
R
ev
ie
w

New Biotechnology �Volume 25, Number 4 �April 2009 REVIEW

Next-generation DNA
sequencing techniques

Wilhelm J. Ansorge

Ecole Polytechnique Federal Lausanne, EPFL, Switzerland

Next-generation high-throughput DNA sequencing techniques are opening fascinating opportunities in

the life sciences. Novel fields and applications in biology and medicine are becoming a reality, beyond

the genomic sequencing which was original development goal and application. Serving as examples are:

personal genomics with detailed analysis of individual genome stretches; precise analysis of RNA

transcripts for gene expression, surpassing and replacing in several respects analysis by various

microarray platforms, for instance in reliable and precise quantification of transcripts and as a tool for

identification and analysis of DNA regions interacting with regulatory proteins in functional regulation

of gene expression. The next-generation sequencing technologies offer novel and rapid ways for

genome-wide characterisation and profiling of mRNAs, small RNAs, transcription factor regions,

structure of chromatin and DNA methylation patterns, microbiology and metagenomics. In this article,

development of commercial sequencing devices is reviewed and some European contributions to the

field are mentioned. Presently commercially available very high-throughput DNA sequencing platforms,

as well as techniques under development, are described and their applications in bio-medical fields

discussed.
Introduction
Next-generation high-throughput DNA sequencing techniques,

which are opening fascinating new opportunities in biomedicine,

were selected by Nature Methods as the method of the year in 2007

[1]. However, the path to gaining acceptance of the novel tech-

nology was not an easy one. Until a few years ago the methods

used for the sequencing were the Sanger enzymatic dideoxy tech-

nique first described in 1977 [2] and the Maxam and Gilbert

chemical degradation method described in the same year [3],

which was used in sequence cases which could not easily be

resolved with the Sanger technique. The two laboratories where

the first automated DNA sequencers were produced, simulta-

neously, were those of Leroy Hood at Caltech [4], commercialised

by Applied Biosystems, and Wilhelm Ansorge at the European

Molecular Biology Laboratory EMBL [5,6] and commercialised by

Pharmacia-Amersham, later General Electric (GE) Healthcare. The
E-mail address: wilhelm.ansorge@epfl.ch.

1871-6784/$ - see front matter � 2009 Published by Elsevier B.V. doi:10.1016/j.nbt.2008.12.009
Sanger method was used in the first automated fluorescent project

for sequencing of a genome region, in which sequence determina-

tion of the complete gene locus for the HPRT gene was performed

using the EMBL technique; in that project the important concept of

paired-end sequencing was also introduced for the first time [7]. The

achievement of successful and unambiguous sequencing of a real

genomic DNA region, loaded with many sequence pitfalls like Alu

sequences in both directions of the HPRT gene locus, demonstrated

the feasibility of using an automated fluorescence-based technique

for the sequencing of entire genomes, and in principle the feasibility

of the technical sequencing part of the Human Genome project.

Whenthe internationalcommunitydecided ondetermination of

the whole human genome sequence, the goal triggered the devel-

opment of techniques allowing higher sequencing throughput. In

Japan, the work on fluorescent DNA sequencing technology by the

team of H. Kambara (http://www.hitachi.com/rd/fellow_kambar-

a.html) in the Hitachi laboratories resulted in the development after

1996 of a high-throughput capillary array DNA sequencer. Two
www.elsevier.com/locate/nbt 195

mailto:wilhelm.ansorge@epfl.ch
mailto:wilhelm.ansorge@epfl.ch
mailto:wilhelm.ansorge@epfl.ch
http://dx.doi.org/10.1016/j.nbt.2008.12.009

REVIEW New Biotechnology �Volume 25, Number 4 �April 2009

R
eview
companies, ABI (commercialising the Kambara system) and Amer-

sham(takingoverand developing further thesystemsetup intheUS

by the Molecular Dynamics company), commercialised automated

sequencing using parallel analysis in systems of up to 384 capillaries

at that time. Together with partial miniaturisation of the robotic

sample preparation, large efforts in automation of laboratory pro-

cesses and advances in new enzymes and biochemicals, the Sanger

technique made possible the determination of the sequence of the

human genome by two consortia working in parallel. It was the

unique method used for DNA sequencing, with innumerable appli-

cations in biology and medicine.

As the users and developers of the DNA sequencing techniques

realised, the great limitations of the Sanger sequencing protocols for

even larger sequence output were the need for gels or polymers used

as sieving separation media for the fluorescently labelled DNA frag-

ments, the relatively low number of samples which could be ana-

lysed in parallel and the difficulty of total automation of the sample

preparation methods. These limitations initiated efforts to develop

techniques without gels, which would allow sequence determina-

tion on very large numbers (i.e. millions) of samples in parallel. One

ofthefirstdevelopmentsofsuchatechniquewasattheEMBL(at that

time one of the two world leaders in DNA sequencing technology)

from 1988 to 1990. A patent application by EMBL [8] described a

large-scale DNA sequencing technique without gels, extending pri-

mers in ‘sequencing-by-synthesis, addition and detection of the

incorporated base’,proposingand describing the use of the so-called

‘reversible terminators’ for speed and efficiency [8]. The first step of

the technique consisted in detecting the next added fluorescently

labelled base (reversible terminator) in the growing DNA chain by

means of a sensitive CCD camera. This was performed on a large

number of DNA samples in parallel, attached either to a planar

support or to beads, on DNA chips, minimising reaction volumes

in a miniaturised microsystem. In the next step the terminator was

convertedtoastandardnucleotideandthedyeremovedfromit.This

cycleand theprocesswere repeatedtodeterminethenextbase inthe

sequence. Theprinciple described in the patent application is in part

very similar to that used today in the so-called next-generation

devices, with many additional original developments commercia-

lised by Illumina-Solexa, Helicos and other companies.

Since 2000, focused developments have continued in several

groups. Various institutions, particularly European laboratories,

considered the capillary systems as the high point and in a less

visionary decision ceased developments of even the most promis-

ing novel sequencing techniques, turning their attention exclu-

sively to arrays. By contrast, in the US, funding for development

and testing of novel, non-gel-based high-throughput sequencing

technologies were provided by the large granting agencies and

private companies. Efforts to bring the platforms to maturity were

under way. The resulting devices and platforms available on the

market in mid-2008, as well as some interesting parallel develop-

ments, are described in more detail below. The EU has recently

initiated significant support for the development of novel high-

throughput DNA sequencing technologies, among others the

READNA initiative (www.cng.fr/READNA).

Next-generation DNA sequencing platforms
Novel DNA sequencing techniques provide high speed and

throughput, such that genome sequencing projects that took
196 www.elsevier.com/locate/nbt
several years with the Sanger technique can now be completed

in a matter of weeks. The advantage of these platforms is the

determination of the sequence data from amplified single DNA

fragments, avoiding the need for cloning of DNA fragments. A

limiting factor of the new technology remains the overall high cost

for generating the sequence with very high-throughput, even

though compared with Sanger sequencing the cost per base is

lower by several orders of magnitude. Reduction of sequencing

errors is another factor; in this respect the Sanger sequencing

technique remains competitive in the immediate future. Other

limitations in some applications are short read lengths, non-uni-

form confidence in base calling in sequence reads, particularly

deteriorating 30-sequence quality in technologies with short read

lengths and generally lower reading accuracy in homopolar

stretches of identical bases. The huge amount of data generated

by these systems (over a gigabase per run) in the form of short reads

presents another challenge to developers of software and more

efficient computer algorithms.

The 454 GenomeSequencer FLX instrument (Roche Applied
Science)
The principle of pyrophosphate detection, the basis of this device,

was described in 1985 [9], and a system using this principle in a

new method for DNA sequencing was reported in 1988 [10]. The

technique was further developed into a routinely functioning

method by the teams of M. Ronaghi, M. Uhlen, and P. Nyren in

Stockholm [11], leading to a technique commercialised for the

analysis of 96 samples in parallel in a microtiter plate.

TheGS instrumentwas introduced in 2005, developed by454 Life

Sciences, as the first next-generation system on the market. In this

system (Fig. 1),DNAfragments are ligatedwith specific adapters that

cause the binding of one fragment to a bead. Emulsion PCR is carried

out for fragment amplification, with water droplets containing one

bead and PCR reagents immersed in oil. The amplification is neces-

sary toobtain sufficient light signal intensity for reliabledetection in

the sequencing-by-synthesis reaction steps. When PCR amplifica-

tion cycles are completed and after denaturation, each bead with its

one amplified fragment is placed at the top end of an etched fibre in

an optical fibre chip, created from glassfibre bundles. The individual

glass fibres are excellent light guides, with the other end facing a

sensitive CCD camera, enabling positional detection of emitted

light. Each bead thus sits on an addressable position in the light

guide chip, containing several hundred thousand fibres with

attached beads. In the next step polymerase enzyme and primer

are added to the beads, and one unlabelled nucleotide only is

supplied to the reaction mixture to all beads on the chip, so that

synthesis of the complementary strand can start. Incorporation of a

following base by the polymerase enzyme in the growing chain

releases a pyrophosphate group, which can be detected as emitted

light. Knowing the identity of the nucleotide supplied in each step,

the presence of a light signal indicates the next base incorporated

into the sequence of the growing DNA strand.

