

CS605

Software Engineering-II

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 2

Table of Content

Lecture No. 1 .. 4

Introduction to Software Engineering ... 4

Lecture No. 2 .. 12

Software Process .. 12

Lecture No. 3 .. 14

Software Lifecycle Models .. 14

Lecture No. 4 .. 18

Incremental Models ... 18

Lecture No. 5 .. 23

Object-Oriented Lifecycle Models.. 23

Lecture No. 6 .. 27

Software Project Management Concepts ... 27

Lecture No. 7 .. 32

The Software Team .. 32

Lecture No. 8 .. 35

The Project Management .. 35

Lecture No. 9 .. 37

Software Size Estimation ... 37

Lecture No. 10 .. 41

Function Point Counting Process ... 41

Lecture No. 11 .. 46

Function Point Counting Process (cont.) ... 46

Lecture No. 12 .. 65

Software Process and Project Metrics ... 65

Lecture No. 13 .. 67

Software Quality Factors .. 67

Lecture No. 14 .. 71

Metrics for specification quality ... 71

Lecture No. 15 .. 75

Statistical Control Techniques – control charts .. 75

Lecture No. 16 .. 78

Interpreting Measurements .. 78

Lecture No. 17 .. 80

Software Project Planning .. 80

Lecture No. 18 .. 84

Risk analysis and management ... 84

Lecture No. 19 .. 86

Types of Risks ... 86

Lecture No. 20 .. 89

Assessing Risk Impact ... 89

Lecture No. 21 .. 92

Software Project Scheduling and Monitoring ... 92

Lecture No. 22 .. 95

Relationship between people and effort ... 95

Lecture No. 23 .. 99

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 3

Task Network ... 99

Lecture No. 24 .. 100

Scheduling ... 100

Lecture No. 25 .. 102

Project Tracking .. 102

Lecture No. 26 .. 104

Error Tracking ... 104

Lecture No. 27 .. 106

Software Quality Assurance.. 106

Lecture No. 28 .. 109

Software Reviews ... 109

Lecture No. 29 .. 112

Formal Technical Reviews .. 112

Lecture No. 30 .. 114

Statistical Software Quality Assurance .. 114

Lecture No. 31 .. 117

Software Safety... 117

Lecture No. 32 .. 118

Poka-Yoke (Mistake-Proofing) ... 118

Lecture No. 33 .. 119

Software Configuration Management (SCM) ... 119

Lecture No. 34 .. 122

Product Release Version Numbering System .. 122

Lecture No. 35 .. 124

Change Control Process .. 124

Lecture No. 36 .. 127

Requirement Management and CMM ... 127

Lecture No. 37 .. 132

Measuring Change Activity .. 132

Lecture No. 38 .. 134

Legacy systems ... 134

Lecture No. 39 .. 137

Environment Assessment .. 137

Lecture No. 40 .. 140

Forward Engineering... 140

Lecture No. 41 .. 141

Business Process Reengineering ... 141

Lecture No. 42 .. 142

Software Refactoring ... 142

Lecture No. 43 .. 153

Moving the amount calculation .. 153

Lecture No. 44 .. 168

Capability Maturity Model Integration (CMMI) ... 168

Lecture No. 45 .. 172

CMM Overview .. 172

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 4

Lecture No. 1

Introduction to Software Engineering

This course is a continuation of the first course on Software Engineering. In order to set

the context of our discussion, let us first look at some of the definitions of software

engineering.

Software Engineering is the set of processes and tools to develop software. Software

Engineering is the combination of all the tools, techniques, and processes that used in

software production. Therefore Software Engineering encompasses all those things that

are used in software production like:

 Programming Language

 Programming Language Design

 Software Design Techniques

 Tools

 Testing

 Maintenance

 Development etc.

So all those thing that are related to software are also related to software engineering.

Some of you might have thought that how programming language design could be related

to software engineering. If you look more closely at the software engineering definitions

described above then you will definitely see that software engineering is related to all

those things that are helpful in software development. So is the case with programming

language design. Programming language design is one of the major successes in last fifty

years. The design of Ada language was considered as the considerable effort in software

engineering.

These days object-oriented programming is widely being used. If programming languages

will not support object-orientation then it will be very difficult to implement object-

oriented design using object-oriented principles. All these efforts made the basis of

software engineering.

Well-Engineered Software

Let’s talk something about what is well-engineered software. Well-engineered software is

one that has the following characteristics.

 It is reliable

 It has good user-interface

 It has acceptable performance

 It is of good quality

 It is cost-effective

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 5

Every company can build software with unlimited resources but well-engineered software

is one that conforms to all characteristics listed above.

Software has very close relationship with economics. When ever we talk about

engineering systems we always first analyze whether this is economically feasible or not.

Therefore you have to engineer all the activities of software development while keeping

its economical feasibility intact.

The major challenges for a software engineer is that he has to build software within

limited time and budget in a cost-effective way and with good quality

Therefore well-engineered software has the following characteristics.

 Provides the required functionality

 Maintainable

 Reliable

 Efficient

 User-friendly

 Cost-effective

But most of the times software engineers ends up in conflict among all these goals. It is

also a big challenge for a software engineer to resolve all these conflicts.

The Balancing Act!

Software Engineering is actually the balancing act. You have to balance many things like

cost, user friendliness, Efficiency, Reliability etc. You have to analyze which one is the

more important feature for your software is it reliability, efficiency, user friendliness or

something else. There is always a trade-off among all these requirements of software. It

may be the case that if you try to make it more user-friendly then the efficiency may

suffer. And if you try to make it more cost-effective then reliability may suffer. Therefore

there is always a trade-off between these characteristics of software.

These requirements may be conflicting. For example, there may be tension among the

following:

 Cost vs. Efficiency

 Cost vs. Reliability

 Efficiency vs. User-interface

A Software Engineer is required to analyze these conflicting entities and tries to strike a

balance.

Challenge is to balance these requirements.

Software Engineers always confront with the challenge to make a good balance of all

these tings depending on the requirements of the particular software system at hand. He

should analyze how much weight should all these things get such that it will have

acceptable quality, acceptable performance and will have acceptable user-interface.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 6

In some software the efficiency is more important and desirable. For example if we talk

about a cruise missile or a nuclear reactor controller that are droved by the software

systems then performance and reliability is far more important than the cost-effectiveness

and user-friendliness. In these cases if your software does not react within a certain

amount of time then it may result in the disaster like Chernobyl accident.

Therefore software development is a process of balancing among different characteristics

of software described in the previous section. And it is an art to come up with such a good

balance and that art can be learned from experience.

Law of diminishing returns

In order to understand this concept lets take a look at an example. Most of you have

noticed that if you dissolve sugar in a glass of water then the sweetness of water will

increase gradually. But at a certain level of saturation no more sugar will dissolved into

water. Therefore at that point of saturation the sweetness of water will not increase even if

you add more sugar into it.

The law of diminishing act describes the same phenomenon. Similar is the case with

software engineering. Whenever you perform any task like improving the efficiency of

the system, try to improve its quality or user friendliness then all these things involves an

element of cost. If the quality of your system is not acceptable then with the investment of

little money it could be improved to a higher degree. But after reaching at a certain level

of quality the return on investment on the system’s quality will become reduced. Meaning

that the return on investment on quality of software will be less than the effort or money

we invest. Therefore, in most of the cases, after reaching at a reasonable level of quality

we do not try to improve the quality of software any further. This phenomenon is shown

in the figure below.

benefit

c
o

s
t

benefit

c
o

s
t

Software Background

Caper Jones a renounced practitioner and researcher in the filed of Software Engineering,

had made immense research in software team productivity, software quality, software

cost factors and other fields relate to software engineering. He made a company named

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 7

Software Productivity Research in which they analyzed many projects and published the

results in the form of books. Let’s look at the summary of these results.

He divided software related activities into about twenty-five different categories listed in

the table below. They have analyzed around 10000 software projects to come up with

such a categorization. But here to cut down the discussion we will only describe nine of

them that are listed below.

 Project Management

 Requirement Engineering

 Design

 Coding

 Testing

 Software Quality Assurance

 Software Configuration Management

 Software Integration and

 Rest of the activities

One thing to note here is that you cannot say that anyone of these activities is dominant

among others in terms of effort putted into it. Here the point that we want to emphasize is

that, though coding is very important but it is not more than 13-14% of the whole effort of

software development.

Fred Brook is a renowned software engineer; he wrote a great book related to software

engineering named “A Mythical Man Month”. He combined all his articles in this book.

Here we will discuss one of his articles named “No Silver Bullet” which he included in

the book.

An excerpt from “No Silver Bullet” – Fred Brooks

Of all the monsters that fill the nightmares of our folklore, none terrify more than

werewolves, because they transform unexpectedly from the familiar into horrors.

For these we seek bullets of silver that can magically lay them to rest. The

familiar software project has something of this character (at least as seen by the

non-technical manager), usually innocent and straight forward, but capable of

becoming a monster of missed schedules, blown budgets, and flawed projects. So

we hear desperate cries for a silver bullet, something to make software costs drop

as rapidly as computer hardware costs do. Scepticism is not pessimism, however.

Although we see no startling breakthroughs, and indeed, such to be inconsistent

with the nature of the software, many encouraging innovations are under way. A

disciplined, consistent effort to develop, propagate and exploit them should indeed

yield an order of magnitude improvement. There is no royal road, but there is a

road. The first step towards the management of disease was replacement of demon

theories and humours theories by the germ theory. The very first step, the

beginning of hope, in itself dashed all hopes of magical solutions. It told workers

that progress would be made stepwise, at great effort, and that a persistent,

unremitting care would have to be paid to a discipline of cleanliness. So it is with

software engineering today.

So, according to Fred Brook, in the eye of an unsophisticated manager software is like a

giant. Sometimes it reveals as an unscheduled delay and sometimes it shows up in the

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 8

form of cost overrun. To kill this giant the managers look for magical solutions. But

unfortunately magic is not a reality. We do not have any magic to defeat this giant. There

is only one solution and that is to follow a disciplined approach to build software. We can

defeat the giant named software by using disciplined and engineered approach towards

software development.

Therefore, Software Engineering is nothing but a disciplined and systematic approach to

software development.

Now we will look at some of the activities involved in the course of software

development. The activities involved in software development can broadly be divided

into two major categories first is construction and second is management.

Software Development

The construction activities are those that are directly related to the construction or

development of the software. While the management activities are those that complement

the process of construction in order to perform construction activities smoothly and

effectively. A greater detail of the activities involved in the construction and management

categories is presented below.

Construction

The construction activities are those that directly related to the development of software,

e.g. gathering the requirements of the software, develop design, implement and test the

software etc. Some of the major construction activities are listed below.

 Requirement Gathering

 Design Development

 Coding

 Testing

Management

Management activities are kind of umbrella activities that are used to smoothly and

successfully perform the construction activities e.g. project planning, software quality

assurance etc. Some of the major management activities are listed below.

 Project Planning and Management

 Configuration Management

 Software Quality Assurance

 Installation and Training

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 9

Figure1

Development Activities

As we have said earlier that management activities are kind of umbrella activities that

surround the construction activities so that the construction process may proceed

smoothly. This fact is empathized in the Figure1. The figure shows that construction is

surrounded by management activities. That is, certain processes and rules govern all

construction activities. These processes and rules are related to the management of the

construction activities and not the construction itself.

A Software Engineering Framework

The software development organization must have special focus on quality while

performing the software engineering activities. Based on this commitment to quality by

the organization, a software engineering framework is proposed that is shown in Figure 2.

The major components of this framework are described below.

Quality Focus: As we have said earlier, the given framework is based on the organizational

commitment to quality. The quality focus demands that processes be defined for rational

and timely development of software. And quality should be emphasized while executing

these processes.

Processes: The processes are set of key process areas (KPAs) for effectively manage and

deliver quality software in a cost effective manner. The processes define the tasks to be

performed and the order in which they are to be performed. Every task has some

deliverables and every deliverable should be delivered at a particular milestone.

Methods: Methods provide the technical “how-to’s” to carryout these tasks. There could be

more than one technique to perform a task and different techniques could be used in

different situations.

Tools: Tools provide automated or semi-automated support for software processes,

methods, and quality control.

Management

 Construction

 Project Planning and
Management

 Configuration Management

 Quality Assurance

 Installation and Training

 Requirements

 Design

 Coding

 Testing

 Maintenance

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 10

Figure 2

 Software Engineering Framework

Software Development Loop

Let’s now look at software engineering activities from a different perspective. Software

development activities could be performed in a cyclic and that cycle is called software

development loop which is shown in Figure3. The major stages of software development

loop are described below.

Problem Definition: In this stage we determine what is the problem against which we are

going to develop software. Here we try to completely comprehend the issues and

requirements of the software system to build.

Technical Development: In this stage we try to find the solution of the problem on technical

grounds and base our actual implementation on it. This is the stage where a new system is

actually developed that solves the problem defined in the first stage.

Solution Integration: If there are already developed system(s) available with which our new

system has to interact then those systems should also be the part of our new system. All

those existing system(s) integrate with our new system at this stage.

Status Quo: After going through the previous three stages successfully, when we actually

deployed the new system at the user site then that situation is called status quo. But once

we get new requirements then we need to change the status quo.

After getting new requirements we perform all the steps in the software development loop

again. The software developed through this process has the property that this could be

evolved and integrated easily with the existing systems.

Method

Process

Quality Focus

Task Set

T
O
O
L

S

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 11

Figure3

Software Development Loop

Overview of the course contents

In the first course we studied the technical processes of software development to build

industrial strength software. That includes requirement gathering and analysis, software

design, coding, testing, and debugging. In this course our focus will be on the second part

of Software Engineering, that is, the activities related to managing the technical

development. This course will therefore include the following topics:

1. Software development process

2. Software process models

3. Project Management Concepts

4. Software Project Planning

5. Risk Analysis and Management

6. Project Schedules and Tracking

7. Software Quality Assurance

8. Software Configuration Management

9. Software Process and Project Metrics

10. Requirement Engineering Processes

11. Verification and Validation

12. Process Improvement

13. Legacy Systems

14. Software Change

15. Software Re-engineering

Status Quo

Problem
Definition

Technical
Development

Solution
Integration

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 12

Lecture No. 2

Software Process

A software process is a road map that helps you create a timely, high quality result. It is

the way we produce software and it provides stability and control. Each process defines

certain deliverables known as the work products. These include programs, documents,

and data produced as a consequence of the software engineering activities.

Process Maturity and CMM

The Software Engineering Institute (SEI) has developed a framework to judge the process

maturity level of an organization. This framework is known as the Capability Maturity

Model (CMM). This framework has 5 different levels and an organization is placed into

one of these 5 levels. The following figure shows the CMM framework.

These levels are briefly described as follows”

1. Level 1 – Initial: The software process is characterized as ad hoc and occasionally

even chaotic. Few processes are defined, and success depends upon individual

effort. By default every organization would be at level 1.

2. Level 2 – Repeatable: Basic project management processes are established to

track cost, schedule, and functionality. The necessary project discipline is in place

to repeat earlier successes on projects with similar applications.

3. Level 3 – Defined: The software process for both management and engineering

activities is documented, standardized, and integrated into an organizational

software process. All projects use a documented and approved version of the

organization’s process for developing and supporting software.

4. Level 4 – Managed: Detailed measures for software process and product quality

are controlled. Both the software process and products are quantitatively

understood and controlled using detailed measures.

5. Level 5 – Optimizing: Continuous process improvement is enabled by qualitative

feedback from the process and from testing innovative ideas and technologies.

SEI has associated key process areas with each maturity level. The KPAs describe those

software engineering functions that must be present to satisfy good practice at a particular

level. Each KPA is described by identifying the following characteristics:

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 13

1. Goals: the overall objectives that the KPA must achieve.

2. Commitments: requirements imposed on the organization that must be met to

achieve the goals or provide proof of intent to comply with the goals.

3. Abilities: those things that must be in place – organizationally and technically – to

enable the organization to meet the commitments.

4. Activities: the specific tasks required to achieve the KPA function

5. Methods for monitoring implementation: the manner in which the activities are

monitored as they are put into place.

6. Methods for verifying implementation: the manner in which proper practice for

the KPA can be verified.

Each of the KPA is defined by a set of practices that contribute to satisfying its goals. The

key practices are policies, procedures, and activities that must occur before a key process

area has been fully instituted.

The following table summarizes the KPAs defined for each level.

Level KPAs

1 No KPA is defined as organizations at this level follow ad-hoc

processes

2 • Software Configuration Management

• Software Quality Assurance

• Software subcontract Management

• Software project tracking and oversight

• Software project planning

• Requirement management

3 • Peer reviews

• Inter-group coordination

• Software product Engineering

• Integrated software management

• Training program

• Organization process management

• Organization process focus

4 • Software quality management

• Quantitative process management

5 • Process change management

• Technology change management

• Defect prevention

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 14

Lecture No. 3

Software Lifecycle Models

Recalling from our first course, a software system passes through the following phases:

1. Vision – focus on why

2. Definition – focus on what

3. Development – focus on how

4. Maintenance – focus on change

During these phases, a number of activities are performed. A lifecycle model is a

series of steps through which the product progresses. These include requirements

phase, specification phase, design phase, implementation phase, integration phase,

maintenance phase, and retirement. Software Development Lifecycle Models depict

the way you organize your activities.

There are a number of Software Development Lifecycle Models, each having its

strengths and weaknesses and suitable in different situations and project types. The

list of models includes the following:

• Build-and-fix model

• Waterfall model

• Rapid prototyping model

• Incremental model

• Extreme programming

• Synchronize-and-stabilize model

• Spiral model

• Object-oriented life-cycle models

In the following sections we shall study these models in detail and discuss their

strengths and weaknesses.

Build and Fix Model

This model is depicted in the following diagram:

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 15

It is unfortunate that many products are developed using what is known as the build-and-

fix model. In this model the product is constructed without specification or any attempt at

design. The developers simply build a product that is reworked as many times as

necessary to satisfy the client. This model may work for small projects but is totally

unsatisfactory for products of any reasonable size. The cost of build-and fix is actually far

greater than the cost of properly specified and carefully designed product.

Maintenance of the product can be extremely in the absence of any documentation.

Waterfall Model

The first published model of the software development process was derived from other

engineering processes. Because of the cascade from one phase to another, this model is

known as the waterfall model. This model is also known as linear sequential model. This

model is depicted in the following diagram.

The principal stages of the model map directly onto fundamental development activities.

It suggests a systematic, sequential approach to software development that begins at the

system level and progresses through the analysis, design, coding, testing, and

maintenance.

In the literature, people have identified from 5 to 8 stages of software development.

The five stages above are as follows:

1. Requirement Analysis and Definition: What - The systems services, constraints

and goals are established by consultation with system users. They are then defined

in detail and serve as a system specification.

2. System and Software Design: How – The system design process partitions the

requirements to either hardware of software systems. It establishes and overall

system architecture. Software design involves fundamental system abstractions

and their relationships.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 16

3. Implementation and Unit Testing: - How – During this stage the software design

is realized as a set of programs or program units. Unit testing involves verifying

that each unit meets its specifications.

4. Integration and system testing: The individual program unit or programs are

integrated and tested as a complete system to ensure that the software

requirements have been met. After testing, the software system is delivered to the

customer.

5. Operation and Maintenance: Normally this is the longest phase of the software life

cycle. The system is installed and put into practical use. Maintenance involves

correcting errors which were not discovered in earlier stages of the life-cycle,

improving the implementation of system units and enhancing the system’s

services as new requirements are discovered.

In principle, the result of each phase is one or more documents which are approved. No

phase is complete until the documentation for that phase has been completed and products

of that phase have been approved. The following phase should not start until the previous

phase has finished.

Real projects rarely follow the sequential flow that the model proposes. In general these

phases overlap and feed information to each other. Hence there should be an element of

iteration and feedback. A mistake caught any stage should be referred back to the source

and all the subsequent stages need to be revisited and corresponding documents should be

updated accordingly. This feedback path is shown in the following diagram.

Because of the costs of producing and approving documents, iterations are costly and

require significant rework.

The Waterfall Model is a documentation-driven model. It therefore generates complete

and comprehensive documentation and hence makes the maintenance task much easier. It

however suffers from the fact that the client feedback is received when the product is

finally delivered and hence any errors in the requirement specification are not discovered

until the product is sent to the client after completion. This therefore has major time and

cost related consequences.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 17

Rapid Prototyping Model

The Rapid Prototyping Model is used to overcome issues related to understanding and

capturing of user requirements. In this model a mock-up application is created “rapidly”

to solicit feedback from the user. Once the user requirements are captured in the

prototype to the satisfaction of the user, a proper requirement specification document is

developed and the product is developed from scratch.

An essential aspect of rapid prototype is embedded in the word “rapid”. The developer

should endeavour to construct the prototype as quickly as possible to speedup the

software development process. It must always be kept in mind that the sole purpose of the

rapid prototype is to capture the client’s needs; once this has been determined, the rapid

prototype is effectively discarded. For this reason, the internal structure of the rapid

prototype is not relevant.

Integrating the Waterfall and Rapid Prototyping Models

Despite the many successes of the waterfall model, it has a major drawback in that the

delivered product may not fulfil the client’s needs. One solution to this is to combine

rapid prototyping with the waterfall model. In this approach, rapid prototyping can be

used as a requirement gathering technique which would then be followed by the activities

performed in the waterfall model.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 18

Lecture No. 4

Incremental Models

As discussed above, the major drawbacks of the waterfall model are due to the fact that

the entire product is developed and delivered to the client in one package. This results in

delayed feedback from the client. Because of the long elapsed time, a huge new

investment of time and money may be required to fix any errors of omission or

commission or to accommodate any new requirements cropping up during this period.

This may render the product as unusable. Incremental model may be used to overcome

these issues.

In the incremental models, as opposed to the waterfall model, the product is partitioned

into smaller pieces which are then built and delivered to the client in increments at regular

intervals. Since each piece is much smaller than the whole, it can be built and sent to the

client quickly. This results in quick feedback from the client and any requirement related

errors or changes can be incorporated at a much lesser cost. It is therefore less traumatic

as compared to the waterfall model. It also required smaller capital outlay and yield a

rapid return on investment. However, this model needs and open architecture to allow

integration of subsequent builds to yield the bigger product. A number of variations are

used in object-oriented life cycle models.

There are two fundamental approaches to the incremental development. In the first case,

the requirements, specifications, and architectural design for the whole product are

completed before implementation of the various builds commences.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 19

In a more risky version, once the user requirements have been elicited, the specifications

of the first build are drawn up. When this has been completed, the specification team

turns to the specification of the second build while the design team designs the first build.

Thus the various builds are constructed in parallel, with each team making use of the

information gained in the all the previous builds.

This approach incurs the risk that the resulting build will not fit together and hence

requires careful monitoring.

Rapid Application Development (RAD)

Rapid application development is another form of incremental model. It is a high speed

adaptation of the linear sequential model in which fully functional system in a very short

time (2-3 months). This model is only applicable in the projects where requirements are

well understood and project scope is constrained. Because of this reason it is used

primarily for information systems.

Synchronize and Stabilize Model

This is yet another form of incremental model adopted by Microsoft. In this model,

during the requirements analysis interviews of potential customers are conducted and

requirements document is developed. Once these requirements have been captured,

specifications are drawn up. The project is then divided into 3 or 4 builds. Each build is

carried out by small teams working in parallel. At the end of each day the code is

synchronized (test and debug) and at the end of the build it is stabilized by freezing the

build and removing any remaining defects. Because of the synchronizations, components

always work together. The presence of an executable provides early insights into

operation of product.

Implementation,
integration

Deliver to client Design Specification

Implementation,
integration

Deliver to client Design Specification

Implementation,
integration

Deliver to client Design Specification

Build 1

Implementation,
integration

Deliver to client Design Specification

Build 2

Build 3

Build n

Specification team

Design team

Implementation,
integration team

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 20

Spiral Model
This model was developed by Barry Boehm. The main idea of this model is to avert risk

as there is always an element of risk in development of software. For example, key

personnel may resign at a critical juncture, the manufacturer of the software development

may go bankrupt, etc.

In its simplified form, the Spiral Model is Waterfall model plus risk analysis. In this case

each stage is preceded by identification of alternatives and risk analysis and is then

followed by evaluation and planning for the next phase. If risks cannot be resolved,

project is immediately terminated. This is depicted in the following diagram.

As can be seen, a Spiral Model has two dimensions. Radial dimension represents the

cumulative cost to date and the angular dimension represents the progress through the

spiral. Each phase begins by determining objectives of that phase and at each phase a new

process model may be followed.

Risk Analysis

Verify

Rapid Prototype

Specification

Design

Implementation

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 21

A full version of the Spiral Model is shown below:

The main strength of the Spiral Model comes from the fact that it is very sensitive to the

risk. Because of the spiral nature of development it is easy to judge how much to test and

there is no distinction between development and maintenance. It however can only be

used for large-scale software development and that too for internal (in-house) software

only.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 22

Plan Next
Phase

Determine
objectives,
alternatives,
constraints

Identify and
resolve risks

Develop
and verify
next-level
product

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 23

Lecture No. 5

Object-Oriented Lifecycle Models

Object-oriented lifecycle models appreciate the need for iteration within and between

phases. There are a number of these models. All of these models incorporate some form

of iteration, parallelism, and incremental development.

eXtreme Programming

It is a somewhat controversial new approach. In this approach user requirements are

captured through stories which are the scenarios presenting the features needed by the

client? Estimate for duration and cost of each story is then carried out. Stories for the next

build are selected. Then each build is divided into tasks. Test cases for task are drawn up

first before and development and continuous testing is performed throughout the

development process.

One very important feature of eXtreme programming is the concept of pair programming.

In this, a team of two developers develop the software, working in team as a pair to the

extent that they even share a single computer.

In eXtereme Programming model, computers are put in center of large room lined with

cubicles and client representative is always present. One very important restriction

imposed in the model is that no team is allowed to work overtime for 2 successive weeks.

XP has had some successes. It is good when requirements are vague or changing and the

overall scope of the project is limited. It is however too soon to evaluate XP.

Fountain Model

Fountain model is another object-oriented lifecycle model. This is depicted in the

following diagram.

Architectural
spike

User stories

Release
Planning

Spike

Iteration Acceptance
test

Small release

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 24

In this model the circles representing the various phases overlap, explicitly representing

an overlap between activities. The arrows within a phase represent iteration within the

phase. The maintenance cycle is smaller, to symbolize reduced maintenance effort when

the object oriented paradigm is used.

Rational Unified Process (RUP)

Rational Unified Process is very closely associated with UML and Krutchen’s

architectural model.

In this model a software product is designed and built in a succession of incremental

iterations. It incorporates early testing and validation of design ideas and early risk

mitigation. The horizontal dimension represents the dynamic aspect of the process. This

includes cycles, phases, iterations, and milestones. The vertical dimension represents the

static aspect of the process described in terms of process components which include

activities, disciplines, artifacts, and roles. The process emphasizes that during

development, all activities are performed in parallel, however, and at a given time one

activity may have more emphasis than the other.

The following figure depicting RUP is taken from Krutchen’s paper.

Requirement

Object-oriented analysis

Object-oriented design

Implementation

Implementation and

integration

Further development

Operations

Maintenance

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 25

Comparison of Lifecycle Models

As discussed above, each lifecycle model has some strengths and weaknesses. These are

summarized in the following table:

The criteria to be used for deciding on a model include the organization, its management,

skills of the employees, and the nature of the product. No single model may fulfill the

needs in a given situation. It may therefore be best to devise a lifecycle model tuned to

your own needs by creating a “Mix-and-match” life-cycle model.

Quality Assurance and Documentation

It may be noted that there is no separate QA or documentation phase. QA is an activity

performed throughout software production. It involves verification and validation.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 26

Verification is performed at the end of each phase whereas validation is performed before

delivering the product to the client.

Similarly, every phase must be fully documented before starting the next phase. It is

important to note that postponed documentation may never be completed as the

responsible individual may leave. Documentation is important as the product is constantly

changing—we need the documentation to do this. The design (for example) will be

modified during development, but the original designers may not be available to

document it.

The following table shows the QA and documentation activities associated with each

stage.

Phase Documents QA

Requirement

Definition
• Rapid prototype, or

• Requirements document

• Rapid prototype

• Reviews

Functional

Specification
• Specification document (specifications)

• Software Product Management Plan

• Traceability

• FS Review

• Check the SPMP

Design • Architectural Design

• Detailed Design

• Traceability

• Review

Coding • Source code

• Test cases

• Traceability

• Review

• Testing

Integration • Source code

• Test cases

• Integration testing

• Acceptance testing

Maintenance • Change record

• Regression test cases

• Regression testing

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 27

Lecture No. 6

Software Project Management Concepts

Software project management is a very important activity for successful projects. In fact,

in an organization at CMM Level basic project management processes are established to

track cost, schedule, and functionality. That is, it is characterized by basic project

management practices. It also implies that without project management not much can be

achieved. Capers Jones, in his book on Software Best Practices, notes that, for the

projects they have analyzed, good project management was associated with 100% of the

successful project and bad project management was associated with 100% of the

unsuccessful projects. Therefore, understanding of good project management principles

and practices is essential for all project managers and software engineers.

Software project management involves that planning, organization, monitoring, and

control of the people and the processes.

Software Project Management: Factors that influence results

The first step towards better project management is the comprehension of the factors that

influence results of a project. Among these, the most important factors are:

– Project size

As the project size increases, the complexity of the problem also increases and therefore

its management also becomes more difficult.

– Delivery deadline

Delivery deadline directly influences the resources and quality. With a realistic deadline,

chances of delivering the product with high quality and reasonable resources increase

tremendously as compared to an unrealistic deadline. So a project manager has to first

determine a realistic and reasonable deadline and then monitor the project progress and

ensure timely delivery.

– Budgets and costs

A project manager is responsible for ensuring delivery of the project within the allocated

budget and schedule. A good estimate of budget, cost and schedule is essential for any

successful project. It is therefore imperative that the project manager understand and

learns the techniques and principle needed to develop these estimates.

– Application domain

Application domain also plays an important role in the success of a project. The chances

of success of a project in a well-known application domain would be much better than of

a project in a relatively unknown domain. The project manager thus needs to implement

measures to handle unforeseen problems that may arise during the project lifecycle.

– Technology to be implemented

Technology also plays a very significant role in the success or failure of a project. One

the one hand, a new “state-of-the-art” technology may increase the productivity of the

team and quality of the product. On the other hand, it may prove to be unstable and hence

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 28

prove to be difficult to handle. Resultantly, it may totally blow you off the track. So, the

project manager should be careful in choosing the implementation technology and must

take proper safeguard measures.

