | onstant |       |               |           |
|----------------|----------------|-------------|---------|-------|---------------|-----------|
| Source         | SS             | df          | MS      |       | Number of obs | = 28      |
|                |                |             |         |       | F(2, 26)      | = 6.05    |
| Model          | 1.0376e+19     | 2 5.18      | 81e+18  |       | Prob > F      | = 0.0070  |
| Residual       | 2.2310e+19     | 26 8.58     | 08e+17  |       | R-squared     | = 0.3174  |
|                |                |             |         |       | Adj R-squared | = 0.2649  |
| Total          | 3.2686e+19     | 28 1.16     | 74e+18  |       | Root MSE      | = 9.3e+08 |
|                |                |             |         |       |               |           |
| D.rhat         | Coef.          | Std. Err.   | t       | P> t  | [95% Conf.    | Interval] |
| rhat           |                |             |         |       |               |           |
| L1.            | 5926009        | .1730752    | -3.42   | 0.002 | 948362        | 2368398   |
| LD.            | .1709736       | .1824552    | 0.94    | 0.357 | 2040685       | .5460157  |

The coefficient of first lag of residuals is -0.5926 and the t-value is -3.42. Remember that we should not use the p-values here but look at the critical values of EG. The critical value at 5% is -3.37.

Our value, -3.42 < -3.37, so hypothesis of no Cointegration is rejected. The series are Cointegrated.

If  $< t_c$ , we reject the null hypothesis that the least square residuals are non-stationary (no cointegration). Here the least square residuals are stationary and the series GFCF and Imports are Cointegrated.

### Engle and Granger suggested a model for cointegrated series

The EC model is:

$$\Delta Y_t = \beta \Delta X_t + \rho \left( Y_{t-1} - \gamma X_{t-1} \right) + \epsilon_t$$

Where  $Y_{t-1} - \gamma X_{t-1}$  is the predicted error generated from a basic regression Y on X and where  $\epsilon_t$  is stationary (test for this with Dickey-Fuller).  $\beta$  is the short run effect of x on y and  $\gamma$  is the speed of reverting to equilibrium, with giving the long run relation between y and x.

using the file ECM.dta,

tsset year

regress gfcf imports

predict rhat, residual

Now using the residuals etc.

| . reg D.gfcf I    | .imports L.rh            | at      |      |                  |       |                                    |                              |               |
|-------------------|--------------------------|---------|------|------------------|-------|------------------------------------|------------------------------|---------------|
| Source            | SS                       | df      |      | MS               |       | Number of obs                      | = 2                          | 9             |
| Model<br>Residual | 2.2904e+19<br>9.8224e+18 | 2<br>26 | 1.14 | 52e+19<br>79e+17 |       | F( 2, 26)<br>Prob > F<br>R-squared | = 30.3<br>= 0.000<br>= 0.699 | 1<br>10<br>99 |
| Total             | 3.2726 <del>e+</del> 19  | 28      | 1.16 | 88e+18           |       | Adj R-squared<br>Root MSE          | = 0.676<br>= 6.1e+           | 58<br>-08     |
| D.gfcf            | Coef.                    | Std.    | Err. | t                | P> t  | [95% Conf.                         | Interval                     | .]            |
| imports<br>D1.    | . 4439562                | .0609   | 098  | 7.29             | 0.000 | .3187544                           | .569158                      | 31            |
| rhat<br>L1.       | 3765602                  | .0993   | 292  | -3.79            | 0.001 | 5807343                            | 172386                       | 51            |
| _cons             | 2.20e+08                 | 1.17e   | +08  | 1.88             | 0.071 | -2.04 <del>e+</del> 07             | 4.60e+0                      | 8             |
|                   |                          |         |      |                  |       |                                    |                              |               |

The short run effect of imports on GFCF is positive and significant.

The long term relation is established by the coefficient -0.3765 which is also significant.

The speed shows that the deviations from equilibrium are corrected at 37.5% in one time period.

Check if the error generated here is stationary

| MacKinnon              | approximate p-valu                      | ue for Z(t) = 0.002 | 27                   |     |          |
|------------------------|-----------------------------------------|---------------------|----------------------|-----|----------|
| Z(t)                   | -3.826                                  | -3.730              | -2.992               |     | -2.626   |
|                        | Statistic                               | Value               | Value                |     | Value    |
|                        | Test                                    | 1% Critical         | 5% Critical          | 10% | Critical |
|                        |                                         | Inte                | erpolated Dickey-Ful | ler |          |
| Dickey-Fu              | ller test for unit                      | root                | Number of obs        | =   | 28       |
| . dfuller              | epsilon                                 |                     |                      |     |          |
| . predict<br>(1 missin | epsilon, residual<br>g value generated) |                     |                      |     |          |

Additional or alternative lags and deterministic terms may be added.