The method has recently increased the achieved reading length

to the 400–500 base range, with paired-end reads, and as such is

being applied to genome (bacterial, animal, human) sequencing.

One spectacular application of the system was the identification

of the culprit in the recent honey-bee disease epidemics (see

company web pages below). A relatively high cost of operation

http://www.cng.fr/READNA

New Biotechnology �Volume 25, Number 4 �April 2009 REVIEW

FIGURE 1

(A) Outline of the GS 454 DNA sequencer workflow. Library construction (I) ligates 454-specific adapters to DNA fragments (indicated as A and B) and couples

amplification beads with DNA in an emulsion PCR to amplify fragments before sequencing (II). The beads are loaded into the picotiter plate (III). (B) Schematic
illustration of the pyrosequencing reaction which occurs on nucleotide incorporation to report sequencing-by-synthesis. (Adapted from http://www.454.com.)

R
ev
ie
w

and generally lower reading accuracy in homopolar stretches of

identical bases are mentioned presently as the few drawbacks of

the method. The next upgrade 454 FLX Titanium will quintuple

the data output from 100 Mb to about 500 Mb, and the new

picotiter plate in the device uses smaller beads about 1 mm dia-

meter. The device, schema of operation, its further developments

and list of publications with applications can be found at http://

www.454.com/index.asp and in [1].

The Illumina (Solexa) Genome Analyzer
The Solexa sequencing platform was commercialised in 2006, with

Illumina acquiring Solexa in early 2007. The principle (Fig. 2) is on

the basis of sequencing-by-synthesis chemistry, with novel rever-

sible terminator nucleotides for the four bases each labelled with a

different fluorescent dye, and a special DNA polymerase enzyme

able to incorporate them. DNA fragments are ligated at both ends

to adapters and, after denaturation, immobilised at one end on a

solid support. The surface of the support is coated densely with the

adapters and the complementary adapters. Each single-stranded

fragment, immobilised at one end on the surface, creates a ‘bridge’

structure by hybridising with its free end to the complementary

adapter on the surface of the support. In the mixture containing

the PCR amplification reagents, the adapters on the surface act as

primers for the following PCR amplification. Again, amplification

is needed to obtain sufficient light signal intensity for reliable

detection of the added bases. After several PCR cycles, random

clusters of about 1000 copies of single-stranded DNA fragments

(termed DNA ‘polonies’, resembling cell colonies after polymerase

amplification) are created on the surface. The reaction mixture for

the sequencing reactions and DNA synthesis is supplied onto the

surface and contains primers, four reversible terminator nucleo-

tides each labelled with a different fluorescent dye and the DNA

polymerase. After incorporation into the DNA strand, the termi-

nator nucleotide, as well as its position on the support surface, is
detected and identified via its fluorescent dye by the CCD camera.

The terminator group at the 30-end of the base and the fluorescent

dye are then removed from the base and the synthesis cycle is

repeated. The sequence read length achieved in the repetitive

reactions is about 35 nucleotides. The sequence of at least 40

million polonies can be simultaneously determined in parallel,

resulting in a very high sequence throughput, on the order of

Gigabases per support.

In 2008 Illumina introduced an upgrade, the Genome Analyzer

II that triples output compared to the previous Genome Analyzer

instrument. A paired-end module for the sequencer was intro-

duced, and with new optics and camera components that allow

the system to image DNA clusters more efficiently over larger areas,

the new instrument triples the output per paired-end run from 1 to

3 Gb. The system generates at least 1.5 Gb of single-read data per

run, at least 3 Gb of data in a paired-end run, recording data from

more than 50 million reads per flow cell. The run time for a 36-

cycle run was decreased to two days for a single-read run, and four

days for a paired-end run. Information on the Genome Analyzer

system can be found at http://www.solexa.com/ and in [1].

The Applied Biosystems ABI SOLiD system
The ABI SOLiD sequencing system, a platform using chemistry

based upon ligation, was introduced in Autumn 2007. The gen-

eration of a DNA fragment library and the sequencing process by

subsequent ligation steps are shown schematically in Figs 3,4. In

this technique, DNA fragments are ligated to adapters then bound

to beads. A water droplet in oil emulsion contains the amplifica-

tion reagents and only one fragment bound per bead; DNA frag-

ments on the beads are amplified by the emulsion PCR. After DNA

denaturation, the beads are deposited onto a glass support surface.

In a first step, a primer is hybridised to the adapter. Next, a mixture

of oligonucleotide octamers is also hybridised to the DNA frag-

ments and ligation mixture added. In these octamers, the doublet
www.elsevier.com/locate/nbt 197

http://www.454.com/index.asp
http://www.454.com/index.asp
http://www.solexa.com/
mailto:wilhelm.ansorge@epfl.ch

REVIEW New Biotechnology �Volume 25, Number 4 �April 2009

FIGURE 2

Outline of the Illumina Genome Analyzer workflow. Similar fragmentation and adapter ligation steps take place (I), before applying the library onto the solid

surface of a flow cell. Attached DNA fragments form ‘bridge’ molecules which are subsequently amplified via an isothermal amplification process, leading to a
cluster of identical fragments that are subsequently denatured for sequencing primer annealing (II). Amplified DNA fragments are subjected to sequencing-by-

synthesis using 30 blocked labelled nucleotides (III). (Adapted from the Genome Analyzer brochure, http://www.solexa.com.)

R
eview
of fourth and fifth bases is characterised by one of four fluorescent

labels at the end of the octamer. After the detection of the

fluorescence from the label, bases 4 and 5 in the sequence are

thus determined. The ligated octamer oligonucleotides are cleaved

off after the fifth base, removing the fluorescent label, then hybri-

disation and ligation cycles are repeated, this time determining

bases 9 and 10 in the sequence; in the subsequent cycle bases 14

and 15 are determined, and so on. The sequencing process may be

continued in the same way with another primer, shorter by one

base than the previous one, allowing one to determine, in the

successive cycles, bases 3 and 4, 8 and 9, 13 and 14. The achieved

sequence reading length is at present about 35 bases. Because each

base is determined with a different fluorescent label, error rate is

reduced. Sequences can be determined in parallel for more than 50

million bead clusters, resulting in a very high throughput of the

order of Gigabases per run.
198 www.elsevier.com/locate/nbt
Applied Biosystems produced an updated version in 2008, the

SOLiD 2.0 platform, which may increase the output of the instru-

ment from 3 to 10 Gb per run. This change will reduce the overall

run time of a fragment library on the new system to 4.5 days from

8.5 days on the existing machine. For further information see

www3.appliedbiosystems.com/index.htm, and in [1]

The Helicos single-molecule sequencing device, HeliScope
The systems discussed above require the emulsion PCR amplifica-

tion step of DNA fragments, to make the light signal strong

enough for reliable base detection by the CCD cameras. PCR

amplification has revolutionised DNA analysis, but in some

instances it may introduce base sequence errors into the copied

DNA strands, or favour certain sequences over others, thus chan-

ging the relative frequency and abundance of various DNA frag-

ments that existed before amplification. Ultimate miniaturisation

http://www3.appliedbiosystems.com/
mailto:wilhelm.ansorge@epfl.ch

New Biotechnology �Volume 25, Number 4 �April 2009 REVIEW

FIGURE 3

Library preparation for DNA sequencing using the SOLiD DNA sequencing

platform. (A) Fragment library: After whole genome DNA is randomly

fragmented (indicated by the dashed arrows), two different 25 bp DNA
adapters (P1 and P2) are ligated at the 50- and 30-ends of the DNA

fragments generated. (B) Mate-paired library: In this case, DNA fragments

that are separated from another DNA fragment of known length (e.g. 3 kb
for this example) are ligated such that they encompass an internal

adapter. Subsequently, two different DNA adapters are ligated at the 50-
and 30-ends, similarly to (A). (Adapted and modified from http://

www.appliedbiosystems.com.)

R
ev
ie
w

into the nanoscale, and the minimal use of biochemicals, would be

achieved if the sequence could be determined directly from a

single DNA molecule, without the need for PCR amplification

and its potential for distortion of abundance levels. This requires

a very sensitive light detection system and a physical arrangement

capable of detecting and identifying light from a single dye

molecule. Techniques for the detection and analysis of single

molecules have been under intensive development over past

decades, and several very sensitive systems for single photon

detection have been produced and tested. One of the first tech-

niques for sequencing from a single DNA molecule was described

by the team of S. Quake [12], and licensed by Helicos Biosciences.

Helicos introduced the first commercial single-molecule DNA

sequencing system in 2007. The nucleic acid fragments are hybri-

dised to primers covalently anchored in random positions on a

glass cover slip in a flow cell. The primer, polymerase enzyme and

labelled nucleotides are added to the glass support. The next base

incorporated into the synthesised strand is determined by analysis

of the emitted light signal, in the sequencing-by-synthesis tech-

nique (similar to Fig. 2, but on only one DNA fragment, without

amplification). This system also analyses many millions of single

DNA fragments simultaneously, resulting in sequence throughput

in the Gigabase range. Although still in the first years of operation,

the system has been tested and validated in several applications

with promising results, for example in the pre-natal trisomy-21

(Down Syndrome) test, using only the maternal blood sample,

potentially replacing the standard test which is associated with

some risk to the foetus [13].