– System constraints

The non-functional requirement or system constraints specify the conditions and the

restrictions imposed on the system. A system that fulfils all its functional requirements

but does not satisfy the non-functional requirements would be rejected by the user.

– User requirements

A system has to satisfy its user requirements. Failing to do so would render this system

unusable.

– Available resources

A project has to be developed using the available resources who know the domain as well

as the technology. The project manager has to ensure that the required number of

resources with appropriate skill-set is available to the project.

Project Management Concerns

In order to plan and run a project successfully, a project manager needs to worry about

the following issues:

1. Product quality: what would be the acceptable quality level for this particular project

and how could it be ensured?

2. Risk assessment: what would be the potential problems that could jeopardize the

project and how could they be mitigated?

3. Measurement: how could the size, productivity, quality and other important factors be

measured and benchmarked?

4. Cost estimation: how could cost of the project be estimated?

5. Project schedule: how could the schedule for the project be computed and estimated?

6. Customer communication: what kind of communication with the customer would be

needed and how could it be established and maintained consistently?

7. Staffing: how many people with what kind of resources would be needed and how

that requirement could be fulfilled?

8. Other resources: what other hardware and software resources would be needed for the

project?

9. Project monitoring: how the progress of the project could be monitored?

Thorough understanding and appreciation of these issues leads to the quest for finding

satisfactory answers to these problems and improves the chances for success of a project.

Why Projects Fail?

A project manager is tasked to ensure the successful development of a product. Success

cannot be attained without understanding the reasons for failure. The main reasons for the

failure of software projects are:

1. changing customer requirements

2. ambiguous/incomplete requirements

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 29

3. unrealistic deadline

4. an honest underestimate of effort

5. predictable and/or unpredictable risks

6. technical difficulties

7. miscommunication among project staff

8. failure in project management

The first two points relate to good requirement engineering practices. Unstable user

requirements and continuous requirement creep has been identified as the top most reason

for project failure. Ambiguous and incomplete requirements lead to undesirable product

that is rejected by the user.

As discussed earlier, delivery deadline directly influences the resources and quality. With

a realistic deadline, chances of delivering the product with high quality and reasonable

resources increase tremendously as compared to an unrealistic deadline. An unrealistic

deadline could be enforced by the management or the client or it could be due to error in

estimation. In both these cases it often results in disaster for the project.

A project manager who is not prepared and without a contingency plan for all sorts of

predictable and unpredictable risks would put the project in jeopardy if such a risk should

happen. Risk assessment and anticipation of technical and other difficulties allows the

project manager to cope with these situations.

Miscommunication among the project staff is another very important reason for project

failure. Lack of proper coordination and communication in a project results in wastage of

resources and chaos.

The Management Spectrum

Effective project management focuses on four aspects of the project known as the 4 P’s.

These are: people, product, process, and project.

People

Software development is a highly people intensive activity. In this business, the software

factory comprises of the people working there. Hence taking care of the first P, that is

people, should take the highest priority on a project manager’s agenda.

Product

The product is the outcome of the project. It includes all kinds of the software systems.

No meaningful planning for a project can be carried-out until all the dimensions of the

product including its functional as well as non-functional requirements are understood

and all technical and management constraints are identified.

Process

Once the product objectives and scope have been determined, a proper software

development process and lifecycle model must be chosen to identify the required work

products and define the milestones in order to ensure streamlined development activities.

It includes the set of all the framework activities and software engineering tasks to get the

job done.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 30

Project

A project comprises of all work the required to make the product a reality. In order to

avoid failure, a project manager and software engineer is required to build the software

product in a controlled and organized fashion and run it like other projects found in more

concrete domains.

We now discuss these 4 in more detail.

People

In a study published by IEEE, the project team was identified by the senior executives as

the most important contributor to a successful software project. However, unfortunately,

people are often taken for granted and do no get the attention and focus they deserve.

There are a number of players that participate in software process and influence the

outcome of the project. These include senior managers, project (technical) managers,

practitioners, customers, and end-users. Senior managers define the business vision

whereas the project managers plan, motivate, organize and control the practitioners who

work to develop the software product. To be effective, the project team must be organized

to use each individual to the best of his/her abilities. This job is carried out by the team

leader.

Team Leader

Project management is a people intensive activity. It needs the right mix of people skills.

Therefore, competent practitioners often make poor team leaders.

Leaders should apply a problem solving management style. That is, a project manager

should concentrate on understanding the problem to be solved, managing the flow of

ideas, and at the same time, letting everyone on the team know that quality counts and

that it will not be compromised.

MOI model of leadership developed by Weinberg suggest that a leadership needs

Motivation, Organization, and Innovation.

Motivation is the ability to encourage technical people to produce to their best.

Organization is the ability to mold the existing processes (or invent new ones) that will

enable the initial concept to be translated into a final product, and Idea or Innovation is

the ability to encourage people to create and feel creative.

It is suggested that successful project managers apply a problem solving management

style. This involves developing an understanding of the problem and motivating the team

to generate ideas to solve the problem.

Edgemon suggests that the following characteristics are needed to become an effective

project manager:

• Problem Solving

– Should be able to diagnose technical and organizational issues and be willing

to change direction if needed.

• Managerial Identity

– Must have the confidence to take control when necessary

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 31

• Achievement

– Reward initiative (controlled risk taking) and accomplishment

• Influence and team building

– Must remain under control in high stress conditions. Should be able to read

signals and address peoples’ needs.

DeMarco says that a good leader possesses the following four characteristics:

– Heart: the leader should have a big heart.

– Nose: the leader should have good nose to spot the trouble and bad smell in the

project.

– Gut: the leader should have the ability to make quick decisions on gut feeling.

– Soul: the leader should be the soul of the team.

If analyzed closely, all these researchers seem to say essentially the same thing and they

actually complement each other’s point of view.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 32

Lecture No. 7

The Software Team

There are many possible organizational structures. In order to identify the most suitable

structure, the following factors must be considered:

• the difficulty of the problem to be solved

• the size of the resultant program(s) in lines of code or function points

• the time that the team will stay together (team lifetime)

• the degree to which the problem can be modularized

• the required quality and reliability of the system to be built

• the rigidity of the delivery date

• the degree of sociability (communication) required for the project

Constantine suggests that teams could be organized in the following generic structural

paradigms:

• closed paradigm—structures a team along a traditional hierarchy of authority

• random paradigm—structures a team loosely and depends on individual initiative of

the team members

• open paradigm—attempts to structure a team in a manner that achieves some of the

controls associated with the closed paradigm but also much of the innovation that

occurs when using the random paradigm

• synchronous paradigm—relies on the natural compartmentalization of a problem

and organizes team members to work on pieces of the problem with little active

communication among themselves

Mantei suggests the following three generic team organizations:

• Democratic decentralized (DD)

In this organization there is no permanent leader and task coordinators are appointed for

short duration. Decisions on problems and approach are made by group consensus and

communication among team is horizontal.

• Controlled decentralized (CD)

In CD, there is a defined leader who coordinates specific tasks. However, problem

solving remains a group activity and communication among subgroups and individuals is

horizontal. Vertical communication along the control hierarchy also occurs.

• Controlled centralized (CC)

In a Controlled Centralized structure, top level problem solving and internal team

coordination are managed by the team leader and communication between the leader and

team members is vertical.

Centralized structures complete tasks faster and are most useful for handling simple

problems. On the other hand, decentralized teams generate more and better solutions than

individuals and are most useful for complex problems

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 33

For the team morale point of view, DD is better.

Coordination and Communication Issues

Lack of coordination results in confusion and uncertainty. On the other hand,

performance is inversely proportional to the amount of communication and hence too

much communication and coordination is also not healthy for the project. Very large

projects are best addressed with CC or CD when sub-grouping can be easily

accommodated.

Kraul and Steeter categorize the project coordination techniques as follows:

• Formal, impersonal approaches

In these approaches, coordination is achieved through impersonal and formal mechanism

such as SE documents, technical memos, schedules, error tracking reports.

• Formal, interpersonal procedures

In this case, the approaches are interpersonal and formal. These include QA activities,

design and code reviews, and status meetings.

• Informal, interpersonal procedures

This approach employs informal interpersonal procedures and includes group meetings

and collocating different groups together.

• Electronic communication includes emails and bulletin boards.

• Interpersonal networking includes informal discussions with group members

The effectiveness of these approaches has been summarized in the following diagram:

Techniques that fall above the regression line yield more value to use ratio as compared

to the ones below the line.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 34

The Product: Defining the Problem

In order to develop an estimate and plan for the project, the scope of the problem must be

established. This includes context, information objectives, and function and performance

requirements. The estimate and plan is then developed by decomposing the problem and

establishing a functional partitioning.

The Process

The next step is to decide which process model to pick. The project manager has to look

at the characteristics of the product to be built and the project environment. For examples,

for a relatively small project that is similar to past efforts, degree of uncertainty is

minimized and hence Waterfall or linear sequential model could be used. For tight

timelines, heavily compartmentalized, and known domain, RAD model would be more

suitable. Projects with large functionality, quick turn around time are best developed

incrementally and for a project in which requirements are uncertain, prototyping model

will be more suitable.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 35

Lecture No. 8

The Project Management

As discussed earlier, a project manager must understand what can go wrong and how to

do it right. Reel has defined a 5 step process to improve the chances of success. These

are:

– Start on the right foot: this is accomplished by putting in the required effort to

understand the problem, set realistic objectives, build the right team, and provide the

needed infrastructure.

– Maintain momentum: many projects, after starting on the right, loose focus and

momentum. The initial momentum must be maintained till the very end.

– Track progress: no planning is useful if the progress is not tracked. Tracking ensures

timely delivery and remedial action, if needed, in a suitable manner.

– Make smart decisions

– Conduct a postmortem analysis: in order to learn from the mistakes and improve the

process continuously, a project postmortem must be conducted.

W5HH Principle

Barry Boehm has suggested a systematic approach to project management. It is known as

the WWWWWHH principle. It comprises of 7 questions. Finding the answers to these 7

questions is essentially all a project manager has to do. These are:

• WHY is the system being developed?

• WHAT will be done?

• By WHEN?

• WHO is responsible for a function?

• WHERE they are organizationally located?

• HOW will the job be done technically and managerially?

• HOW MUCH of each resource (e.g., people, software, tools, database) will be

needed?

Boehm’s W
5
HH principle is applicable, regardless of the size and complexity of the

project and provide excellent planning outline.

Critical Practices

The Airlie Council has developed a list of critical success practices that must be present

for successful project management. These are:

• Formal risk analysis

• Empirical cost and schedule estimation

• Metrics-based project management

• Earned value tracking

• Defect tracking against quality targets

• People aware project management

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 36

Finding the solution to these practices is the key to successful projects. We’ll therefore

spend a considerable amount of time in elaborating these practices.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 37

 Lecture No. 9

Software Size Estimation

The size of the software needs to be estimated to figure out the time needed in terms of

calendar and man months as well as the number and type of resources required carrying

out the job. The time and resources estimation eventually plays a significant role in

determining the cost of the project.

Most organizations use their previous experience to estimate the size and hence the

resource and time requirements for the project. If not quantified, this estimate is

subjective and is as good as the person who is conducting this exercise. At times this

makes it highly contentious. It is therefore imperative for a government organization to

adopt an estimation mechanism that is:

1. Objective in nature.

2. It should be an acceptable standard with wide spread use and acceptance level.

3. It should serve as a single yardstick to measure and make comparisons.

4. Must be based upon a deliverable that is meaningful to the intended audience.

5. It should be independent of the tool and technology used for the developing the

software.

A number of techniques and tools can be used in estimating the size of the software.

These include:

1. Lines of code (LOC)

2. Number of objects

3. Number of GUIs

4. Number of document pages

5. Functional points (FP)

Comparison of LOC and FPA

Out of these 5, the two most widely used metrics for the measurement of software size are

FP and LOC. LOC metric suffer from the following shortcomings:

1. There are a number of questions regarding the definition for lines of code. These

include:

a. Whether to count physical line or logical lines?

b. What type of lines should be counted? For example, should the comments,

data definitions, and blank lines be counted or not?

2. LOC is heavily dependent upon the individual programming style.

3. It is dependent upon the technology and hence it is difficult to compare

applications developed in two different languages. This is true for even seemingly

very close languages like in C++ and Java.

4. If a mixture of languages and tools is used then the comparison is even more

difficult. For example, it is not possible to compare a project that delivers a

100,000-line mixture of Assembly, C++, SQL and Visual Basic to one that

delivers 100,000 lines of COBOL.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 38

FP measures the size of the functionality provided by the software. The functionally is

measured as a function of the data and the operations performed on that data. The

measure is independent of the tool and technology used and hence provides a consistent

measure for comparison between various organizations and projects.

The biggest advantage of FP over LOC is that LOC can be counted only AFTER the code

has been developed while FP can be counted even at the requirement phase and hence can

be used for planning and estimation while the LOC cannot be used for this purpose.

Another major distinction between the FP and LOC is that the LOC measures the

application from a developer's perspective while the FP is a measure of the size of the

functionality from the user's perspective. The user's view, as defined by IFPUG, is as

follows:

A user view is a description of the business functions and is approved by the

user. It represents a formal description of the user’s business needs in the

user’s language. It can vary in physical form (e.g., catalog of transactions,

proposals, requirements document, external specifications, detailed

specifications, user handbook). Developers translate the user information into

information technology language in order to provide a solution. Function point

counts the application size from the user’s point of view. It is accomplished

using the information in a language that is common to both user(s) and

developers.

Therefore, Function Point Analysis measures the size of the functionality

delivered and used by the end user as opposed to the volume of the artifacts and

code.

The Paradox of Reversed Productivity for High-Level Languages
Consider the following example:

Assembler

Version Ada Version Difference

Source Code Size 100,000 25,000 -75,000

Activity - in person months

Requirements 10 10 0

Design 25 25 0

Coding 100 20 -80

Documentation 15 15 0

Integration and Testing 25 15 -10

Management 25 15 -10

Total Effort 200 100 -100

Total Cost $1,000,000 $500,000 -$500,000

Cost Per Line $10 $20 $10

Lines Per Person-Month 500 250 -250

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 39

In this example, it is assumed that the same functionality is implemented in Assembly and

Ada. As coding in Assembly is much more difficult and time consuming as compared to

Ada, it takes more time and it is also lengthy. Because there is a huge difference in the

code size in terms of Lines of Code, the cost per line in case of Assembly is much less as

compared to Ada. Hence coding in Assembly appears to be more cost effective than Ada

while in reality it is not. This is a paradox!

Function Point Analysis - A Brief History and Usage

In the mid 70's, IBM felt the need to establish a more effective and better measure of

system size to predict the delivery of software. It commissioned Allan Albrecht to lead

this effort. As a result he developed this approach which today known as the Function

Point Analysis. After several years of internal use, Albrecht introduced the methodology

at a joint/share conference. From 1979 to 1984 continued statistical analysis was

performed on the method and refinements were made. At that point, a non-profit

organization by the name of International Function Point User Group (IFPUG) was

formed which formally took onto itself the role of refining and defining the counting

rules. The result is the function point methodology that we use today.

Since 1979, when Albrecht published his first paper on FP, its popularity and use has

been increasing consistently and today it is being used as a de facto standard for software

measurement. Following is a short list of organizations using FP for estimation:

1. IEEE recommends it for use in productivity measurement and reporting.

2. Several governments including UK, Canada, and Hong Kong have been using it

and it has been recommended to these governments that all public sector project

use FP as a standard for the measurement of the software size.

3. Government of the Australian state Victoria has been using FP since 1997 for

managing and outsourcing projects to the tune of US$ 50 Million every year.

4. In the US several large government departments including IRS have adopted FP

analysis as a standard for outsourcing, measurement, and control of software

projects.

5. A number of big organizations including Digital Corporation and IBM have been

using FP for their internal use for the last many years.

Usage of FP includes:

 Effort Scope Estimation

 Project Planning

 Determine the impact of additional or changed requirements

 Resource Planning/Allocation

 Benchmarking and target setting

 Contract Negotiations

Following is a list of some of the FP based metrics used for these purposes:

 Size – Function Points

 Defects – Per Function Point

 Effort – Staff-Months

 Productivity – Function Points per Staff-Month

 Duration – Schedule (Calendar) Months

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 40

 Time Efficiency – Function Points per Month

 Cost – Per Function

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 41

Lecture No. 10

Function Point Counting Process

The following diagram depicts the function point counting process.

These steps are elaborated in the following subsections. The terms and definitions are the

ones used by IFPUG and have been taken directly from the IFPUG Function Point

Counting Practices Manual (CPM) Release 4.1. The following can therefore be treated as

an abridged version of the IFPUG CPM Release 4.1.

Determining the type of count
A Function Point count may be divided into the following types:

1. Development Count: A development function point count includes all functions

impacted (built or customized) by the project activities.

2. Enhancement Count: An enhancement function point count includes all the

functions being added, changed and deleted. The boundary of the application(s)

impacted remains the same. The functionality of the application(s) reflects the impact

of the functions being added, changed or deleted.

3. Application Count: An application function point count may include, depending on

the purpose (e.g., provide a package as the software solution):

a) only the functions being used by the user

Determine the type of

count

 Enhancement

 Development

 Application

Define the application

boundary

Count Transactional

Functions

 EI

 EO

 EQ

Count Data

Functions

 ILF

 EIF

Calculate Value

Adjustment Factor

(VAF)

Contribution of 14

general system

characteristics

Calculate Unadjusted FP

Count (UFP)

Transactional Functions + Data Functions

Calculate Adjusted

FP Count

UFP * VAF

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 42

b) all the functions delivered

c) The application boundary of the two counts is the same and is independent of the

scope.

Defining the Application Boundary

The application boundary is basically the system context diagram and determines the

scope of the count. It indicates the border between the software being measured and the

user. It is the conceptual interface between the ‘internal’ application and the ‘external’

user world. It depends upon the user’s external view of the system and is independent of

the tool and technology used to accomplish the task.

The position of the application boundary is important because it impacts the result of the

function point count. The application boundary assists in identifying the data entering the

application that will be included in the scope of the count.

Count Data Functions

Count of the data functions is contribution of the data manipulated and used by the

application towards the final function point count. The data is divided into two categories:

the Internal Logical Files (ILF) and the External Interface Files (EIF). These and the

related concepts are defined and explained as follows.

Internal Logical Files (ILF)

An internal logical file (ILF) is a user identifiable group of logically related data or

control information maintained within the boundary of the application. The primary intent

of an ILF is to hold data maintained through one or more elementary processes of the

application being counted.

External Interface Files

An external interface file (EIF) is a user identifiable group of logically related data or

control information referenced by the application, but maintained within the boundary of

another application. The primary intent of an EIF is to hold data referenced through one

or more elementary processes within the boundary of the application counted. This means

an EIF counted for an application must be in an ILF in another application.

Difference between ILFs and EIFs

The primary difference between an internal logical file and an external interface file is

that an EIF is not maintained by the application being counted, while an ILF is.

Definitions for Embedded Terms

The following paragraphs further define ILFs and EIFs by defining embedded terms

within the definitions.

Control Information

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 43

Control Information is data that influences an elementary process of the application being

counted. It specifies what, when, or how data is to be processed. For example, someone in

the payroll department establishes payment cycles to schedule when the employees for

each location are to be paid. The payment cycle, or schedule, contains timing information

that affects when the elementary process of paying employees occurs.

User Identifiable

The term user identifiable refers to defined requirements for processes and/or groups of

data that are agreed upon, and understood by, both the user(s) and software developer(s).

For example, users and software developers agree that a Human Resources Application

will maintain and store Employee information in the application.

Maintained

The term maintained is the ability to modify data through an elementary process.

Examples include, but are not limited to, add, change, delete, populate, revise, update,

assign, and create.

Elementary Process

An elementary process is the smallest unit of activity that is meaningful to the user(s). For

example, a user requires the ability to add a new employee to the application. The user

definition of employee includes salary and dependent information. From the user

perspective, the smallest unit of activity is to add a new employee. Adding one of the

pieces of information, such as salary or dependent, is not an activity that would qualify as

an elementary process. The elementary process must be self-contained and leave the

business of the application being counted in a consistent state. For example, the user

requirements to add an employee include setting up salary and dependent information. If

all the employee information is not added, an employee has not yet been created. Adding

some of the information alone leaves the business of adding an employee in an

inconsistent state. If both the employee salary and dependent information is added, this

unit of activity is completed and the business is left in a consistent state.

ILF/EIF Counting Rules

This section defines the rules that apply when counting internal logical files and external

interface files.

Summary of Counting Procedures

The ILF and EIF counting procedures include the following two activities:

1) Identify the ILFs and EIFs.

2) Determine the ILF or EIF complexity and their contribution to the unadjusted function

point count. ILF and EIF counting rules are used for each activity.

There are two types of rules:

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 44

The following list outlines how the rules are presented:

ord element types (RETs)

ILF Identification Rules

To identify ILFs, look for groups of data or control information that satisfy the definition

of an ILF. All of the following counting rules must apply for the information to be

counted as an ILF.

 The group of data or control information is logical and user identifiable.

 The group of data is maintained through an elementary process within the application

boundary being counted.

EIF Identification Rules

To identify EIFs, look for groups of data or control information that satisfy the definition

of an EIF. All of the following counting rules must apply for the information to be

counted as an EIF.

 The group of data or control information is logical and user identifiable.

 The group of data is referenced by, and external to, the application being counted.

 The group of data is not maintained by the application being counted.

 The group of data is maintained in an ILF of another application.

Complexity and Contribution Definitions and Rules

The number of ILFs, EIFs, and their relative functional complexity determine the

contribution of the data functions to the unadjusted function point count. Assign each

identified ILF and EIF a functional complexity based on the number of data element types

(DETs) and record element types (RETs) associated with the ILF or EIF. This section

defines DETs and RETs and includes the counting rules for each.

DET Definition

A data element type is a unique user recognizable, non-repeated field.

DET Rules

The following rules apply when counting DETs:

1. Count a DET for each unique user recognizable, non-repeated field maintained in or

retrieved from the ILF or EIF through the execution of an elementary process. For

example:

 An account number that is stored in multiple fields is counted as one DET.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 45

 A before or after image for a group of 10 fields maintained for audit purposes

would count as one DET for the before image (all 10 fields) and as one DET for

the after image (all 10 fields) for a total of 2 DETs.

 The result(s) of a calculation from an elementary process, such as calculated sales

tax value for a customer order maintained on an ILF is counted as one DET on the

customer order ILF.

 Accessing the price of an item which is saved to a billing file or fields such as a

time stamp if required by the user(s) are counted as DETs.

 If an employee number which appears twice in an ILF or EIF as (1) the key of the

employee record and (2) a foreign key in the dependent record, count the DET

only once.

 Within an ILF or EIF, count one DET for the 12 Monthly Budget Amount fields.

Count one additional field to identify the applicable month. For Example:

2. When two applications maintain and/or reference the same ILF/EIF, but each

maintains/references separate DETs, count only the DETs being used by each

application to size the ILF/EIF. For Example:

 Application A may specifically identify and use an address as street address, city,

state and zip code. Application B may see the address as one block of data without

regard to individual components. Application A would count four DETs;

Application B would count one DET.

 Application X maintains and/or references an ILF that contains a SSN, Name,

Street Name, Mail Stop, City, State, and Zip. Application Z maintains and/or

references the Name, City, and State. Application X would count seven DETs;

Application Z would count three DETs.

3. Count a DET for each piece of data required by the user to establish a relationship

with another ILF or EIF.

 In an HR application, an employee's information is maintained on an ILF. The

employee’s job name is included as part of the employee's information. This DET

is counted because it is required to relate an employee to a job that exists in the

organization. This type of data element is referred to as a foreign key.

 In an object oriented (OO) application, the user requires an association between

object classes, which have been identified as separate ILFs. Location name is a

DET in the Location EIF. The location name is required when processing

employee information; consequently, it is also counted as a DET within the

Employee ILF.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 46

Lecture No. 11

Function Point Counting Process (cont.)

RET Definition

A record element type (RET) is a user recognizable subgroup of data elements within an

ILF or EIF. There are two types of subgroups:

 Optional

 Mandatory

Optional subgroups are those that the user has the option of using one or none of the

subgroups during an elementary process that adds or creates an instance of the data.

Mandatory subgroups are subgroups where the user must use at least one. For example, in

a Human Resources Application, information for an employee is added by entering some

general information. In addition to the general information, the employee is a salaried or

hourly employee. The user has determined that an employee must be either salaried or

hourly. Either type can have information about dependents. For this example, there are

three subgroups or RETs as shown below:

 Salaried employee (mandatory); includes general information

 Hourly employee (mandatory); includes general information

 Dependent (optional)

RET Rules
One of the following rules applies when counting RETs:

 Count a RET for each optional or mandatory subgroup of the ILF or EIF.

Or

 If there are no subgroups, count the ILF or EIF as one RET.

Hints to Help with Counting
The following hints may help you apply the ILF and EIF counting rules.

Caution: These hints are not rules and should not be used as rules.

1. Is the data a logical group that supports specific user requirements?

a) An application can use an ILF or EIF in multiple processes, but the ILF or EIF is

counted only once.

b) A logical file cannot be counted as both an ILF and EIF for the same application.

If the data group satisfies both rules, count as an ILF.

c) If a group of data was not counted as an ILF or EIF itself, count its data elements

as DETs for the ILF or EIF, which includes that group of data.

d) Do not assume that one physical file, table or object class equals one logical file

when viewing data logically from the user perspective.

e) Although some storage technologies such as tables in a relational DBMS or

sequential flat file or object classes relate closely to ILFs or EIFs, do not assume

that this always equals a one-to-one physical-logical relationship.

f) Do not assume all physical files must be counted or included as part of an ILF or

EIF.

2. Where is data maintained? Inside or outside the application boundary?

a) Look at the workflow.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 47

b) In the process functional decomposition, identify where interfaces occur with the

user and other applications.

c) Work through the process diagram to get hints.

d) Credit ILFs maintained by more than one application to each application at the

time the application is counted. Only the DETs being used by each application

being counted should be used to size the ILF/EIF.

3. Is the data in an ILF maintained through an elementary process of the application?

a) An application can use an ILF or EIF multiple times, but you count the ILF or EIF

only once.

b) An elementary process can maintain more than one ILF.

c) Work through the process diagram to get hints.

d) Credit ILFs maintained by more than one application to each application at the

time the application is counted.

Hints to Help with Identifying ILFs, EIFs, and RETs

Differentiating RETs from ILFs and EIFs is one of the most activities in FP analysis.

Different concepts regarding entities play a pivotal role in this regards. Let us therefore

understand what an entity is and what different types of entities are.

Entity
An entity is defined by different people as follows:

• A thing that can be distinctly identified. (Chen)

• Any distinguishable object that is to be represented in the database. (Date)

• Any distinguishable person, place, thing, event or concept about which

information is kept. (Bruce)

• A data entity represents some "thing" that is to be stored for later reference. The

term entity refers to the logical representation of data. (Finkelstein)

• An entity may also represent the relationship between two or more entities, called

associative entity. (Reingruber)

• An entity may represent a subset of information relevant to an instance of an

entity, called subtype entity. (Reingruber)

That is, an entity is a principal data object about which information is collected that is a

fundamental thing of relevance to the user, about which a collection of facts is kept.

An entity can be a weak entity or a strong entity. A weak entity is the one which does not

have any role in the problem domain without some other entity. Weak entities are RETs

and strong entities are ILFs and EIFs. Identification of weak entities is therefore

important for distinguishing between RETs and logical files.

Weak Entities
There are three types of weak entities: Associative entity types, attributive entity type,

and entity subtype. These are elaborated as follows:

• Associative Entity Type – An entity which defines many-to-many relationship

between two or more entities.

– Student – course

– Part – dealer

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 48

• Attributive Entity Type – An entity type which further describes one or more

characteristics of another entity.

– Product – Part

– Product – Product Price Information

• Entity Subtype – A subdivision of entity. A subtype inherits all the attributes of its

parent entity type, and may have additional, unique attributes.

– Employee

 Permanent Employee

 Contract Employee

– Employee

 Married Employee

 Single Employee

Logical Files
Grouping of data into logical files is the result of combined effect of two grouping

methods:

• How data is accessed as a group by elementary processes? (process driven)

• The relationship between the entities and their interdependency based on business

rules. (data driven)

The following guideline can be used for this purpose:

• Process Driven Approach

• Data Driven Approach

Process Driven Approach
If several entities are always created together and deleted together then this is a strong

indication that they should be grouped into a single logical file.

• A customer PO is a single group of data from a user business perspective.

• It consists of a header and items information.

• From a business perspective, an order cannot be created unless it has at least one item

and if the order is deleted both the order header and items are deleted. However the

header and the items may have independent maintenance transactions.

Data Driven Approach

Entity Independence: an entity has significance to the business in and of itself without

the presence of other entities. This is a logical file.

Entity Dependence: an entity is not meaningful, has no significance to the business in

and of itself without the presence of other entities. This is an RET.

• Given two linked entities A and B, whether B is dependent or independent:

– Is B significant to the business apart from the occurrence of A linked to it?

– If we delete an occurrence "a" of A, what happens to occurrence "b" of B

linked to "a"?

For example in the following scenarios, the first one is the example of entity dependence

while the second one is the example of entity independence.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 49

– Employee – Child

– Employee - Company Adopted Child

These concepts are summarized in the following table:

Definitions: EIs, EOs and EQs
This section includes the definitions of EIs, EOs and EQs. Embedded terms within the

definitions are defined, and examples are included throughout this definition section.

External Inputs
An external input (EI) is an elementary process that processes data or control information

that comes from outside the application boundary. The primary intent of an EI is to

maintain one or more ILFs and/or to alter the behavior of the system.

External Outputs
An external output (EO) is an elementary process that sends data or control information

outside the application boundary. The primary intent of an external output is to present

information to a user through processing logic other than, or in addition to, the retrieval of

data or control information . The processing logic must contain at least one mathematical

formula or calculation, or create derived data. An external output may also maintain one

or more ILFs and/or alter the behavior of the system.

External Inquiry
An external inquiry (EQ) is an elementary process that sends data or control information

outside the application boundary. The primary intent of an external inquiry is to present

information to a user through the retrieval of data or control information from an ILF or

EIF. The processing logic contains no mathematical formulas or calculations, and creates

no derived data. No ILF is maintained during the processing, nor is the behavior of the

system altered.