## Lecture 45

## **Time Series, Cointegration and Error Correction-III**

As you know, we define 'Time Series' as follows:

Variables recorded over time

- Annually (Macro data)
- Biannually (financial data: banks biannual reports)
- Quarterly (Macro data, agricultural data, )
- Monthly (agricultural data, market prices)
- Daily (Stock exchange, Foreign ExchangeRates, commodity)

| stant 2005 US\$)<br>2.0e+10 | Paki  | .stan' | S            |      | $\bigcirc$ |
|-----------------------------|-------|--------|--------------|------|------------|
| 5 (con:<br>5e+1(            | LIADU | JILS I |              | ~    |            |
| ervice:                     |       |        |              |      |            |
| and s<br>+10                |       | _      |              |      |            |
| goods<br>1.0e               |       |        |              |      |            |
| orts of                     |       |        |              |      |            |
| - 06 EXp                    | 1     |        |              |      |            |
| <u>1</u> 9 کی               | 990   | 1995   | 2000<br>year | 2005 | 2010       |

**Example Graph for Time Series Data** 

An Autoregressive Process is when we have variable depending linearly on its own past values (lags)

This can be as weighted sum of past values.

AR (p) process

$$y_t = \varphi_0 + \varphi_1 y_{t-1} + \varphi_2 y_{t-2} + \dots \dots \varphi_p y_{t-p} + \epsilon_t$$

AR (1) process

$$y_t = \varphi_0 + \varphi_1 y_{t-1} + \epsilon_t$$

#### Stata example: AR (3) model

reg gdp L.gdp L2.gdp L3.gdp

VAR (Vector Autoregressive Model is a multivariate time-series regression of each dependent variable on lags of itself and on lags of all the other dependent variables

VAR (1) process for y and z

$$y_{t} = \alpha_{0} + \alpha_{1}y_{t-1} + \alpha_{2}z_{t-1} + u_{t}$$
$$z_{t} = \beta_{0} + \beta_{1}y_{t-1} + \beta_{2}z_{t-1} + v_{t}$$

#### Stata example: VAR (1) model

tsset time

var gdp exports, lags(1)

#### If lags are not specified, 2 is the default

For VAR both series should be stationary. Dickey Fuller test can be used to know when (what level) data is stationary. For Dickey Fuller test we need to know the appropriate lag (Schwert's rule of thumb can be used)

- If p is too small then the remaining serial correlation in the errors will bias the test.
- If p is too large then the power of the test will suffer.
- Monte Carlo experiments suggest it is better to error on the side of including too many lags.

#### Schwert's (1989) rule of thumb

This rule of thumb helps in having an optimum lag

$$p_{max} = [12.(\frac{T}{100})^{\frac{1}{4}}]$$

Where T = number of observations and [] means integer part

In ECM.dta with 30 observations, lags = 8

The Default lag length for the *dfuller* command is zero.

Here are some examples using the file ECM.dta

| . dfuller | r imports, lags(8)    |                   |                        |             |
|-----------|-----------------------|-------------------|------------------------|-------------|
| Augmented | i Dickey-Fuller test  | for unit root     | Number of obs          | = 2         |
|           |                       | Int               | terpolated Dickey-Full | .er ———     |
|           | Test                  | 1% Critical       | 5% Critical            | 10% Critica |
|           | Statistic             | Value             | Value                  | Value       |
| Z(t)      | 0.831                 | -3.750            | -3.000                 | -2.63       |
| MacKinnor | n approximate p-value | for Z(t) = 0.99   | 921                    |             |
| . dfuller | D.imports, lags(8)    |                   |                        |             |
| Augmented | Dickey-Fuller test    | for unit root     | Number of obs          | = :         |
|           |                       | Int               | terpolated Dickey-Ful: | ler ———     |
|           | Test                  | 1% Critical       | 5% Critical            | 10% Critica |
|           | Statistic             | Value             | Value                  | Value       |
| Z(t)      | -2.055                | -3.750            | -3.000                 | -2.63       |
| MacKinnon | approximate p-value   | for $Z(t) = 0.26$ | 530                    |             |
| . dfuller | D2.imports, lags(8)   |                   |                        |             |
| Augmented | Dickey-Fuller test    | for unit root     | Number of obs          | = :         |
|           |                       | Int               | terpolated Dickey-Full | ler ———     |
|           | Test                  | 1% Critical       | 5% Critical            | 10% Critica |
|           | Statistic             | Value             | Value                  | Value       |
| Z(t)      | -3.080                | -3.750            | -3.000                 | -2.63       |
| MacKinnon | approximate p-value   | for $Z(t) = 0.02$ | 280                    |             |