When the Helicos system was used to sequence the genome of

M13 phage, read lengths averaged about 23 bases. There were still

some limitations in the single-molecule technology, on the basis of

the first generation of the chemistry. In the homopolar regions,

multiple fluorophore incorporations could decrease emissions,

sometimes below the level of detection; when errors did occur, most
were deletions. Helicos announced that it has recently developed a

new generation of ‘one-base-at-a-time’ nucleotides which allow

more accurate homopolymer sequencing, and lower overall error

rates. For further information, see http://www.helicosbio.com/

Novel DNA sequencing techniques in development
DevelopmentsofnovelDNAsequencingtechniquesaretakingplace

in many groups worldwide. In the laboratory of Church [14] a

technique similar to the sequencing-by-synthesis method above

has been developed, with multiplex polony technology. Several

hundred sequencing templates are deposited onto thin agarose

layers, and sequences are determined in parallel. This presents

increase of several orders of magnitudes in the number of samples

which can be analysed simultaneously. A further advantage is the

largereductionof reactionvolumes, thesmalleramountsof reagents

needed and the resulting lower cost. The group continues develop-

ment of their platform and offers this technique to academic labora-

tories using off-the-shelf optics, hardware and reagents.

Another promising approach, attempting to use real-time sin-

gle-molecule DNA sequence determination, is being developed by

VisiGen Biotechnologies http://visigenbio.com/. They have pro-

duced a specially engineered DNA polymerase (acting as a ‘real-

time sensor’ for modified nucleotides) with a donor fluorescent

dye incorporated close to the active site involved in selection of

the nucleotides during synthesis. All four nucleotides to be inte-

grated have been modified, each with a different acceptor dye.

During the synthesis, when the correct nucleotide is found,

selected and enters the active site of the enzyme, the donor dye

label in the polymerase comes into close proximity with the

acceptor dye on the nucleotides and energy is transferred from

donor to acceptor dye giving rise to a fluorescent resonant energy

transfer (FRET) light signal. The frequency of this signal varies

depending on the label incorporated in the nucleotides, so that by

recording frequencies of emitted FRET signals it will be possible to

determine base sequences, at the speed at which the polymerase

can integrate the nucleotides during the synthesis process (usually

a few hundred per second). The acceptor fluorophore is removed

during nucleotide incorporation, which ensures that there are no

DNA modifications that might slow down the polymerase during

synthesis. VisiGen plans to offer a service on the basis of its real-

time single-molecule nanosequencing technology by end 2009,

followed by the launch of equipment and reagents 18 months

later. The technology could eventually enable researchers to

sequence an entire human genome in less than a day for under

$1000. The company is currently working on its first version of the

instrument, which can generate around 4 Gb of data per day. The

single-molecule approach requires no cloning and no amplifica-

tion, which eliminates a large part of the cost relative to current

technologies. In addition, read lengths for the instrument are

expected to be around 1 kb, longer than any current platform.

Another US company, Pacific Biosciences (http://www.pacific-

biosciences.com/index.php), announced recently that it is work-

ing on a next-generation DNA sequencing instrument that will

eventually be able to produce 100 Gb of sequence data per hour, or

a diploid human genome at onefold coverage in about 4 min. They

plan to sell their first systems during 2010. The company’s single-

molecule real-time (SMRT) technology is based on zero mode

waveguides (ZMWs) which were originally developed at Cornell
www.elsevier.com/locate/nbt 199

http://www.helicosbio.com/
http://visigenbio.com/
http://www.pacificbiosciences.com/index.php
http://www.pacificbiosciences.com/index.php
mailto:wilhelm.ansorge@epfl.ch
mailto:wilhelm.ansorge@epfl.ch

REVIEW New Biotechnology �Volume 25, Number 4 �April 2009

FIGURE 4

Sequencing-by-ligation, using the SOLiD DNA sequencing platform. (A) Primers hybridise to the P1 adapter within the library template. A set of four fluorescence-

labelled di-base probes competes for ligation to the sequencing primer. These probes have partly degenerated DNA sequence (indicated by n and z) and for
simplicity only one probe is shown (labelling is denoted by asterisk). Specificity of the di-base probe is achieved by interrogating the first and second base in each

ligation reaction (CA in this case for the complementary strand). Following ligation, the fluorescent label is enzymatically removed together with the three last

bases of the octamer. (B) Sequence determination by the SOLiD DNA sequencing platform is performed in multiple ligation cycles, using different primers, each

one shorter from the previous one by a single base. The number of ligation cycles (six for this example) determines the eventual read length, whilst for each
sequence tag, six rounds of primer reset occur [from primer (n) to primer (n � 4)]. The dinucleotide positions on the template sequence that are interrogated each

time, are depicted underneath each ligation cycle and are separated by 5-bp from the dinucleotide position interrogated in the subsequent ligation cycle.

(Adapted and modified from http://www.appliedbiosystems.com.)

R
eview
University Nanobiotechnology Center. ZMWs are nanometre-

scale aperture chambers in a 100 nm metal film deposited on a

clear substrate. Owing to the behaviour of light aimed at such a

small chamber, the observation volume is only 20 zeptolitres,

enabling researchers to measure the fluorescence of nucleotides

incorporated by a single DNA polymerase enzyme into a growing

DNA strand in real time. The developers have so far observed read

lengths of about 1500 bases and a rate of 10 bases/s, and have been

able to analyse up to 3000 ZMWs in parallel.

Another single-molecule sequencing technique may develop

from studies on translocation of DNA through various artificial

nanopores. The work in this field was pioneered at Harvard by D.

Branton, G. Church and J. Golovchenko, at UC Santa Cruz by D.
200 www.elsevier.com/locate/nbt
Deamer and M. Akeson and at the NI Standards and Technology by

J. Kasianowicz. The approach is based on the modulation of the

ionic current through the pore as a DNA molecule traverses it,

revealing characteristics and parameters (diameter, length and

conformation) of the molecule. Recent study in this direction is

the work of Trepanier and colleagues [15], which contains refer-

ences to previous studies on this subject. In their work [15] they

analyze several limitations of the method. One limitation to

single-base resolution in nanopore-based DNA sequencing

approaches is the insufficient control of the translocation speed

of the molecule, for example during electrophoresis of the DNA

molecules through the nanopore. This was overcome by the

integration of an optical trapping system, which enables control

mailto:wilhelm.ansorge@epfl.ch

New Biotechnology �Volume 25, Number 4 �April 2009 REVIEW

R
ev
ie
w

and lowering of the translocation speed by several hundred-fold.

For the demonstration, a known DNA fragment was used, attached

via streptavidin–biotin to a polystyrene bead with a diameter of

10 mm. The bead was placed into the optical trap, and transloca-

tion speed was reduced about 200-fold, giving more time for

analysis of the DNA molecule passing through the nanopore. It

was also possible to control the motion of the molecule and return

it back to its starting point before the translocation, thus making

possible repeated measurements and analysis.

Another of these approaches, studied by several teams collabor-

ating as part of an EU consortium on nano-DNA-sequencing

coordinated by R. Zikic from Belgrade, L. Forro and A. Radenovic

(EPFL Lausanne), is the development of a nano-electronic device

for high-throughput single-molecule DNA sequencing, with the

potential to determine long genomic sequences. This is on the

basis of the electrical characterisation of individual nucleotides,

whilst DNA passes through a nanopore (similar to [15]), with

integrated nanotube side-electrodes developed at EPFL, Lausanne.

A lithographically fabricated nanogap is produced with single-

nanometre precision and allows characterisation of the tunnelling

conductance across DNA bases and the electrical response of DNA

molecule translocation between two carbon nanotube electrodes.

The translocation rate of DNA through the nanopore will be varied

by an optical tweezers system (in addition to standard techniques

of applied voltage, viscosity change and DNA charge at various

pH), aiming to achieve single-base resolution. Further improve-

ments and modifications of the technique, increasing the number

of parameters measured during the translocation of the DNA

enabling single-base resolution, could lead to a rapid nanopore-

based DNA sequencing technique.

Sequenom (http://www.sequenom.com) has licensed technol-

ogy from Harvard University, to develop a nanopore-based

sequencing platform that will be faster and cheaper than currently

available technologies. In the near term they plan to use it for

large-scale genotyping applications, RNA and epigenetic analyses.

In the long term it has the potential to provide a commercially

viable, rapid, sub-1000 dollar human genome sequencing solu-

tion. The technology has also been licensed by Oxford Nanopore

Technologies, UK (http://www.nanoporetech.com/).

BioNanomatrix and Complete Genomics (http://bionanoma-

trix.com/) announced in 2007 the formation of a joint venture to

develop technology to sequence a human genome in eight hours for

less than $100. The proposed platform will use Complete Geno-

mics’s sequencing chemistry and BioNanomatrix’s nanofluidic

technology. They plan to adapt DNA sequencing chemistry with

linearised nanoscale DNA imaging to create a system that can read

DNA sequences greater than 100,000 bases. With their design and

price they target the possible sequencing of many genomes. Com-

plete Genomics company (http://www.completegenomics.com)

presented recently a new method, using rolling circle PCR ampli-

fication resulting in DNA nanoballs, and a modified ligation tech-

nique, for fast and non expensive sequencing of human genomes.