Summary of the Functions Performed by EIs, EOs, and EQs
The main difference between the transactional function types is their primary intent. The

table below summarizes functions that may be performed by each transactional function

type, and specifies the primary intent of each. Note the primary intent for an EI—this is

E/R Concept E/R Term FPA Term IFPUG CPM 4.1 Definition

Principal data objects about which

information is collected

Entity or

Entity Type

ILF or EIF File refers to a logically related

group of data and not the

physical implementation of those

groups of data.

An entity type which contains

attributes which further describe

relationships between other entities

Associative

entity type

Optional or

mandatory

subgroup

User recognizable subgroup of

data elements within an ILF or

EIF

An entity type that further

describes one or more

characteristics of another entity

type

Attributive

entity type

Optional or

mandatory

subgroup

User recognizable subgroup of

data elements within an ILF or

EIF

A division of an entity type, which

inherits all the attributes and

relationships of its parent entity

type; may have additional, unique

attributes and relationships

Entity

subtype

Optional or

mandatory

subgroup

User recognizable subgroup of

data elements within an ILF or

EIF

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 50

the main difference from EOs and EQs. Some of the differences between EOs and EQs

are that an EO may perform the functions of altering the behavior of the system or

maintaining one or more ILFs when performing the primary intent of presenting

information to the user. Other differences are identified in the section below that

summarizes forms of processing logic used by each transactional function.

Function

Transactional Function Type

EI EO EQ

Alter the behavior of the system PI F N/A

Maintain one or more ILFs PI F N/A

Present information to a user F PI PI

Legend:

PI The primary intent of the transactional function type

F A function of the transactional function type, but is not the primary intent and is

sometimes present

N/A The function is not allowed by the transactional function type.

Processing Logic
Processing logic is defined as requirements specifically requested by the user to complete

an elementary process. Those requirements may include the following actions:

1. Validations are performed.

For example, when adding a new employee to an organization, the employee process has

processing logic that validates the information being added.

2. Mathematical formulas and calculations are performed.

For example, when reporting on all employees within an organization the process

includes calculating the total number of salaried employees, hourly employees and all

employees.

3. Equivalent values are converted

For example, an elementary process references currency conversion rates from US dollars

to other currencies. The conversion is accomplished by retrieving values from tables, so

calculations need not be performed.

4. Data is filtered and selected by using specified criteria to compare multiple sets of

data.

For example, to generate a list of employees by assignment, an elementary process

compares the job number of a job assignment to select and lists the appropriate employees

with that assignment.

5. Conditions are analyzed to determine which are applicable.

For example, processing logic exercised by the elementary process when an employee is

added and will depend on whether an employee is paid based on salary or hours worked.

6. One or more ILFs are updated.

For example, when adding an employee, the elementary process updates the employee

ILF to maintain the employee data.

7. One or more ILFs or EIFs are referenced.

For example, when adding an employee, the currency EIF is referenced to use the correct

US dollar conversion rate to determine an employee’s hourly rate.

8. Data or control information is retrieved.

a) For example, to view a list of possible pay grades, pay grade information is retrieved.

9. Derived data is created by transforming existing data to create additional data.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 51

For example, to determine (derive) a patient’s registration number (e.g., SMIJO01), the

following data is concatenated:

a) the first three letters of the patient’s last name (e.g., SMI for Smith)

b) the first two letter of the patient’s first name (e.g., JO for John)

c) a unique two-digit sequence number (starting with 01)

10. Behavior of the system is altered.

For example, the behavior of the elementary process of paying employees is altered when

a change is made to pay them every other Friday versus on the 15th and the last day of the

month.

11. Prepare and present information outside the boundary.

For example, a list of employees displayed for the user.

12. Capability exists to accept data or control information that enters the application

boundary.

For example, a user enters several pieces of information to add a customer order to the

system.

13. Data is resorted or rearranged.

For example, a user requests the list of employees in alphabetical order.

Note: Resorting or rearranging a set of data does not impact the identification of the

type or uniqueness of a transactional function.

Summary of Processing Logic Used by EIs, EOs and EQs

The following table summarizes which forms of g logic may be performed by EIs, Eos,

and EQs. Foe each transactional function type, certain types of processing logic must be

performed to accomplish the primary intent of that type.

Form of Processing Logic

Transactional Functional Type

EI EO EQ

1. Validations are performed c c c

2. Mathematical Formula and calculations are

performed

c m* n

3. Equivalent Values are converted c c c

4. Data is filtered and selected by using

specified criteria to compare multiple sets of

data.

c c c

5. Conditions are analyzed to determine which

are applicable

c c c

6. At least one ILF is updated m* m* n

7. At least one ILF or EIF is referenced c c m

8. Data or control information is retrieved c c m

9. Derived data is created c m* n

10. Behavior of system is altered m* m* n

11. Prepare and present information outside the

boundary

c m m

12. Capability to accept data or control

information that enters the application

boundary

m* c c

13. Resorting or rearranging a set of data c c c

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 52

Legend

m it is mandatory that the function type perform the form of processing logic.

m* it is mandatory that the function type perform at least on of these (m*) forms of

processing logic

c the function type can perform the form of processing logic, but it is not

mandatory.

n function type cannot perform the form of processing logic

EI/EO/EQ Counting Rules

This section defines the rules that apply when counting EIs, EOs and EQs.

Elementary Process Identification Rules

To identify elementary processes, look for user activities occurring in the application.

All of the following counting rules must apply for the process to be identified as an

elementary process.

 The process is the smallest unit of activity that is meaningful to the user.

 The process is self-contained and leaves the business of the application in a consistent

state.

Transactional Functions Counting Rules

To classify each elementary process, determine which of the primary intent descriptions

apply, and use the associated rules to identify a specific transactional function type.

Primary Intent Description for EIs

The primary intent of an elementary process is to maintain an ILF or alter the behavior of

the system.

External Input Counting Rules

For each elementary process that has a primary intent to maintain one or more ILFs or to

alter the behavior of the system, apply the following rules to determine if the function

should be classified as an external input. All of the rules must apply for the elementary

process to be counted as a unique occurrence of an external input.

 The data or control information is received from outside the application boundary.

 At least one ILF is maintained if the data entering the boundary is not control

information that alters the behavior of the system.

 For the identified process, one of the following three statements must apply:

o Processing logic is unique from the processing logic performed by other

external inputs for the application.

o The set of data elements identified is different from the sets identified for

other external inputs for the application.

o The ILFs or EIFs referenced are different from the files referenced by

other external inputs in the application.

Primary Intent Description for EOs and Eqs

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 53

The primary intent of the elementary process is to present information to a user.

Shared EO and EQ Counting Rules

For each elementary process that has a primary intent to present information to a user,

apply the following rules to determine if the process may be classified as an external

output or external inquiry. All of the rules must apply for the elementary process to be

counted as a unique occurrence of an external output or external inquiry.

 The function sends data or control information external to the application

boundary.

 For the identified process, one of the following three statements must apply:

o Processing logic is unique from the processing logic performed by other

external outputs or external inquiries for the application.

o The set of data elements identified is different from the sets identified for

other external outputs and external inquiries in the application.

o The ILFs or EIFs referenced are different from the files referenced by

other external outputs and external inquiries in the application.

Additional External Output Counting Rules

In addition to adhering to all shared EO and EQ rules, one of the following rules must

apply for the elementary process to be counted as a unique external output.

 The processing logic of the elementary process contains at least one mathematical

formula or calculation.

 The processing logic of the elementary process creates derived data.

 The processing logic of the elementary process maintains at least one ILF.

 The processing logic of the elementary process alters the behavior of the system.

Additional External Inquiry Counting Rules

In addition to adhering to all shared EO and EQ rules, all of the following rules must

apply for the elementary process to be counted as a unique external inquiry.

 The processing logic of the elementary process retrieves data or control

information from an ILF or EIF.

 The processing logic of the elementary process does not contain a mathematical

formula or calculation.

 The processing logic of the elementary process does not create derived data.

 The processing logic of the elementary process does not maintain an ILF.

 The processing logic of the elementary process does not alter the behavior of the

system.

Complexity and Contribution Definitions and Rules

The number of EIs, EOs, and EQs and their relative functional complexities determine the

contribution of the transactional functions to the unadjusted function point count.

Assign each identified EI, EO and EQ a functional complexity based on the number of

file types referenced (FTRs) and data element types (DETs).

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 54

FTR Definition

A file type referenced is

DET Definition

A data element type is a unique user recognizable, non-repeated field.

EI Complexity and Contribution Rules

This section defines FTR and DET rules used to determine the complexity and

contribution of external inputs.

FTR Rules for an EI

The following rules apply when counting FTRs:

 Count an FTR for each ILF maintained.

 Count an FTR for each ILF or EIF read during the processing of the external

input.

 Count only one FTR for each ILF that is both maintained and read.

DET Rules for an EI

The following rules apply when counting DETs:

 Count one DET for each user recognizable, non-repeated field that enters or exits

the application boundary and is required to complete the external input. For

example, job name and pay grade are two fields that the user provides when

adding a job.

 Do not count fields that are retrieved or derived by the system and stored on an

ILF during the elementary process if the fields did not cross the application

boundary.

For example, when the customer order is added to the system, the unit price is automatically retrieved for each ordered item and
stored on the billing record. The unit price would not be counted as a DET for the EI because it did not cross the boundary when

the user adds the customer order.

For example, in order to maintain the US hourly rate for hourly employees

working in other countries with other currencies, the local hourly rate is provided

by the user. During the processing of all the pieces of data provided to add an

employee, a conversion rate is retrieved from the currency system to calculate the

US hourly rate. The calculated US hourly rate is maintained on the employee ILF

as a result of adding the employee. The US hourly rate would not be counted as a

DET for the EI because it does not enter the boundary, but is internally calculated

(i.e., it is derived data).

 Count one DET for the capability to send a system response message outside the

application boundary to indicate an error occurred during processing, confirm that

processing is complete or verify that processing should continue.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 55

For example, if a user tries to add an existing employee to a Human Resources

application, the system generates one of several error messages and the incorrect field

is highlighted. Count one DET that includes all the system responses which indicate

the error conditions, confirm that processing is complete or verify that processing

should continue.

 Count one DET for the ability to specify an action to be taken even if there are

multiple methods for invoking the same logical process.

For example, if the user can initiate the adding of an employee clicking on the OK

button or by pressing a PF key, count one DET for the ability to initiate the process.

EO/EQ Complexity and Contribution Rules

This section defines FTR and DET rules used to determine the complexity and

contribution of external outputs and external inquiries.

Shared FTR Rules for EOs and EQs

The following rule applies when counting FTRs for both EOs and EQs:

 Count one FTR for each ILF or EIF read during the processing of the elementary

process.

Additional FTR Rules for an EO

The following additional rules apply when counting FTRs for EOs:

 Count one FTR for each ILF maintained during the processing of the elementary

process.

 Count only one FTR for each ILF that is both maintained and read during the

elementary process.

Shared DET Rules for EOs and EQs

The following rules apply when counting DETs for both EOs and EQs.

 Count one DET for each user recognizable, non-repeated field that enters the

application boundary and is required to specify when, what and/or how the data is

to be retrieved or generated by the elementary process. For example (EO/EQ), to

generate a list of employees, employee name is a field the user provides when

indicating which employees to list.

 Count one DET for each user recognizable, non-repeated field that exits the

boundary.

For example (EO/EQ), a text message may be a single word, sentence, or phrase—a

line or paragraph included on a report to indicate an explanatory comment counts as a

single DET.

For example (EO/EQ), an account number or date physically stored in multiple fields

is counted as one DET when it is required as a single piece of information.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 56

For example (EO/EQ), a pie chart might have a category label and a numerical

equivalent in a graphical output. Count two DETs —one for designating the category

and one for the numerical value.

 If a DET both enters and exits the boundary, count it only once for the elementary

process.

 Count one DET for the capability to send a system response message outside the

application boundary to indicate an error occurred during processing, confirm that

processing is complete or verify that processing should continue.

For example (EO/EQ), if a user tries to request a listing, but does not have access to

the information, count one DET for the system response.

 Count one DET for the ability to specify an action to be taken even if there are

multiple methods for invoking the same logical process.

For example (EO/EQ), if the user can initiate the generation of a report by clicking on

the OK button or by pressing a PF key, count one DET for the ability to initiate the

report.

 Do not count fields that are retrieved or derived by the system and stored on an

ILF during the elementary process if the fields did not cross the application

boundary.

For example (EO), when a paycheck is printed, a status field on the employee ILF

is updated to indicate that the check has been printed. Do not count the status field

as a DET since it did not cross the boundary.

 Do not count literals as DETs.

For example (EO/EQ), literals include report titles, screen or panel identification,

column headings, and field titles.

 Do not count paging variables or system-generated stamps.

For example (EO/EQ), system-generated variables and stamps include

 Page numbers

 Positioning information such as "Rows 37 to 54 of 211"

 Paging commands such as previous, next, and paging arrows on a GUI

application

 Date and time fields if they are displayed.

Hints to Help with Counting EIs, EOs and EQs

The following hints may help you apply the EI, EO and EQ counting rules.

Caution: The hints are not rules and should not be used as rules.

 Is data received from outside the application boundary?

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 57

o Look at the work flow.

o Identify where the user and other application interfaces occur in the process

functional decomposition.

 Is the process the smallest unit of activity from the user perspective?

o Look at the different paper or on-line forms used.

o Review the ILFs to identify how the user groups the information.

o Identify where the user and other application interfaces occur in the process

functional decomposition.

o Look at what happened in the manual system.

o Note that one physical input or transaction file or screen can, when viewed

logically, correspond to a number of EIs, EOs or EQs.

o Note that two or more physical input or transaction files or screens can

correspond to one EI, EO or EQ if the processing logic is identical.

 Is the process self-contained and does it leave the business in a consistent state?

o Review other external inputs, external outputs and external inquiries to

understand how the user works with the information.

o Work through the process diagram to get hints.

o Look at what happened in the manual system.

o Check for consistency with other decisions.

 Is the processing logic unique from other EIs, EOs and EQs?

o Identify batch inputs or outputs based on the processing logic required.

o Remember that sorting or rearranging a set of data does not make processing

logic unique.

 Are the data elements different from those for other EIs, EOs or EQs?

o If the data elements appear to be a subset of the data elements of another EI,

EO, or EQ, be sure two elementary processes are required by the user – one

for the main data elements and one for the subsets.

 Identify the primary intent of the elementary process before classifying it as an EI,

EO, or EQ.

 Identification of the elementary process(es) is based on a joint understanding or

interpretation of the requirements between the user and the developers.

 Each element in a functional decomposition may not map to a unique elementary

process.

 The identification of the elementary processes requires interpretation of the user

requirements. Count only one FTR for each ILF/EIF referenced even if the ILF/EIF

has multiple RETs.

Additional Hints to Help Counting EOs and EQs

 Is the process the smallest unit of activity from the user perspective?
o An EO or EQ can be triggered by a process inside the application boundary. For

example, the user requires that a report of all changed employee pay rates be sent to

the budgeting area every 8 hours based on an internal clock. Situation A. The report

contains employee name, SSN, and hourly pay rate which are all retrieved from the

employee file. This is the smallest unit of activity from the user’s perspective,

contains no mathematical formulas or calculations, and no ILF is maintained in the

process. This is one EQ. Situation B. The report contains employee name, SSN, and

hourly pay rate which are all retrieved from the employee file. The report also

includes the percentage pay change for the employee which is calculated from the

data on the employee file. This is the smallest unit of activity from the user’s

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 58

perspective, and no ILF is maintained in the process. However, since the process

contains a mathematical formula, this is one EO.

o Derived data for an EO does not have to be displayed on the output. For example,

each month, a report is generated listing all employees due for appraisal in the next

30 days. The records are selected by calculating next appraisal date based on the

employee’s last appraisal date, which is a field on the employee file, and the current

date plus 30 days. This would be counted as one EO, and not as an EQ.

General System Characteristics

The Unadjusted Function Point count is multiplied by an adjustment factor called the

Value Adjustment Factor (VAF). This factor considers the system's technical and

operational characteristics and is calculated by answering 14 questions. The factors are:

1. DATA COMMUNICATIONS

The data and control information used in the application are sent or received over communication facilities.

Terminals connected locally to the control unit are considered to use communication facilities. Protocol is a

set of conventions which permit the transfer or exchange of information between two systems or devices.

All data communication links require some type of protocol.

Score As:

0 Application is pure batch processing or a standalone PC.

1 Application is batch but has remote data entry or remote printing.

2 Application is batch but has remote data entry and remote printing.

3 Application includes online data collection or TP (teleprocessing) front end to a batch

process or query system.

4 Application is more than a front-end, but supports only one type of TP

communications protocol.

5 Application is more than a front-end, and supports more than one type of TP

communications protocol.

2. DISTRIBUTED DATA PROCESSING

Distributed data or processing functions are a characteristic of the application within the application

boundary.

Score As:

0 Application does not aid the transfer of data or processing function between

components of the system.

1 Application prepares data for end user processing on another component of the system

such as PC spreadsheets and PC DBMS.

2 Data is prepared for transfer, then is transferred and processed on another component

of the system (not for end-user processing).

3 Distributed processing and data transfer are online and in one direction only.

4 Distributed processing and data transfer are online and in both directions.

5 Processing functions are dynamically performed on the most appropriate component

of the system.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 59

3. PERFORMANCE

Application performance objectives, stated or approved by the user, in either response or

throughput, influence (or will influence) the design, development, installation, and

support of the application.

Score As:

0 No special performance requirements were stated by the user.

1 Performance and design requirements were stated and reviewed but no special actions

were required.

2 Response time or throughput is critical during peak hours. No special design for CPU

utilization was required. Processing deadline is for the next business day.

3 Response time or throughput is critical during all business hours. No special design

for CPU utilization was required. Processing deadline requirements with interfacing

systems are constraining.

4 In addition, stated user performance requirements are stringent enough to require

performance analysis tasks in the design phase.

5 In addition, performance analysis tools were used in the design, development, and/or

implementation phases to meet the stated user performance requirements.

4. HEAVILY USED CONFIGURATION

A heavily used operational configuration, requiring special design considerations, is a

characteristic of the application. For example, the user wants to run the application on

existing or committed equipment that will be heavily used.

Score As:

0 No explicit or implicit operational restrictions are included.

1 Operational restrictions do exist, but are less restrictive than a typical application. No

special effort is needed to meet the restrictions.

2 Some security or timing considerations are included.

3 Specific processor requirements for a specific piece of the application are included.

4 Stated operation restrictions require special constraints on the application in the

central processor or a dedicated processor.

5 In addition, there are special constraints on the application in the distributed

components of the system.

5. TRANSACTION RATE

The transaction rate is high and it influenced the design, development, installation, and

support of the application.

Score As:

1 Peak transaction period (e.g., monthly, quarterly, seasonally, annually) is anticipated.

2 Weekly peak transaction period is anticipated.

3 Daily peak transaction period is anticipated.

4 High transaction rate(s) stated by the user in the application requirements or service

level agreements are high enough to require performance analysis tasks in the design

phase.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 60

5 High transaction rate(s) stated by the user in the application requirements or service

level agreements are high enough to require performance analysis tasks and, in

addition, require the use of performance analysis tools in the design, development,

and/or installation phases. Online data entry and control functions are provided in the

application.

6. ONLINE DATA ENTRY

On-line data entry and control information functions are provided in the application.

Score As:

0 All transactions are processed in batch mode.

1 1% to 7% of transactions are interactive data entry.

2 8% to 15% of transactions are interactive data entry.

3 16% to 23% of transactions are interactive data entry.

4 24% to 30% of transactions are interactive data entry.

5 More than 30% of transactions are interactive data entry.

7. END-USER EFFICIENCY

The online functions provided emphasize a design for end-user efficiency. The design

includes:

 Navigational aids (for example, function keys, jumps, dynamically generated menus)

 Menus

 Online help and documents

 Automated cursor movement

 Scrolling

 Remote printing (via online transactions)

 Pre-assigned function keys

 Batch jobs submitted from online transactions

 Cursor selection of screen data

 Heavy use of reverse video, highlighting, colors underlining, and other indicators

 Hard copy user documentation of online transactions

 Mouse interface

 Pop-up windows.

 As few screens as possible to accomplish a business function

 Bilingual support (supports two languages; count as four items)

 Multilingual support (supports more than two languages; count as six items)

Score As:

0 None of the above.

1 One to three of the above.

2 Four to five of the above.

3 Six or more of the above, but there are no specific user requirements related to

efficiency.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 61

4 Six or more of the above, and stated requirements for end user efficiency are strong

enough to require design tasks for human factors to be included (for example,

minimize key strokes, maximize defaults, use of templates).

5 Six or more of the above, and stated requirements for end user efficiency are strong

enough to require use of special tools and processes to demonstrate that the objectives

have been achieved.

8. ONLINE UPDATE

The application provides online update for the internal logical files.

Score As:

0 None.

1 Online update of one to three control files is included. Volume of updating is low and

recovery is easy.

2 Online update of four or more control files is included. Volume of updating is low and

recovery easy.

3 Online update of major internal logical files is included.

4 In addition, protection against data lost is essential and has been specially designed

and programmed in the system.

5 In addition, high volumes bring cost considerations into the recovery process. Highly

automated recovery procedures with minimum operator intervention are included.

9. COMPLEX PROCESSING

Complex processing is a characteristic of the application. The following components are

present:

 Sensitive control (for example, special audit processing) and/or application specific

security processing

 Extensive logical processing

 Extensive mathematical processing

 Much exception processing resulting in incomplete transactions that must be

processed again, for example, incomplete ATM transactions caused by TP

interruption, missing data values, or failed validations

 Complex processing to handle multiple input/output possibilities, for example,

multimedia, or device independence

Score As:

0 None of the above.

1 Any one of the above.

2 Any two of the above.

3 Any three of the above.

4 Any four of the above.

5 All five of the above.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 62

10. REUSABILITY

The application and the code in the application have been specifically designed,

developed, and supported to be usable in other applications.

Score As:

0 No reusable code.

1 Reusable code is used within the application.

2 Less than 10% of the application considered more than one user's needs.

3 Ten percent (10%) or more of the application considered more than one user's needs.

4 The application was specifically packaged and/or documented to ease re-use, and the

application is customized by the user at source code level.

5 The application was specifically packaged and/or documented to ease re-use, and the

application is customized for use by means of user parameter maintenance.

11. INSTALLATION EASE

Conversion and installation ease are characteristics of the application. A conversion and

installation plan and/or conversion tools were provided and tested during the system test

phase.

Score As:

0 No special considerations were stated by the user, and no special setup is required for

installation.

1 No special considerations were stated by the user but special setup is required for

installation.

2 Conversion and installation requirements were stated by the user, and conversion and

installation guides were provided and tested. The impact of conversion on the project

is not considered to be important.

3 Conversion and installation requirements were stated by the user, and conversion and

installation guides were provided and tested. The impact of conversion on the project

is considered to be important.

4 In addition to 2 above, automated conversion and installation tools were provided and

tested.

5 In addition to 3 above, automated conversion and installation tools were provided and

tested.

12. OPERATIONAL EASE

Operational ease is characteristic of the application. Effective start-up, back-up, and

recovery procedures were provided and tested during the system test phase. The

application minimizes the need for manual activities, such as tape mounts, paper

handling, and direct on-location manual intervention.

Score As:

0 No special operational considerations other than the normal back-up procedures were

stated by the user.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 63

1 - 4 One, some, or all of the following items apply to the application. Select all that

apply. Each item has a point value of one, except as noted otherwise.

 Effective start-up, back-up, and recovery processes were provided, but operator

intervention is required.

 Effective start-up, back-up, and recovery processes were provided, but no operator

intervention is required (count as two items).

 The application minimizes the need for tape mounts.

 The application minimizes the need for paper handling.

5 The application is designed for unattended operation. Unattended operation means no

operator intervention is required to operate the system other than to start up or shut

down the application. Automatic error recovery is a feature of the application.

13. MULTIPLE SITES

The application has been specifically designed, developed, and supported to be installed at multiple sites for

multiple organizations.

Score As:

0 User requirements do not require considering the needs of more than one

user/installation site.

1 Needs of multiple sites were considered in the design, and the application is designed

to operate only under identical hardware and software environments.

2 Needs of multiple sites were considered in the design, and the application is designed

to operate only under similar hardware and/or software environments.

3 Needs of multiple sites were considered in the design, and the application is designed

to operate under different hardware and/or software environments.

4 Documentation and support plan are provided and tested to support the application at

multiple sites and the application is as described by 1 or 2.

5 Documentation and support plan are provided and tested to support the application at

multiple sites and the application is as described by 3.

14. FACILITATE CHANGE

The application has been specifically designed, developed, and supported to facilitate

change.

The following characteristics can apply for the application:

 Flexible query and report facility is provided that can handle simple requests; for

example, and/or logic applied to only one internal logical file (count as one item).

 Flexible query and report facility is provided that can handle requests of average

complexity, for example, and/or logic applied to more than one internal logical file

(count as two items).

 Flexible query and report facility is provided that can handle complex requests, for

example, and/or logic combinations on one or more internal logical files (count as

three items).

 Business control data is kept in tables that are maintained by the user with online

interactive processes, but changes take effect only on the next business day.

 Business control data is kept in tables that are maintained by the user with online

interactive processes, and the changes take effect immediately (count as two items).

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 64

Score As:

0 None of the above.

1 Any one of the above.

2 Any two of the above.

3 Any three of the above.

4 Any four of the above.

5 All five of the above.

Adjusted FP Count

Each of these factors is scored based between 0-5 on their influence on the system being

counted. The resulting score will increase or decrease the Unadjusted Function Point

count by 35%. This calculation provides us with the Adjusted Function Point count.

Degree of Influence (DI) = sum of scores of 14 general system characteristics

Value Adjustment Factor (VAF) = 0.65 + DI / 100

The final Function Point Count is obtained by multiplying the VAF times the Unadjusted

Function Point (UFP).

FP = UFP * VAF

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 65

Lecture No. 12

Software Process and Project Metrics

Everyone asks this question: how do I identify the problem? The answer is measure your

process. Measurement helps in identification of the problem as well as in determining the

effectiveness of the remedy.

Measurement is fundamental for providing mechanisms for objective evaluation of any

process or activity. According to Lord Kelvin:

When you can measure what you are speaking about and express it in numbers,

you know something about it; but when you cannot measure, when you cannot

express it in numbers, your knowledge is of a meager and unsatisfactory kind: it

may be the beginning of knowledge, but you have scarcely, in your thoughts,

advanced to the stage of a science.

In order to understand what your problems are, you need to measure. Only then a remedy

can be applied. Take the example of a doctor. He measures and monitors different types

of readings from a patient (temperature, heart beat, blood pressure, blood chemistry, etc)

before proposing a medicine. After giving the medicine, the doctor monitors the effect of

the medicine through the follow-up visits and makes the necessary adjustments. This

process of measurement, correction and feedback is inherent in all kinds of systems.

Software is no exception!

The idea is to measure your product and process to improve it continuously. Now the

question is: how can we measure the quality of a software process and system?

Software project management primarily deals with metrics related to productivity and

quality. For planning and estimation purposes, we look at the historic data – productivity

of our team and the quality of their deliverables in the past projects. This data from the

previous efforts is used to determine and estimate the effort required in our current project

to deliver a product with a predictable quality. This data is also used to analyze the

system bottlenecks and helps us in improving the productivity of our team and the quality

of our product.

Measures, Metrics and Indicators
Before we can talk about the measurement process, we first need to understand the terms

measure, metrics, and indicators. The terms measure, measurement, and metrics are often

used interchangeable but there are significant differences among them. Within the

software engineering domain, a measure provides a quantitative value of some attribute of

a process or a product. For example, size is one measure of a software product.

Measurement is the process or mechanism through which the measure is taken. For

example, FP analysis is a mechanism to measure the size of software. Measurement

involves taking one or more data points related to some aspect of the product or process.

Software metric relates individual software measures to provide a normalized view. For

example, defects per function point are one metric which relates two individual measures,

that is, defects and size, into one metric.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 66

Metrics give you a better insight into the state of the process or product. These insights

are not the problems but just the indicators of problems. A software engineers collects

measures and develops metrics and indicators.

Tom Gilb says, “Anything that you need to quantify can be measured in some way that is

superior to not measuring at all!” This quote has two messages:

1. Anything can be measured

2. It is always better to measure than not doing it even if you do not have a good

measuring device; it always gives you some information that you can use.

Metrics for software quality
The most important objective of any engineering activity is to produce high quality

product with limited resources and time. The quality of the product cannot be determined

if it is be measured.

The quality of the end result depends upon the quality of the intermediate work products.

If the requirements, design, code, and testing functions are of high quality, then the

chances are that the end product will also be of good quality. So, a good software

engineer would adopt mechanisms to measure the quality of the analysis and design

models, the source code, and the test cases.

At the project level, the primary focus is to measure errors and defects and derive relevant

metrics such as requirement or design errors per function point, errors uncovered per

review hour, errors per thousand lines of code. These metrics provide an insight into the

effectiveness of the quality assurance activities at the team as well as individual level.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 67

Lecture No. 13

Software Quality Factors

In 1978, McCall identified factors that could be used to develop metrics for the software

quality. These factors try to assess the inner quality of software from factors that can be

observed from outside. The basic idea is that the quality of the software can be inferred if

we measure certain attributes once the product is put to actual use. Once completed and

implemented, it goes through three phases: operation (when it is used), during revisions

(when it goes through changes), and during transitions (when it is ported to different

environments and platforms).

During each one of these phases, different types of data can be collected to measure the

quality of the product. McCall’s model is depicted and explained as follows.

Factors related with operation

• Correctness

– The extent to which a program satisfies its specifications and fulfills the

customer’s mission objectives

• Reliability

– The extent to which a program can be expected to perform its intended

function with required precision.

• Efficiency

– The amount of computing resources required by a program to perform its

function

• Integrity

– Extent to which access to software or data by unauthorized persons can be

controlled.

• Usability

– Effort required to learn, operate, prepare input, and interpret output of a

program

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 68

Factors related with revision

• Maintainability

– Effort required to locate and fix an error in a program

• Flexibility

– Effort required to modify an operational program

• Testability

– Effort required to test a program to ensure that it performs its intended

function

Factors related with adaptation

• Portability

– Effort required transferring the program from one hardware and/or

software system environment to another.

• Reusability

– Extent to which a program can be reused in other applications

• Interoperability

– Effort required to couple one system to another.

It is interesting to note that the field of computing and its theoretical have gone through

phenomenal changes but McCall’s quality factors are still as relevant as they were almost

25 years ago.