Imports are, in fact, stationary at second level

The command *dfuller* for random walk with drift

| Augmented                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dickey-Fuller test                                                                 | for unit root                                       | Number of obs                                                  | =               | 20                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-----------------|-------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    | Z                                                   | (t) has t-distributio                                          | n —             |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test                                                                               | 1% Critical                                         | 5% Critical                                                    | 10%             | Critical                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Statistic                                                                          | Value                                               | Value                                                          |                 | Value                   |
| Z(t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.055                                                                             | -2.764                                              | -1.812                                                         |                 | -1.372                  |
| p-value fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <pre>Dr Z(t) = 0.0335 D.exports , lags(8)</pre>                                    | ) drift                                             |                                                                |                 |                         |
| p-value fo<br>. dfuller<br>Augmented                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dr Z(t) = 0.0335<br>D.exports , lags(8)<br>Dickey-Fuller test                      | drift<br>for unit root                              | Number of obs                                                  | =               | 20                      |
| p-value for a second se | Dr Z(t) = 0.0335<br>D.exports , lags(8)<br>Dickey-Fuller test                      | drift<br>for unit root                              | Number of obs<br>(t) has t-distributio                         | =<br>n —        | 20                      |
| p-value fo<br>. dfuller<br>Augmented                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dr Z(t) = 0.0335<br>D.exports , lags(8)<br>Dickey-Fuller test<br>Test              | drift<br>for unit root<br>Z<br>1% Critical          | Number of obs<br>(t) has t-distributio<br>5% Critical          | =<br>n —<br>10% | 20<br>Critical          |
| p-value fo<br>. dfuller<br>Augmented                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dr Z(t) = 0.0335<br>D.exports , lags(8)<br>Dickey-Fuller test<br>Test<br>Statistic | drift<br>for unit root<br>Z<br>1% Critical<br>Value | Number of obs<br>(t) has t-distributio<br>5% Critical<br>Value | =<br>n —<br>10% | 20<br>Critical<br>Value |

If they follow random walk with drift, exports and imports are integrated of order 1

## **Applying VAR**

First determine the optimal lag length for VAR. The command is *varsoc* (number of max lags can be given)

```
. varsoc exports imports
 Selection-order criteria
                                     Number of obs =
 Sample: 1987 - 2012
                                                            26
                                        AIC HQIC SBIC
        LL LR df p
                               FPE
 lag
   0 -1208.41
                              9.4e+37 93.1088 93.1367 93.2056
       -1167.2 82.422* 4 0.000 5.4e+36* 90.2464* 90.33* 90.5368*
   1
      -1164.58 5.2504 4 0.263 6.0e+36 90.3522 90.4915 90.8361
   2
   3
      -1161.04 7.0716 4 0.132 6.3e+36 90.3879 90.583 91.0653
      -1156.84 8.4013 4 0.078 6.4e+36 90.3725 90.6233 91.2434
   4
 Endogenous: exports imports
  Exogenous: cons
```

AIC: Akaike Information Criterion, should be minimized; suggested lag is ONE

The model can be estimated as follows:

Default lag=2 so we need to specify ONE (suggested by AIC). Here the Sign and significance, not the magnitude, are important.

| . var exports                                          | imports, lags                                        | (1)                                          |                  |                              |                       |             |                                        |
|--------------------------------------------------------|------------------------------------------------------|----------------------------------------------|------------------|------------------------------|-----------------------|-------------|----------------------------------------|
| Vector autore                                          | gression                                             |                                              |                  |                              |                       |             |                                        |
| Sample: 1984<br>Log likelihood<br>FPE<br>Det(Sigma_ml) | - 2012<br>di = -1300.024<br>= 4.50e+36<br>= 2.97e+36 |                                              |                  | No. o<br>AIC<br>HQIC<br>SBIC | of obs                | =<br>=<br>= | 29<br>90.07062<br>90.15922<br>90.35351 |
| Equation                                               | Parms                                                | RMSE                                         | R-sq             | chi2                         | P>chi2                |             |                                        |
| exports<br>imports                                     | 3<br>3                                               | 1.3 <del>e+</del> 09<br>1.6 <del>e+</del> 09 | 0.9476<br>0.8937 | 523.9906<br>243.8921         | 0.0000                |             |                                        |
|                                                        | Coef.                                                | Std. Err.                                    | z                | P> z                         | [95% Con              | f.          | Interval]                              |
| exports<br>exports<br>L1.                              | 1.105216                                             | .1107153                                     | 9.98             | 0.000                        | .8882185              | i           | 1.322214                               |
| imports<br>L1.                                         | 1717692                                              | .1236319                                     | -1.39            | 0.165                        | 4140834               | L           | .0705449                               |
| _cons                                                  | 2.03e+09                                             | 9.75 <del>e+</del> 08                        | 2.08             | 0.037                        | 1.19 <del>e+</del> 08 |             | 3.94 <del>c+</del> 09                  |
| imports<br>exports<br>L1.                              | .5231624                                             | .1415786                                     | 3.70             | 0.000                        | .2456734              | l           | .8006515                               |
| imports<br>L1.                                         | .3729643                                             | .158096                                      | 2.36             | 0.018                        | .0631019              | •           | .6828267                               |
| _cons                                                  | 4.55 <del>c+</del> 09                                | 1.25 <del>c+</del> 09                        | 3.65             | 0.000                        | 2.10 <del>c+</del> 09 | •           | 6.99 <del>c+</del> 09                  |