A very different approach to single-molecule DNA sequencing,

using RNA polymerase (RNAP), has been presented recently [16].

In the planned method, RNAP is attached to one polystyrene bead,

whilst the distal end of a DNA fragment is attached to another

bead. Each bead is placed in an optical trap and the pair of optical

traps levitates the beads. The RNAP interacts with the DNA frag-
ment and the transcriptional motion of RNAP along the template

changes the length of the DNA between the two beads. This leads

to displacement of the two beads that can be registered with

precision in the Angstrom range, resulting in single-base resolu-

tion on a single DNA molecule. By aligning four displacement

records, each with a lower concentration of one of the four

nucleotides, in a role analogous to the primers used in Sanger

sequencing, and using for calibration the known sequences flank-

ing the unknown fragment to be sequenced, it is possible to

deduce the sequence information. Thirty out of 32 bases were

correctly identified in about 2 min. The technique demonstrates

that the movement of a nucleic acid enzyme, and the very sensi-

tive optical trap method, may allow extraction of sequence infor-

mation directly from a single DNA molecule.

Applications of high-throughput DNA sequencing
Novel fields and applications in biology and medicine are becom-

ing a reality, beyond genomic sequencing as the original devel-

opment goal and application. Examples include personal

genomics with detailed analysis of individual genomic stretches;

precise analysis of RNA transcripts for gene expression, surpassing

and replacing in several aspects analysis carried out by various

microarray platforms, for example in reliable and precise transcript

quantification; and as a tool for identification and analysis of DNA

regions that interact with regulatory proteins in functional reg-

ulation of gene expression. Next-generation sequencing technol-

ogies offer novel, rapid ways for genome-wide characterisation and

profiling of mRNAs, small RNAs, transcription factor regions,

chromatin structure and DNA methylation patterns, in microbiol-

ogy and metagenomics.

Personal genomics, project human diversity in 1000 genomes
The cost of genome sequencing, an important factor in future

studies, is becoming low enough to make personal genomics a

close reality. Reduction of cost by two orders of magnitude is

needed to be able to realise the potential of personal genomics,

for which the goal of $1000 for a human genome sequence has

been set. The impressive results obtained so far in various projects

with the new technology are very convincing and will lead to

lower cost. The analysis of the first two available human genomes

[17,18] has demonstrated, how difficult it still is to draw medically

or biologically relevant conclusions from individual sequences.

More genomes need to be sequenced, to learn how genotype

correlates with phenotype. A plan for a project to sequence

1000 human genomes has been prepared, which will allow crea-

tion of a reference standard for the analysis of human genomic

variations that is expected to contribute to studies of disease

(http://www.1000genomes.org/). Illumina, Roche 454 Life

Sciences and Applied Biosystems will take part in the project

and generate the equivalent of 25 human genomes each per year

over a period of three years. This significant sequence contribution

will enable the team to analyse the human genome with deeper

sequencing and shorten its completion time. The 1000 Genomes

Project will identify variants present at a frequency of 1% over

most of the genome, and as low as 0.5% within genes.

The immediate applications and relevance of next-generation

sequencing techniques in the medical field have been demon-

strated already, by the ability to detect cancer alleles with deep
www.elsevier.com/locate/nbt 201

http://www.sequenom.com/
http://www.nanoporetech.com/
http://bionanomatrix.com/
http://bionanomatrix.com/
http://www.completegenomics.com/
http://www.1000genomes.org/

REVIEW New Biotechnology �Volume 25, Number 4 �April 2009

R
eview
sequencing of genomic DNA in cancerous tissues (carefully iso-

lated by laser microdissection and capture techniques), which

would have presented a very tedious task for the Sanger technique.

RNA sequencing, analysis of gene expression
The high throughput of next-generation sequencing technology,

rapidly producing huge numbers of short sequencing reads, made

possible the analysis of a complex sample containing a mixture of a

large number of nucleic acids, by sequencing simultaneously the

entire sample content. This is now possible without the tedious and

time-consuming bacterial cloning, avoiding associated disadvan-

tages. It may also be applied to the characterisation of mRNAs,

methylated DNA, DNA or RNA regions bound by certain proteins

and other DNA or RNA regions involved in gene expression and

regulation. The original SAGE technique [19] demonstrated novelty

and powerful analysis, but was limited in applications becauseof the

need for difficult ligation ofa huge number of shortDNAtranscripts,

subsequent cloning and Sanger sequencing. Using next-generation

technology, the concept of the SAGE method now allows the

analysis of RNA transcripts in a biological sample by obtaining short

sequence tags, 20–35 bases long, directly from each transcript in the

sample. With this technique, transcripts are characterised through

their sequence [20], in contrast to the probe hybridisation employed

in DNA chip techniques, with their inherent difficulties of cross-

hybridisation and quantitation. Owing to the huge number of

samples analysed simultaneously, sequence-based techniques can

detect low abundance RNAs, smallRNAs, or the presence of rare cells

contained in the sample. Another advantage of this approach is that

it does not require prior knowledge of the genome sequence. The

technique has been applied recently to transcriptome profiling in

stem cells [21] and to RNA-Seq study into alternative splicing in

human cells [22].

Chromatin immunoprecipitation, ChIP-Seq technique
Next-generation sequencing technology allowed replacement of

microarrays in the mapping step with high-throughput sequen-

cing of DNA binding sites, and their direct mapping to a reference

genome in the database [23]. The sequence of the binding site is

mapped with high resolution to regions shorter than 40 bases, a

resolution not achievable by microarray mapping. Moreover, the

ChiP-Seq technique is not biased and allows the identification of

unknown protein binding sites, which is not the case with the

ChiP-on-chip approach, where the sequence of the DNA fragments

on the microarray is pre-determined, e.g. in promoter arrays, exon

arrays, etc.

Prospects for future DNA sequencing technology and
applications
The availability of ultra-deep sequencing of genomic DNA will

transform the biological and medical fields in the near future, in

analysis of the causes of disease, development of new drugs and
202 www.elsevier.com/locate/nbt
diagnostics. It may become a promising tool in the analysis of

mental and developmental disorders such as schizophrenia and

autism [24–26]. It is anticipated that DNA sequencing of whole

genomes for clinical purposes using these new technologies will

probably occur in the next couple of decades. Some of the most

recent applications can be found in the proceedings of the AGBT

conference (Advances in Genome Biology and Technology), Feb-

ruary 2009.

The novel sequencing technologies will be also useful in micro-

bial genomics, for example in the metagenomics measuring the

genetic diversity encoded by microbial life in organisms inhabit-

ing a common environment [27]. Many microbial sequencing

projects have been already completed or are being prepared and

several comparative genome analyses are under way to link geno-

type and phenotype at the genomic level. The proposed Human

Microbiome Project (also called The Second Human Genome

Project), analysing the collection of microbes in and on the human

body, will contribute to understanding human health and disease

[28]. Changes in microbial communities in the body have been

generally linked to immune system function, obesity and cancer.

In future, each individual’s microbiome could eventually become

a medical biometric.

An important application is planned by the US DOE Joint

Genome Institute, JGI (http://www.jgi.doe.gov/), which will focus

its sequencing efforts on new plant and microbial targets that may

be of use in the development of alternative energies. The JGI plans

to sequence the genome of the marine red alga, which may play an

important environmental role in removing carbon dioxide from

the atmosphere.

Genomics, proteomics and medical research all benefit from

recent advances and novel techniques for high-throughput ana-

lysis (e.g. DNA and protein microarrays, quantitative PCR, mass

spectrometry, novel DNA sequencing techniques and others).

Devices with short DNA sequence reads (25–50 bases) have already

found many applications, but for genomic sequencing, and for

analysis of the ever more important structural genetic variations in

genomes, such as copy number variations, chromosomal translo-

cations, inversions, large deletions, insertions and duplications, it

would be a great advantage if sequence read length on the original

single DNA molecule could be increased to several 1000 bases and

more per second. Ideally, the goal would be the sequence deter-

mination of a whole chromosome from a single original DNA

molecule. Hopes for future in this direction may provide novel

developments in several physical techniques (e.g. various

advanced AFM methods, electron microscopy, soft X-rays, various

spectroscopic techniques, nanopores and nano-edges), with many

improvements needed and under intense development.

Acknowledgement
I am grateful to Dr George Patrinos for discussions and help with

preparation of the figures.
References
1 Schuster, S.C. et al. (2008) Method of the year, next-generation DNA sequencing.

Functional genomics and medical applications. Nat. Methods 5, 11–21

2 Sanger, F. et al. (1977) DNA sequencing with chain-terminating inhibitors. Proc.

Natl. Acad. Sci. U. S. A. 74, 5463–5467
3 Maxam, A.M. and Gilbert, W. (1977) A new method for sequencing DNA. Proc.