Measuring Quality

Gilb extends McCall’s idea and proposes that the quality can be measured if we measure

the correctness, maintainability, integrity, and usability of the product.

Correctness is defined as the degree to which software performs its function. It can be

measured in defects/KLOC or defects/FP where defects are defined as verified lack of

conformance to requirements. These are the problems reported by the user after release.

These are counted over a standard period of time which is typically during the first year

of operation.

Maintainability is defined as the ease with which a program can be corrected if an error is

encountered, adapted if environment changes, enhanced if the customer requires an

enhancement in functionality. It is an indirect measure of the quality.

A simple time oriented metric to gauge the maintainability is known as MMTC – mean

time to change. It is defined as the time it takes to analyze the change request, design an

appropriate modification, implement the change, test it, and implement it.

A cost oriented metric used to assess maintainability is called Spoilage. It is defined as

the cost to correct defects encountered after the software has been released to the users.

Spoilage cost is plotted against the overall project cost as a function of time to determine

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 69

whether the overall maintainability of software produced by the organization is

improving.

Integrity is an extremely important measure especially in today’s context when the system

is exposed to all sorts to attacks because of the internet phenomenon. It is defined as

software’s ability to withstand attack (both accidental and intentional) to its security. It

includes integrity of program, data, and documents. To measure integrity, two additional

attributes are needed. These are: threat and security.

Threat is the probability (derived or measured from empirical evidence) that an attack of a

specific type will occur within a given time and security is the probability that an attack

of a specific type will be repelled. So the integrity of a system is defined as the sum of all

the probability that the threat of a specific type will not take place and the probability that

if that threat does take place, it will not be repelled.

 Integrity = ∑ [(1-threat) x (1-security)]

Finally, usability is a measure of user friendliness – the ease with which a system can be

used. It can be measured in terms of 4 characteristics:

• Physical or intellectual skill required learn the system

• The time required to become moderately efficient in the use of system

• The net increase in productivity

• A subjective assessment

It is important to note that except for the usability, the other three factors are essentially

the same as proposed by McCall.

Defect Removal Efficiency

Defect removal efficiency is the measure of how many defects are removed by the quality

assurance processes before the product is shipped for operation. It is therefore a measure

that determines the effectiveness of the QA processes during development. It is useful at

both the project and process level.

Defect removal efficiency is calculated as the number of defect removed before shipment

as a percentage of total defects

 DRE = E/(E+D)

Where

• E – errors found before delivery

• D – errors found after delivery (typically within the first year of operation)

Regarding the effectiveness of various QA activities, Capers Jones published some data

in 1997 which is summarized in the following table.

Design Inspection

Code Inspection

Quality Assurance

Testing

Worst 30% 37% 50% 55% 65% 75% 77% 85% 95%

Median 40% 53% 65% 70% 80% 87% 90% 97% 99%

Best 50% 60% 75% 80% 87% 93% 95% 99% 99.9%

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 70

In this research, they tried to measure the effectiveness of 4 different activities namely

design inspection, code inspection, quality assurance function, and testing. It is important

to note that testing alone only yields a DRE of 40% on the average. However, when it is

combined with design and code inspection, the DRE reaches 97%. That means, code and

design inspection are extremely important activates that are unfortunately not given their

due importance.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 71

Lecture No. 14

Metrics for specification quality

As mentioned earlier, the quality of the software specification is of extreme importance as

the entire building of software is built on this foundation. A requirement specification

document is measured in terms of lack of ambiguity, completeness, consistency,

correctness; understand ability, verifiability, achievability, concision, traceability,

modifiability, precision, and reusability.

Metrics to assess the quality of the analysis models and the corresponding software

specification were proposed by Davis in 1993 for these seemingly qualitative

characteristics.

For example, the numbers of requirements are calculated as:

nr = nf + nnf

where

nr – total number of requirements

nf – functional requirements

nnf – non-functional requirements

Now lack of ambiguity in the requirements is calculated as:

Q1 = nui/nr

Where

nui – number of requirements for which all reviewers had identical interpretation (i.e.

unambiguous requirements)

Similarly, completeness is measures as follows:

Q2 = nu/ [ni x ns]

nu – unique functional requirements

ni – number of inputs (stimuli)

ns – number of states specified

On the similar lines, the quality of design is also measured quantitatively.

The quality of the architectural design can be measured by measuring its complexity as

shown below:

– Structural complexity S = (fout)
2

– Data complexity D = v/(fout + 1)

• ‘v’ is the number of input and output variables

– System complexity C = ∑ (Si + Di)

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 72

Baseline
In order to use the data for estimation and drawing conclusions, it must be base-lined. In

the baseline, data from past projects is collected, cleaned, and put in a database. Such

metrics baseline is used to reap benefits at the process, project, and product level.

As mentioned above, the metrics baseline consists of data collected from past project over

a period of time. To be effective, the data must be reasonably accurate, it should be

collected over many projects, measures must be consistent – same technique or yardstick

for data collection should have been used, applications should be similar to work that is to

be estimated, and feedback to improve baseline’s quality.

Metrics for small organizations
The metric program can be quite complex and extensive. Small organization would find it

difficult to implement a full-fledged metrics program as it may require quite a number of

resources. However, it is important to appreciate that a metrics program of even a smaller

scale would also be of immense value and therefore all organizations of all sizes should

have should have one. It can be a very simple and can be implemented with the help of

simple and inexpensive tools and methods.

Small organizations – around 20 or so people – must measure in a cost effective manner.

In order for it to be effective, it should be simple and value-oriented and should focus on

result rather than measurement. It is important to establish the objectives of measurement.

This is illustrated by the following example.

Let us assume that we wanted to reduce the time to evaluate and implement change

requests in our organization. In order to achieve this objective, we needed to measure the

following:

• Time (in hours or days) elapsed from the time a request is made until evaluation is

complete - tqueue

• Size (fp) of the change request

• Effort (in person months) to perform the evaluation- Weval

• Time elapsed from completion of evaluation to assignment of change order – teval

• Effort required to make the change – Wchange

• Time required to make the change – tchange

• Errors uncovered during work to make change – Echange

• Defects uncovered after change is released – Dchange

This data was then collected and stored in a simple database as shown below.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 73

Project Size

(FP)

Effort

(Pm)

Cost Rs.

(000)

Pages of

documentation

Pre-

shipment

errors

Post-

shipment

defects

People

abc 120 24 168000 365 134 29 3

def 270 62 440000 1224 321 86 5

ghi 200 43 314000 1050 256 64 6

This data is then normalized on per function point basis as follows:

Project Size

(FP)

Effort

(Pm)

Cost Rs.

(000)

Pages of

documentation

Pre-

shipment

errors

Post-

shipment

defects

People

abc 120
0.2 1400 3.04 1.12 0.24

3

def 270
0.23 1629 4.53 1.19 0.32

5

ghi 200
0.22 1570 5.25 1.28 0.32

6

We are now ready to use this data to analyze the results of process changes and their

impact on the time to implement change requests.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 74

In order to do that, we need to employ some statistical techniques and plot the result

graphically. This is known as statistical control techniques.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 75

Lecture No. 15

Statistical Control Techniques – control charts

Same process metrics vary from project to project. We have to determine whether the

trend is statistically valid or not. We also need to determine what changes are meaningful.

A graphical technique known as control charts is used to determine this.

This technique was initially developed for manufacturing processes in the 1920’s by

Walter Shewart and is still very applicable even in disciples like software engineering.

Control charts are of two types: moving range control chart and individual control chart.

This technique enables individuals interested in software process improvement to

determine whether the dispersion (variability) and “location” (moving average) of process

metrics are stable (i.e. the process exhibits only natural or controlled changes) or unstable

(i.e. the process exhibits out-of-control changes and metrics cannot be used to predict

performance).

Let us now demonstrate the use of these control charts with the help of an example.

Let us assume that the data shown in the following table regarding the average change

implementation time was collected over the last 15 months for 20 small projects in the

same general software domain 20 projects. To improve the effectiveness of reviews, the

software organization provided training and mentoring to all project team members

beginning with project 11.

Project

Time /change

implementation

1 3

2 4.5

3 1.2

4 5

5 3.5

6 4.8

7 2

8 4.5

9 4.75

10 2.25

11 3.75

12 5.75

13 4.6

14 3.25

15 4

16 5.5

17 5.9

18 4

19 3.3

20 5.8

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 76

In order to determine whether our change in process had any impact, we use control

charts.

This data is first presented in the graph form as follows:

We now develop the Moving Range Control Chart as follows:

1. Calculate the moving ranges: the absolute values of the successive differences

between each pair of data point. Plot these moving ranges on your chart. (the dark

blue line)

2. Calculate the mean of the moving ranges. Plot this on the chart. (the red line)

3. Multiply the mean with 3.268. Plot this as the Upper Control Line (UCL). This

line is 3 standard deviations above the line. (the light blue line)

4. To determine whether the process metrics description is stable, a simple question

is asked: are the moving ranges values inside the UCL? If the answer is yes then

the process is stable otherwise it is unstable.

This chart is shown in the following diagram:

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19

Projects

E
rr

o
rs

 f
o

u
n

d
 p

e
r

re
v

ie
w

h
o

u
r

0

1
2

3

4

5
6

7

1 3 5 7 9 11 13 15 17 19

Projects

D
if

fe
re

n
c
e
s
 i
n

s
u

c
c
e
s
s
iv

e
 v

a
lu

e
s

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 77

This chart is then used to develop the individual control chart as follows:

1. Plot individual metric values

2. Compute the average value for the metrics values - Am

3. Multiply the mean of moving average by 2.66 and add average computed in step 2

above. The result is Upper Natural Process Limit (UNPL)

4. Multiply the mean of moving average by 2.66 and subtract average computed in

step 2 above. The result is Lower Natural Process Limit (LNPL)

5. Plot UNPL and LNPL. If LNPL is less than zero than it need not be plotted unless

the metric being evaluated takes on values that are less than 0.

6. Compute a standard deviation as (UNPL – Am)/3.

7. Plot lines 1 and 2 standard deviations above and below Am.

8. Applying these steps we derive an individual control chart.

This chart may be used to evaluate whether the changes represented by metrics

indicate a process that is in control or out of control. For this, the following 4 criteria

zone rules are used.

1. A single metrics value lies outside UNPL

2. Two out of three successive values lay more than 2 standards deviations away

from Am.

3. Four out of five successive values lay more than one standard deviation away.

4. Eight consecutive values lie on one side of Am.

If any of these tests passes, the process is out of control otherwise the process is

within control.

Since none of the test passes for the data in our example, our process is in control and

this data can be used for inference.

We now analyze our results. It can be seen that the variability decreased after project

10. By computing the mean value of the first 10 and last 10 projects, it can be shown

that the remedial measure taken was successful and resulted in 29% improvement in

efficiency of the process. Hence the process changes incorporated were useful and

bore fruit.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 78

Lecture No. 16

Interpreting Measurements

A good metric system is the one which is simple and cheap and at the same time adds a

lot of value for the management. Following are some of the examples that can be used for

effective project control and management.

We can collect data about the defects reported, and defects fixed and plot them in the

following manner, with their difference showing the defects yet to be fixed. This can give

us useful information about the state of the product. If the gap between the defects

reported and defects fixed is increasing, then it means that the product is in unstable

condition. On the other hand if this gap is decreasing then we can say that the product is

in a stable condition and we can plan for shipment.

Similarly, we can gain useful information by plotting the defects reported against the

number of use cases run. We can use control lines from our previous data and see if the

actual defects are within those control limits. If the defects at any given point in time are

less than the lower limit then it may mean that out testing team is not doing a good job

and coverage is not adequate. On the other hand, if it crosses the upper line then it

indicates that the design and coding is not up to mark and we perhaps need to check it.

Defects

Time

Total
reported
defects

Defects
yet to be
fixed

Defects
fixed to
date

Defects

Test cases

Upper limit

Lower limit
Actual
defects

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 79

Another very simple graph as shown below can give a lot of insight into the design

quality. In this case, if the frequency of ripple defects is too large, then it means that then

there is tight coupling and hence the design is not maintainable.

The following is yet another very simple and effective way of getting insight into the

quality of the requirements. If a number of defects that are reported by the testing team

are ultimately resolved as not-a-defect then there may be a sever problem with the

requirements document as two teams (development and testing) are interpreting it

differently and hence coming to different conclusions.

Defect
Ripple

1 2 3 4 5 6 7 8 9
Defect Fixed

4
-

3
-

2
-

1
-

0
-

Three new defects

appeared as a

consequence of

fixing defect 5

N
o

t
-

A
 -

D
e

fe
c
t

Time

4
-

3
-

2
-

1
-

0
-

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 80

Lecture No. 17

Software Project Planning

Software project planning is an activity carried out by the project manager to estimate and

address the following points:

1. Software scope estimation

2. Resources requirements

3. Time requirements

4. Structural decomposition

5. Risk analysis and planning

Software scope estimation

Software scope describes the data and control to be processed, function, performance,

constraints, interfaces, and reliability. Determination of the software scope is a pre-

requisite of all sorts of estimates, including, resources, time, and budget.

In order to understand the scope, a meeting with the client should be arranged. The

analyst should start with developing a relationship with the client representative and start

with context-free questions. An understanding of the project background should also be

developed. This includes understanding:

• Who is behind the request (sponsor)?

• Who will use the solution (users)?

• What are the economic benefits (why)?

Now is the time to address the find out the more about the product. In this context, the

following questions may be asked:

• How would you characterize good output?

• What problems will the solution address?

• Can you show me the environment in which the solution will be used?

• Will any special performance issues or constraints affect the way the solution is

approached?

• Are you the right person to answer these questions? Are answers “official”?

• Are my questions relevant to the problem that you have?

• Am I asking too many questions?

• Can anyone else provide additional information?

• Should I be asking you anything else?

In this regards, a technique known as Facilitated Application Specification Techniques

or simply FAST can be used. This is a team-oriented approach to requirement gathering

that is used during early stages of analysis and specification. In this case joint team of

customers and developers work together to identify the problem, propose elements of the

solution, negotiate different approaches, and specify a preliminary set of requirements.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 81

Feasibility

The purpose of the feasibility analysis is to determine can we build software to meet the

scope? For this purpose, the project is analyzed on the following 4 dimensions:

Technology

• Is the project technically feasible?

• Is it within the state of the art?

• Can defects be reduced to a level matching the application needs?

Finance

• Is it financially feasible?

• Can development be completed at a cost that software organization, its client, or

the market can afford?

Time

• Will the project time to market beat the competition?

• Can we complete the project in the given amount of time?

Resources

• Does the organization have resources needed to succeed? The resources include:

• HW/SW tools

• Reusable software components

• People

Software Project Estimation

Once the project feasibility has been determined, the project manager starts the estimation

activity. It is a relatively difficult exercise and has not become an exact science. It is

influenced by human, technical, environmental, political factors.

For software project estimation, a project manager can use historic data about its

organizations previous projects, decomposition techniques, and/or empirical models

developed by different researchers.

Empirical Models

Empirical models are statistical models and are based upon historic data. Although there

are many different models developed by different researchers, all of them share the

following basic structure:

E = A + B * (ev)
C

Where

 A, B, c are empirical constants,

 ‘ev’ is the effort in terms of lines of code or FP, and

 ‘E’ is the effort in terms of person months.

The most famous of these models is the COCOMO - COnstructive COst MOdel – model.

It also has many different versions. The simplest of these versions is given below:

 E = 3.2 (KLOC)
1.05

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 82

Some of these models take into account the project adjustment components including

problem complexity, staff experience, and development environment.

It is important to note that there are a number of models with each yielding a different

result. This means that any model must be calibrated for local needs before it can be

effectively used.

The Software Equation

The software equation shown below is dynamic multivariable estimation model. It

assumes a specific distribution of effort over the life of the software development project

and is derived from productivity data collected for over 4000 projects.

E = [LOC x B
0.333

/P]
3
 x (1/t

4
)

Where:

• E – effort in person months or person years

• t – project duration in months or years

• B – special skill factor

– Increases slowly as the need for integration, testing, QA, documentation,

and management skills grow

• P – productivity parameter

– Overall process maturity and management practices

– The extent to which good SE practices are used

– The level of programming language used

– The state of the software environment

– The skills and experience of the software team

– The complexity of the application

Buy versus build

It is often more cost-effective to acquire than to build. There may be several different

options available. These include:

• Off-the-shelf licensed software

• Software components to be modified and integrated into the application

• Sub-contract

The final decision depends upon the criticality of the software to be purchased and the

end cost. The buy versus build decision process involves the following steps:

• Develop specification for function and performance of the desired software.

Define measurable characteristics whenever possible.

• Estimate internal cost and time to develop

• Select 3-4 candidate applications that best meet your specifications

• Select reusable software components that will assist in constructing the required

application

• Develop comparison matrix that presents a head-to-head comparison of key

function. Alternatively, conduct benchmark tests to compare candidate software.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 83

• Evaluate each software package or component based on past product quality,

vendor support, product direction, reputation, etc.

• Contact other users of the software and ask for opinion.

The following key considerations must always be kept in the perspective:

• Delivery date

• Development Cost

– Acquisition + customization

• Maintenance Cost

A decision tree can be built to analyze different options in this regards. As an example of

this, let us consider the following. In this case, we have four different options, namely,

build, reuse, buy, and contract. We analyze each one of these with the help of a decision

tree. Each node of the tree is further partitioned a probability is assigned to each branch.

At the end, cost for each path in the tree, from root to a leaf, is estimated and associated

with that path. This process is shown in the following diagram.

Once the information in the tree is complete, it is used to determine the most viable

option. For each option the expected cost is determined as follows:

Expected cost = ∑ (path probability)I x (estimated path cost)

Using this formula, we calculate the expected cost of each option as follows:

Build = 0.30*380 + 0.70*450000 = 429000

Reuse = 0.4*275000 + 0.6*0.2*310000 + 0.6*0.8*490000 = 382000

The expected cost of Buy and Contract can also be calculated in a similar fashion and

comes out to be:

Buy = 267000

Contract = 410000

Therefore, according to this analysis, it is most viable to buy than any other option.

B
ui

ld

Reuse

BuyC
ontract

Simple (0.30)

Difficult (0.70)

Minor changes (0.40)

Major
changes
(0.60)

Simple (0.20)

Complex (0.80)

Minor changes (0.70)

Major changes (0.30)

Without changes (0.80)

With changes (0.20)

- 380,000

- 450,000

- 275,000

- 310,000

- 490,000

- 210,000

- 400,000

- 350,000

- 500,000

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 84

Lecture No. 18

Risk analysis and management

Analysis and management of project risks is also a very important activity that a project

manager must perform in order to improve the chances for the project. Robert Charette

defines risk as follows:

Risk concerns future happenings. Today and yesterday are beyond active concern.

The question is, can we, therefore, by changing our action today create and

opportunity for a different and hopefully better situation for ourselves tomorrow.

This means, second, that risk involves change, such as changes in mind, opinion,

action, or places. … [Third,] risks involve choice, and the uncertainty that choice

itself entails.

Risk analysis and management involves addressing the following concerns:

1. Future – what risks might cause the project to go awry

2. Change – what change might cause the risk to strike

• How changes in requirements, technology, personnel and other entities

connected to the project affect the project

3. Choice – what options do we have for each risk

In Peter Drucker words:

while it is futile to try to eliminate risk, and questionable to try to minimize it, it is

essential that the risk taken be the right risk.

There are two basic risk management philosophies, reactive and proactive.

• Reactive – Indiana Jones school of risk management

– Never worrying about problems until they happened, and then reacting in

some heroic way – Indiana Jones style.

• Proactive

– Begins long before technical work starts

– Risks are identified, their probability and impact are analyzed, and they are

ranked by importance.

– Risk management plan it prepared

• Primary objective is to avoid risk

• Since all risks cannot be avoided, a contingency plan is prepared

that will enable it to respond in a controlled and effective manner

Unfortunately, Indiana Jones style is more suitable for fiction and has a rare chance of

success in real life situations. It is therefore imperative that we manage risk proactively.

A risk has two characteristics:

• Uncertainty – the risk may or may not happen

• Loss – if the risk becomes a reality, unwanted consequences or losses will occur.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 85

A risk analysis involves quantifying degree of uncertainty of the risk and loss associate

with it. In this regards, the PM tries to find answers to the following questions:

• What can go wrong?

• What is the likelihood of it going wrong?

• What will the damage be?

• What can we do about it?

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 86

Lecture No. 19

Types of Risks

Each project is faced with many types of risks. These include:

• Project risks

– Will impact schedule and cost

– Includes budgetary, schedule, personnel, resource, customer, requirement

problems

• Technical risks

– Impact the quality, timelines, and cost

– Implementation may become difficult or impossible

– Includes design, implementation, interface, verification and maintenance

problems

– Leading edge technology

• Business risks

– Marketability

– Alignment with the overall business strategy

– How to sell

– Losing budget or personnel commitments

Furthermore, there are predictable and unpredictable risks. Predictable risks can be

uncovered after careful evaluation whereas unpredictable risks cannot be identified.

Risk Identification

It is the responsibility of the project manager to identify known and predictable risks.

These risks fall in the following categories of generic risks and product specific risks.

Generic risks are threats to every project whereas Product specific risks are specific to a

particular project. The question to be asked in this context is: what special characteristics

of this project may threaten your project plan? A useful technique in this regards is the

preparation of a risk item checklist. This list tries to ask and answer questions relevant to

each of the following topics for each software project:

• Product size

• Business impact

• Customer characteristics

• Process definition

• Development environment

• Technology to be built

• Staff size and experience

Assessing Overall Project Risks

In order to assess the overall project risks, the following questions need to be addressed:

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 87

• Have top software and customer managers formally committed to support the

project?

• Are end-users committed to the project and the system/product to be built?

• Are requirements fully understood?

• Have customers been involved fully in requirement definition?

• Do end-users have realistic expectations?

• Does the software team have right mix of skills?

• Are project requirements stable?

• Does the project team have experience with the technology to be implemented?

• Is the number of people on the project team adequate to do the job?

Risk components and drivers
Each risk has many components and forces behind them. From this perspective, risks can

be categorized into the following categories:

• Performance risks

– Degree of uncertainty that the product will meet its requirements and be fit

for its intended use

• Cost risks

– The degree of uncertainty that the project budget will be maintained

• Support risks

– Resultant software will be easy to correct, enhance, and adapt

• Schedule risks

– Product schedule will be maintained

Each risk has its own impact and can be characterized as negligible, marginal, critical, or

catastrophic.

This is summarized in the following table:

 Risk Impact Performance Support Cost Schedule

Catastrophic Consequence of

error

Failure to meet the

requirements will result in

mission failure

Results in increased

cost and schedule

delays. Expected value

in excess of $500K

Consequence of

failure to

achieve desired

result

Significant

degradation

Non-

responsive or

unsupportable

Budget

overrun

likely

Unachievable

Critical Consequence of

error

Would degrade

performance to a point

where mission success is

questionable

Results in operational

delays and or increased

cost with expected

value of $100K-$500K

Consequence of

failure to

achieve desired

result

Some

reduction in

technical

performance

Minor delays Possible

overrun

Possible

slippage

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 88

Marginal Consequence of

error

Result in degradation of

secondary mission

Expected value

<$100K

Consequence of

failure to

achieve desired

result

Small

reduction

Responsive Sufficient

financial

resources

Realistic

Negligible Consequence of

error

Inconvenience Minor

Consequence of

failure to

achieve desired

result

No reduction Supportable Budget

under run

possible

achievable

Risk Projection
Risk projection is concerned with risk estimation. It attempts to rate risks in two ways:

likelihood and consequences. There are four risk project activities. These are:

• Establish a scale that reflects the perceived likelihood of risk

• Delineate the consequences

• Estimate impact

• Note the overall accuracy of risk projection

 This process is exemplified with the help of the following table:

Risk Category Probability Impact RMMM

Size estimate may be significantly low

Larger number of users than planned

Less reuse than planned

End-users resist system

Delivery deadline will be tightened

Funding will be lost

Customer will change requirements

Technology will not meet expectations

Lack of training on tools

Staff inexperienced

Staff turnover will be high

PS

PS

PS

BU

BU

CU

PS

TE

DE

ST

ST

60%

30%

70%

40%

50%

40%

80%

30%

80%

30%

60%

2

3

2

3

2

1

2

1

3

2

2

Where impacts are codified as follows:

1: catastrophic 2: critical 3: marginal 4: negligible

and RMMM stands for risk mitigation, monitoring, and management plan.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 89

Lecture No. 20

Assessing Risk Impact

Assessment of risk impact is a non-trivial process. Factors affecting the consequences are

the nature, scope, and timing.

For each risk an exposure is calculated as follows:

RE = Probability of the risk x Cost

This risk exposure is then used to identify the top risks and mitigation strategies.

As an example, let us consider the following case:

• Risk:

– Only 70% of the software components scheduled for reuse will, in fact, be

integrated into the application. The remaining functionality will have to be

custom developed.

• Risk Probability – 80% likely (i.e. 0.8)

• Risk impact

– 60 reusable software components were planned. If only 70% can be used,

18 components would have to be developed from scratch. Since the

average component will cost 100,000, the total cost will be 1,800,000.

• Therefore, RE = 0.8 * 1,800,000 = 1,440,000

A high level risk may be refined into finer granularity to handle it efficiently. As an

example, the above mentioned risk is refined as follows:

1. Certain reusable components were developed by 3rd party with no knowledge of

internal design standard.

2. Design standard for component interfaces has not been solidified and may not

conform to certain existing components.

3. Certain reusable components have been implemented in a language that is not

supported on the target environment.

We can now take the following measures to mitigate and monitor the risk:

1. Contact 3rd party to determine conformance with design standards.

2. Press for interface standard completion; consider component structure when

deciding on interface protocol.

3. Check to determine if language support can be acquired.

This leads us to the following Management/Contingency Plan:

1. RE computed to 1,440,000. Allocate this amount within project contingency cost.

2. Develop revised schedule assuming 18 additional components will have to be

custom-built

3. Allocate staff accordingly

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 90

Risk Mitigation, Monitoring, and Management (RMMM)

The RMMM plan assists the project team in developing strategy for dealing with risk. In

this context, an effective strategy must consider:

– Risk avoidance

– Risk monitoring

– Risk management and contingency plan

It must always be remembered that avoidance is always the best strategy.

As an example, let consider the following scenario. In this case high turn-over has been

identified as a risk with the following characteristics:

• Risk rj - High turnover

• Likelihood lj = 0.7

• Impact xj - projected at level 2 (critical)

Let us now devise a mitigation strategy for reducing turnover. In order to do so, the

following steps may be taken:

• Meet with current staff to determine causes for turnover (e.g. poor working

conditions, low pay, competitive job market)

• Mitigate those causes that are under our control before the project starts

• Once the project commences, assume turnover will occur and develop techniques

to ensure continuity when people leave

• Organize project teams so that information about each development activity is

widely dispersed

• Define documentation standards and establish mechanisms to be sure that

documents are developed in a timely manner (to ensure continuity)

• Conduct peer reviews of all work (so that more than one person is up to speed)

• Assign a backup staff member for every critical technology

Once the strategy has been devised, the project must be monitored for this particular risk.

That is, we must keep an eye on the various factors that can indicate that this particular

risk is about to happen. In this case, the factors could be:

• General attitude of team members based on project pressures

• The degree to which the team is jelled

• Interpersonal relationships among team members

• Potential problems with compensation and benefits

• The availability of jobs within the company and outside it

Also, the effectiveness of the risk mitigation steps should be monitored. So, in this

example, the PM should monitor documents carefully to ensure that each can stand on its

own and that each imparts information that would be necessary if a newcomer were

forced to join the software team somewhere in the middle of the project.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 91

Risk Management and Contingency Plan

Risk management and contingency planning assumes that mitigation efforts have failed

and that the risk has become a reality.

• Risk has become a reality – some people announce that they will be leaving

• If mitigation strategy has been followed, backup is available, information has been

documented, and knowledge has been dispersed

• Temporarily refocus and readjust resources

• People who are leaving are asked to stop all work and ensure knowledge transfer

Risk mitigation and contingency is a costly business. It is therefore important to

understand that for RMMM plan, a cost/benefit analysis of each risk must be carried out.

The Pareto principle (80-20 rule) is applicable in this case as well – 20% of the identified

risk account for 80% of the potential for project failure.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 92

Lecture No. 21

Software Project Scheduling and Monitoring

Software project scheduling is the next task to be performed by the PM. It is important to

note once again that in the reasons for project failure, unrealistic deadline and

underestimate of effort involved in the project are two of the most important reasons for

project failure. Therefore, a good schedule estimate would increase the chances of the

success of the project.

In this context, a PM has to first come up with the schedule and then monitor the progress

of the project to ensure that things are happening according to the schedule. It would not

be out of place to quote Fred Brooks at this point. He says, “Projects fall behind schedule

one day at a time.” That means a delay of a week or a month or a year does not happen

suddenly – it happens one day at a time. Therefore, a project manager has to be vigilant to

ensure that the project does not fall behind schedule.

The reality of a technical project is that hundreds of small tasks must occur to accomplish

a large goal. Therefore the Project manager’s objectives include:

– Identification and definition all project tasks

– Building a network that depicts their interdependencies

– Identification of the tasks that are critical within the network

– Tracking their progress to ensure delay is recognized one day at a time

For this, the schedule must be fine grained.

Software Project Scheduling

Software project scheduling is an activity that distributes estimated effort across the

planned project duration by allocating the effort to specific software engineering tasks.

It is important to note that the schedule evolves over time. During early stages of project

planning, a macroscopic schedule is developed. This type of schedule identifies all major

SE activities and the product functions to which they are applied. As the project gets

underway these tasks are refined into a detailed schedule.

In order to come up with a realistic schedule, the following basic principles are used:

• Compartmentalization

The project must be compartmentalized into a number of manageable activities and tasks.

To accomplish compartmentalization, both the product and process are decomposed.

• Interdependency

The interdependency of each compartmentalized activity or task must be determined.

Some tasks must occur in sequence while others can occur in parallel. Some activities

cannot commence until the work product produced by another is available.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 93

• Time allocation

Each task to be scheduled must be allocated some number of work units (e.g. person-days

of effort). In addition, each task must be assigned a start date and an end date which is a

function of the interdependencies and number of resources.

• Effort validation

Every project has a defined number of staff members. As time allocation occurs, the

project manager must ensure that no more than the allocated number of people has been

scheduled at any given time.

• Defined responsibilities

Every task should be assigned to a specific team member.