Post Estimation Test of stability of the model: eigen values should be less than one

After running the model, use the Varstable, gra



All the eigenvalues lie inside the unit circle. VAR satisfies stability condition.



### **ARMA (Autoregressive Moving Average)**

#### **ARIMA (Autoregressive Integrated Moving Average) model**

ARIMA is a A combination of AR and MA processes where AR is autoregressive, I is Integrated and MA is an abbreviation for a Moving Average process (a process containing past realizations of the variables own residual)

ARMA (p,q) process

 $y_t = \varphi_0 + \epsilon_t + \varphi_1 e_{t-1} + \varphi_2 e_{t-2} + \dots \dots \varphi_p e_{t-q}$ 

ARMA (1,0) is as AR(1)

ARMA (0,1) is as MA(1)

ARMA (1,1) process can be given by the equation

$$y_t = c + \alpha_1 y_{t-1} + \beta_1 \epsilon_{t-1} + \epsilon_t$$

Series where I=0 is stationary.

arima is a maximum likelihood estimation (not OLS). We are discussing Univariate ARIMA

#### Stata Example:

We must run arima on a stationary series

Stationary level must be determined. Then the Stata command will be

arima gdp, arima(1,1,1) which is the same as: arima gdp, ar(1) ma(1)

arima gdp, arima (1,1,1) will give the result

| Iteration 9: log likelihood = -652.17925<br>ARIMA regression<br>Sample: 1984 - 2012 Number of obs = 29<br>Wald chi2(2) = 6.68<br>Prob > chi2 = 0.0355<br>D.gdp OPG<br>Coef. Std. Err. z P> z  [95% Conf. Interval]<br>gdp<br>cons 3.44e+09 7.31e+08 4.72 0.000 2.01e+09 4.88e+09<br>ARMA<br>ar<br>L14726403 .3755364 1.26 0.2082633975 1.208678                                                                              | <pre>Iteration 8: log likelihood = -652.17925</pre> |                                        |                |      |         |        |          |           |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------|----------------|------|---------|--------|----------|-----------|--|--|--|
| ARIMA regression<br>Sample: 1984 - 2012 Number of obs = 29<br>Wald chi2(2) = 6.68<br>Prob > chi2 = 0.0355<br>D.gdp Coef. Std. Err. z P> z  [95% Conf. Interval]<br>gdpcons 3.44e+09 7.31e+08 4.72 0.000 2.01e+09 4.88e+09<br>ARMA ar<br>L14726403 .3755364 1.26 0.2082633975 1.208678                                                                                                                                        | Iteration 9:                                        | log likeliho                           | pod = -652.17  | 7925 |         |        |          |           |  |  |  |
| ARIMA regression<br>Sample: 1984 - 2012 Number of obs = 29<br>Wald chi2(2) = 6.68<br>Prob > chi2 = 0.0355<br>D.gdp Coef. Std. Err. z P> z  [95% Conf. Interval]<br>gdpcons 3.44e+09 7.31e+08 4.72 0.000 2.01e+09 4.88e+09<br>ARMA ar<br>I14726403 .3755364 1.26 0.2082633975 1.208678                                                                                                                                        |                                                     |                                        |                |      |         |        |          |           |  |  |  |
| Sample: 1984 - 2012<br>Log likelihood = -652.1792<br>Number of obs = 29<br>Wald chi2(2) = 6.68<br>Prob > chi2 = 0.0355<br>Number of obs = 29<br>Wald chi2(2) = 6.68<br>Prob > chi2 = 0.0355<br>Number of obs = 29<br>Wald chi2(2) = 6.68<br>Prob > chi2 = 0.0355<br>ARMA<br>ar<br>L14726403 .3755364 1.26 0.2082633975 1.208678                                                                                              | ARIMA regression                                    |                                        |                |      |         |        |          |           |  |  |  |
| Sample: 1984 - 2012<br>Log likelihood = -652.1792<br>Number of obs = 29<br>Wald chi2(2) = 6.68<br>Prob > chi2 = 0.0355<br>D.gdp<br>Coef. Std. Err. z P> z  [95% Conf. Interval]<br>gdp<br>cons 3.44e+09 7.31e+08 4.72 0.000 2.01e+09 4.88e+09<br>ARMA<br>ar<br>L14726403 .3755364 1.26 0.2082633975 1.208678                                                                                                                 |                                                     |                                        |                |      |         |        |          |           |  |  |  |
| Wald chi2(2)       =       6.68         Log likelihood = -652.1792       Prob > chi2       =       0.0355         D.gdp       Coef.       Std. Err.       z       P> z        [95% Conf. Interval]         gdp      cons       3.44e+09       7.31e+08       4.72       0.000       2.01e+09       4.88e+09         ARMA       ar       11.       .4726403       .3755364       1.26       0.208      2633975       1.208678 | Sample: 1984                                        | Sample: 1984 - 2012 Number of obs = 29 |                |      |         |        |          |           |  |  |  |
| Log likelihood = -652.1792 Prob > chi2 = 0.0355<br>OPG<br>D.gdp Coef. Std. Err. z P> z  [95% Conf. Interval]<br>gdp<br>cons 3.44e+09 7.31e+08 4.72 0.000 2.01e+09 4.88e+09<br>ARMA<br>ar<br>L14726403 .3755364 1.26 0.2082633975 1.208678                                                                                                                                                                                    |                                                     |                                        |                |      | Wald ch | i2(2)  | =        | 6.68      |  |  |  |
| OPG         OPG           D.gdp         Coef. Std. Err.         z         P> z          [95% Conf. Interval]           gdp        cons         3.44e+09         7.31e+08         4.72         0.000         2.01e+09         4.88e+09           ARMA         ar         .4726403         .3755364         1.26         0.208        2633975         1.208678                                                                 | Log likelihood                                      | i = -652.1792                          |                |      | Prob >  | chi2   | =        | 0.0355    |  |  |  |
| OPG<br>D.gdp         OPG<br>Coef.         Std. Err.         z         P> z          [95% Conf. Interval]           gdp<br>cons         3.44e+09         7.31e+08         4.72         0.000         2.01e+09         4.88e+09           ARMA         ar<br>L1.         .4726403         .3755364         1.26         0.208        2633975         1.208678                                                                  |                                                     |                                        |                |      |         |        |          |           |  |  |  |