Natl. Acad. Sci. U. S. A. 74, 560–564

4 Smith, L.M. et al. (1986) Fluorescence detection in automated DNA sequence

analysis. Nature 321, 674–679

http://www.jgi.doe.gov/

New Biotechnology �Volume 25, Number 4 �April 2009 REVIEW

R
ev
ie
w

5 Ansorge, W. et al. (1986) A non-radioactive automated method for DNA sequence

determination. J. Biochem. Biophys. Methods 13, 315–323

6 Ansorge, W. et al. (1987) Automated DNA sequencing: ultrasensitive detection of

fluorescent bands during electrophoresis. Nucleic Acids Res. 15, 4593–4602

7 Edwards, A. et al. (1990) Automated DNA sequencing of the human HPRT locus.

Genomics 6, 593–608

8 Ansorge, W., EMBL Heidelberg (1991), Process for sequencing nucleic acids

without gel sieving media on solid support and DNA chips (Verfahren zur

Sequenzierung von Nukleinsauren ohne Gele). German Patent Application

DE 41 41 178 A1 and Corresponding Worldwide Patent Applications.

9 Nyren, P. and Lundin, A. (1985) Enzymatic method for continuous monitoring of

inorganic pyrophosphate synthesis. Anal. Biochem. 151, 504–509

10 Hyman, E.D. (1988) A new method of sequencing DNA. Anal. Biochem. 174, 423–436

11 Ronaghi, M. et al. (1996) Real-time DNA sequencing using detection of

pyrophosphate release. Anal. Biochem. 242, 84–89

12 Braslavsky, I. et al. (2003) Sequence information can be obtained from single DNA

molecule. Proc. Natl. Acad. Sci. U. S. A. 100, 3960–3964

13 Quake, S.R. et al. (2008) Pre-natal trisomia-21-test from maternal blood sample.

Proc. Natl. Acad. Sci. U. S. A. 105, 16266–16271

14 Shendure, J. et al. (2005) Science 309, 1728–1732

15 Trepagnier, E.H. et al. (2007) Controlling DNA capture and propagation through

artificial nanopores. Nano Lett. 7, 2824–2830
16 Greenleaf, W.J. and Block, S.M. (2006) Single-molecule, motion-based DNA

sequencing using RNA polymerase. Science 313, 801

17 Wheeler, D.A. et al. (2008) The complete genome of an individual by massively

parallel DNA sequencing. Nature 452, 872–876

18 Levy, S. et al. (2007) The diploid genome sequence of an individual human. PloS 5,

e254

19 Velculescu, V.E. et al. (1995) Serial analysis of gene expression. Science 270, 484–

487

20 Mortazavi, A. et al. (2008) Mapping and quantifying mammalian transcriptomes

by RNA-Seq. Nat. Methods 5, 621–628

21 Cloonan, N. et al. (2008) Stem cell transcriptome profiling via massive-scale mRNA

sequencing. Nat. Methods 5, 613–619

22 Sultan, M. et al. (2008) A global view of gene activity and alternative splicing by

deep sequencing of the human transcriptome. Science 321, 956–960

23 Robertson, G. et al. (2007) ChIP-Seq techniques. Nat. Methods 4, 651–657

24 Morrow, E.M. et al. (2008) Identifying autism loci and genes by tracing recent

shared ancestry. Science 321, 218–223

25 Geschwind, D.H. (2008) Autism – family connections. Nature 454, 838–839

26 Sutcliffe, J.S. (2008) Insights into the pathogenesis of autism. Science 321,

208–209

27 Hugenholtz, P. and Tyson, G.W. (2008) Metagenomics. Nature 455, 481–483

28 Turnbaugh, P.J. et al. (2007) The human microbiome project. Nature 449, 804–810
www.elsevier.com/locate/nbt 203

What is next generation sequencing?

Sam Behjati,1,2 Patrick S Tarpey1

1Cancer Genome Project,
Wellcome Trust Sanger Institute,
Wellcome Trust Genome
Campus, Hinxton,
Cambridgeshire, UK
2Department of Paediatrics,
University of Cambridge,
Cambridge, UK

Correspondence to
Dr Sam Behjati, Cancer Genome
Project, Wellcome Trust Sanger
Institute, Wellcome Trust
Genome Campus, Hinxton,
Cambridgeshire CB10 1SA, UK;
sam.behjati@gmail.com

Received 31 July 2013
Accepted 2 August 2013
Published Online First
28 August 2013

To cite: Behjati S, Tarpey PS.
Arch Dis Child Educ Pract Ed
2013;98:236–238.

ABSTRACT
Next generation sequencing (NGS), massively
parallel or deep sequencing are related terms
that describe a DNA sequencing technology
which has revolutionised genomic research.
Using NGS an entire human genome can be
sequenced within a single day. In contrast, the
previous Sanger sequencing technology, used to
decipher the human genome, required over a
decade to deliver the final draft. Although in
genome research NGS has mostly superseded
conventional Sanger sequencing, it has not yet
translated into routine clinical practice. The aim
of this article is to review the potential
applications of NGS in paediatrics.

INTRODUCTION
There are a number of different NGS
platforms using different sequencing
technologies, a detailed discussion of
which is beyond the scope of this article.
However, all NGS platforms perform
sequencing of millions of small fragments
of DNA in parallel. Bioinformatics ana-
lyses are used to piece together these
fragments by mapping the individual
reads to the human reference genome.
Each of the three billion bases in the
human genome is sequenced multiple
times, providing high depth to deliver
accurate data and an insight into unex-
pected DNA variation (figure 1). NGS
can be used to sequence entire genomes
or constrained to specific areas of inter-
est, including all 22 000 coding genes (a
whole exome) or small numbers of indi-
vidual genes.

POTENTIAL USES OF NGS IN CLINICAL
PRACTICE
Clinical genetics
There are numerous opportunities to use
NGS in clinical practice to improve
patient care, including:

NGS captures a broader spectrum of mutations than
Sanger sequencing
The spectrum of DNA variation in a
human genome comprises small base
changes (substitutions), insertions and

deletions of DNA, large genomic dele-
tions of exons or whole genes and rear-
rangements such as inversions and
translocations. Traditional Sanger sequen-
cing is restricted to the discovery of sub-
stitutions and small insertions and
deletions. For the remaining mutations
dedicated assays are frequently per-
formed, such as fluorescence in situ
hybridisation (FISH) for conventional
karyotyping, or comparative genomic
hybridisation (CGH) microarrays to
detect submicroscopic chromosomal copy
number changes such as microdeletions.
However, these data can also be derived
from NGS sequencing data directly, obvi-
ating the need for dedicated assays while
harvesting the full spectrum of genomic
variation in a single experiment. The
only limitations reside in regions which
sequence poorly or map erroneously due
to extreme guanine/cytosine (GC)
content or repeat architecture, for
example, the repeat expansions under-
lying Fragile X syndrome, or
Huntington’s disease.

Genomes can be interrogated without bias
Capillary sequencing depends on pre-
knowledge of the gene or locus under
investigation. However, NGS is com-
pletely unselective and used to interro-
gate full genomes or exomes to discover
entirely novel mutations and disease
causing genes. In paediatrics, this could
be exploited to unravel the genetic basis
of unexplained syndromes. For example,
a nationwide project, Deciphering
Developmental Disorders,1 running at
the Wellcome Trust Sanger Institute in
collaboration with NHS clinical genetics
services aims to unravel the genetic basis
of unexplained developmental delay by
sequencing affected children and their
parents to uncover deleterious de novo
variants. Allying these molecular data
with detailed clinical phenotypic infor-
mation has been successful in identifying
novel genes mutated in affected children
with similar clinical features.

Open Access
Scan to access more

free content

RESEARCH IN PRACTICE

236 Behjati S, et al. Arch Dis Child Educ Pract Ed 2013;98:236–238. doi:10.1136/archdischild-2013-304340

The increased sensitivity of NGS allows detection of mosaic mutations
Mosaic mutations are acquired as a postfertilisation
event and consequently they present at variable fre-
quency within the cells and tissues of an individual.
Capillary sequencing may miss these variants as they
frequently present with a subtlety which falls below
the sensitivity of the technology. NGS sequencing
provides a far more sensitive read-out and can there-
fore be used to identify variants which reside in just
a few per cent of the cells, including mosaic vari-
ation. In addition, the sensitivity of NGS sequencing
can be increased further, simply by increasing
sequencing depth. This has seen NGS employed for
very sensitive investigations such as interrogating
foetal DNA from maternal blood2 or tracking the
levels of tumour cells from the circulation of cancer
patients.3

MICROBIOLOGY
The main utility of NGS in microbiology is to replace
conventional characterisation of pathogens by morph-
ology, staining properties and metabolic criteria with a
genomic definition of pathogens. The genomes of
pathogens define what they are, may harbour informa-
tion about drug sensitivity and inform the relationship
of different pathogens with each other which can be
used to trace sources of infection outbreaks. The last
recently received media attention, when NGS was used
to reveal and trace an outbreak of methicillin-resistant
Staphylococcus aureus (MRSA) on a neonatal intensive
care unit in the UK.4 What was most remarkable was
that routine microbiological surveillance did not show
that the cases of MRSA that occurred over several
months were related. NGS of the pathogens, however,
allowed precise characterisation of the MRSA isolates

Figure 1 Example of next generation sequencing (NGS) raw data-BRAF V600E mutation in melanoma. The mutation was found by
our group in 2002 as part of several year-long efforts to define somatic mutations in human cancer using Sanger sequencing, prior to
the advent of NGS.