• Defined outcomes

Every task should have a defined outcome, normally a work product.

• Defined milestones

Every task or group of tasks should be associated with a project milestone.

Software Project Scheduling and Monitoring

Software project scheduling is the next task to be performed by the PM. It is important to

note once again that in the reasons for project failure, unrealistic deadline and

underestimate of effort involved in the project are two of the most important reasons for

project failure. Therefore, a good schedule estimate would increase the chances of the

success of the project.

In this context, a PM has to first come up with the schedule and then monitor the progress

of the project to ensure that things are happening according to the schedule. It would not

be out of place to quote Fred Brooks at this point. He says, “Projects fall behind schedule

one day at a time.” That means a delay of a week or a month or a year does not happen

suddenly – it happens one day at a time. Therefore, a project manager has to be vigilant to

ensure that the project does not fall behind schedule.

The reality of a technical project is that hundreds of small tasks must occur to accomplish

a large goal. Therefore the Project manager’s objectives include:

– Identification and definition all project tasks

– Building a network that depicts their interdependencies

– Identification of the tasks that are critical within the network

– Tracking their progress to ensure delay is recognized one day at a time

For this, the schedule must be fine grained.

Software Project Scheduling

Software project scheduling is an activity that distributes estimated effort across the

planned project duration by allocating the effort to specific software engineering tasks.

It is important to note that the schedule evolves over time. During early stages of project

planning, a macroscopic schedule is developed. This type of schedule identifies all major

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 94

SE activities and the product functions to which they are applied. As the project gets

underway these tasks are refined into a detailed schedule.

In order to come up with a realistic schedule, the following basic principles are used:

• Compartmentalization

The project must be compartmentalized into a number of manageable activities and tasks.

To accomplish compartmentalization, both the product and process are decomposed.

• Interdependency

The interdependency of each compartmentalized activity or task must be determined.

Some tasks must occur in sequence while others can occur in parallel. Some activities

cannot commence until the work product produced by another is available.

• Time allocation

Each task to be scheduled must be allocated some number of work units (e.g. person-days

of effort). In addition, each task must be assigned a start date and an end date which is a

function of the interdependencies and number of resources.

• Effort validation

Every project has a defined number of staff members. As time allocation occurs, the

project manager must ensure that no more than the allocated number of people has been

scheduled at any given time.

• Defined responsibilities

Every task should be assigned to a specific team member.

• Defined outcomes

Every task should have a defined outcome, normally a work product.

• Defined milestones

Every task or group of tasks should be associated with a project milestone.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 95

Lecture No. 22

Relationship between people and effort

The relationship between the number of people and time to develop an application is not

linear. It is not as simple as a 120 man-day project can be developed by 1 person working

for 120 days or 120 people working for 1 day. The communication and coordination

overhead plays a very significant role.

As can be recalled from our earlier discussions, total number of Channels of

communication involving N people is given by the following formula.

C = N(N-1)/2

Now, if the communication overhead per channel is k, then work accomplished is given

by:

W = (1-k)
C
 x N

This phenomenon is depicted in the following diagram:

It may be noted here that with only a 5% communication overhead per channel, the total

work accomplished by a team of 6 people would be less than the volume of work

completed by a team of 4 people. It is also interesting to note that it approaches 0 as the

team size approaches 20.

Task Set Definition

A process model defines a task set which comprises of SE work tasks, milestones, and

deliverables. This enable a software team to define, develop, and support the software.

Therefore, each software process should define a collection of task sets, designed to meet

the needs of different types of projects. To determine the set of tasks to be performed the

type of the project and the degree of rigor required needs to be established. Different

Work Accomplished with only 5%

Communication Overhead per Channel

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of People

W
o

rk
 U

n
it

s

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 96

types of projects and different degree of rigor. These projects could fall into the following

categories:

• Concept development projects

• New application development

• Application enhancement

• Application maintenance

• Reengineering projects

The degree of rigor can also be categorized as Casual, Structured, Strict, or Quick

Reaction. The following paragraphs elaborate each one of these.

• Casual

All process framework activities are applied, but only a minimum task set is

required. It requires reduced umbrella tasks and reduced documentation. Basic

principles of SE are however still followed.

• Structured

In this case a complete process framework is applied. Appropriate framework

activities, related tasks, and umbrella activities (to ensure high quality) are

also applied. SQA, SCM, documentation, and measurement are conducted in

streamlined manner.

• Strict

In this case a full process is implemented and all umbrella activities are

applied. The work products generated in this case are robust.

• Quick Reaction

This approach is taken in case of an emergency. In this case only task essential

for maintaining good quality are applied. After the task has been

accomplished, documents are updated by back-filling.

The next question is how to decide about the degree of rigor. For this purpose an

adaptation criterion has been developed. The following parameters are considered before

a decision is made:

• Size of the project

• Number of potential users

• Mission criticality

• Application longevity

• Stability of requirements

• Ease of customer/developer communication

• Size of the project

• Number of potential users

• Mission criticality

• Application longevity

• Stability of requirements

• Ease of customer/developer communication

These parameters are used to calculate what is known as Task Set Selector (TSS) which

is then used to determine the degree of rigor. It is computed as follows:

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 97

Each adaptation criteria is assigned a grade, weight, and entry point multiplier.

1. A grade value of between 1 and 5 is assigned to each adaptation criteria as

appropriate.

2. The default value of the weighting factor (as given in the table below) is reviewed

and modify if needed. The ranges should be between 0.8 to 1.2.

3. Multiply the grade entered by the weight and by entry point multiplier for the type

of project undertaken. The entry point multiplier takes a value of 0 or 1 and

indicates the relevance of the adaptation criterion to the project type.

 Product = grade × weight × entry point multiplier

The TSS is then computed as the average of all the entries in the product column. It is

then used to determine the degree of rigor required as shown in the table below.

TSS Degree of Rigor

 < 1.2 Casual

 1.0 – 3.0 Structured

 > 2.4 Strict

It may be noted that there is overlap in TSS values. This overlap is intentional and it

depicts that sharp boundaries are impossible to define when making task set selection. In

the final analysis, the TSS value, past experience, and common sense must all be factored

into the choice of the task set for a project.

Adaptation

Criteria

Grade Weight Entry Point Multiplier Product

 Conc. New

Dev.

Enhan. Maint. Reeng.

Size of product 1.2 0 1 1 1 1

Number of

Users

 1.1 0 1 1 1 1

Business

Criticality

 1.1 0 1 1 1 1

Longevity 0.9 0 1 1 0 0

Stability of

requirements

 1.2 0 1 1 1 1

Ease of

communication

 0.9 0 1 1 1 1

Maturity of

technology

 0.9 1 1 0 0 1

Performance

Constraints

 0.8 0 1 1 0 1

Embedded /

non-embedded

 1.2 1 1 1 0 1

Project

Staffing

 1.0 1 1 1 1 1

Interoperability 1.1 0 1 1 1 1

Reengineering

factors

 1.2 0 0 0 0 1

Task set selector

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 98

This concept is demonstrated with the help of following example. In this case TSS value

is computed for a new development project.

Adaptation Criteria Grade Weight Entry point multiplier Product

 New Development

Size of product 2 1.2 1 2.4

Number of Users 3 1.1 1 3.3

Business Criticality 4 1.1 1 4.4

Longevity 3 0.9 1 2.7

Stability of requirements 2 1.2 1 2.4

Ease of communication 2 0.9 1 1.8

Maturity of technology 2 0.9 1 1.8

Performance Constraints 3 0.8 1 2.4

Embedded / non-embedded 3 1.2 1 3.6

Project Staffing 2 1.0 1 2.0

Interoperability 4 1.1 1 4.4

Reengineering factors 0 1.2 0 0

TSS 2.6

Since the value of TSS is 2.6, the degree of rigor could be structured or strict. The project

manager now needs to use his experience to determine which of the two approaches

should be taken.

TSS Degree of Rigor

< 1.2 Casual

1.0 – 3.0 Structured

> 2.4 Strict

Example – SE Tasks for a Concept Development Project

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 99

Lecture No. 23

Task Network
Let us now apply the principles studied above to develop a plan for a concept

development project. In this case the potential for new technology or new business idea

is explored. Since it is a concept development project, the applicability is not certain but it

appears to be useful and hence needs to be explored. Major tasks include:

• Concept scoping

• Preliminary concept planning

• Technology risk assessment

• Proof of concept

• Concept implementation

• Customer reaction to concept

Defining a Task Network

Once the tasks have been identified, we need to develop a task network to determine the

sequence in which these activities need to be performed. This will ultimately lead to the

time required to complete the project (to be discussed later). The following diagram

shows the task network for the above project.

1.1

Concept

scoping

1.2

Concept

Planning

1.3a

Tech. risk

assessment

1.3b

Tech. risk

assessment

1.3c

Tech. risk

assessment

1.4

Proof of

Concept

1.5a

Concept

Implement.

1.5b

Concept

Implement.

1.5c

Concept

Implement.

1.6

Integrate

1.7

Customer

reaction

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 100

Lecture No. 24

Scheduling

Once we have the task network, we are now ready to prepare a schedule for the project.

For this we use two techniques known as:

• Program evaluation and review techniques (PERT)

• Critical Path Method (CPM)

These are quantitative tools that allow the software planner to determine the critical path

– the chain of tasks that determines the duration of the project and establish most likely

time estimates for individual tasks by applying statistical models. They also help the

planner to calculate boundary times that define a time window for a particular task.

The boundary time defines the following parameters for a project:

• The earliest time that a task can begin when all preceding tasks are completed in

the shortest possible time

• The latest time for task initiation before the minimum project completion time is

delayed

• The earliest finish

• The latest finish

• The total float – the amount of surplus time or leeway allowed in scheduling tasks

so that the network critical path is maintained on schedule

In order to use the PERT and CPM, the following is required:

• A decomposition of product function

• A selection of appropriate process model and task set

• Decomposition of tasks – also known as the work breakdown structure (WBS)

• Estimation of effort

• Interdependencies

Timeline Chart

To develop the schedule for a project, time required for each activity in the Task Network

is estimated. This analysis and decomposition leads to the development of a Timeline or

Gantt Chart for the project which portrays the schedule for the project. As an example, let

us assume that Concept Scoping (the first task in the above list) is further subdivided into

the following sub-tasks with the associated estimated time requirements:

1. Identification of needs and benefits (3 days)

2. Definition of desired output/control/input (7 days)

3. Definition of the function/behaviour (6 days)

4. Isolation of software elements (1 day)

5. Researching availability of existing software (2 days)

6. Definition technical feasibility (4 days)

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 101

7. Making quick estimate of size (1 day)

8. Creating scope definition (2 days)

We also assume that the following task network for this was

developed.

This is now converted in the following schedule in the form of a Gantt Chart. Note that,

the concept of boundary time allows us to schedule Task Numbers 1.1.4 and 1.1.5

anywhere along Task Number 1.1.3. The actual time is determined by the project

manager is based upon the availability of resources and other constraints. Each task is

further subdivided in sub-tasks in the same manner until the schedule for the complete

project is determined.

Tracking a Schedule

1.1.1
Identification of

needs and

benefits

1.1.2
Definition of

desired

output/control/in
put

1.1.3
Definition of the

function/behavi

our

1.1.4

Isolation of
software

elements

1.1.5
Researching

availability of

existing
software

1.1.6

Definition
technical

feasibility

1.1.7
Making quick

estimate of size

1.1.8

Creating scope

definition

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 102

Lecture No. 25

Project Tracking

A schedule is meaningless if it is not followed and tracked. Tasks and milestones defined

in a project schedule must be tracked and controlled as project proceeds. Tracking

methods include:

• Periodic project status meetings

• Evaluating the results of all reviews

• Determine whether project milestones have been accomplished by the scheduled date

• Comparing actual start date to planned start date

• Informal meetings with the practitioners

• Using earned value analysis

• Error tracking

The last two techniques are discussed in further detail in the following paragraphs:

Earned Value Analysis

Earned Value Analysis or EVA is a quantitative technique for assessing the progress of a

project. The earned value system provides a common value scale for every software task,

regardless of the type of work being performed. The total hours to do the whole project

are estimated, and every task is given an earned value based on the estimated percentage

of the total. In order to do the EVA, the budgeted cost of work schedule (BCWS) is

determined as follows:

Let

BCWSi = effort (person-days etc) for taski

BCWS is then the Progress so far – add all BCWSi so far.

Now

BAC = budget at completion = ∑ BCWSi

Now if BCWP is the Budgeted Cost of Work Perform, then

Schedule performance index SPI = BCWP/BCWS

Schedule variance SV = BCWP – BCWS

SPI close to 1 indicates efficient execution.

Similarly

Percent scheduled for completion = BCWS/BAC

Percent complete = BCWP/BAC

Actual cost work performed ACWP

Cost performance index CPI = BCWP/ACWP

Cost variance CV = BCWP – ACWP

Now, value of CPI close to 1 means project is within its defined budget.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 103

Therefore, by using SPI and CPI we estimate how the project is progressing. If we have

these values close to 1, it means that we have had good estimates and the project is under

control.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 104

Lecture No. 26

Error Tracking

Error tracking can also be used to estimate the progress of the project. In this case we

track errors in work products (requirement specifications, design documents, source code

etc) to assess the status of a project. The process works as follows:

We collect error related metrics over many projects and determine our defect removal

efficiency in the following manner:

Defect removal efficiency, DRE = E / (E+D), where

• E – errors found before shipment

• D – errors found during operation

It provides a strong indication of the effectiveness of the quality assurance activities.

Now let us assume that we have collected the following errors and defect data over the

last 24 months:

• Errors per requirement specification page – Ereq

• Error per component – design level – Edesign

• Errors per component – code level – Ecode

• DRE – requirement analysis

• DRE – architectural design

• DRE – coding

We now record the number of errors found during each SE step and calculate current

values for Ereq, Edesign, and Ecode. These values are then compared to averages of past

projects. If the current results vary more than 20% from average, there may be cause for

concern and there is certainly cause for investigation.

Example

• Ereq for the current project = 2.1

• Organizational average = 3.6

– Two possibilities

• The team has done an outstanding job

• The team has been lax in its review approach

– If the second scenario appears likely

• Build additional design time

This can also be used to better target review and/or testing resources in the following

manner:

– 120 components

– 32 exhibit Edesign > 1.2 average

– Adjust code review resources accordingly

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 105

Time Boxing

Time-boxing is used in severe deadline pressure. It is a use incremental strategy where

tasks associated with each increment are time-boxed in the following manner:

• Schedule for each task is adjusted by working backward from the delivery date.

• A box is put around each task

• When a task hits the boundary of the box, work stops and next task begins

The principle behind time-boxing is the 90-10 rule (similar to Pareto Principle) – rather

than becoming stuck on the 10% of a task, the product proceeds towards the delivery date

in 90% of the cases.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 106

Lecture No. 27

Software Quality Assurance

Quality cannot be assured without first understanding its nature and characteristics. So the

first question one has to ask is: what is quality?

Software quality is defined as conformance to explicitly stated functional and non-

functional requirements, explicitly documented development standards, and implicit

characteristics that are expected of all professionally developed software.

This definition emphasizes upon three important points:

• Software requirements are the foundation from which quality is measured. Lack of

conformance is lack of quality

• Specified standards define a set of development criteria that guide the manner in

which software is engineered. If the criteria are not followed, lack of quality will

almost surely result.

• A set of implicit requirements often goes unmentioned (ease of use, good

maintainability etc.)

Another very important question is: Do you need to worry about it after the code has been

generated? In fact, SQA is an umbrella activity that is applied throughout the software

process.

Also, do we care about internal quality or the external quality? And finally, is there a

relationship between internal and external qualities? That is, does internal quality

translate in external quality?

In the literature, quality has been defined through in many different manners. One group

believes that the quality has measurable characteristic such as cyclomatic complexity,

cohesion, and coupling.

We can then talk about quality from different aspects. Quality of design tries to determine

the quality of design related documents including requirements, specifications, and

design. Quality of conformance looks at the implementation and if it follows the design

then the resulting system meets its goals then conformance quality is high.

Are there any other issues that need to be considered? Glass defines quality as a measure

of user satisfaction which is defined by

compliant product + good quality + delivery within budget and schedule

DeMarco defines product quality as a function of how much it changes the world for the

better.

So, there are many different way to look at the quality.

Quality Assurance
Goal of quality assurance is to provide the management with the necessary data to be

informed about product quality. It consists of auditing and reporting functions of

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 107

management. If data provided through QA identifies problems, the management deploys

the necessary resources to fix it and hence achieves desired quality control.

Cost of quality

A very significant question is: does quality assurance add any value. That is, is worth

spending a lot of money in quality assurance practices? In order to understand the impact

of quality assurance practices, we have to understand the cost of quality (or lack thereof)

in a system.

Quality has a direct and indirect cost in the form of cost of prevention, appraisal, and

failure.

If we try to prevent problems, obviously we will have to incur cost. This cost includes:

• Quality planning

• Formal technical reviews

• Test equipment

• Training

We will discuss these in more detail in the later sections.

The cost of appraisal includes activities to gain insight into the product condition. It

involves in-process and inter-process inspection and testing.

And finally, failure cost. Failure cost has two components: internal failure cost and

external failure cost. Internal failure cost requires rework, repair, and failure mode

analysis. On the other hand, external failure cost involves cost for complaint resolution,

product return and replacement, help-line support, warranty work, and law suits.

It is trivial to see that cost increases as we go from prevention to detection to internal

failure to external failure. This is demonstrated with the help of the following example:

Let us assume that a total of 7053 hours were spent inspecting 200,000 lines of code with

the result that 3112 potential defects were prevented. Assuming a programmer cost of $40

per hour, the total cost of preventing 3112 defects was $382,120, or roughly $91 per

defect.

Let us now compare these numbers to the cost of defect removal once the product has

been shipped to the customer. Suppose that there had been no inspections, and the

programmers had been extra careful and only one defect one 1000 lines escaped into the

product shipment. That would mean that 200 defects would still have to be fixed in the

field. As an estimated cost of $25000 per fix, the cost would be $5 Million or

approximately 18 times more expensive than the total cost of defect prevention

That means, quality translates to cost savings and an improved bottom line.

SQA Activities

There are two different groups involved in SQA related activities:

• Software engineers who do the technical work

• SQA group who is responsible for QA planning, oversight, record keeping, analysis,

and reporting

Software engineers address quality by applying solid technical methods and measures,

conducting formal and technical reviews, and performing well planned software testing.

The SQA group assists the software team in achieving a high quality product.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 108

SQA Group Activities

An SQA plan is developed for the project during project planning and is reviewed by all

stake holders. The plan includes the identification of:

• Evaluations to be performed

• Audits and reviewed to be performed

• Standards that are applicable to the project

• Procedures for error reporting and tracking

• Documents to be produced by the SQA group

• Amount of feedback provided to the software project team

The group participates in the development of the project’s software process description.

The software team selects the process and SQA group reviews the process description for

compliance with the organizational policies, internal software standards, externally

imposed standards, and other parts of the software project plan.

The SQA group also reviews software engineering activities to verify compliance with

the defined software process. It identifies, documents, and tracks deviations from the

process and verifies that the corrections have been made. In addition, it audits designated

software work products to verify compliance with those defined as part of the software

process. It, reviews selected work products, identifies, documents, and tracks deviations;

verifies that corrections have been made; and reports the results of its work to the project

manager.

The basis purpose is to ensure that deviations in software work and work products are

documented and handled according to documented procedures. These deviations may be

encountered in the project plan, process description, applicable standards, or technical

work products. The group records any non-compliance and reports to senior management

and non-compliant items are recorded and tracked until they are resolved.

Another very important role of the group is to coordinate the control and management of

change and help to collect and analyze software metrics.

Quality Control

The next question that we need to ask is, once we have defined how to assess quality,

how are we going to make sure that our processes deliver the product with the desired

quality. That is, how are we going to control the quality of the product?

The basic principle of quality control is to control the variation as variation control is the

heart of quality control. It includes resource and time estimation, test coverage, variation

in number of bugs, and variation in support.

From one project to another we want to minimize the predicted resources needed to

complete a project and calendar time. This involves a series of inspection, reviews, and

tests and includes feedback loop. So quality control is a combination of measurement and

feedback and combination of automated tools and manual interaction.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 109

Lecture No. 28

Software Reviews

Software reviews are the filter for the software engineering process. They re applied at

various different points and serve to uncover errors that can be removed and help to

purify the software engineering activities.

In this context it is useful to look at the “V-model” of software development. This model

emphasizes that SQA is a function performed at all stages of software development life

cycle. At the initial stages (requirement, architecture, design, code), it is achieved through

activities known as Formal Technical Reviews or FTR. At the later stages (integration

and acceptance), testing comes into picture.

 Requirements

Inspection

Architecture

Inspection

Design

Inspection

Inspection

Code

Unit Test

Integration Test

Acceptance Test

The V-Model

Requirements

Inspection

Architecture

Inspection

Design

Inspection

Inspection

Code

Unit Test

Integration Test

Acceptance Test

The V-Model

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 110

Importance of reviews

Technical work needs reviewing for the same reason that pencils needs erasers: To err is

human. The second reason that we need technical reviews is although that people are

good at catching errors, large class of errors escape the originator more easily than they

escape anyone else.

Freedman defines a review – any review – as a way of using the diversity of a group of

people to:

• Point out needed improvements in the product of a single person or team

• Confirm those parts of a product in which improvement is either not desired or no

needed

• Achieve technical work of more uniform, or at least more predictable, quality than

can be achieved without reviews, in order to make technical work more manageable.

Reviews help the development team in improving the defect removal efficiency and

hence play an important role in the development of a high-quality product.

Types of Reviews

There are many types of reviews. In general they can be categorized into two main

categories namely informal and formal technical reviews. Formal Technical reviews are

sometimes called as walkthroughs or inspections. They are the most effective filter from

QA standpoint. To understand the significance of these reviews, let us look at the defect

amplification model shown below.

This model depicts that each development step inherits certain errors from the previous

step. Some of these errors are just passed through to the next step while some are worked

on and hence are amplified with a ratio of 1:x. In addition, each step may also generate

some new errors. If each step has some mechanism for error detection, some of these

errors may be detected and removed and the rest are passed on to the next step.

Let us now assume that we do not have any SQA related activities for the first two stages

and we are only using testing for detection of any defects. Let us assume that the

Errors Passed

Through

Amplified Errors

1:x

Newly generated

errors

Percentage

Efficiency

For error

detection

Errors passed

To next step

Errors from

previous step

Development Step

Defects Detection

Errors Passed

Through

Amplified Errors

1:x

Newly generated

errors

Percentage

Efficiency

For error

detection

Errors passed

To next step

Errors from

previous step

Development Step

Defects Detection

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 111

Preliminary design generated 10 defects which were passed on to Detailed design. At that

phase, 6 defects were passed on to the next stages and 4 were amplified at a ration of

1:1.5. In addition, there were 25 new defects introduced at this stage. Therefore, a total of

37 defects were passed on to the next stage as shown in the diagram. In the Code and

Unite test stage, we start to test our system and assuming 20% defect removal efficiency

of this stage, 94 defects (80% of (10 + 27 * 3 + 25)) are passed on to the next stage. This

process continues and the system is delivered with 12 defects remaining in the product.

If FTR are used in the earlier stages, the quality of the end-product is much better as

shown in the following diagram. Note that in this case we have code inspection in

addition to unit testing at the third stage and the defect removal efficiency of that stage is

60%.

0

0

10

0%

Preliminary

Design

6

4 *1.5

25

0%

Detailed

Design

10 10

27 * 3

25

20%

Code /Unit

test

37 940

0

10

0%

Preliminary

Design

6

4 *1.5

25

0%

Detailed

Design

10 10

27 * 3

25

20%

Code /Unit

test

37 94

94

0

0

50%

Integration

test

47

0

0

50%

Validation

test

47 24

0

0

50%

System test

24 1294 94

0

0

50%

Integration

test

47

0

0

50%

Validation

test

47 24

0

0

50%

System test

24 1294

0

0

10

70%

Preliminary

Design

2

1 *1.5

25

50%

Detailed

Design

3 5

10 * 3

25

60%

Code /Unit

test

15 24

0

0

50%

Integration

test

0

0

50%

Validation

test

12

0

0

50%

System test

6 324

0

0

10

70%

Preliminary

Design

2

1 *1.5

25

50%

Detailed

Design

3 5

10 * 3

25

60%

Code /Unit

test

15 24

0

0

50%

Integration

test

0

0

50%

Validation

test

12

0

0

50%

System test

6 324

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 112

Lecture No. 29

Formal Technical Reviews

Formal Technical Reviews are conducted by software engineers. The primary objective is

to find errors during the process so that they do not become defects after release of

software as they uncover errors in function, logic design, or implementation. The idea is

to have early discovery of errors so they do not propagate to the next step in the process.

They also ensure that the software has been represented according to predefined standards

and it is developed in a uniform manner. They make projects more manageable and help

groom new resources as well as provide backup and continuity.

FTRs include walkthroughs, inspections, and other small group technical assessments of

software.

Guidelines for walkthroughs

FTRs are usually conducted in a meeting that is successful only if it is properly planned,

controlled, and attended. The producer informs the PM that the WP is ready and the

review is needed. The review meeting consists of 3-5 people and advanced preparation is

required. It is important that this preparation should not require more than 2 hours of

work per person. It should focus on specific (and small) part of the overall software. For

example, instead of the entire design, walkthroughs are conducted for each component, or

small group of components. By narrowing focus, FTR has a high probability of

uncovering errors.

It is important to remember that the focus is on a work product for which the producer of

the WP asks the project leader for review. Project leader informs the review leader. The

review leader evaluates the WP for readiness and if satisfied generates copies of review

material and distributes to reviewers for advanced preparation. The agenda is also

prepared by the review leader.

Review Meetings

Review meeting is attended by the review leader, all reviewers, and the producer. One of

the reviewer takes the roles of recorder. Producer walks through the product, explaining

the material while other reviewers raise issues based upon their advanced preparation.

When valid problems or errors are recorded, the recorder notes each one of them. At the

end of the RM, all attendees of the meeting must decide whether to:

• Accept the product without further modification

• Reject the product due to severe errors

– Major errors identified

– Must review again after fixing

• Accept the product provisionally

– Minor errors to be fixed

– No further review

–

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 113

Review Reporting and Record keeping

During the FTR the recorder notes all the issues. They are summarized at the end and a

review issue list is prepared. A summary report is produced that includes:

• What is reviewed

• Who reviewed it

• What were the findings and conclusions

It then becomes part of project historical record.

The review issue list

It is sometimes very useful to have a proper review issue list. It has two objectives.

• Identify problem areas within the WP

• Action item checklist

It is important to establish a follow-up procedure to ensure that items on the issue list

have been properly addressed.

Review Guidelines

It is essential to note that an uncontrolled review can be worse than no review. The basis

principle is that the review should focus on the product and not the producer so that it

does not become personal. Remember to be sensitive to personal egos. Errors should be

pointed out gently and the tone should be loose and constructive.

This can be achieved by setting an agenda and maintaining it. In order to do so, the

review team should:

 Avoid drift

• Limit debate and rebuttal

• Enunciate problem areas but don’t try to solve all problems

• Take written notes

• Limit the number of participants and insist upon advanced preparation

• Develop a checklist for each product that is likely to be reviewed

• Allocate resources and schedule time for FTRs

• Conduct meaningful training for all reviewers

• Review your early reviews

• Determine what approach works best for you

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 114

Lecture No. 30

Statistical Software Quality Assurance

Statistical SQA is a technique that measures the quality in a quantitative fashion. It

implies that information about defects is collected and categorized and an attempt is made

to trace each defect to underlying cause. It uses Pareto Principle to identify vital causes

(80% of defects can be traced to 20% of causes) and moves to correct the problems that

have caused the defects.

Example

Let us assume that information about defects is collected for one year and categorized as

follows:

1. Incomplete or erroneous specifications (IES)

2. Misinterpretation of customer communication (MCC)

3. Intentional deviation from specifications (IDS)

4. Violation of programming standards (VPS)

5. Error in data representation (EDR)

6. Inconsistent component interface (ICI)

7. Error in digital logic (EDL)

8. Incomplete or erroneous testing (IET)

9. Inaccurate or incomplete documentation (IID)

10. Error in programming language translation of design (PLT)

11. Ambiguous or inconsistent HCI (HCI)

12. Miscellaneous (MIS)

The following data is collected for these categories

Error Category Serious Moderate Minor Sub Total

IES 34 68 103 205

MCC 12 68 76 156

IDS 1 24 23 48

VPS 0 15 10 25

EDR 26 68 36 130

ICI 9 18 31 58

EDL 14 12 19 45

IET 12 35 48 95

IID 2 20 14 36

PLT 15 19 26 60

HCI 3 17 8 28

MIS 0 15 41 56

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 115

Total 128 379 435 942

We can easily see the following:

• IES, MCC, and EDR are the vital errors – cause 53% of all errors

• IES, EDR, PLT, and EDL are vital if only serious errors are considered

We now start corrective action focused on vital few. For example for EDR we review the

data representation techniques to identify the possible improvement areas and adopt a use

case tool for data modeling and perform stringent data design reviews.

Error Index (EI)

Another statistical technique known as Error Index (EI) is used to develop an overall

indication of improvement in software quality. The EI is computed as follows:

Let

• Ei – the total number of errors uncovered during the ith step in the SE process

• Si – number of serious errors

• Mi – number of moderate errors

• Ti – number of minor errors

• PS – product size at the ith step

• ws, wm, wt – weighting factors for serious, moderate, and minor errors.

Recommended values for these are 10, 3, 1 respectively.

At each step of the software process a Phase Index is computed as:

PIi = ws(Si/Ei) + wm(Mi/Ei) + wt(Ti/Ei)

Now EI is computed as the cumulative effect on each PIi = ∑(I x PIi)/PS

It is important to note that weighting errors encountered in the SE processes more heavily

than those encountered earlier. As stated earlier, it can be used to develop an overall

indication of improvement in software quality.

Software Reliability

Software reliability is another very important quality factor and is defined as probability

of failure free operation of a computer program in a specified environment for a specified

time. For example, a program X can be estimated to have a reliability of 0.96 over 8

elapsed hours.

Software reliability can be measured, directed, and estimated using historical and

development data. The key to this measurement is the meaning of term failure. Failure is

defined as non-conformance to software requirements. It can be graded in many different

ways as shown below:

• From annoying to catastrophic

• Time to fix from minutes to months

• Ripples from fixing

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 116

It is also pertinent to understand the difference between hardware and software reliability.