| D.gdp         Coef.         Std. Err.         z         P> z          [95% Conf. Interval]           gdp        cons         3.44e+09         7.31e+08         4.72         0.000         2.01e+09         4.88e+09           ARMA         ar                                                                                                                                                                                |                                                     |                                        | 0.00           |      |         |        |          |           |  |  |  |
| gdp                                                                                                                                                                                                                                                                                                                                                                                                                          | D orde                                              | Coof                                   | OFG<br>Std Enn | _    | DNIEL   | 1055 0 | F        | Tatama 11 |  |  |  |
| gdp<br>cons 3.44e+09 7.31e+08 4.72 0.000 2.01e+09 4.88e+09<br>ARMA<br>L14726403 .3755364 1.26 0.2082633975 1.208678                                                                                                                                                                                                                                                                                                          | ո.ցգը                                               | coer.                                  | Std. Eff.      | Z    | E2[2]   | [958 0 | onr.     | Incervalj |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                              | ado                                                 |                                        |                |      |         |        |          |           |  |  |  |
| ARMA<br>ar<br>L14726403 .3755364 1.26 0.2082633975 1.208678                                                                                                                                                                                                                                                                                                                                                                  | CODS                                                | 3.44e+09                               | 7.31e+08       | 4.72 | 0.000   | 2.01e+ | 09       | 4.88e+09  |  |  |  |
| ARMA<br>ar<br>L14726403 .3755364 1.26 0.2082633975 1.208678                                                                                                                                                                                                                                                                                                                                                                  |                                                     |                                        |                |      |         | 21010. | <u> </u> |           |  |  |  |
| ar<br>L14726403 .3755364 1.26 0.2082633975 1.208678                                                                                                                                                                                                                                                                                                                                                                          | ARMA                                                |                                        |                |      |         |        |          |           |  |  |  |
| L14726403 .3755364 1.26 0.2082633975 1.208678                                                                                                                                                                                                                                                                                                                                                                                | ar                                                  |                                        |                |      |         |        |          |           |  |  |  |
| ma                                                                                                                                                                                                                                                                                                                                                                                                                           | L1.                                                 | .4726403                               | .3755364       | 1.26 | 0.208   | 26339  | 75       | 1.208678  |  |  |  |
| ma                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |                                        |                |      |         |        |          |           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                              | ma                                                  |                                        |                |      |         |        |          |           |  |  |  |
| L11051922 .4637058 0.23 0.8218036544 1.014039                                                                                                                                                                                                                                                                                                                                                                                | L1.                                                 | .1051922                               | .4637058       | 0.23 | 0.821   | 80365  | 44       | 1.014039  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |                                        |                |      |         |        |          |           |  |  |  |
| /sigma 1.41e+09 2.08e+08 6.75 0.000 9.97e+08 1.81e+09                                                                                                                                                                                                                                                                                                                                                                        | /sigma                                              | 1.41e+09                               | 2.08e+08       | 6.75 | 0.000   | 9.97e+ | 08       | 1.81e+09  |  |  |  |