Research in practice

Behjati S, et al. Arch Dis Child Educ Pract Ed 2013;98:236–238. doi:10.1136/archdischild-2013-304340 237

and revealed a protracted outbreak of MRSA which
could be traced to a single member of staff.

ONCOLOGY
The fundamental premise of cancer genomics is that
cancer is caused by somatically acquired mutations,
and consequently it is a disease of the genome.
Although capillary-based cancer sequencing has been
ongoing for over a decade, these investigations were
limited to relatively few samples and small numbers of
candidate genes. With the advent of NGS, cancer
genomes can now be systemically studied in their
entirety, an endeavour ongoing via several large scale
cancer genome projects around the world, including a
dedicated paediatric cancer genome project.5 For the
child suffering from cancer this may provide many
benefits including a more precise diagnosis and classi-
fication of the disease, more accurate prognosis, and
potentially the identification of ‘drug-able’ causal
mutations. Individual cancer sequencing may, there-
fore, provide the basis of personalised cancer manage-
ment. Currently pilot projects are underway using
NGS of cancer genomes in clinical practice, mainly
aiming to identify mutations in tumours that can be
targeted by mutation-specific drugs.

LIMITATIONS
The main disadvantage of NGS in the clinical setting
is putting in place the required infrastructure, such as
computer capacity and storage, and also the personnel
expertise required to comprehensively analyse and
interpret the subsequent data. In addition, the volume
of data needs to be managed skilfully to extract the
clinically important information in a clear and robust
interface. The actual sequencing cost of NGS is negli-
gible. For example, a state of the art NGS platform
can generate approximately 150 000 000 reads for
around £1000 whereas a single Sanger read typically
costs less than £1. However, to make NGS cost

effective one would have to run large batches of
samples which may require supra-regional centralisa-
tion. Following the initial capital investment, the cap-
acity of a NGS facility can provide a service on
national scale likely offering economic benefits in add-
ition to improvements in patient care.

Clinical bottom line

▸ NGS has huge potential but is presently used primar-
ily for research.

▸ NGS will allow paediatricians to take genetic infor-
mation to the bedside.

Funding SB receives a Wellcome Trust Clinical Fellowship.

Competing interests None.

Provenance and peer review Commissioned; internally peer
reviewed.

Open access This is an Open Access article distributed in
accordance with the terms of the Creative Commons
Attribution (CC BY 3.0) license, which permits others to
distribute, remix, adapt and build upon this work, for
commercial use, provided the original work is properly cited.
See: http://creativecommons.org/licenses/by/3.0/

REFERENCES
1 http://www.ddduk.org/
2 Harris SR, Cartwright EJ, Török ME, et al. Whole-genome

sequencing for analysis of an outbreak of meticillin-resistant
Staphylococcus aureus: a descriptive study. Lancet Infect Dis
2013;13:130–6.

3 Dawson SJ, Tsui DW, Murtaza M, et al. Analysis of circulating
tumor DNA to monitor metastatic breast cancer. N Engl J Med
2013;368:1199–209.

4 Chiu RW, Chan KC, Gao Y, et al. Noninvasive prenatal
diagnosis of fetal chromosomal aneuploidy by massively
parallel genomic sequencing of DNA in maternal plasma.
Proc Natl Acad Sci USA 2008;105:20458–63.

5 http://www.pediatriccancergenomeproject.org

Research in practice

238 Behjati S, et al. Arch Dis Child Educ Pract Ed 2013;98:236–238. doi:10.1136/archdischild-2013-304340

http://www.ddduk.org/
http://www.ddduk.org/
http://www.pediatriccancergenomeproject.org
http://www.pediatriccancergenomeproject.org

An introduction to Next-Generation
Sequencing Technology

www.illumina.com/technology/next-generation-sequencing.html

For Research Use Only. Not for use in diagnostic procedures.

Table of Contents

Table ofContents 2

I.Welcome toNext-GenerationSequencing 3

a. TheEvolutionofGenomicScience 3

b. TheBasicsofNGSChemistry 4

c. Advances inSequencingTechnology 5

Paired-EndSequencing 5

TunableCoverage andUnlimitedDynamicRange 6

Advances inLibraryPreparation 6

Multiplexing 7

Flexible, Scalable Instrumentation 7

II. NGSMethods 8

a. Genomics 8

Whole-GenomeSequencing 8

ExomeSequencing 8

DenovoSequencing 9

Targeted Sequencing 9

b. Transcriptomics 11

TotalRNAandmRNASequencing 11

TargetedRNASequencing 11

SmallRNAandNoncodingRNASequencing 11

c. Epigenomics 12

MethylationSequencing 12

ChIPSequencing 12

RibosomeProfiling 12

III. IlluminaDNA-to-DataNGSSolutions 13

a. The IlluminaNGSWorkflow 13

b. IntegratedDataAnalysis 13

IV. Glossary 14

V. References 15

For Research Use Only. Not for use in diagnostic procedures.

I. Welcome to Next-Generation Sequencing

a. The Evolution of Genomic Science

DNAsequencinghascomea longwaysince thedaysof two-dimensionalchromatography in the 1970s.With the advent of
theSangerchain terminationmethod1 in 1977, scientistsgained the ability tosequenceDNAina reliable, reproducible
manner. Adecade later, Applied Biosystems introduced the first automated, capillaryelectrophoresis (CE)-based
sequencing instruments,theAB370 in1987and theAB3730xl in1998,instruments that became theprimaryworkhorses for
theNIH-led andCelera-ledHumanGenomeProjects.2While these “first-generation” instrumentswere considered high
throughput for their time, theGenomeAnalyzeremerged in2005and took sequencingruns from84 kilobase (kb)per run to
1 gigabase (Gb)per run.3 The short read,massivelyparallel sequencing techniquewasa fundamentallydifferent approach
that revolutionized sequencingcapabilitiesand launched the “next generation” ingenomic science. From that point forward,
thedata output ofnext-generationsequencing (NGS)hasoutpacedMoore’s law,more thandoublingeachyear (Figure 1).

Figure 1: Sequencing Cost andData Output Since 2000—The dramatic rise of data output and concurrent falling cost of sequencing since 2000. The Y-axes on both sides
of the graph are logarithmic.

In2005, a single runon theGenomeAnalyzercould produce roughlyonegigabaseofdata. By2014, the rate climbed to
1.8 terabases (Tb)ofdata ina single sequencingrun, anastounding1000× increase. It is remarkable to reflect on the fact that
the first humangenome, famouslycopublished inScience andNature in2001, required 15 years tosequence and cost
nearly three billiondollars. Incontrast, theHiSeq X® TenSystem, released in2014, cansequenceover45humangenomes in
a single day forapproximately$1000each (Figure 2).4

Beyond themassive increase indata output, the introductionofNGStechnologyhas transformed thewayscientists think
about genetic information. The$1000 dollargenomeenablespopulation-scale sequencingand establishes the foundation
forpersonalized genomicmedicine aspart ofstandardmedicalcare. Researcherscannowanalyze thousandsto tensof
thousandsofsamples ina single year. AsEric Lander, foundingdirectorof theBroad Institute ofMITandHarvard and
principal leaderof theHumanGenomeProject, states:

“The rate of progress is stunning.As costs continue tocome down,we are enteringa
periodwherewe are going tobe able toget the complete catalogof disease genes.
Thiswill allow us to lookat thousands of people and see the differences among
them, todiscover critical genes that cause cancer, autism, heart disease, or
schizophrenia.”5

For Research Use Only. Not for use in diagnostic procedures.

Figure 2: Human Genome Sequencing Over the Decades—The capacity to sequence all 3.2 billion bases of the human genome (at 30× coverage) has increased
exponentially since the 1990s. In 2005, with the introduction of the Illumina Genome Analyzer System, 1.3 human genomes could be sequenced annually. Nearly 10 years
later, with the Illumina HiSeq X Ten fleet of sequencing systems, the number has climbed to 18,000 human genomes a year.

b. The Basics of NGS Chemistry

Inprinciple, the concept behindNGStechnology issimilar toCEsequencing. DNApolymerase catalyzes the incorporationof
fluorescently labeled deoxyribonucleotide triphosphates (dNTPs) intoaDNAtemplate strand duringsequentialcyclesof
DNAsynthesis. Duringeachcycle, at thepoint of incorporation, the nucleotidesare identified by fluorophore excitation. The
criticaldifference is that, instead ofsequencinga singleDNAfragment, NGSextendsthisprocessacrossmillionsof fragments
inamassivelyparallel fashion.More than90%of theworld'ssequencingdata are generated by Illumina sequencingby
synthesis (SBS)chemistry.* It delivershighaccuracy, a highyield oferror-free reads, and ahighpercentageofbase calls
aboveQ30.6–8

IlluminaNGSworkflows include fourbasic steps:
1. LibraryPreparation—The sequencing library isprepared by random fragmentationof theDNAorcDNAsample, followed

by5′and 3′adapter ligation (Figure 3A). Alternatively, “tagmentation” combines the fragmentationand ligation reactions
intoa single step that greatly increases the efficiencyof the librarypreparationprocess.9Adapter-ligated fragmentsare
thenPCRamplified and gelpurified.