Hardware reliability is predicted on failure due to wear rather than failure due to design.

In the case of software, there is no wear and tear. The reliability of software is determined

by Mean time between failure (MTBF). MTBF is calculated as:

MTBF = MTTF + MTTR

Where MTTF is the Mean Time to Failure and MTTR is the Mean time required to

Repair.

Arguably MTBF is far better than defects/kloc as each error does not have the same

failure rate and the user is concerned with failure and not with total error count.

A related issue is the notion of availability. It is defined as the probability that a program

is operating according to requirements at a given point in time. It can be calculated as

Availability = (MTTF/MTBF) x 100

and clearly depends upon MTTR.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 117

Lecture No. 31

Software Safety

Software Safety is a software SQA activity that focuses on identification of potential

hazards that may affect software negatively and cause an entire system to fail. Modeling

and analysis process is conducted as part of software safety and hazards are identified and

categorized by criticality and risk.

Example

Let us assume that the following hazards are associated with a computer-based cruise

control for an automobile:

• Causes uncontrolled acceleration that cannot be stopped

• Does not respond to depression of brake pedal

• Does not engage when switch is activated

• Slowly loses or gains speed

Once system-level hazards are identified, analysis techniques are used to assign severity,

and probability of occurrence. This technique is similar to risk analysis. To be effective,

software must be analyzed in the context of the entire system. Analysis techniques such

as fault tree analysis can be used to predict the chain of events that can cause hazards and

the probability that each of these events will occur to create the chain. Once hazards are

identified and analyzed, safety-related requirements can be specified for the software.

Reliability and safety are closely related. Software reliability uses statistical techniques to

determine the likelihood that a software failure will occur. Occurrence of a software

failure does not necessarily result in a hazard or mishap. On the other hand, software

safety examines the ways in which failures result in conditions that can lead to a mishap.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 118

Lecture No. 32

Poka-Yoke (Mistake-Proofing)

Poka-yoke is a QA technique developed by Shingo at Toyota in 1960’s. Poka-yoke

devices are mechanisms that lead to prevention of potential quality problem before it

occurs or the rapid detection of quality problems if they are introduced.

• Examples:

– Light on if the car door is not properly closed

– Warning beep if the engine is turned-off when lights are on

Characteristic of a Poka-yoke device

• It is simple and cheap

• It is part of the process

• It is located near the process task where the mistake occurs

Example of Poka-yoke in software

Let us assume that a\A software Products Company sells application software to an

international market. The pull-down menus and associated mnemonics provided with

each application must reflect the local language. For example, the English language menu

item for “Close” has the mnemonic “C” associated with it. When the application is sold to

Urdu speaking users, the same menu item is “Band Karen” with mnemonic “ب”. To

implement the appropriate menu entry for each locale, a “localizer” translates the menus

accordingly. The problem is to ensure that each menu entry conforms to appropriate

standards and there are no conflicts, regardless of the language used.

We can consider a prevention device to write a program to generate mnemonics

automatically, given a list of labels in each menu. It would prevent mistakes, but the

problem of choosing a good mnemonic is difficult and the effort required would not be

justified by the benefit gained. It is therefore not a good Poka-yoke device as it is not

simple.

We now consider another prevention device. In this case we write a program to prevent

the localizer from choosing mnemonics that did not meet the criteria. It would prevent

mistakes but the benefit is minimal as incorrect mnemonics are easy enough to detect and

correct after they occur. So once again this is not a good choice.

We now consider a detection device. In this case we write a program to verify that the

chosen menu labels and mnemonics meet the criteria. We run this program to detect

errors. Errors are sent back to localizer. Since this device requires a lot of back and forth

movement, it violates the principle of co-location.

We now modify it to the following detection device. We write a program to verify that

the chosen menu labels and mnemonics meet the criteria. The localizer would run this

program to detect errors. It would give quick feedback and hence it is a good Poka-yoke

device.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 119

Lecture No. 33

 Software Configuration Management (SCM)

You may recall that software configuration management (SCM) is one of the five KPA

required for an organization to be at CMM level 2. That means, according to SEI,

effective project management is not possible without having a proper SCM function in

place.

The basic idea behind SCM is to manage and control change. As mentioned by Bersoff,

no matter where you are in the system life cycle, the system will change, and the desire to

change it will persist throughout the life cycle. It is therefore essential that we manage

and control it in a fashion that this continuous change does not convert into chaos.

This has become more important in the context of contemporary software development as

we are getting more and more complex software projects in terms of size, sophistication,

and technology. In addition, these software systems are used by millions of users all over

the world. These systems need multilingual and multi-platform support (hardware,

software) and have to operate in a distributed environment. That means that a software

system may come in many configuration flavors including desktop, standard,

professional, and enterprise versions. There is a brutal competition out there and any

complacency may result in losing a big market share. The huge maintenance frequency –

corrective and adaptive – makes life even more difficult.

More complex development environment with shorter reaction time results in confusion

and chaos!

Change Chaos
This frequent change, if not managed properly, results in chaos. First of all there would be

problems of identification and tracking which would result in questions like the

following:

 “This program worked yesterday. What happened?”

 “I fixed this error last week. Why is it back?”

 “Where are all my changes from last week?”

 “This seems like an obvious fix. Has it been tried before?”

 “Who is responsible for this change?”

Then there are problems of version selection. The typical problems faced are:

 “Has everything been compiled? Tested?”

 “How do I configure for test, with my updates and no others?”

 “How do I exclude this incomplete/faulty change?”

 “I can’t reproduce the error in this copy!”

 “Exactly which fixes went into this configuration?”

 “Oh my God!. I need to merge 250 files!”

 Nobody knows which versions of programs are final

o Where is the latest version?

o Which version is the right one? I have so many

o I have lost my latest changes

 Latest versions of code overwritten by old versions

 There was a minor problem, I fixed it but it is no longer working

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 120

o I can’t figure-out the changes made to the previous version.

o I can’t go back

Then there are software delivery problems.

 “Which configuration does this customer have?”

 “Did we deliver a consistent configuration?”

 “Did the customer modify the code?”

 “The customer skipped the previous two releases. What happens if we send him the

new one?”

 Shipped the wrong version to the client.

This is not all. There may be more chaos in the following shapes and forms:

 The design document is out of sync with programs

 I don’t know if all the changes that were suggested have been incorporated

 Which code was sent to testing?

SCM is a function that, if implemented, will reduce these problems to a minimal level.

Configuration management

As defined by CMM, the purpose of SCM is to establish and maintain the integrity or

software products through the project’s life cycle.

Configuration management is concerned with managing evolving software systems. It

acknowledges that system change is a team activity and thus it aims to control the costs

and effort involved in making changes to a system.

SCM involves the development and application of procedures and standards to manage an

evolving software product and is part of a more general quality management process.

Baseline
When released to CM, software systems are called baselines and serve as the starting

point for further development.A baseline is a software configuration management concept

that helps us to control change without seriously impeding justifiable change. It is defined

by IEEE as:

A specification or a product that has been formally reviewed and agreed upon, that

thereafter serves as the basis for further development, and that can be changed only

through formal change control procedures.

Software Configuration Item (SCI)
A Software Configuration Item is the information that is created as part of the software

engineering process. Typical SCIs include requirement specifications, design

specification, source code, test cases and recorded results, user guides and installation

manuals, executable programs, and standards and procedures (for example C++ design

guidelines).

Software Configuration Management Tasks

Software configuration management tasks include:

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 121

 Identification

 Version Control

 Change Control

 Configuration Auditing

 Reporting

Identification addresses how does an organization identify and manage the many existing

versions of a program in a manner that will enable changes to be accommodated

efficiently?

Version Control talks about how does an organization control changes before and after

software is released to a customer? It is actually a combination of procedures and tools to

manage different versions of the software configuration.

Clemm states that

Configuration management allows the user to specify alternative configurations of

the software system through the selection of the appropriate versions. This is

supported by associating with each software version, and then allowing

configuration to be specified and constructed by describing the set of desired

attributes.

A version has many different attributes. In the simplest form a specific version number

that is attached to each object and in the complex form it may have a string of Boolean

variables (switches) that indicate specific types of functional changes that have been

applied to the system.

The Change Control process addresses the important question of who has the

responsibility for approving and ranking changes. Configuration Auditing deals with

ensuring that the changes have been made properly and finally Reporting talks about the

mechanism used to apprise others of changes that are made. Configuration Identification

involves identification of a tool for SCM. Then a baseline is established and identified

which is then used to identify configurable software items. At the minimum, all

deliverables must be identified as configurable items. This includes design, software, test

cases, tutorials, and user guides.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 122

Lecture No. 34

Product Release Version Numbering System

Product release is the act of making a product available to its intended customers. After a

product has had its first release, it enters a product release cycle. New versions of the

product are made available that may fix defects or add features that were not in previous

releases. These changes are categorized as updates or upgrades. An update fixes product

defects. An upgrade enhances the product feature set and will include updates.

Release Numbering
Each individual product release is viewed as being in a unique state which is the total set

of functionality possessed by the product release. Release numbering is a mechanism to

identify the product’s functionality state. Each release will have a different product state

and hence will have a different release number. Although there is no industry standard,

typically, a three field compound number of the format “X.Y.Z” is used. The different

fields communicate functionality information about the product release.

The first digit, X, is used for the major release number which is used to identify a major

increase in the product functionality. The major release number is usually incremented to

indicate a significant change in the product functionality or a new product base-line.

The second digit, Y, stands for feature release number. The feature release number is

iterated to identify when a set of product features have been added or significantly

modified from their originally documented behaviour.

The third digit, Z, is called the defect repair number and is incremented when a set of

defects is repaired. Defect repair/maintenance is considered to be any activity that

supports the release functionality specification and it may a fix for some bugs or some

maintenance to enhance the performance of the application.

Conventionally, a release number starts with a major number of one, followed by zero for

its feature and maintenance numbers. This results in a release number 1.0.0. If the first

new release that is needed is a defect repair release, the last digit would be iterated to one,

resulting in 1.0.1. If two additional defect repair releases are needed, we would eventually

have a release number of 1.0.3. Assume that an upgrade feature release is now needed.

We will need to iterate the second field and will roll back the defect repair number to 0,

resulting in a release number of 1.1.0. When we iterate the major release identifier, both

the feature and defect numbers would be reset back to zero.

Internal Release Numbering
A special type of release is internal release. Internal releases are used by the development

organization as a staging mechanism for functionality. The most common internal

releases are the regular builds. A common way to number internal builds is to use the

same release number that would be used for final release with some additional

information added to it to identify the built. It is suggested that we add an extra (fourth)

field to identify and keep track of internal builds.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 123

The following diagram depicts the above mentioned version numbering system.

Change control

James Back points out the difficulties related to change control as follows:

Change control is vital. But the forces that make it necessary also make it annoying. We

worry about change because a tiny perturbation in the code can cause a big failure in the

product. But it can also fix a big failure or enable wonderful new capabilities. We worry

about change because a single rogue developer could sink the project; yet brilliant ideas

originate in the minds of those rogues, and a burdensome change control process could

discourage them from doing creative work.

That is, like all engineering activities, change control is the name of a balancing act. Too

much or too little change control creates different types of problems as uncontrolled

change rapidly leads to chaos.

The change control process is elaborated in the following sub-section.

1.0.0 1.0.1 1.0.2 1.1.0 1.1.1 1.2.0

First Release Update release to fix

defects.

Based on 1.0.0

Update release to

fix defects.

Can be based on

1.0.0 or 1.0.1

Upgrade release to add

features and fix defects.

can be based on 1.0.0,

1.0.1, or 1.0.2

Update release to fix

defects.

Based on 1.1.0

Upgrade release to add

features and fix defects.

can be based on

1.1.0 or 1.1.1

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 124

Lecture No. 35

Change Control Process

The first component of the change control process is the Change Control Authority

(CCA) or a Change Control Board (CCB). A CCA or CCB includes people from both

developer and client side.

Whenever a change is required, the CCB decides whether to allow this change to happen

or deny it. If it is decided that a change is needed, an Engineering Change Order or ECO

is generated. An ECO defines the change to be made, the constraints that must be

respected, and the criteria for review and audit. The change control process thus involves

the following steps.

1) need for change is recognized

2) change request from user

3) developer evaluates

4) change report is generated

5) change control authority (CCA) decides

6) Either step 6a or 6b is performed. Steps numbers 7 to 17 are performed only if step 6b

is performed.

a)

i) change request is denied

ii) user is informed

iii) no further action is taken.

b) assign people to SCIs

7) check-out SCIs

8) make the change

9) review/audit the change

10) check-in SCIs

11) establish a “baseline” for testing

12) perform SQA and testing activities

13) check-in the changed SCIs

14) promote SCI for inclusion in next release

15) rebuild appropriate version

16) review/audit the change

17) include all changes in release

Thus, a change is incorporated in a controlled and strict manner.

Check-in and check-out

In SCM, the processes of Check-in and Check-out take a central stage. These are two

important elements of change control and provide access and synchronization control.

Access control manages who has the authority to check-out the object and

synchronization control ensures that parallel changes by two different people do not

overwrite one another.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 125

Synchronization control implements a control on updates. When a copy is checked-out,

other copies can be checked out for use only but they cannot be modified. In essence, it

implements a single-writer multiple-readers protocol. This process is depicted in the

following diagram.

Configuration Audit

Configuration audit ensures that a change has been properly implemented. It involves

formal technical reviews and software configuration audit. Configuration audit assess a

configuration object for characteristics that are generally not considered during audit. It is

conducted by the SQA group. It looks into the following aspects of the change:

 Has the change specified in the ECO been made? Have any additional modifications

been incorporated?

 Has a FTR been conducted to assess technical correctness?

 Has the software process been followed?

 Have the SE standards been properly applied?

 Has the change been highlighted in the SCI?

o Change date and author

o Have the attributes of the configuration object been updated?

 Have the SCM procedures for noting the change, recording it, and reporting it been

followed?

 Have all related SCI’s been properly updated?

An audit report is finally generated and any non-compliances are highlighted so that they

may be corrected.

Software

engineer

Check-

in

Access

control

Check-

out

Configuration object

(baseline version)

Configuration object

(baseline version)

Ownership

info

lock

unlockC
on

fig
ura

tio
n o

bje
ct

(m
odi

fie
d v

ers
io

n)

C
onfiguration object

(extracted version)

R
equest for

C
onfiguration object

Audit

in
fo

Project DB
Software

engineer

Check-

in

Access

control

Check-

out

Configuration object

(baseline version)

Configuration object

(baseline version)

Ownership

info

lock

unlockC
on

fig
ura

tio
n o

bje
ct

(m
odi

fie
d v

ers
io

n)

C
onfiguration object

(extracted version)

R
equest for

C
onfiguration object

Audit

in
fo

Project DB

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 126

Configuration Status reporting (CSR)

Configuration Status Reporting (CSR) is also known as status accounting. It reports on

the following items:

– What happened?

– Who did it?

– When did it happen?

– What else will be affected?

If it is not done then the organization faces the left hand not knowing what the right hand

is doing syndrome. Without it, if a person responsible for the change leaves for whatever

reason, it would be difficult to understand the whole scenario.

CSR reports are generated on regular basis. Each time an SCI is assigned a new

identification, a CSR entry is made. Each time a change is approved by CCA, a CSR

entry is made. Also, each time configuration audit is conducted, the results are reported as

part of CSR task.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 127

Lecture No. 36

Requirement Management and CMM

CM standards

CM should always be based on a set of standards which are applied within an

organisation. Standards should define how items are identified, how changes are

controlled and how new versions are managed. Standards may be based on external CM

standards (e.g. IEEE standard for CM ANSI/IEEE Std. No. 828-1983, 1042-1987, 1028-

1988). Existing standards are based on a waterfall process model - new standards are

needed for evolutionary development.

 The Requirement Problem

The goal of software development is to develop quality software – on time and on budget

– that meets customers’ real needs. Project success depends on good requirement

management. It may be recalled that requirement errors are the most common type of

software development errors and the most costly to fix. It may also be recalled that

requirement errors are listed as one of the roots causes of software project failure.

According to a Standish Group report, lack of user input is responsible for13% of all

project failures; incomplete requirements and specifications for 12% of all project

failures; and changing requirements are responsible for 12% of all project failures.

The above graph shows the result of an industry survey. It is clear to see that requirement

specifications are considered to be the most significant cause of major software problems

by a majority of practitioners.

Largest software problems by category

0%

10%

20%

30%

40%

50%

60%

R
e

q
u

ir
e

m
e

n
t

S
p

e
c
if
ic

a
ti
o

n

M
a

n
a

g
ii
n

g

c
u

s
to

m
e

r

re
q

u
ir

e
m

e
n

ts

D
o

c
u

m
e

n
ta

ti
o

n

S
o

ft
w

a
re

 a
n

d

te
s
ti
n

g

P
ro

je
c
t

m
a

n
a

g
e

m
e

n
t

C
o

d
in

g

Major Problem Minor Problem Not a Problem

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 128

Requirement Management

Requirement management is also one of the 5 KPA defined at CMM level 2. Without

having a proper requirement management function, chances of a project’s success are

slim.

Requirements Management KPA Goals statement says that:

1. The software requirements are controlled to establish a baseline for software

engineering and management use.

2. Software plans, products, and activities are kept consistent with the software

requirements.

Requirement Management is defined as a systematic approach to eliciting, organizing,

and documenting the requirements of the system, and a process that establishes and

maintains agreement between the customer and the project team on the changing

requirements of the system.

It includes establishing and maintaining an agreement with the customer on the

requirement for the software project. It involves

 Defining the requirement baseline

 Reviewing proposed requirement changes and evaluating the likely impact of each

proposed change before deciding whether to approve it

 Incorporating approved requirement changes in the project in a controlled manner

 Keeping project plans current with the requirements

 Negotiating new commitments based on estimated impact on changed requirements

 Tracing individual requirements to their corresponding design, source code, and test

cases

 Tracking requirement status and change activity throughout the project

Requirement Attributes

We need to tag requirements with certain attributes in order to manage them in an orderly

fashion. Attributes are used to establish a context and background for each requirement.

They go beyond the description of intended functionality. They can be used to filter, sort,

or query to view selected subset of the requirements. A list of possible attributes is

enumerated as below:

1. Requirement ID

2. Creation date

3. Created by

4. Last modified on

5. Last modified by

6. Version number

7. Status

8. Origin

9. Subsystem

10. Product Release

11. Priority

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 129

Requirement Status

The requirement status attribute is one of the most useful ones. It can be used to keep

track of different requirements going through different phases. The possible status values

are proposed, approved, implemented, verified, and deleted. These are elaborated in the

following paragraphs.

1. Proposed: The requirement has been requested by a source who has the authority

to provide requirements.

2. Approved: The requirement has been analyzed, its impact on the rest of the project

has been estimated, and it has been allocated to the baseline for a specific build

number or product release. The software development group has committed to

implement the requirement.

3. Implemented: The code that implements the requirement has been designed,

written, and unit tested.

4. Verified: The implemented requirement has been verified through the selected

approach, such as testing or inspection. The requirement has been traced to

pertinent test cases. The requirement is now considered complete.

5. Deleted: A planned requirement has been deleted from the baseline. Include an

explanation of why and by whom the decision was made to delete the

requirement.

Change Request Status

As the requirement go through different phases, their status is updated accordingly. The

following state transition diagram captures the sequence of requirement status changes.

Verifier has confirmed

the change

CCB decided

not to

make the

change

submitted Evaluated Rejected

Approved

Change

Made

Verification

failed

Canceled

Change was

canceled

Change was

canceled

Verified
Change was

canceled

Closed

Modifier has installed the

product

Modifier has installed the

product

Modifier has made

the change and

requested for

verification

Evaluator

performed

impact

analysis

Originator

submits

a change

request

Change Approved

Verifier has confirmed

the change

CCB decided

not to

make the

change

submitted Evaluated Rejected

Approved

Change

Made

Verification

failed

Canceled

Change was

canceled

Change was

canceled

Verified
Change was

canceled

Closed

Modifier has installed the

product

Modifier has installed the

product

Modifier has made

the change and

requested for

verification

Evaluator

performed

impact

analysis

Originator

submits

a change

request

Change Approved

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 130

The changes in the requirement status can be plotted as shown below to get an idea of the

stability of the requirements and the progress of the project. It is easy to see that it is

normal to have unstable requirements in the beginning but if they requirements stayed

volatile till the end then the progress would be slow.

Requirement Status Chart

-10

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10

Months

N
u

m
b

e
r

o
f

R
e
q

u
ir

e
m

e
n

ts

Proposed Approved Implemented

Verified Deleted

Requirement Status Chart

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

Months

N
u

m
b

e
r

o
f

R
e
q

u
ir

e
m

e
n

ts

Proposed Approved Implemented

Verified Deleted

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 131

Managing Scope Creep

We must always remember that requirements will change, no matter what. That means we

have to be able to manage changing requirements. Software organizations and

professionals must learn to manage changing requirements. A major issue in requirements

engineering is the rate at which requirements change once the requirements phase has

“officially” ended. We therefore need to try to take it to a minimum level. For that we

need to measure the change activity.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 132

Lecture No. 37

Measuring Change Activity

Measurement of change activity is a way to assess the stability of the requirements and to

identify opportunities for process improvement. In this regards, the following could be

measured

 The number of change requests received, open, and closed

 The cumulative number of changes made including added, deleted, and modified

requirements

 The number of change requests that originated from each source

 The number of changes proposed and made in each requirement since it was base-

lined

 The total effort devoted to handling changes

These can then be plotted as shown in the graphs below to get an idea of the stability of

the systems. It is important to note that the sooner the requirements come to a stable state

after establishing the baseline the better it is for the project. It is also useful to track the

source of the requirement changes so that processes governing those areas causing more

frequent changes may be strengthened in future projects.

Requirement Change Activity

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19

Weeks after SRS Baselined

N
u

m
b

e
r

o
f

p
ro

p
o

s
e
d

c
h

a
n

g
e
s

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 133

Requirement Traceability

Requirement traceability is a very important consideration for requirement management.

It is really hard to manage requirements that are not traceable.

A Software Requirement Specification (SRS) is traced if the origin of its requirements is

clear. That means that the SRS includes references to earlier supportive documents. An

SRS is traceable if it written in a manner that facilitates the referencing of each individual

requirement stated therein.

It is important to trace requirements both ways. That is from origin of a requirement to

how it is implemented. This is a continuous process. It is also important that the rationale

of requirements must also be traced. Traceability is important for the purposes of

certification, change impact analysis, maintenance, project tracking, reengineering, reuse,

risk reduction, and testing. That is it plays an important role in almost every aspect of the

project and its life cycle.

Requirement Change Origins

0
5

10
15
20
25
30
35

M
ar

ke
tin

g

M
an

ag
em

en
t

C
us

to
m

er

S
of

tw
ar

e
Eng

in
ee

rin
g

H
ar

dw
ar

e
Eng

in
ee

rin
g

Tes
tin

g

Change Origin

N
u

m
b

e
r

o
f

P
ro

p
o

s
e

d
 C

h
a

n
g

e
s

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 134

Lecture No. 38

Legacy systems

A system is considered to be a legacy system if it has been in operation for many years. A

legacy system has many components. These include business processes, business rules,

application software, application data, support software, and system hardware. The

relationship among these components is shown in the following diagram.

Maintaining Legacy System

Maintaining legacy system is expensive. It is often the case that different parts of the

system have been implemented by different teams, lacking consistency. Part or all of the

system may be implemented using an obsolete language. In most cases system

documentation is inadequate and out of date. In some cases the only documentation is the

source code. In some cases even the source code is not available.

Many years of maintenance have usually corrupted the system structure, making it

increasingly difficult to understand. The data processed by the system may be maintained

in different files which have incompatible structures. There may be data duplication and

the documentation of the data itself may be out of date, inaccurate, and incomplete.

As far as the system hardware is concerned, the hardware platform may be outdated and

is hard to maintain. In many cases, the legacy systems have been written for mainframe

hardware which is no longer available, expensive to maintain, and not be compatible with

current organizational IT purchasing policies.

Support software includes OS, database, and compiler etc. Like hardware, it may be

obsolete and no longer supported by the vendors.

A time therefore comes when an organization has to make this decision whether to keep

the old legacy system or to move it to new platform and environment. Moving it to new

environment is known as legacy system migration.

Legacy migration risks
Legacy system migration however is not an easy task and there are a number of risks

involved that need to be mitigated. First of all, there is rarely a complete specification of

the system available. Therefore, there is no straight forward way of specifying the

services provided by a legacy system. Thus, important business rules are often embedded

Support

Software

Application

Software

Business

Rules

System

Hardware

Application

Data

Business

Processes

uses

uses uses
Runs

on

Runs

on
Constrains

Embeds

knowledge

of

Support

Software

Application

Software

Business

Rules

System

Hardware

Application

Data

Business

Processes

uses

uses uses
Runs

on

Runs

on
Constrains

Embeds

knowledge

of

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 135

in the software and may not be documented elsewhere. Business processes and the way

legacy systems operate are often intertwined. New software development may take

several years.

New software development is itself risky as changes to one part of the system inevitably

involve further changes to other components.

We therefore need to assess a legacy system before a decision for migration is made.

Legacy System Assessment

For each legacy system, there are four strategic options:

1. Scrap the system completely: This is the case when system is not making an effective

contribution to business processes and business processes have changed significantly

and the organization is no longer completely dependent upon the system.

2. Continue maintaining the system: This option is used when system is still required, it

is stable, and requirements are not changing frequently

3. Transform the system in some way to improve its maintainability: this option is

exercised when system quality has been degraded and regular changes to the system

are required.

4. Replace the system with a new system: this path is taken when old system cannot

continue in operation and off-the shelf alternative is available or system can be

developed at a reasonable cost.

For these decisions, a legacy system can be assessed from two different perspectives –

business value and quality. The following four quadrant assessment matrix can be used

for this purpose.

Business Value Assessment

•Important for business

•Cannot be scrapped

•Low quality means

high operational cost

•Candidates for system

transformation or replacement

•Keeping these systems

in operation will be

expensive

•Rate of return to the

business is small

•Candidates for scrapping

Low High

L
o

w
H

ig
h

Quality

B
u

s
in

e
s
s
 V

a
lu

e

•Must be kept in business

•High quality means low cost

of maintenance

•Not necessary to transform or

replace

•Continue normal operation

•Low business value but not

very expensive to maintain

•Not worth the risk of replacing

them

•Should be normally maintained

or scrapped

•Important for business

•Cannot be scrapped

•Low quality means

high operational cost

•Candidates for system

transformation or replacement

•Keeping these systems

in operation will be

expensive

•Rate of return to the

business is small

•Candidates for scrapping

Low High

L
o

w
H

ig
h

Quality

B
u

s
in

e
s
s
 V

a
lu

e

•Must be kept in business

•High quality means low cost

of maintenance

•Not necessary to transform or

replace

•Continue normal operation

•Low business value but not

very expensive to maintain

•Not worth the risk of replacing

them

•Should be normally maintained

or scrapped

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 136

It is important to note that this is a subjective judgment and requires different business

viewpoints. These view points include end-users, customers, line managers, IT managers,

and senior managers.

End Users assess the system from the perspective of how effective do they find the

system in supporting their business processes and how much of the system functionality

is used.

The customers look at the system and ask is the use of the system transparent to customer

or are their interaction constrained by the system, are they kept waiting because of the

system, and do system errors have a direct impact on the customer.

From an IT Manager’s perspective the following questions need to be asked: Are there

difficulties in finding people to work on the system? Does the system consume resources

which could be deployed more effectively on other systems?

Line Managers ask: do managers think that the system is effective in contributing to

success of their unit? Is the cost of keeping the system in use justified? Is the data

managed by the system critical for the functioning of the manager’s unit?

Senior Managers look at the system from the angle that does the system and associated

business process make an effective contribution to the business goal?

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 137

Lecture No. 39

Environment Assessment

The legacy system also needs to be assessed from an environment’s perspective. This

involves looking at the supplier, failure rate, age, performance, support requirements,

maintenance cost, and interoperability.

These angles are elaborated in the following paragraph:

Supplier stability: Is the supplier still in existence? Is the supplier financially stable and

likely to continue in existence? If the supplier is no longer in business, is the system

maintained by someone else?

Failure rate: Does the hardware have a high rate of reported failure? Does the support

software crash often and force system restarts?

Age: How old is the hardware and software?

Performance: Is the performance of the system adequate? Do performance problems have

a significant effect on system users?

Support requirements: What local support is required by hardware and software? If there

are high costs associated with this support, it may be worth considering system

replacement?

Maintenance Cost: What are the costs of hardware maintenance and software licenses?

Interoperability: Are there problems interfacing the system with other systems? Can

compilers etc be used with current versions of the operating system? Is system emulation

required?

Application software assessment

The application software is assessed on the following parameters:

Understandability: How difficult is it to understand the software code of the current

system? How complex are the control structures that are used?

Documentation: What system documentation is available? Is the documentation complete,

consistent, and up-to-date?

Data: Is there an explicit data model for the system? To what extent is data duplicated in

different files?

Programming Language: Are modern compilers available for the programming language?

Is the language still used for new system development?

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 138

Test Data: Does test data for the system exist? Is there a record of regression tests carried

out when new features have been added to the system?

Personnel skills: Are there people available who have the skills to maintain the system?

As migration is a very costly and risky business, the decision to migrate the system is

made after assessing it from all these angles and it is determined that the time has come to

migrate this system and it is worth spending the required amount of money and time for

undertaking that effort.

Software Reengineering
Software solutions often automate the business by implementing business rules and

business processes. In many cases, the software makes the business processes. As these

rules and processes change, the software must also change. A time comes when these

changes become very difficult to handle. So reengineering is re-implementing legacy

systems to make them more maintainable. It is a long term activity.

Software Reengineering Process Model

The software reengineering is a non-trivial activity. Just like legacy migration, careful

analysis must be carried out before a decision for reengineering is taken. The following

process model can be used to reengineer a legacy system.

Inventory analysis
Inventory analysis is the first step in the reengineering process. At this stage, inventory of

all applications is taken a note of their size, age, business criticality, and current

maintainability is made. Inventory should be updated regularly as the status of the

application can change as a function of time.

Document

restructuring

Reverse

engineering

Code

restructuring

Data

restructuring

Forward

Engineering
Inventory

analysis

Document

restructuring

Reverse

engineering

Code

restructuring

Data

restructuring

Forward

Engineering
Inventory

analysis

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 139

Document restructuring

The next step in the reengineering process is document restructuring. Weak

documentation is a trademark of many legacy applications. Without proper

documentation, the hidden rules, business processes, and data cannot be easily understood

and reengineered.