#### **ARIMA Post Estimation Commands in Stata**

estat acplot estimates autocorrelation and covariances





estat aroots Checks the stability conditions

estat vce gives the Variance covariance matrix of the estimates

| . esta | t vce    |                |                |           |           |  |  |  |  |
|--------|----------|----------------|----------------|-----------|-----------|--|--|--|--|
|        |          |                |                |           |           |  |  |  |  |
|        |          |                |                |           |           |  |  |  |  |
| Covari | ance mat | trix of coeff: | icients of ari | ima model |           |  |  |  |  |
|        |          |                |                |           |           |  |  |  |  |
|        |          | ado            | ARMA           |           | sicma     |  |  |  |  |
|        |          | gap            | -              | _         | Sigma     |  |  |  |  |
|        |          |                | ь.             | ь.        |           |  |  |  |  |
|        | e (V)    | cons           | ar             | ma        | cons      |  |  |  |  |
|        |          | _              |                |           |           |  |  |  |  |
|        |          |                |                |           |           |  |  |  |  |
| gdp    |          |                |                |           |           |  |  |  |  |
|        | cons     | 5.337e+17      |                |           |           |  |  |  |  |
|        |          |                |                |           |           |  |  |  |  |
|        |          |                |                |           |           |  |  |  |  |
| ARMA   |          |                |                |           |           |  |  |  |  |
|        | L.ar     | -8884052.2     | .14102756      |           |           |  |  |  |  |
|        | T. ma    | -1 173e+08     | - 14405946     | 21502305  |           |  |  |  |  |
|        | 1.110    | -1.1736+00     | 14403340       | .21302303 |           |  |  |  |  |
|        |          |                |                |           |           |  |  |  |  |
| sigma  |          |                |                |           |           |  |  |  |  |
| -      | CODE     | 5 4250+16      | 11620/01       | -28938656 | 4 3380+16 |  |  |  |  |
|        | _00118   | 3.4236410      | 11020491       | -20930030 | 4.5506+10 |  |  |  |  |

#### Johansen's Test for Cointegration

This test is based on maximum likelihood estimation and two statistics: maximum eigenvalues and a trace-statistics. *vecrank* is the command in Stata. We use one lag as suggested by *varsoc* for VAR model; then use the command *vecrank exports imports*, *lags*(1)