2. ClusterGeneration—Forclustergeneration, the library is loaded intoa flowcellwhere fragmentsare captured ona lawnof
surface-bound oligoscomplementary to the libraryadapters. Each fragment is thenamplified intodistinct, clonalclusters
throughbridge amplification (Figure 3B).Whenclustergeneration iscomplete, the templatesare ready for sequencing.

3. Sequencing—IlluminaSBStechnologyusesaproprietary reversible terminator–basedmethod that detectssingle bases
as theyare incorporated intoDNAtemplate strands (Figure 3C). Asall four reversible terminator–bound dNTPsare
present duringeachsequencingcycle, naturalcompetitionminimizes incorporationbiasand greatly reducesrawerror
ratescompared toother technologies.6,7 The result ishighlyaccurate base-by-base sequencing that virtually eliminates
sequence context–specific errors, evenwithin repetitive sequence regionsand homopolymers.

4. DataAnalysis—Duringdata analysisand alignment, the newly identified sequence readsare aligned toa reference
genome (Figure 3D). Followingalignment,manyvariationsofanalysisare possible, suchassingle nucleotide
polymorphism (SNP)or insertion-deletion (indel) identification, read counting forRNAmethods, phylogenetic or
metagenomic analysis, andmore.

Adetailed animationofSBSchemistry isavailable atwww.illumina.com/SBSvideo.

*Data calculations on file. Illumina, Inc., 2015.

For Research Use Only. Not for use in diagnostic procedures.

Figure 3: Next-Generation Sequencing Chemistry Overview—Illumina NGS includes four steps: (A) library preparation, (B) cluster generation,(C) sequencing, and (D)
alignment and data analysis.

c. Advances in Sequencing Technology

Paired-EndSequencing

Amajoradvance inNGStechnologyoccurredwith thedevelopment ofpaired-end (PE) sequencing (Figure 4). PE
sequencing involvessequencingbothendsof theDNAfragments ina libraryand aligning the forward and reverse readsas
read pairs. Inaddition toproducing twice the numberof reads for the same timeand effort in librarypreparation, sequences
aligned asread pairsenablemore accurate read alignment and the ability todetect indels, which isnot possiblewith single-
read data.8Analysisofdifferential read-pair spacingalsoallowsremovalofPCRduplicates, a commonartifact resulting from
PCRamplificationduring librarypreparation. Furthermore, PE sequencingproducesahighernumberofSNVcalls following
read-pair alignment.8,9While somemethodsare best served bysingle-read sequencing, suchassmallRNAsequencing,
most researcherscurrently use thepaired-end approach.

For Research Use Only. Not for use in diagnostic procedures.

Figure 4: Paired-EndSequencing andAlignment—Paired-end sequencing enables both ends of the DNA fragment to be sequenced. Because the distance between each
paired read is known, alignment algorithms can use this information tomap the reads over repetitive regionsmore precisely. This results in better alignment of reads,
especially across difficult-to-sequence, repetitive regions of the genome.

Tunable Coverage andUnlimitedDynamic Range

Thedigitalnature ofNGSallowsa virtually unlimited dynamic range for read-countingmethods, suchasgene expression
analysis.Microarraysmeasure continuoussignal intensitiesand thedetection range is limited bynoise at the lowend and
signalsaturationat the highend,whileNGSquantifiesdiscrete, digitalsequencingread counts. By increasingordecreasing
the numberofsequencingreads, researcherscan tune the sensitivityofanexperiment toaccommodate variousstudy
objectives. Because thedynamic rangewithNGSisadjustable and nearlyunlimited, researcherscanquantify subtle gene
expressionchangeswithmuchgreater sensitivity than traditionalmicroarray-basedmethods. Sequencingrunscanbe
tailored tozoom inwithhigh resolutiononparticular regionsof the genome, orprovide amore expansive viewwith lower
resolution.

The ability toeasily tune the levelofcoverageoffersseveralexperimentaldesignadvantages. For instance, somaticmutations
mayonlyexistwithina smallproportionofcells ina given tissue sample. Usingmixed tumor–normalcell samples, the regionof
DNAharboring themutationmust be sequenced at extremelyhighcoverage, oftenupwardsof1000×, todetect these low-
frequencymutationswithin themixed cellpopulation. On theother side of the coverage spectrum, amethod like genome-
wide variant discoveryusually requiresamuch lowercoverage level. In thiscase, the studydesign involvessequencingmany
samples (hundreds to thousands) at lower resolution, toachieve greater statisticalpowerwithina givenpopulation.

Advances in LibraryPreparation

With IlluminaNGS, librarypreparationhasundergone rapid improvements. The firstNGSlibraryprep protocols involved
random fragmentationof theDNAorRNAsample, gel-based size selection, ligationofplatform-specific oligonucleotides,
PCRamplification, and severalpurificationsteps.While the 1–2 days required togenerate these earlyNGSlibrarieswere a
great improvement over traditionalcloning techniques, currentNGSprotocols, suchasNextera®XTDNALibrary
Preparation, have reduced the libraryprep time to less than90minutes.10PCR-free and gel-free kitsare alsoavailable for
sensitive sequencingmethods. PCR-free librarypreparationkits result in superior coverageof traditionally challengingareas
suchashighAT/GC-rich regions, promoters, and homopolymeric regions.11

Fora complete list of Illumina librarypreparationkits, visitwww.illumina.com/products/by-type/sequencing-
kits/library-prep-kits.html.

For Research Use Only. Not for use in diagnostic procedures.

Multiplexing

In addition to the rise ofdata output per run, the sample throughput per run inNGShasalso increased over time.Multiplexing
allows large numbersof libraries tobepooled and sequenced simultaneouslyduringa single sequencingrun (Figure 5).With
multiplexed libraries, unique indexsequencesare added toeachDNAfragment during librarypreparationsothat each read
canbe identified and sorted before finaldata analysis.WithPE sequencingandmultiplexing, NGShasdramatically reduced
the time todata formultisample studiesand enabled researchers togo fromexperiment todata quickly and easily.

Gains in throughput frommultiplexingcomewithanadded layerofcomplexity, assequencingreads frompooled libraries
need tobe identified and sorted computationally ina processcalled demultiplexingbefore finaldata analysis (Figure 5). The
phenomenonof indexmisassignment betweenmultiplexed libraries isa known issue that has impactedNGStechnologies
from the time samplemultiplexingwasdeveloped.12 Indexhopping isa specific causeof indexmisassignment that can result
in incorrect assignment of libraries from the expected index toadifferent index in thepool, leading tomisalignment and
inaccurate sequencingresults.

Formore information regarding indexhopping, includingmechanismsbywhich it occurs, how Illuminameasures
indexhopping, and best practices formitigating the impact of indexhoppingonsequencingdata quality, read the
Effectsof IndexMisassignment onMultiplexingandDownstreamAnalysisWhitePaper.

Figure 5: LibraryMultiplexing Overview—(A) Unique index sequences are added to two different libraries during library preparation. (B) Libraries are pooled together and
loaded into the same flow cell lane. (C) Libraries are sequenced together during a single instrument run. All sequences are exported to a single output file. (D) A
demultiplexing algorithm sorts the reads into different files according to their indexes. (E) Each set of reads is aligned to the appropriate reference sequence.

Flexible, Scalable Instrumentation

While the latestNGSplatformscanproducemassive data output, NGStechnology isalsohighly flexible and scalable.
Sequencingsystemsare available for everymethod and scale ofstudy, fromsmall laboratories to largegenomecenters
(Figure 6). IlluminaNGSinstruments range from thebenchtopMiniSeq™System,withoutput ranging from1.8–7.5 Gb for
targeted sequencingstudies, to theNovaSeq™6000System,whichcangenerate an impressive 6 Tb and 20B reads in~2
days† forpopulation-scale studies.

Flexible runconfigurationsare alsoengineered into thedesignof IlluminaNGSsequencers. Forexample, theHiSeq® 2500
Systemoffers tworunmodesand single ordual flowcell sequencingwhile theNextSeq® SeriesofSequencingSystemsoffers
twoflowcell types toaccommodate different throughput requirements. TheHiSeq 3000/4000Seriesuses the same
patterned flowcell technologyas theHiSeq X instruments forcost-effective production-scale sequencing. Thenew
NovaSeqSeriesofsystemsunites the latest high-performance imagingwith the next generationof Illuminapatterned flowcell

For Research Use Only. Not for use in diagnostic procedures.

technology todelivermassive increases in throughput. This flexibility allowsresearchers toconfigure runs tailored to their
specific study requirements, with the instrument of their choice.

Foran in-depthcomparisonof Illuminaplatforms, visitwww.illumina.com/systems/sequencing.htmlorexplore the
SequencingPlatformComparisonToolatwww.illumina.com/systems/sequencing-platforms/comparison-
tool.html.

Figure 6: Sequencing Systems for Virtually Every Scale—Illumina offers innovative NGS platforms that deliver exceptional data quality and accuracy over a wide scale,
from small benchtop sequencers to production-scale sequencing systems.