In this regards, the following options are available:

1. Create documentation: Creating documentation from scratch is very time consuming.

If program is relatively stable and is coming to the end of its useful life then just leave

it as it is.

2. Update documentation: This option also needs a lot of resources. A good approach

would be to update documentation when the code is modified.

Reverse engineering
Reverse engineering is the next step in the process. Reverse engineering for software is a

process for analyzing a program in an effort to create a representation of the program at a

higher level of abstraction than the source code. Reverse engineering is the process of

design recovery. At this stage, documentation of the overall functionality of the system

that is not there is created. The overall functionality of the entire system must be

understood before more detailed analysis can be carried out.

Reverse engineering activities include:

 Reverse engineering to understand processing

 Reverse engineering to understand data

– Internal data structures

– Database structures

 Reverse engineering user interfaces

Program Restructuring

Program is restructured after the reverse engineering phase. In this case we modify source

code and data in order to make it amenable to future changes. This includes code as well

as data restructuring. Code restructuring requires redesign with same function with higher

quality than original program and data restructuring involves restructuring the database or

the database schema. It may also involve code restructuring.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 140

Lecture No. 40

Forward Engineering

At the end forward engineering is carried out. It means incorporating the new business

processes and rules in the system. Forward engineering requires application of SE

principles, methods, and concepts to re-create an existing application. In most cases

forward engineering does not simply create a modern equivalent of an older program,

rather new user and technology requirements are integrated into the reengineering effort.

The Economics of Reengineering

As reengineering is a costly and risky undertaking, a cost benefit analysis for the

reengineering effort must be carried out.

This analysis is carried out in the following manner.

Let

P1 : current annual maintenance cost for an application

P2 : current annual operation cost for an application

P3 : current annual business value of an application

P4 : predicted annual maintenance cost after reengineering

P5 : predicted annual operations cost after reengineering

P6 : predicted annual business value cost after reengineering

P7 : estimated reengineering cost

P8 : estimated reengineering calendar time

P9 : reengineering risk factor (1.0 is nominal)

L : expected life of the system

Now the cost of maintenance is calculated as:

C maintenance = [P3 – (P1 + P2)] x L

Cost of reengineering would then be given by the formula:

C reengineering = [P6 – (P4 + P5) x (L – P8) – (P7 x P9)]

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 141

Lecture No. 41

Business Process Reengineering

A concept similar to software reengineering is of business process reengineering (BPR).

A business process is “a set of logically related tasks performed to achieve a defined

business outcome”. It is the way certain business is conducted. Purchasing services and

supplies, hiring new employees, paying suppliers are examples of business processes.

For BPR the following process model may be used.

As obvious from the diagram, it starts with the business definition where business goals

are identified. The key drivers could be cost reduction, time reduction, quality

improvement, and personnel development and empowerment. It may be defined at the

business level or for a specific component of the business.

The next step is process identification. At this time processes that are critical to achieving

the goals are identified and are ranked by importance, and need for change.

The short listed processes are then evaluated. Existing process is analyzed and measured

and process tasks are identified. The cost and time consumed is measured as well as the

quality and performance problems are identified.

Then, process specification and design is carried out. Use cases are prepared for each

process to be redesigned and a new set of tasks are designed for the processes and then

they are prototyped.

A redesigned business process must be prototyped before it is fully integrated into the

business.

Based on the feedback the business process is refined.

Business

definition

Refinement &

instantiation

Process

Identification

Process

Evaluation

Process

Specification

Prototyping

Business

definition

Refinement &

instantiation

Process

Identification

Process

Evaluation

Process

Specification

Prototyping

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 142

Lecture No. 42

Software Refactoring

Software refactoring is the process of changing a software system such that the external

behavior of the system does not change while the internal structure of the system is

improved. This is sometimes called “Improving the design after it has been written”.

Fowler defines refactoring as A change made to the internal structure of software to make

it easier to understand and cheaper to modify without changing its observable behavior. It

is achieved by applying a series of refactoring without changing its observable behavior.

A (Very) Simple Example

Let us consider a very simple example. The refactoring involved in this case is known as

“Consolidate Duplicate Conditional Fragments”. As the name suggests, this refactoring

lets the programmer improve the quality of the code by grouping together the duplicate

code, resulting in less maintenance afterwards.

if (isSpecialDeal()) {

 total = price * 0.95;

 send ();

}

else {

 total = price * 0.98;

 send ();

}

In this case, send is being called from different places. We can consolidate as follows:

if (isSpecialDeal())

 total = price * 0.95;

else

 total = price * 0.98;

send ();

It can further be improved if we calculate total outside the if statement as shown below.

if (isSpecialDeal())

 factor = 0.95;

else

 factor = 0.98;

total = price * factor;

send ();

Although this is a trivial example, it nevertheless is useful and teaches us how can be

consolidate code by grouping together pieces of code from different segments.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 143

Refactoring: Where to Start?

The first question that we have to ask ourselves is: how do you identify code that needs to

be refactored? Fowler et al has devised a heuristic based approach to this end known as

“Bad Smells” in Code. The philosophy is simple: “if it stinks, change it”.

Bad Smells in Code

They have identified many different types of “bad smells”. These are briefly described in

the following paragraphs:

 Duplicated Code

– bad because if you modify one instance of duplicated code but not the

others, you (may) have introduced a bug!

 Long Method

– long methods are more difficult to understand; performance concerns with

respect to lots of short methods are largely obsolete

 Large Class

– Large classes try to do too much, which reduces cohesion

 Long Parameter List

– hard to understand, can become inconsistent

 Divergent Change

– Deals with cohesion; symptom: one type of change requires changing one

subset of methods; another type of change requires changing another

subset

 Shotgun Surgery

– a change requires lots of little changes in a lot of different classes

 Feature Envy

– A method requires lots of information from some other class (move it

closer!)

 Data Clumps

– attributes that clump together but are not part of the same class

 Primitive Obsession

– characterized by a reluctance to use classes instead of primitive data types

 Switch Statements

– Switch statements are often duplicated in code; they can typically be

replaced by use of polymorphism (let OO do your selection for you!)

 Parallel Inheritance Hierarchies

– Similar to Shotgun Surgery; each time I add a subclass to one hierarchy, I

need to do it for all related hierarchies

 Lazy Class

– A class that no longer “pays its way”. e.g. may be a class that was

downsized by refactoring, or represented planned functionality that did not

pan out

 Speculative Generality

– “Oh I think we need the ability to do this kind of thing someday”

 Temporary Field

– An attribute of an object is only set in certain circumstances; but an object

should need all of its attributes

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 144

 Message Chains

– a client asks an object for another object and then asks that object for

another object etc. Bad because client depends on the structure of the

navigation

 Middle Man

– If a class is delegating more than half of its responsibilities to another

class, do you really need it?

 Inappropriate Intimacy

– Pairs of classes that know too much about each other’s private details

 Alternative Classes with Different Interfaces

– Symptom: Two or more methods do the same thing but have different

signature for what they do

 Incomplete Library Class

– A framework class doesn’t do everything you need

 Data Class

– These are classes that have fields, getting and setting methods for the

fields, and nothing else; they are data holders, but objects should be about

data AND behavior

 Refused Bequest

– A subclass ignores most of the functionality provided by its super-class

 Comments (!)

– Comments are sometimes used to hide bad code

– “…comments often are used as a deodorant” (!)

Breaking a Method

We have already seen example of duplicate code. We now look at another simple

example of long method. Although, in this case, the code is not really long, it however

demonstrates how longer segments of code can be broken into smaller and more

manageable (may be more reusable as well) code segments.

The following code segment sorts an array of integers using “selection sort” algorithm.

for (i=0; i < N-1; i++) {

min = i;

for (j = i; j < N; j++)

if (a[j] < a[min]) min = j;

temp = a[i];

a[i] = a[min];

a[min] = temp;

}

We break it into smaller fragments by making smaller functions out of different steps in

the algorithm as follows:

int minimum (int a[], int from, int to)

{

int min = from;

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 145

for (int i = from; i <= to; i++)

if (a[i] < a[min]) min = i;

return min;

}

void swap (int &x, int &y)

{

int temp = x;

x = y;

y = temp;

}

The sort function now becomes simpler as shown below.

for (i=0; i < N-1; i++) {

min = minimum (a, i, N-1);

swap(a[i], a[min]);

}

It can be seen that it is now much easier to understand the code and hence is easier to

maintain. At the same time we have got two separate reusable functions that can be used

elsewhere in the code.

A slightly more involved example

(It has mostly been adapted from Fowler’s introduction to refactoring which is

freely available on the web)

Let us consider a simple program for a video store. It has three classes: Movie, Rental,

and Customer. Program is told which movies a customer rented and for how long and it

then calculates the charges and the Frequent renter points. Customer object can print a

statement (in ASCII).

Here is the code for the classes. DomainObject is a general class that does a few standard

things, such as hold a name.

public class DomainObject {

 public DomainObject (String name) {

 _name = name;

 };

 public DomainObject () {};

 public String name () {

 return _name;

 };

 public String toString() {

 return _name;

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 146

 };

 protected String _name = "no name";

}

Movie represents the notion of a film. A video store might have several tapes in stock of

the same movie

public class Movie extends DomainObject {

 public static final int CHILDRENS = 2;

 public static final int REGULAR = 0;

 public static final int NEW_RELEASE = 1;

 private int _priceCode;

 public Movie(String name, int priceCode) {

 _name = name;

 _priceCode = priceCode;

 }

 public int priceCode() {

 return _priceCode;

 }

 public void persist() {

 Registrar.add ("Movies", this);

 }

 public static Movie get(String name) {

 return (Movie) Registrar.get ("Movies", name);

 }

}

The movie uses a class called a registrar (not shown) as a class to hold instances of

movie. I also do this with other classes. I use the message persist to tell an object to save

itself to the registrar. I can then retrieve the object, based on its name, with a get(String)

method.

The tape class represents a physical tape.

class Tape extends DomainObject

 {

 public Movie movie() {

 return _movie;

 }

 public Tape(String serialNumber, Movie movie) {

 _serialNumber = serialNumber;

 _movie = movie;

 }

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 147

 private String _serialNumber;

 private Movie _movie;

 }

The rental class represents a customer renting a movie.

class Rental extends DomainObject

 {

 public int daysRented() {

 return _daysRented;

 }

 public Tape tape() {

 return _tape;

 }

 private Tape _tape;

 public Rental(Tape tape, int daysRented) {

 _tape = tape;

 _daysRented = daysRented;

 }

 private int _daysRented;

 }

The customer class represents the customer. So far all the classes have been dumb

encapsulated data. Customer holds all the behavior for producing a statement in its

statement() method.

class Customer extends DomainObject

 {

 public Customer(String name) {

 _name = name;

 }

 public String statement() {

 double totalAmount = 0;

 int frequentRenterPoints = 0;

 Enumeration rentals = _rentals.elements();

 String result = "Rental Record for " + name() + "\n";

 while (rentals.hasMoreElements()) {

 double thisAmount = 0;

 Rental each = (Rental) rentals.nextElement();

 //determine amounts for each line

 switch (each.tape().movie().priceCode()) {

 case Movie.REGULAR:

 thisAmount += 2;

 if (each.daysRented() > 2)

 thisAmount += (each.daysRented() - 2) * 1.5;

 break;

 case Movie.NEW_RELEASE:

 thisAmount += each.daysRented() * 3;

 break;

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 148

 case Movie.CHILDRENS:

 thisAmount += 1.5;

 if (each.daysRented() > 3)

 thisAmount += (each.daysRented() - 3) * 1.5;

 break;

 }

 totalAmount += thisAmount;

 // add frequent renter points

 frequentRenterPoints ++;

 // add bonus for a two day new release rental

 if ((each.tape().movie().priceCode() == Movie.NEW_RELEASE) &&

each.daysRented() > 1) frequentRenterPoints ++;

 //show figures for this rental

 result += "\t" + each.tape().movie().name()+ "\t" + String.valueOf(thisAmount) +

"\n";

 }

 //add footer lines

 result += "Amount owed is " + String.valueOf(totalAmount) + "\n";

 result += "You earned " + String.valueOf(frequentRenterPoints) + " frequent renter

points";

 return result;

 }

 public void addRental(Rental arg) {

 _rentals.addElement(arg);

 }

 public static Customer get(String name) {

 return (Customer) Registrar.get("Customers", name);

 }

 public void persist() {

 Registrar.add("Customers", this);

 }

 private Vector _rentals = new Vector();

 }

What are your impressions about the design of this program? I would describe as not well

designed, and certainly not object-oriented. For a simple program is this, that does not

really matter. There is nothing wrong with a quick and dirty simple program. But if we

imagine this as a fragment of a more complex system, then I have some real problems

with this program. That long statement routine in the Customer does far too much. Many

of the things that it does should really be done by the other classes.

This is really brought out by a new requirement, just in from the users, they want a

similar statement in html. As you look at the code you can see that it is impossible to

reuse any of the behavior of the current statement() method for an htmlStatement(). Your

only recourse is to write a whole new method that duplicates much of the behavior of

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 149

statement(). Now of course this is not too onerous. You can just copy the statement()

method and make whatever changes you need. So the lack of design does not do too

much to hamper the writing of htmlStatement(), (although it might be tricky to figure out

exactly where to do the changes). But what happens when the charging rules change?

You have to fix both statement() and htmlStatement(), and ensure the fixes are consistent.

The problem from cut and pasting code comes when you have to change it later. Thus if

you are writing a program that you donít expect to change, then cut and paste is fine. If

the program is long lived and likely to change, then cut and paste is a menace.

But you still have to write the htmlStatement() program. You may feel that you should

not touch the existing statement() method, after all it works fine. Remember the old

engineering adage: "if it ainít broke, donít fix it". statement() may not be broke, but it

does hurt. It is making your life more difficult to write the htmlStatement() method.

So this is where refactoring comes in. When you find you have to add a feature to a

program, and the programís code is not structured in a convenient way to add the feature;

then first refactor the program to make it easy to add the feature, then add the feature.

Extracting the Amount Calculation

The obvious first target of my attention is the overly long statement() method. When I

look at a long method like that, I am looking to take a chunk of the code an extract a

method from it.

Extracting a method is taking the chunk of code and making a method out of it. An

obvious piece here is the switch statement (which I'm highlighting below).

public String statement() {

 double totalAmount = 0;

 int frequentRenterPoints = 0;

 Enumeration rentals = _rentals.elements();

 String result = "Rental Record for " + name() + "\n";

 while (rentals.hasMoreElements()) {

 double thisAmount = 0;

 Rental each = (Rental) rentals.nextElement();

 //determine amounts for each line

 switch (each.tape().movie().priceCode()) {

 case Movie.REGULAR:

 thisAmount += 2;

 if (each.daysRented() > 2)

 thisAmount += (each.daysRented() - 2) * 1.5;

 break;

 case Movie.NEW_RELEASE:

 thisAmount += each.daysRented() * 3;

 break;

 case Movie.CHILDRENS:

 thisAmount += 1.5;

 if (each.daysRented() > 3)

 thisAmount += (each.daysRented() - 3) * 1.5;

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 150

 break;

 }

 totalAmount += thisAmount;

 // add frequent renter points

 frequentRenterPoints ++;

 // add bonus for a two day new release rental

 if ((each.tape().movie().priceCode() == Movie.NEW_RELEASE) &&

each.daysRented() > 1) frequentRenterPoints ++;

 //show figures for this rental

 result += "\t" + each.tape().movie().name()+ "\t" + String.valueOf(thisAmount) +

"\n";

 }

 //add footer lines

 result += "Amount owed is " + String.valueOf(totalAmount) + "\n";

 result += "You earned " + String.valueOf(frequentRenterPoints) + " frequent renter

points";

 return result;

 }

This looks like it would make a good chunk to extract into its own method. When we

extract a method, we need to look in the fragment for any variables that are local in scope

to the method we are looking at, that local variables and parameters. This segment of

code uses two: each and thisAmount. Of these each is not modified by the code but

thisAmount is modified. Any non-modified variable we can pass in as a parameter.

Modified variables need more care. If there is only one we can return it. The temp is

initialized to 0 each time round the loop, and not altered until the switch gets its hands on

it. So we can just assign the result. The extraction looks like this.

public String statement() {

 double totalAmount = 0;

 int frequentRenterPoints = 0;

 Enumeration rentals = _rentals.elements();

 String result = "Rental Record for " + name() + "\n";

 while (rentals.hasMoreElements()) {

 double thisAmount = 0;

 Rental each = (Rental) rentals.nextElement();

 //determine amounts for each line

 thisAmount = amountOf(each);

 totalAmount += thisAmount;

 // add frequent renter points

 frequentRenterPoints ++;

 // add bonus for a two day new release rental

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 151

 if ((each.tape().movie().priceCode() == Movie.NEW_RELEASE) &&

each.daysRented() > 1) frequentRenterPoints ++;

 //show figures for this rental

 result += "\t" + each.tape().movie().name()+ "\t" + String.valueOf(thisAmount) +

"\n";

 }

 //add footer lines

 result += "Amount owed is " + String.valueOf(totalAmount) + "\n";

 result += "You earned " + String.valueOf(frequentRenterPoints) + " frequent renter

points";

 return result;

 }

 private int amountOf(Rental each) {

 int thisAmount = 0;

 switch (each.tape().movie().priceCode()) {

 case Movie.REGULAR:

 thisAmount += 2;

 if (each.daysRented() > 2)

 thisAmount += (each.daysRented() - 2) * 1.5;

 break;

 case Movie.NEW_RELEASE:

 thisAmount += each.daysRented() * 3;

 break;

 case Movie.CHILDRENS:

 thisAmount += 1.5;

 if (each.daysRented() > 3)

 thisAmount += (each.daysRented() - 3) * 1.5;

 break;

 }

 return thisAmount;

 }

When I did this the tests blew up. A couple of the test figures gave me the wrong answer.

I was puzzled for a few seconds then realized what I had done. Foolishly I had made the

return type of amountOf() int instead of double.

 private double amountOf(Rental each) {

 double thisAmount = 0;

 switch (each.tape().movie().priceCode()) {

 case Movie.REGULAR:

 thisAmount += 2;

 if (each.daysRented() > 2)

 thisAmount += (each.daysRented() - 2) * 1.5;

 break;

 case Movie.NEW_RELEASE:

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 152

 thisAmount += each.daysRented() * 3;

 break;

 case Movie.CHILDRENS:

 thisAmount += 1.5;

 if (each.daysRented() > 3)

 thisAmount += (each.daysRented() - 3) * 1.5;

 break;

 }

 return thisAmount;

 }

Itís the kind of silly mistake that I often make, and it can be a pain to track down as Java

converts ints to doubles without complaining (but merrily rounding). Fortunately it was

easy to find in this case, because the change was so small. Here is the essence of the

refactoring process illustrated by accident. Because each change is so small, any errors

are very easy to find. You don't spend long debugging, even if you are as careless as I am.

This refactoring has taken a large method and broken it down into two much more

manageable chunks. We can now consider the chunks a bit better. I don't like some of the

variables names in amountOf() and this is a good place to change them.

private double amountOf(Rental aRental) {

 double result = 0;

 switch (aRental.tape().movie().priceCode()) {

 case Movie.REGULAR:

 result += 2;

 if (aRental.daysRented() > 2)

 result += (aRental.daysRented() - 2) * 1.5;

 break;

 case Movie.NEW_RELEASE:

 result += aRental.daysRented() * 3;

 break;

 case Movie.CHILDRENS:

 result += 1.5;

 if (aRental.daysRented() > 3)

 result += (aRental.daysRented() - 3) * 1.5;

 break;

 }

 return result;

 }

Is that renaming worth the effort? Absolutely. Good code should communicate what it is

doing clearly, and variable names are key to clear code. Never be afraid to change the

names to things to improve clarity. With good find and replace tools, it is usually not

difficult. Strong typing and testing will highlight anything you miss. Remember any fool

can write code that a computer can understand, good programmers write code that

humans can understand.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 153

Lecture No. 43

Moving the amount calculation

As I look at amountOf, I can see that it uses information from the rental, but does not use

information from the customer. This method is thus on the wrong object, it should be

moved to the rental. To move a method you first copy the code over to rental, adjust it to

fit in its new home and compile.

Class Rental

 double charge() {

 double result = 0;

 switch (tape().movie().priceCode()) {

 case Movie.REGULAR:

 result += 2;

 if (daysRented() > 2)

 result += (daysRented() - 2) * 1.5;

 break;

 case Movie.NEW_RELEASE:

 result += daysRented() * 3;

 break;

 case Movie.CHILDRENS:

 result += 1.5;

 if (daysRented() > 3)

 result += (daysRented() - 3) * 1.5;

 break;

 }

 return result;

 }

In this case fitting into its new home means removing the parameter.

The next step is to find every reference to the old method, and adjusting the reference to

use the new method. In this case this step is easy as we just created the method and it is in

only one place. In general, however, you need to do a find across all the classes that might

be using that method.

public String statement() {

 double totalAmount = 0;

 int frequentRenterPoints = 0;

 Enumeration rentals = _rentals.elements();

 String result = "Rental Record for " + name() + "\n";

 while (rentals.hasMoreElements()) {

 double thisAmount = 0;

 Rental each = (Rental) rentals.nextElement();

 //determine amounts for each line

 thisAmount = each.charge();

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 154

 totalAmount += thisAmount;

 // add frequent renter points

 frequentRenterPoints ++;

 // add bonus for a two day new release rental

 if ((each.tape().movie().priceCode() == Movie.NEW_RELEASE) &&

each.daysRented() > 1) frequentRenterPoints ++;

 //show figures for this rental

 result += "\t" + each.tape().movie().name()+ "\t" + String.valueOf(thisAmount) +

"\n";

 }

 //add footer lines

 result += "Amount owed is " + String.valueOf(totalAmount) + "\n";

 result += "You earned " + String.valueOf(frequentRenterPoints) + " frequent renter

points";

 return result;

 }

When I've made the change the next thing is to remove the old method. The compiler

should then tell me if I missed anything.

There is certainly some more I would like to do to Rental.charge() but I will leave it for

the moment and return to Customer.statement().

The next thing that strikes me is that thisAmount() is now pretty redundant. It is set to the

result of each.charge() and not changed afterwards. Thus I can eliminate thisAmount by

replacing a temp with a query.

public String statement() {

 double totalAmount = 0;

 int frequentRenterPoints = 0;

 Enumeration rentals = _rentals.elements();

 String result = "Rental Record for " + name() + "\n";

 while (rentals.hasMoreElements()) {

 Rental each = (Rental) rentals.nextElement();

 //determine amounts for each line

 totalAmount += each.charge();

 // add frequent renter points

 frequentRenterPoints ++;

 // add bonus for a two day new release rental

 if ((each.tape().movie().priceCode() == Movie.NEW_RELEASE) &&

each.daysRented() > 1) frequentRenterPoints ++;

 //show figures for this rental

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 155

 result += "\t" + each.tape().movie().name()+ "\t" + String.valueOf(each.charge())

+ "\n";

 }

 //add footer lines

 result += "Amount owed is " + String.valueOf(totalAmount) + "\n";

 result += "You earned " + String.valueOf(frequentRenterPoints) + " frequent renter

points";

 return result;

 }

I like to get rid of temporary variables like thus as much as possible. Temps are often a

problem in that they cause a lot of parameters to get passed around when they don't need

to. You can easily lose track of what they are there for. They are particularly insidious in

long methods. Of course there is a small performance price to pay, here the charge is now

calculated twice. But it is easy to optimize that in the rental class, and you can optimize

much more effectively when the code is properly refactored.

Extracting Frequent Renter Points

The next step is to do a similar thing for the frequent renter points. Again the rules vary

with the tape, although there is less variation than with the charging. But it seems

reasonable to put the responsibility on the rental. First we need to extract a method from

the frequent renter points part of the code (highlighted below).

public String statement() {

 double totalAmount = 0;

 int frequentRenterPoints = 0;

 Enumeration rentals = _rentals.elements();

 String result = "Rental Record for " + name() + "\n";

 while (rentals.hasMoreElements()) {

 Rental each = (Rental) rentals.nextElement();

 //determine amounts for each line

 totalAmount += each.charge();

 // add frequent renter points

 frequentRenterPoints ++;

 // add bonus for a two day new release rental

 if ((each.tape().movie().priceCode() == Movie.NEW_RELEASE) &&

each.daysRented() > 1) frequentRenterPoints ++;

 //show figures for this rental

 result += "\t" + each.tape().movie().name()+ "\t" + String.valueOf(each.charge())

+ "\n";

 }

 //add footer lines

 result += "Amount owed is " + String.valueOf(totalAmount) + "\n";

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 156

 result += "You earned " + String.valueOf(frequentRenterPoints) + " frequent renter

points";

 return result;

 }

Again we look at the use of locally scoped variables. Again it uses each, which can be

passed in as a parameter. The other temp used is frequentRenterPoints. In this case

frequentRenterPoints does have a value beforehand. The body of the extracted method

doesn't read the value, however, so we don't need to pass it in as a parameter as long as

we use an appending assignment.

public String statement() {

 double totalAmount = 0;

 int frequentRenterPoints = 0;

 Enumeration rentals = _rentals.elements();

 String result = "Rental Record for " + name() + "\n";

 while (rentals.hasMoreElements()) {

 Rental each = (Rental) rentals.nextElement();

 //determine amounts for each line

 totalAmount += each.charge();

 // add frequent renter points

 frequentRenterPoints += frequentRenterPointOf(each);

 //show figures for this rental

 result += "\t" + each.tape().movie().name()+ "\t" + String.valueOf(each.charge())

+ "\n";

 }

 //add footer lines

 result += "Amount owed is " + String.valueOf(totalAmount) + "\n";

 result += "You earned " + String.valueOf(frequentRenterPoints) + " frequent renter

points";

 return result;

 }

int frequentRenterPointOf(Rental each) {

 if ((each.tape().movie().priceCode() == Movie.NEW_RELEASE) &&

each.daysRented() > 1) return 2;

 else return 1;

 }

I did the extraction, compiled and tested, and then did a move. With refactoring small

steps are the best, that way less tends to go wrong.

public String statement() {

 double totalAmount = 0;

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 157

 int frequentRenterPoints = 0;

 Enumeration rentals = _rentals.elements();

 String result = "Rental Record for " + name() + "\n";

 while (rentals.hasMoreElements()) {

 Rental each = (Rental) rentals.nextElement();

 //determine amounts for each line

 totalAmount += each.charge();

 // add frequent renter points

 frequentRenterPoints += each.frequentRenterPoints();

 //show figures for this rental

 result += "\t" + each.tape().movie().name()+ "\t" + String.valueOf(each.charge())

+ "\n";

 }

 //add footer lines

 result += "Amount owed is " + String.valueOf(totalAmount) + "\n";

 result += "You earned " + String.valueOf(frequentRenterPoints) + " frequent renter

points";

 return result;

 }

int frequentRenterPoints() {

 if ((tape().movie().priceCode() == Movie.NEW_RELEASE) && daysRented() > 1)

return 2;

 else return 1;

 }

Removing Temps

As I suggested before, temporary variables can be a problem. They are only useful within

their own routine, and thus they encourage long complex routines. In this case we have

two temporary variables, both of which are being used to get a total from the rentals

attached to the customer. Both the ascii and html versions will require these totals. I like

to replace temps with queries. Queries are accessible to any method in the class, and thus

encourage a cleaner design without long complex methods.

I began by replacing totalAmount with a charge() method on customer.

 public String statement() {

 double totalAmount = 0;

 int frequentRenterPoints = 0;

 Enumeration rentals = _rentals.elements();

 String result = "Rental Record for " + name() + "\n";

 while (rentals.hasMoreElements()) {

 Rental each = (Rental) rentals.nextElement();

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 158

 // add frequent renter points

 frequentRenterPoints += each.frequentRenterPoints();

 //show figures for this rental

 result += "\t" + each.tape().movie().name()+ "\t" + String.valueOf(each.charge())

+ "\n";

 }

 //add footer lines

 result += "Amount owed is " + String.valueOf(charge()) + "\n";

 result += "You earned " + String.valueOf(frequentRenterPoints) + " frequent renter

points";

 return result;

 }

 private double charge(){

 double result = 0;

 Enumeration rentals = _rentals.elements();

 while (rentals.hasMoreElements()) {

 Rental each = (Rental) rentals.nextElement();

 result += each.charge();

 }

 return result;

 }

After compiling and testing that refactoring, I then did the same for frequentRenterPoints.

 public String statement() {

 Enumeration rentals = _rentals.elements();

 String result = "Rental Record for " + name() + "\n";

 while (rentals.hasMoreElements()) {

 Rental each = (Rental) rentals.nextElement();

 //show figures for each rental

 result += "\t" + each.tape().movie().name()+ "\t" +

 String.valueOf(each.charge()) + "\n";

 }

 //add footer lines

 result += "Amount owed is " + String.valueOf(charge()) + "\n";

 result += "You earned " + String.valueOf(frequentRenterPoints()) +

 " frequent renter points";

 return result;

 }

 private int frequentRenterPoints() {

 int result = 0;

 Enumeration rentals = _rentals.elements();

 while (rentals.hasMoreElements()) {

 Rental each = (Rental) rentals.nextElement();

 result += each.frequentRenterPoints();

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 159

 }

 return result;

 }

It is worth stopping and thinking a bit about this refactoring. Most refactoring reduce the

amount of code, but this one increases it. That's because Java requires a lot of statements

to set up a summing loop. Even a simple summing loop with one line of code per element

needs six lines of support around it. Itís an idiom that is obvious to any programmer but it

is noise that hides what the intent of the loop is. As Java develops and builds up its ability

to handle block closures in the style of Smalltalk, I expect that overhead to decrease,

probably to the single line that such an expression would take in Smalltalk.

The other concern with this refactoring lies in performance. The old code executed the

while loop once, the new code executes it three times. If the while loop takes time, this

might significantly impair performance. Many programmers would not do this refactoring

simply for this reason. But note the words "if" and "might". While some loops do cause

performance issues, most do not. So while refactoring donít worry about this. When you

optimize you will have to worry about it, but you will then be in a much better position to

do something about it, and you will have more options to optimize effectively. (For a

good discussion on why it is better to write clearly first and then optimize, see

[McConnell, Code Complete].

These queries are now available to any code written in the customer class. Indeed they

can easily be added to the interface of the class should other parts of the system need this

information. Without queries like these, other methods need to deal with knowing about

the rentals and building the loops. In a complex system that will lead to much more code

to write and maintain.