| Sele                                                    | ction-order                                                               | criteria                                       |                         |                           |                                             |                                     |                                                    |              |            |         |
|---------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------|-------------------------|---------------------------|---------------------------------------------|-------------------------------------|----------------------------------------------------|--------------|------------|---------|
| Samp                                                    | le: 1987 -                                                                | - 2012                                         |                         |                           |                                             | Number (                            | of obs                                             | =            | 2          | 6       |
| lag                                                     | LL                                                                        | LR                                             | df                      | р                         | FPE                                         | AIC                                 | HQIC                                               | :            | SBIC       |         |
| 0                                                       | -1201.15                                                                  |                                                |                         |                           | 5.4e+37                                     | 92.549                              | 7 92.57                                            | 76           | 92.6465    |         |
| 1                                                       | -1155.86                                                                  | 90.578                                         | 4                       | 0.000                     | 2.2e+36                                     | 89.373                              | 6 89.45                                            | 572          | 89.664     |         |
| 2                                                       | -1146.9                                                                   | 17.908*                                        | 4                       | 0.001                     | 1.5e+36*                                    | 88.992                              | 6* 89.13                                           | 819*         | 89.4765*   |         |
| 3                                                       | -1144.22                                                                  | 5.366                                          | 4                       | 0.252                     | 1.7e+36                                     | 89.093                              | 9 89.2                                             | 289          | 89.7713    |         |
| 4                                                       | -1142.27                                                                  | 3.9017                                         | 4                       | 0.419                     | 2.1e+36                                     | 89.251                              | 5 89.50                                            | 023          | 90.1225    |         |
| Exo                                                     | genous: _c                                                                | ons                                            | s (2)                   |                           |                                             |                                     |                                                    |              |            |         |
| Exo<br>ecrani                                           | genous: _c<br>k gfcf expo                                                 | orts, lag                                      | s (2)<br>nsen           | tests                     | for coint                                   | egration                            | Number                                             | ofob         | 9 =        | 28      |
| Exo<br>ecrani<br>nd: c<br>ple:                          | genous: _c<br>k gfcf expo<br>onstant<br>1985 - 20:                        | orts, lags<br>Johan                            | s (2)<br>nsen           | tests                     | for coint                                   | egration                            | Number                                             | of ob<br>Lag | 3 =<br>3 = | 28      |
| Exo<br>ecrani<br>nd: c<br>ple:                          | genous: _c<br>k gfcf expo<br>onstant<br>1985 - 20                         | orts, lag<br>Johan                             | s (2)<br>nsen           | tests                     | for coint                                   | egration                            | Number<br>5%                                       | of ob<br>Lag | 5 =<br>5 = | 28      |
| Exo<br>ecrani<br>nd: c<br>ple:                          | genous: _c<br>k gfcf exp<br>onstant<br>1985 - 20                          | orts, lags<br>Johan                            | s (2)<br>nsen           | tests                     | for coint                                   | egration                            | Number<br>5%                                       | of ob<br>Lag | 3 =<br>3 = | 28<br>2 |
| Exo<br>ecrani<br>nd: c<br>ole:<br>imum<br>ank           | genous: _c<br>k gfcf expo<br>onstant<br>1985 - 20<br>parms                | orts, lags<br>Johan<br>12                      | s (2)<br>nsen           | tests                     | for coint<br>tr<br>lue stat                 | egration                            | Number<br>5%<br>ritical<br>value                   | of ob<br>Lag | s =<br>s = | 28      |
| Exo<br>ecrani<br>nd: c<br>ole:<br>imum<br>ank<br>0      | genous: _c<br>k gfcf expo<br>onstant<br>1985 - 20:<br>parms<br>6          | Dorts, lags<br>Johan<br>12<br>LL<br>-1246.4669 | s (2)<br>nsen           | tests                     | for coint<br>tr<br>lue stat<br>. 23         | egration<br>ace c<br>istic<br>.6002 | Number<br>5%<br>critical<br>value<br>15.41         | of ob<br>Lag | s =<br>s = | 28      |
| Exo<br>ecrani<br>ol: c<br>ole:<br>imum<br>ank<br>0<br>1 | genous: _c<br>k gfcf expo<br>onstant<br>1985 - 20:<br>parms<br>6 -<br>9 - | LL<br>L25.2803                                 | s (2)<br>nsen<br>9<br>3 | tests<br>eigenva<br>0.550 | for coint<br>tr<br>lue stat<br>. 23<br>24 1 | ace o<br>istic<br>.6002<br>.2271*   | Number<br>5%<br>critical<br>value<br>15.41<br>3.76 | of ob<br>Lag | s =<br>s = | 28      |

Variables are cointegrated. If rank would have been zero there would have been no Cointegration.

#### **Vector Error Correction Model**

ECM cannot be used in complex situations like more number of nonstationary variables

A vector error correction model (VECM) adds error correction features to a multi-factor model such as a vector autoregressive model. It is nothing but multivariate specification of ECM.

The command in stata is *vec*. Here there is one lag less than that of VAR but Stata will automatically subtract the lag and you do not need to do that.

The syntax of *vec* is *vec* varlist [*if*] [*in*] [, options].

