Solution

Assignment # 1

CS 508
Q 1: In order to evaluate and compare different languages, we need some mechanism for their evaluation. The first criterion that comes to mind is: how long it takes to develop a program in a given programming language. On what basis the productivity of language is measured in function point, elaborate your answer with respect to some suitable example.

[10]
The standard economic definition of productivity is, "Goods or services produced per unit of labor and expense." Until 1979, when A.J. Albrecht of IBM published his Function Point metric, there was never a software definition of exactly what "goods or services" were the outputs of a software project. The previous metric for software was "cost per line of source code," which unfortunately does not correlate at all to the economic definition of productivity. All manufacturing managers understand that if a manufacturing process involves a substantial percentage of fixed costs, and there is a decline in the number of units manufactured, then the cost per unit must go up. Software, as it turns out, involves a substantial percentage of fixed or inelastic costs that are not associated with coding. When more powerful programming languages are used, the result is to reduce the number of "units" that must be produced for a given program or system. However, the requirements, specifications, user documents, and many other cost elements tend to behave like fixed costs, and hence cause metrics such as "cost per line of source code" to move paradoxically upwards instead of downwards. That is why new programming languages were introduced like 4th generation languages (4GL). All 4GLs are designed to reduce programming effort, the time it takes to develop software, and the cost of software development. They are not always successful in this task, sometimes resulting in inelegant and un-maintainable code. A quantitative definition of 4GL has been set by Capers Jones, as part of his work on function point analysis. Jones defines the various generations of programming languages in terms of developer productivity, measured in function points per staff-month. A 4GL is defined as a language that supports 12–20 FP/SM. This correlates with about 16–27 lines of code per function point implemented in a 4GL.
Q 2: Instruction execution can provide higher performance if simplicity enables much faster execution of each instruction, how Reduced Instruction Set Computing strategies overcome the design issues of any language.

[10]
In the mid 1970s researchers at IBM (and similar projects elsewhere) demonstrated that the majority of combinations of these orthogonal addressing modes and instructions were not used by most programs generated by compilers available at the time. It proved difficult in many cases to write a compiler with more than limited ability to take advantage of the features provided by conventional CPUs.

It was also discovered that, on micro coded implementations of certain architectures, complex operations tended to be slower than a sequence of simpler operations doing the same thing. This was in part an effect of the fact that many designs were rushed, with little time to optimize or tune every instruction, but only those used most often. As mentioned elsewhere, core memory had long since been slower than many CPU designs. The advent of semiconductor memory reduced this difference, but it was still apparent that more caches would allow higher CPU operating frequencies. Additional registers would require sizeable chip or board areas which, at the time (1975), could be made available if the complexity of the CPU logic was reduced. Later it was noted that one of the most significant characteristics of RISC processors was that external memory was only accessible by a load or store instruction. All other instructions were limited to internal registers. This simplified many aspects of processor design: allowing instructions to be fixed-length, simplifying pipelines, and isolating the logic for dealing with the delay in completing a memory access (cache miss, etc.) to only two instructions. This led to RISC designs being referred to as load/store architectures

