	[image: image1.png]

	Assignment No. 04
Semester: Spring 2011
CS401: Computer Architecture and Assembly Language Programming

	Total Marks: 20

Due Date:23rd June, 2011

	Instructions

Please read the following instructions carefully before submitting assignment:

It should be clear that your assignment will not get any credit if:

· The assignment is submitted after due date.

· The submitted assignment does not open or file is corrupt.
· Solution is copied from any other source.

Note: You have to submit your assignment in Ms word (.doc file) format. Assignment in any other format (extension) will not be accepted.
Objective

The objective of this assignment is to enhance your knowledge about
· Multitasking concepts in Assembly language
· Understand and modify existing Assembly code

	Assignment
	

	This assignment is based upon Elementary multitasking of two threads Example 11.1 given in Lectures handouts. Given code in example 11.1 creates two simple threads each rotating bars by changing characters at the two corners of the screen and have infinite loops. Its output looks like as below:
[image: image2.png]- \vuscsm1NAssnsof ededit

ID:\UUNCS 481 \As snSof £ SMTASK. COM

Figure 1: Output of Example 11.1 in Lectures handouts, having TWO threads shown in RED circles.

You are required to Modify the given code in Example 11.1 such that it creates THREE threads each rotating bars by changing characters have infinite loops at Left corner, Center and Right corners of the screen respectively. Its output MUST looks like as below:

[image: image3.png]- \vuscsm1NAssnsof ededit

ID:\UUNCS 481 \As snSof £ SMTASK. COM

Figure 2: Required output having THREE threads running, shown in RED circles.
Submission:

· Submit your modified Assembly Program code in Ms Word format by clearly Highlighting instructions you have Added/Modified. (10 Marks)
· Explain briefly the purpose of instructions you Added/Modified.(05 Marks)
· In Example 11.1 program, there is an instruction (Single) through which we can control the No. of threads running i.e. by modifying that instruction we can execute one or more thread among existing as we wish. Identify that instruction. (05 Marks)

	NOTE:

1. You have to use and modify Example 11.1. Any other program will not be accepted, even if it has the desired output.
2. You must submit your solution through LMS within due date. No assignment would be accepted through email after deadline.

	Solution:

; elementary multitasking of three threads

[org 0x0100]

jmp start

 ; ax,bx,ip,cs,flags storage area

taskstates: dw 0, 0, 0, 0, 0 ; task0 regs

 dw 0, 0, 0, 0, 0 ; task1 regs

 dw 0, 0, 0, 0, 0 ; task2 regs

 dw 0, 0, 0, 0, 0 ; task3 regs

current: db 0 ; index of current task

chars: db '\|/-' ; shapes to form a bar

; one task to be multitasked

taskone: mov al, [chars+bx] ; read the next shape

mov [es:0], al ; write at top left of screen

inc bx ; increment to next shape

and bx, 3 ; taking modulus by 4

jmp taskone ; infinite task

; second task to be multitasked

tasktwo: mov al, [chars+bx] ; read the next shape

mov [es:158], al ; write at top right of screen

inc bx ; increment to next shape

and bx, 3 ; taking modulus by 4

jmp tasktwo ; infinite task

; Third task to be multitasked

taskthree: mov al, [chars+bx] ; read the next shape

mov [es:70], al ; write at top right of screen

inc bx ; increment to next shape

and bx, 3 ; taking modulus by 4

jmp taskthree ; infinite task

; timer interrupt service routine

timer: push ax

push bx

mov bl, [cs:current] ; read index of current task

mov ax, 10 ; space used by one task

mul bl ; multiply to get start of task

mov bx, ax ; load start of task in bx

pop ax ; read original value of bx

mov [cs:taskstates+bx+2], ax ; space for current task

pop ax ; read original value of ax

mov [cs:taskstates+bx+0], ax ; space for current task

pop ax ; read original value of ip

mov [cs:taskstates+bx+4], ax ; space for current task

pop ax ; read original value of cs

mov [cs:taskstates+bx+6], ax ; space for current task

pop ax ; read original value of flags

mov [cs:taskstates+bx+8], ax ; space for current task

inc byte [cs:current] ; update current task index

cmp byte [cs:current], 4 ; is task index out of range

jne skipreset ; no, proceed

mov byte [cs:current], 0 ; yes, reset to task 0

skipreset: mov bl, [cs:current] ; read index of current task

mov ax, 10 ; space used by one task

mul bl ; multiply to get start of task

mov bx, ax ; load start of task in bx

mov al, 0x20

out 0x20, al ; send EOI to PIC

push word [cs:taskstates+bx+8] ; flags of new task

push word [cs:taskstates+bx+6] ; cs of new task

push word [cs:taskstates+bx+4] ; ip of new task

mov ax, [cs:taskstates+bx+0] ; ax of new task

mov bx, [cs:taskstates+bx+2] ; bx of new task

iret ; return to new task

start: mov word [taskstates+10+4], taskone ; initialize ip

mov [taskstates+10+6], cs ; initialize cs

mov word [taskstates+10+8], 0x0200 ; initialize flags

mov word [taskstates+20+4], tasktwo ; initialize ip

mov [taskstates+20+6], cs ; initialize cs

mov word [taskstates+20+8], 0x0200 ; initialize flags

mov word [taskstates+30+4], taskthree ; initialize ip

mov [taskstates+30+6], cs ; initialize cs

mov word [taskstates+30+8], 0x0200 ; initialize flags

mov word [current], 0 ; set current task index

xor ax, ax

mov es, ax ; point es to IVT base

cli

mov word [es:8*4], timer

mov [es:8*4+2], cs ; hook timer interrupt

mov ax, 0xb800

mov es, ax ; point es to video base

xor bx, bx ; initialize bx for tasks

sti

jmp $; infinite loop

�To hold task3 Registers

�Code of Task3 running in infinite loop.

�This instruction control No. of running threads. By setting its value 4 will include third Task execution.

�Populate task3 registers with Task3 addresses.