For the menu we can click on

Statistics > Multivariate time series > Vector error-correction model (VECM)

Here is an example:

| . vec gfcf export | s, lags(2) |         |        |          |        |   |          |
|-------------------|------------|---------|--------|----------|--------|---|----------|
| Vector error-corr | ection mod | el      |        |          |        |   |          |
| Sample: 1985 - 2  | 012        |         |        | No. of   | fobs   | = | 28       |
|                   |            |         |        | AIC      |        | = | 88.87716 |
| Log likelihood =  | -1235.28   |         |        | HQIC     |        | = | 89.00807 |
| Det(Sigma_ml) =   | 7.16e+35   |         |        | SBIC     |        | = | 89.30537 |
| Equation          | Parms      | RMSE    | R-sq   | chi2     | P>chi2 |   |          |
| D_gfcf            | 4          | 8.1e+08 | 0.5789 | 33.00024 | 0.0000 |   |          |
| D_exports         | 4          | 1.4e+09 | 0.1450 | 4.068875 | 0.3968 |   |          |

|           | Coef.    | Std. Err. | z     | P> z  | [95% Conf. | Interval] |
|-----------|----------|-----------|-------|-------|------------|-----------|
| D_gfcf    |          |           |       |       |            |           |
| ce1       |          |           |       |       |            |           |
| L1.       | 6090001  | .1307542  | -4.66 | 0.000 | 8652736    | 3527266   |
| gfcf      |          |           |       |       |            |           |
| LD.       | .5452861 | .1552535  | 3.51  | 0.000 | .2409949   | .8495773  |
| exports   |          |           |       |       |            |           |
| LD.       | 5410315  | .1812153  | -2.99 | 0.003 | 896207     | 1858561   |
| cons      | 8.52e+07 | 1.85e+08  | 0.46  | 0.646 | -2.78e+08  | 4.49e+08  |
|           |          |           |       |       |            |           |
| D_exports |          |           |       |       |            |           |
| _ce1      |          |           |       |       |            |           |
| L1.       | .1082944 | .2194416  | 0.49  | 0.622 | 3218033    | .5383921  |
| gfcf      |          |           |       |       |            |           |
| LD.       | .0078892 | .2605582  | 0.03  | 0.976 | 5027954    | .5185739  |
| exports   |          |           |       |       |            |           |
| LD.       | .1401821 | .3041293  | 0.46  | 0.645 | 4559004    | .7362645  |
| 007.9     | 4 790+09 | 3 110+09  | 1.54  | 0 124 | -1 310+09  | 1 000+00  |
| _cons     | 4./90+00 | 3.110+00  | 1.54  | 0.124 | -1.516+00  | 1.096+09  |

| Cointegrating  | equations    |               |           |            |            |           |
|----------------|--------------|---------------|-----------|------------|------------|-----------|
| Equation       | Parms        | chi2 1        | P>chi2    |            |            |           |
| _ce1           | 1            | 293.6317      | 0.0000    |            |            |           |
| Identification | n: beta is e | exactly ident | tified    |            |            |           |
|                | Johansen     | normalizatio  | on restri | lction imp | osed       |           |
| beta           | Coef.        | Std. Err.     | z         | P> z       | [95% Conf. | Interval] |
| _ce1           |              |               |           |            |            |           |
| gfcf           | 1            |               |           |            |            |           |
| exports        | 7420227      | .0433028      | -17.14    | 0.000      | 8268945    | 6571508   |
| _cons          | -9.16e+09    | •             | •         |            |            |           |

If we use the option *alpha*, we get the short run adjustment parameters as well. This would be in addition to the previous results as

| Adjustment par | ameters  |          |        |       |            |           |
|----------------|----------|----------|--------|-------|------------|-----------|
| Equation       | Parms    | chi2     | P>chi2 |       |            |           |
| D_gfcf         | 1        | 21.69319 | 0.0000 |       |            |           |
| D_exports      | 1        | .2435421 | 0.6217 |       |            |           |
| alpha          | Coef.    | Std. Err | . z    | P> z  | [95% Conf. | Interval] |
| D_gfcf         |          |          |        |       |            |           |
| _ce1<br>L1.    | 6090001  | .1307542 | -4.66  | 0.000 | 8652736    | 3527266   |
| D_exports      |          |          |        |       |            |           |
| _ce1<br>L1.    | .1082944 | .2194416 | 0.49   | 0.622 | 3218033    | .5383921  |

It looks like gfcf responds faster than exports in case of changes or shocks.

#### Post Estimation commands for *vec*





Usually eigenvalues should be within the circle

Post Estimation: *veclmar* test the autocorrelation of residuals

| grang | ge-multiplier<br>chi2 | df                   | Drob & obi2              |
|-------|-----------------------|----------------------|--------------------------|
| ıg    | chi2                  | đĒ                   | Duch & chil              |
|       | 0.112                 | ur                   | Prob > chi2              |
| 1     | 3.0814                | 4                    | 0.54430                  |
| 2     | 5.3909                | 4                    | 0.24949                  |
|       | 1<br>2                | 1 3.0814<br>2 5.3909 | 1 3.0814 4<br>2 5.3909 4 |

Here we do not detect autocorrelation.