You can see the difference immediately with the htmlStatement(). I am now at the point

where I take off my refactoring hat and put on my adding function hat. I can write

htmlStatement()like this (and add an appropriate test).

 public String htmlStatement() {

 Enumeration rentals = _rentals.elements();

 String result = "<H1>Rentals for " + name() + "</H1><P>\n";

 while (rentals.hasMoreElements()) {

 Rental each = (Rental) rentals.nextElement();

 //show figures for each rental

 result += each.tape().movie().name()+ ": " +

 String.valueOf(each.charge()) + "
\n";

 }

 //add footer lines

 result += "<P>You owe " + String.valueOf(charge()) + "<P>\n";

 result += "On this rental you earned " +

String.valueOf(frequentRenterPoints()) + " frequent renter points<P>";

 return result;

 }

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 160

There is still some code copied from the ascii version, but that is mainly due to setting up

the loop. Further refactoring could clean that up further, extracting methods for header,

footer, and detail line are one route I could take. But that isnít where I want to spend my

time, I would like to move onto the methods Iíve moved onto rental. Back on with the

refactoring hat.

Moving the Rental Calculations to Movie

Yes itís that switch statement that is bugging me. It is a bad idea to do a switch based on

an attribute of another object. If you must use a switch statement, it should be on your

own data, not on someone elseís. This implies that the charge should move onto movie

Class movie Ö

 double charge(int daysRented) {

 double result = 0;

 switch (priceCode()) {

 case REGULAR:

 result += 2;

 if (daysRented > 2)

 result += (daysRented - 2) * 1.5;

 break;

 case NEW_RELEASE:

 result += daysRented * 3;

 break;

 case CHILDRENS:

 result += 1.5;

 if (daysRented > 3)

 result += (daysRented - 3) * 1.5;

 break;

 }

 return result;

 }

For this to work I have to pass in the length of the rental, which of course is data due of

the rental. The method effectively uses two pieces of data, the length of the rental and the

type of the movie. Why do I prefer to pass the length of rental rather than the movieís

type? Its because type information tends to be more volatile. I can easily imagine new

types of videos appearing. If I change the movieís type I want the least ripple effect, so I

prefer to calculate the charge within the movie.

I compiled the method into movie and then adjusted the charge method on rental to use

the new method.

Class rentalÖ

 double charge() {

 return _tape.movie().charge(_daysRented);

 }

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 161

Some people would prefer to remove that chain of calls by having a charge(int) message

on tape. This would lead to

Class rental

 double charge() {

 return _tape.charge(_daysRented);

 }

Class tape

 double charge() {

 return _movie.charge(_daysRented);

 }

You can make that change if you like, I donít tend to worry about message chains

providing that they all lie in the same package. If they cross package boundaries, then Iím

not so happy, and would add an insulating method.

Having done this with charge amounts, Iím inclined to do the same with frequent renter

points. The need is less pressing, but I think it is more consistent to do them both the

same way. And again if the movie classifications change it makes it easier to update the

code.

Class rentalÖ

 int frequentRenterPoints() {

 return _tape.movie().frequentRenterPoints(_daysRented);

 }

class movieÖ

 int frequentRenterPoints(int daysRented){

 if ((priceCode() == NEW_RELEASE) && daysRented > 1) return 2;

 else return 1;

 }

With these two changes I can hide those constants, which is generally a Good Thing.

Even constant data should be private.

 private static final int CHILDRENS = 2;

 private static final int REGULAR = 0;

 private static final int NEW_RELEASE = 1;

To really do this, however, I need to change a couple of other parts of the class. I need to

change how we create a movie. I used to create a movie with a message like

new Movie ("Ran", Movie.REGULAR);

and the constructor

class MovieÖ

 private Movie(String name, int priceCode) {

 _name = name;

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 162

 _priceCode = priceCode;

 }

To keep this type code hidden I need some creation methods.

 public static Movie newNewRelease(String name){

 return new Movie (name, NEW_RELEASE);

 }

 public static Movie newRegular(String name){

 return new Movie (name, REGULAR);

 }

 public static Movie newChildrens(String name) {

 return new Movie (name, CHILDRENS);

 }

Now I create a new movie with

 Movie.newRegular("Monty Python and the Holy Grail");

Movies can change their classification. I change a movieís classification with

 aMovie.setPriceCode(Movie.REGULAR);

I will need to add a bunch of methods to handle the changes of classification.

 public void beRegular() {

 _priceCode = REGULAR;

 }

 public void beNewRelease() {

 _priceCode = NEW_RELEASE;

 }

 public void beChildrens() {

 _priceCode = CHILDRENS;

 }

It is a bit of effort to set up these methods, but they are a much more explicit interface

then the type codes. Just looking at the name of the method tells you what kind of movie

you are getting. This makes the code more understandable. The trade off is that each time

I add a price code I have to add a creation and update method. If I had lots of price codes

this would hurt (so I wouldnít do it). If I have a few, however, then it is quite reasonable.

At lastÖ inheritance

So we have several types of movie, which have different ways of answering the same

question. This sounds like a job for subclasses. We could have three subclasses of movie,

each of which can have its own version of charge.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 163

This would allow me to replace the switch statement by using polymorphism. Sadly it has

one slight flaw: it doesn’t work. A move can change its classification during its lifetime.

An object cannot change its class during its lifetime. There is a solution however, the

state pattern [Gang of Four]. With the state pattern the classes look like this.

By adding the indirection we can do the subclassing from the price code object, changing

the price whenever we need to.

With a complex class you have to move data and methods around in small pieces to avoid

errors, it seems slow but it is the quickest because you avoid debugging. For this case I

could probably move the data and methods in one go as the whole thing is not too

complicated. However Iíll do it the bit by bit way, so you can see how it goes. Just

remember to do it one small bit at a time if you do this to a complicated class.

The first step is to create the new classes. Then I need to sort out how they are managed.

As the diagram shows they are all singletons. It seems sensible to get hold of them via the

superclass with a method like Price.regular(). I can do this by getting the superclass to

manage the instances of the subclasses.

abstract class Price {

 static Price regular() {

 return _regular;

 }

 static Price childrens() {

 return _childrens;

 }

 static Price newRelease() {

 return _newRelease;

 }

 private static Price _childrens = new ChildrensPrice();

 private static Price _newRelease = new NewReleasePrice();

 private static Price _regular = new RegularPrice();

}

Now I can begin to move the data over. The first piece of data to move over is the price

code. Of course Iím not actually going to use the price code within the Price object, but I

will give it the illusion of doing so. That way the old methods will still work. They key is

to modify those methods that access and update the price code value within Movie. My

first step is to self-encapsulate the type code, ensuring that all uses of the type code go

though getting and setting methods. Since most of the code came from other classes, most

methods already use the getting method. However the constructors do access the price

code, I can use the setting methods instead.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 164

 public static Movie newNewRelease(String name){

 Movie result = new Movie (name);

 result.beNewRelease();

 return result;

 }

 public static Movie newRegular(String name){

 Movie result = new Movie (name);

 result.beRegular();

 return result;

 }

 public static Movie newChildrens(String name) {

 Movie result = new Movie (name);

 result.beChildrens();

 return result;

 }

 private Movie(String name) {

 _name = name;

 }

After compiling and testing I now change getting and setting methods to use the new

class.

 public void beRegular() {

 _price = Price.regular();

 }

 public void beNewRelease() {

 _price = Price.newRelease();

 }

 public void beChildrens() {

 _price = Price.childrens();

 }

 public int priceCode() {

 return _price.priceCode();

 }

And provide the priceCode methods on Price and its subclasses.

Class PriceÖ

 abstract int priceCode();

Class RegularPriceÖ

 int priceCode(){

 return Movie.REGULAR;

 }

To do this I need to make the constants non-private again. This is fine, I donít mind them

having a little fame before they bite the dust.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 165

I can now compile and test and the more complex methods donít realize the world has

changed.

After moving the data I can now start moving methods. My prime target is the charge()

method. It is simple to move.

Class MovieÖ

 double charge(int daysRented) {

 return _price.charge(daysRented);

 }

Class PriceÖ

 double charge(int daysRented) {

 double result = 0;

 switch (priceCode()) {

 case Movie.REGULAR:

 result += 2;

 if (daysRented > 2)

 result += (daysRented - 2) * 1.5;

 break;

 case Movie.NEW_RELEASE:

 result += daysRented * 3;

 break;

 case Movie.CHILDRENS:

 result += 1.5;

 if (daysRented > 3)

 result += (daysRented - 3) * 1.5;

 break;

 }

 return result;

 }

Once it is moved I can start replacing the case statement with inheritance. I do this by

taking one leg of the case statement at a time, and creating an overriding method. I start

with RegularPrice.

Class RegularPriceÖ

 double charge(int daysRented){

 double result = 2;

 if (daysRented > 2)

 result += (daysRented - 2) * 1.5;

 return result;

 }

This will override the parent case statement, which I just leave as it is. I compile and test

for this case, then take the next leg, compile and testÖ. (To make sure Iím executing the

subclass code, I like to throw in a deliberate bug and run it to ensure the tests blow up.

Not that Iím paranoid or anything.)

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 166

Class ChildrensPrice

 double charge(int daysRented){

 double result = 1.5;

 if (daysRented > 3)

 result += (daysRented - 3) * 1.5;

 return result;

 }

Class NewReleasePriceÖ

 double charge(int daysRented){

 return daysRented * 3;

 }

When Iíve done that with all the legs, I declare the Price.charge() method abstract.

Class PriceÖ

 abstract double charge(int daysRented);

I can now do the same procedure with frequentRenterPoints(). First I move the method

over to Price.

Class MovieÖ

 int frequentRenterPoints(int daysRented){

 return _price.frequentRenterPoints(daysRented);

 }

Class PriceÖ

 int frequentRenterPoints(int daysRented){

 if ((priceCode() == Movie.NEW_RELEASE) && daysRented > 1) return 2;

 else return 1;

 }

In this case, however I wonít make the superclass method abstract. Instead I will create an

overriding method for new releases, and leave a defined method (as the default) on the

superclass.

Class NewReleasePrice

 int frequentRenterPoints(int daysRented){

 return (daysRented > 1) ?

 2:

 1;

 }

Class PriceÖ

 int frequentRenterPoints(int daysRented){

 return 1;

 }

Now I have removed all the methods that needed a price code. So I can get rid of the price

code methods and data on both Movie and Price.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 167

Putting in the state pattern was quite an effort, was it worth it? The gain is now that

should I change any of prices behavior, add new prices, or add extra price dependent

behavior; it will be much easier to change. The rest of the application does not know

about the use of the state pattern. For the tiny amount of behavior I currently have it is not

a big deal. But in a more complex system with a dozen or so price dependent methods this

would make a big difference. All these changes were small steps, it seems slow to write it

like this, but not once did I have to open the debugger. So the process actually flowed

quite quickly.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 168

Lecture No. 44

Capability Maturity Model Integration (CMMI)

Capability Maturity Model or CMM is a reference model of mature practices in a

specified discipline, used to assess a group’s capability to perform that discipline. In fact

there are a number of CMMs. They differ by discipline (software, systems, acquisition,

etc.), structure (staged versus continuous), how maturity is defined (process improvement

path), and how capability is defined (institutionalization). Hence “Capability Maturity

Model®” and CMM® are used by the Software Engineering Institute (SEI) to denote a

particular class of maturity models.

Software CMM, the one we saw earlier on, is one of the many CMM models.

Name Structure Domain

Software CMM staged software development

System Engineering CMM continuous system engineering

Software Acquisition CMM staged software acquisition

System Security Engineering CMM continuous security engineering

FAA-iCMM continuous

software engineering, systems engineering, and

acquisition

IPD-CMM hybrid integrated product development

People CMM staged workforce

SPICE Model continuous software development

Since these models have different structure and application domains, an organization

could potentially use many of these models for their different activities, at times it could

become problematic for them.

CMMI Integrates systems and software disciplines into single process improvement

framework and provides a framework for introducing new disciplines as needs arise. It

can now be applied to just the software engineering projects in an organization or for the

entire spectrum of activities outlined above.

CMMI Representations

A representation allows an organization to pursue different improvement objectives.

There are two types of representations in the CMMI models: staged and continuous. The

organization and presentation of the data are different in each representation. However,

the content is the same.

Staged Representation

Staged representation is classical representation we have already seen previously. It:

 Provides a proven sequence of improvements, each serving as a foundation for

the next.

 Permits comparisons across and among organizations by the use of maturity

levels.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 169

 Provides an easy migration from the SW-CMM to CMMI.

 Provides a single rating that summarizes appraisal results and allows comparisons

among organizations

This representation indicates maturity of an organization’s standard process -- to answer,

“What is a good order for approaching improvement across the organization?”

You may recall that a maturity level is a well-defined evolutionary plateau of process

improvement. There are five maturity levels and each level is a layer in the foundation for

continuous process improvement using a proven sequence of improvements, beginning

with basic management practices and progressing through a predefined and proven path

of successive levels.

Each maturity level provides a necessary foundation for effective implementation of

processes at the next level. Higher level processes have less chance of success without the

discipline provided by lower levels. The effect of innovation can be obscured in a noisy

process.

Higher maturity level processes may be performed by organizations at lower maturity

levels, with the risk of not being consistently applied in a crisis.

Continuous Representation

Continuous representation allows you to select the order of improvement that best meets

your organization’s business objectives and mitigates your organization’s areas of risk. It

enables comparisons across and among organizations on a process-area-by-process-area

basis and provides an easy migration from EIA 731 (and other models with a continuous

representation) to CMMI.

As opposed to the staged representation, it indicates improvement within a single process

area -- to answer, “What is a good order for approaching improvement of this process

area?”

Capability Levels

A capability level is a well-defined evolutionary plateau describing the organization’s

capability relative to a process area. There are six capability levels. For capability levels

1-5, there is an associated generic goal. Each level is a layer in the foundation for

continuous process improvement. Thus, capability levels are cumulative, i.e., a higher

capability level includes the attributes of the lower levels. The five (actually six)

capability levels (starting from 0) are enumerated below in the reverse order, 5 being the

highest and 0 being the lowest.

5 Optimizing

4 Quantitatively Managed

3 Defined

2 Managed

1 Performed

0 Incomplete

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 170

The process area capability of an implemented process can be represented by a bar as

shown below.

Relating Process Area Capability and Organizational Maturity

Organizational maturity is the focus of the staged representation, whereas process area

capability is the focus of the continuous representation.

Organizational maturity and process area capability are similar concepts. The difference

between them is that organizational maturity pertains to a set of process areas across an

organization, while process area capability deals with a set of processes relating to a

single process area or specific practice.

Comparison of Representations

Staged

 Process improvement is measured using maturity levels.

 Maturity level is the degree of process improvement across a predefined set of

process areas.

 Organizational maturity pertains to the “maturity” of a set of processes across an

organization

Continuous

 Process improvement is measured using capability levels.

 Capability level is the achievement of process improvement within an individual

process area.

 Process area capability pertains to the “maturity” of a particular process across an

organization.

Process

C
a
p

a
b

il
it

y
 L

e
v
e
l This point

represents
a higher level
of “maturity”
than this point
in a specific
process area

3

2

1

0

Process Area n

Process

C
a
p

a
b

il
it

y
 L

e
v
e
l This point

represents
a higher level
of “maturity”
than this point
in a specific
process area

3

2

1

0

Process Area n

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 171

Advantages of Each Representation

Staged provides a roadmap for implementing groups of process areas and sequencing of

implementation. It has a familiar structure for those transitioning from the Software

CMM.

Continuous provides maximum flexibility for focusing on specific process areas

according to business goals and objectives and has a familiar structure for those

transitioning from EIA 731.

As the staged representation requires all KPAs to be addressed at a particular level before

a company can move to the next maturity level, it may not be easy for small companies to

implement this model. There may be a number of activities that may not be relevant to

their type of work but they would still have to do them in order to be at a certain level. On

the other hand, organization can focus on their own areas of expertise and may be able to

achieve high capability levels in some areas without bothering about the rest. This is a

great advantage for small organization and hence this model is believed to be more

suitable for small Pakistani organizations than the staged one.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 172

Lecture No. 45

CMM Overview
CMM Maturity Levels

There are five levels defined along the continuum of the CMM

and, according to the SEI:

"Predictability, effectiveness, and control of an organization's software processes are

believed to improve as the organization moves up these five levels. While not rigorous,

the empirical evidence to date supports this belief."

Level 1 - Ad hoc (Chaotic)

It is characteristic of processes at this level that they are (typically) undocumented and in

a state of dynamic change, tending to be driven in an ad hoc, uncontrolled and reactive

manner by users or events. This provides a chaotic or unstable environment for the

processes.

Organizational implications

(a) Institutional knowledge tends to be scattered (there being limited structured

approach to knowledge management) in such environments, not all of the

stakeholders or participants in the processes may know or understand all of the

components that make up the processes. As a result, process performance in

such organizations is likely to be variable (inconsistent) and depend heavily on

the institutional knowledge, or the competence, or the heroic efforts of

relatively few people or small groups.

(b) Despite the chaos, such organizations manage to produce products and

services. However, in doing so, there is significant risk that they will tend to

exceed any estimated budgets or schedules for their projects - it being difficult

to estimate what a process will do when you do not fully understand the

process (what it is that you do) in the first place and cannot therefore control it

or manage it effectively.

(c) Due to the lack of structure and formality, organizations at this level may over-

commit, or abandon processes during a crisis, and it is unlikely that they will

be able to repeat past successes. There tends to be limited planning, limited

executive commitment or buy-in to projects, and limited acceptance of

processes.

Level 2 - Repeatable

It is characteristic of processes at this level that some processes are repeatable, possibly

with consistent results. Process discipline is unlikely to be rigorous, but where it exists it

may help to ensure that existing processes are maintained during times of stress.

Organizational implications

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 173

i) Processes and their outputs could be visible to management at defined points,

but results may not always be consistent. For example, for project/program

management processes, even though (say) some basic processes are

established to track cost, schedule, and functionality, and if a degree of

process discipline is in place to repeat earlier successes on projects with

similar applications and scope, there could still be a significant risk of

exceeding cost and time estimates.

Level 3 - Defined

It is characteristic of processes at this level that there are sets of defined and documented

standard processes established and subject to some degree of improvement over time.

These standard processes are in place (i.e., they are the AS-IS processes) and used to

establish consistency of process performance across the organization.

Organizational implications

(a) Process management starts to occur using defined documented processes, with

mandatory process objectives, and ensures that these objectives are

appropriately addressed.

Level 4 - Managed

It is characteristic of processes at this level that, using process metrics, management can

effectively control the AS-IS process (e.g., for software development). In particular,

management can identify ways to adjust and adapt the process to particular projects

without measurable losses of quality or deviations from specifications. Process Capability

is established from this level.

Organizational implications

a) Quantitative quality goals tend to be set for process output - e.g., software

or software maintenance.

b) Using quantitative/statistical techniques, process performance is measured

and monitored and generally predictable and controllable also.

Level 5 - Optimizing

It is a characteristic of processes at this level that the focus is on continually improving

process performance through both incremental and innovative technological

changes/improvements.

Organizational implications

(a) Quantitative process-improvement objectives for the organization are

established, continually revised to reflect changing business objectives, and

used as criteria in managing process improvement. Thus, process

improvements to address common causes of process variation and measurably

improve the organization’s processes are identified, evaluated, and deployed.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 174

(b) The effects of deployed process improvements are measured and evaluated

against the quantitative process-improvement objectives.

(c) Both the defined processes and the organization’s set of standard processes

are targets for measurable improvement activities.

(d) A critical distinction between maturity level 4 and maturity level 5 is the type

of process variation addressed.

At maturity level 4, processes are concerned with addressing statistical special causes of

process variation and providing statistical predictability of the results, and though

processes may produce predictable results, the results may be insufficient to achieve the

established objectives.

At maturity level 5, processes are concerned with addressing statistical common causes of

process variation and changing the process (for example, shifting the mean of the process

performance) to improve process performance. This would be done at the same time as

maintaining the likelihood of achieving the established quantitative process-improvement

objectives.

Extensions

Some versions of CMMI from SEI indicate a "level 0", characterized as "Incomplete".

Some pundits leave this level out as redundant or unimportant, but Pressman and others

make note of it.

Comparison of CMMI Representations Staged Continuous

What is a CMMI model representation? The answer requires an explanation of the

structure of CMMI models. The basic building blocks in every CMMI model are called

"process areas." A process area does not describe how an effective process is executed

(e.g., entrance and exit criteria, roles of participants, resources). Instead, a process area

describes what those using an effective process do (practices) and why they do those

things (goals).

Selecting a Representation

When making the decision about which architectural representation to use for process

improvement, comparative advantages of each approach as represented in the given

Table.

Continuous Representation Staged Representation

Grants explicit freedom to select the order

of improvement that best meets the

organization's business objectives.

Enables increased visibility into the

capability achieved within each individual

process area.

Supports a focus on risks specific to

Enables organizations to have a predefined

and proven path.

Builds on a relatively long history of use.

Case studies and data exist that show return

on investment.

Permits comparisons across and among

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 175

individual process areas.

Affords a more direct comparison of

process improvement to ISO 15504

because the organization of process areas is

derived from 15504.

Allows the generic practices from higher

capability levels to be more evenly and

completely applied to all of the process

areas.

organizations.

Introduces a sequence of improvements,

beginning with basic management practices

and progressing through successive levels,

each serving as a foundation for the next.

Summarizes process-improvement results

in a simple form—a single maturity-level

number.

Project Management Concerns

Project management is the discipline of planning, organizing and managing resources to

bring about the successful completion of specific project goals and objectives.

A project is a finite endeavor (having specific start and completion dates) undertaken to

create a unique product or service which brings about beneficial change or added value.

This finite characteristic of projects stands in sharp contrast to processes, or operations,

which are permanent or semi-permanent functional work to repetitively produce the same

product or service. In practice, the management of these two systems is often found to be

quite different, and as such requires the development of distinct technical skills and the

adoption of separate management.

There are several approaches that can be taken to managing project activities including

agile, interactive, incremental, and phased approaches.

Regardless of the approach employed, careful consideration needs to be given to clarify

surrounding project objectives, goals, and importantly, the roles and responsibilities of all

participants and stakeholders.

The traditional approach

A traditional phased approach identifies a sequence of steps to be completed. In the

"traditional approach", we can distinguish 5 components of a project (4 stages plus

control) in the development of a project:

Typical development phases of a project

http://en.wikipedia.org/wiki/File:Project_Management_%28phases%29.png

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 176

 Project initiation stage;

 Project planning or design stage;

 Project execution or production stage;

 Project monitoring and controlling systems;

 Project completion stage.

Not all the projects will visit every stage as projects can be terminated before they reach

completion. Some projects probably don't have the planning and/or the monitoring. Some

projects will go through steps 2, 3 and 4 multiple times.

Many industries utilize variations on these stages. For example, in bricks and mortar

architectural design, projects typically progress through stages like Pre-Planning,

Conceptual Design, Schematic Design, Design Development, Construction Drawings (or

Contract Documents), and Construction Administration. In software development, this

approach is often known as "waterfall development", i.e., one series of tasks after another

in linear sequence. In software development many organizations have adapted the

Rational Unified Process (RUP) to fit this methodology, although RUP does not require

or explicitly recommend this practice. Waterfall development can work for small tightly

defined projects, but for larger projects of undefined or unknowable scope, it is less

suited. The Cone of Uncertainty explains some of this as the planning made on the initial

phase of the project suffers from a high degree of uncertainty. This becomes specially

true as software development is often the realization of a new or novel product, this

method has been widely accepted as ineffective for software projects where requirements

are largely unknowable up front and susceptible to change. While the names may differ

from industry to industry, the actual stages typically follow common steps to problem

solving — "defining the problem, weighing options, choosing a path, implementation and

evaluation."

Software Quality Assurance

Software quality assurance (SQA) consists of a means of monitoring the software

engineering processes and methods used to ensure quality. The methods by which this is

accomplished are many and varied, and may include ensuring conformance to one or

more standards, such as ISO 9000 or CMMI.

This definition emphasizes upon three important points:

• Software requirements are the foundation from which quality is measured. Lack of

conformance is lack of quality

• Specified standards define a set of development criteria that guide the manner in

which software is engineered. If the criteria are not followed, lack of quality will

almost surely result.

• A set of implicit requirements often goes unmentioned (ease of use, good

maintainability etc.)

Another very important question is: Do you need to worry about it after the code has been

generated? In fact, SQA is an umbrella activity that is applied throughout the software

process.

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 177

Quality Assurance

Goal of quality assurance is to provide the management with the necessary data to be

informed about product quality. It consists of auditing and reporting functions of

management. If data provided through QA identifies problems, the management deploys

the necessary resources to fix it and hence achieves desired quality control.

Cost of quality

A very significant question is: does quality assurance add any value. That is, is worth

spending a lot of money in quality assurance practices? In order to understand the impact

of quality assurance practices, we have to understand the cost of quality (or lack thereof)

in a system.

Quality has a direct and indirect cost in the form of cost of prevention, appraisal, and

failure.

If we try to prevent problems, obviously we will have to incur cost. This cost includes:

• Quality planning

• Formal technical reviews

• Test equipment

• Training

We will discuss these in more detail in the later sections.

The cost of appraisal includes activities to gain insight into the product condition. It

involves in-process and inter-process inspection and testing.

And finally, failure cost. Failure cost has two components: internal failure cost and

external failure cost. Internal failure cost requires rework, repair, and failure mode

analysis. On the other hand, external failure cost involves cost for complaint resolution,

product return and replacement, help-line support, warranty work, and law suits.

SQA Activities

There are two different groups involved in SQA related activities:

• Software engineers who do the technical work

• SQA group who is responsible for QA planning, oversight, record keeping, analysis,

and reporting

Software engineers address quality by applying solid technical methods and measures,

conducting formal and technical reviews, and performing well planned software testing.

The SQA group assists the software team in achieving a high quality product.

SQA Group Activities

An SQA plan is developed for the project during project planning and is reviewed by all

stake holders. The plan includes the identification of:

• Evaluations to be performed

• Audits and reviewed to be performed

• Standards that are applicable to the project

• Procedures for error reporting and tracking

CS605 Software Engineering-II VU

© Copy Right Virtual University of Pakistan 178

• Documents to be produced by the SQA group

• Amount of feedback provided to the software project team

The group participates in the development of the project’s software process description.

The software team selects the process and SQA group reviews the process description for

compliance with the organizational policies, internal software standards, externally

imposed standards, and other parts of the software project plan.

Quality Control

The next question that we need to ask is, once we have defined how to assess quality,

how are we going to make sure that our processes deliver the product with the desired

quality. That is, how are we going to control the quality of the product?

The basic principle of quality control is to control the variation as variation control is the

heart of quality control. It includes resource and time estimation, test coverage, variation

in number of bugs, and variation in support.

From one project to another we want to minimize the predicted resources needed to

complete a project and calendar time. This involves a series of inspection, reviews, and

tests and includes feedback loop. So quality control is a combination of measurement and

feedback and combination of automated tools and manual interaction.

The End

	Table of Content
	Lecture No. 1
	Introduction to Software Engineering

	Lecture No. 2
	Software Process

	Lecture No. 3
	Software Lifecycle Models

	Lecture No. 4
	Incremental Models

	Lecture No. 5
	Object-Oriented Lifecycle Models

	Lecture No. 6
	Software Project Management Concepts
	People
	Product
	Process
	Project
	Team Leader

	Lecture No. 7
	The Software Team

	Lecture No. 8
	The Project Management

	Lecture No. 9
	Software Size Estimation

	Lecture No. 10
	Function Point Counting Process

	Lecture No. 11
	Function Point Counting Process (cont.)
	FTR Rules for an EI
	DET Rules for an EI
	EO/EQ Complexity and Contribution Rules
	Shared FTR Rules for EOs and EQs
	Additional FTR Rules for an EO
	Shared DET Rules for EOs and EQs

	Hints to Help with Counting EIs, EOs and EQs
	Additional Hints to Help Counting EOs and EQs
	General System Characteristics
	1. DATA COMMUNICATIONS
	2. DISTRIBUTED DATA PROCESSING
	3. PERFORMANCE
	4. HEAVILY USED CONFIGURATION
	5. TRANSACTION RATE
	6. ONLINE DATA ENTRY
	7. END-USER EFFICIENCY
	8. ONLINE UPDATE
	9. COMPLEX PROCESSING
	10. REUSABILITY
	11. INSTALLATION EASE
	12. OPERATIONAL EASE
	13. MULTIPLE SITES
	14. FACILITATE CHANGE

	Adjusted FP Count

	Lecture No. 12
	Software Process and Project Metrics

	Measures, Metrics and Indicators
	Metrics for software quality
	Lecture No. 13
	Software Quality Factors
	Measuring Quality
	Defect Removal Efficiency

	Lecture No. 14
	Metrics for specification quality

	Baseline
	Metrics for small organizations
	Lecture No. 15
	Statistical Control Techniques – control charts

	Lecture No. 16
	Interpreting Measurements

	Lecture No. 17
	Software Project Planning

	Lecture No. 18
	Risk analysis and management

	Lecture No. 19
	Types of Risks

	Lecture No. 20
	Assessing Risk Impact

	Lecture No. 21
	Software Project Scheduling and Monitoring

	Lecture No. 22
	Relationship between people and effort

	Lecture No. 23
	Task Network

	Lecture No. 24
	Scheduling

	Lecture No. 25
	Project Tracking

	Lecture No. 26
	Error Tracking

	Lecture No. 27
	Software Quality Assurance

	Lecture No. 28
	Software Reviews

	Lecture No. 29
	Formal Technical Reviews

	Lecture No. 30
	Statistical Software Quality Assurance

	Lecture No. 31
	Software Safety

	Lecture No. 32
	Poka-Yoke (Mistake-Proofing)

	Lecture No. 33
	Software Configuration Management (SCM)

	Lecture No. 34
	Product Release Version Numbering System

	Release Numbering
	Internal Release Numbering
	Lecture No. 35
	Change Control Process

	Lecture No. 36
	Requirement Management and CMM

	Lecture No. 37
	Measuring Change Activity

	Lecture No. 38
	Legacy systems

	Lecture No. 39
	Environment Assessment

	Lecture No. 40
	Forward Engineering

	Lecture No. 41
	Business Process Reengineering

	Lecture No. 42
	Software Refactoring

	Lecture No. 43
	Moving the amount calculation

	Lecture No. 44
	Capability Maturity Model Integration (CMMI)

	Lecture No. 45
	CMM Overview
	The traditional approach