II. NGS Methods

NGSplatformsenable awide varietyofmethods, allowingresearchers toask virtually anyquestion related to thegenome,
transcriptome, orepigenomeofanyorganism. Sequencingmethodsdifferprimarilybyhow theDNAorRNAsamplesare
obtained (eg, organism, tissue type, normalvs. affected, experimentalconditions, etc) and by thedata analysisoptions
used. After the sequencing librariesare prepared, the actualsequencingstage remains fundamentally the same, regardless
of themethod. There are variousstandard librarypreparationkits that offerprotocols forwhole-genomesequencing (WGS),
RNAsequencing (RNA-Seq), targeted sequencing (suchasexomesequencingor16Ssequencing), custom-selected
regions, protein-bindingregions, andmore. Although the numberofNGSmethods isconstantlygrowing, a briefoverviewof
themost commonmethods ispresented here.

a. Genomics

Whole-Genome Sequencing

Microarray-based, genome-wide associationstudies (GWAS)havebeenacommonapproach for identifyingdisease
associationsacross thewhole genome.WhileGWASmicroarrayscan interrogate over four millionmarkersper sample, the
most comprehensivemethod of interrogating the3.2 billionbasesof the humangenome isWGS. The rapid drop in
sequencingcost and the abilityofWGStoproduce large volumesofdata rapidlymake it a powerful tool forgenomics
research.WhileWGSiscommonlyassociatedwithsequencinghumangenomes, the scalable, flexible nature of themethod
makes it equally useful for sequencinganyspecies, suchasagriculturally important livestock, plant genomes, ordisease-
relatedmicrobialgenomes. Thisbroad utilitywasdemonstrated during the recent E. colioutbreak inEurope in2011,which
prompted a rapid scientific response. Using the latestNGSsystems, researchersquickly sequenced thebacterialstrain,
enabling themtotrack theoriginsand transmissionof the outbreak aswellas identifygeneticmutationsconferring the
increased virulence.13

Exome Sequencing

Exomesequencing isawidely-used targeted sequencingmethod. The exome represents less than2% of the human
genome, but containsmost of the knowndisease-causingvariants,makingwhole-exomesequencing (WES)a cost-
effective alternative toWGS.14WithWES, theprotein-codingportionof the genome isselectively captured and sequenced.
It canefficiently identify variantsacrossawide rangeofapplications, includingpopulationgenetics, genetic disease, and
cancer studies.

†With dual flow cell mode enabled.

For Research Use Only. Not for use in diagnostic procedures.

De novoSequencing

Denovosequencingrefers tosequencinganovelgenomewhere there isnoreference sequence available for alignment.
Sequence readsare assembled ascontigsand the coveragequalityofde novosequencedata dependson the size and
continuityof the contigs (ie, the numberofgaps in thedata). Another important factor ingeneratinghigh-qualityde novo
sequences is thediversityof insert sizes included in the library. Combiningshort-insert paired-end and long-insertmatepair
sequences is themost powerfulapproach formaximalcoverage across thegenome (Figure 7). The combinationof insert
sizesenablesdetectionof thewidest rangeofstructuralvariant typesand isessential for accurately identifyingmore complex
rearrangements. The short-insert reads, sequenced at higherdepths, can fill ingapsnot covered by the long inserts, which
are oftensequenced at lower read depths. Therefore, usinga combined approach results inhigherquality assemblies. In
parallelwithNGStechnology improvements,manyalgorithmic advanceshave emerged insequence assemblers for short-
read data. Researcherscanperformhigh-qualityde novoassemblyusingNGSreadsand publicly available short-read
assembly toolswithexistingcomputer resources in the laboratory.

Figure 7: Mate Pairs andDe novo Assembly—Using a combination of short and long insert sizeswith paired-end sequencing results in maximal coverage of the genome for
de novo assembly.

TargetedSequencing

With targeted sequencing, a subset ofgenesor regionsof the genomeare isolated and sequenced. Targeted sequencing
allowsresearchers to focus time, expenses, and data analysisonspecific areasof interest and enablessequencingatmuch
highercoverage levels. Forexample, a typicalWGSstudyachievescoverage levelsof30–50× pergenome,while a targeted
resequencingproject caneasily cover the target regionat 500–1000× orhigher. Thishighercoverage allowsresearchers to
identify rare variants, variants thatwould be toorare and tooexpensive to identifywithWGSorCE-based sequencing.

Targeted sequencingpanelscanbepurchasedwith fixed, preselected content orcanbecustomdesigned. Awide variety
of targeted sequencing libraryprep kitsare available, includingkitswithprobe sets focused onspecific areasof interest such
ascancer, cardiomyopathy, orautism. Customprobe setsare available throughDesignStudio™Software enabling
researchers to target regionsof the genome relevant tospecific research interests. Custom targeted sequencing is ideal for
examininggenes inspecific pathways, or for follow-up studies fromGWASorWGS. Illumina currently supports twomethods
for targeted sequencing, target enrichment and amplicongeneration (Figure 8).

Target enrichment capturesbetween10 kb–62 Mb regions, dependingon the libraryprep kit parameters. Amplicon
sequencingallowsresearchers tosequence16–1536 targetsat a time, spanning2.4–652.8 kb of totalcontent, depending
on the libraryprep kit used. Thishighlymultiplexed approachenablesawide rangeofapplications fordiscovery, validation, or
screeningofgenetic variants. Ampliconsequencing isuseful fordiscoveryof rare somaticmutations incomplexsamples (eg,
cancerous tumorsmixedwithgermlineDNA).15,16Anothercommonampliconapplication issequencing thebacterial
16S rRNAgeneacrossmultiple species, awidelyusedmethod forphylogenyand taxonomystudies, particularly indiverse
metagenomic samples.17

Formore informationon Illumina targeted,WGS, exome, orde novosequencingsolutions, visit
www.illumina.com/applications/sequencing/dna_sequencing.html.

For Research Use Only. Not for use in diagnostic procedures.

Figure 8: Target Enrichment and Amplicon Generation Workflows—With target enrichment, specific regions of interest are captured by hybridization to biotinylated
probes, then isolated bymagnetic pulldown. Amplicon sequencing involves the amplification and purification of regions of interest using highlymultiplexed PCR oligos sets.

For Research Use Only. Not for use in diagnostic procedures.

b. Transcriptomics

Librarypreparationmethods forRNA-Seq typicallybeginwith totalRNAsample preparation followed bya ribosome removal
step. The totalRNAsample is thenconverted tocDNAbefore standardNGSlibrarypreparation. RNA-Seq focused on
mRNA, smallRNA, noncodingRNA, ormicroRNAscanbeachieved by includingadditional isolationorenrichment steps
before cDNAsynthesis (Figure 9).

Figure 9: A Complete View of Transcriptomicswith NGS—A broad range ofmethods for transcriptomicswith NGS have emerged over the past 10 years including total
RNA-Seq, mRNA-Seq, small RNA-Seq, and targetedRNA-Seq.

TotalRNA andmRNASequencing

Transcriptomesequencing isamajoradvance in the studyofgene expressionbecause it allowsa snapshot of thewhole
transcriptome rather thanapredetermined subset ofgenes.Whole-transcriptomesequencingprovidesa comprehensive
viewofa cellular transcriptionalprofile at a givenbiologicalmoment and greatly enhances thepowerofRNAdiscovery
methods. Aswithanysequencingmethod, analmost unlimited dynamic range allows identificationand quantificationofboth
commonand rare transcripts. Additionalcapabilities include aligningsequencingreadsacrosssplice junctions, and
detectionof isoforms, novel transcripts, and gene fusions. Librarypreparationkits that support precise detectionofstrand
orientationare available forboth totalRNA-Seq andmRNA-Seqmethods.

TargetedRNASequencing

TargetedRNAsequencing isamethod formeasuring transcriptsof interest fordetectingdifferentialexpression, allele-
specific expression, detectionofgene-fusions, isoforms, cSNPs, and splice junctions. IlluminaTruSeq®TargetedRNA
SequencingKits includepreconfigured, experimentally validated panels focused onspecific cellularpathwaysordisease
statessuchasapoptosis, cardiotoxicity, NFκB pathway, andmore. Customcontent canbedesigned and ordered for
analysisofspecific genesof interest. TargetedRNAsequencing isa powerfulmethod for the investigationofspecific
pathwaysof interest or for the validationofgene expressionmicroarrayorwhole-transcriptomesequencingresults.

Small RNA andNoncodingRNASequencing

Small, noncodingRNA, ormicroRNAsare short, 18–22 bp nucleotides that playa role in the regulationofgene expression
oftenasgene repressorsor silencers. The studyofmicroRNAshasgrownastheir role in transcriptionaland translational
regulationhasbecomemore evident.18,19

Formore information regarding Illumina solutions for smallRNA(noncodingRNA), targetedRNA, totalRNA, and
mRNAsequencing, visitwww.illumina.com/applications/sequencing/rna.html.

For Research Use Only. Not for use in diagnostic procedures.

c. Epigenomics

While genomics involves the studyofheritable oracquired alterations in theDNAsequence, epigenetics is the studyof
heritable changes ingene activity caused bymechanismsother thanDNAsequence changes.Mechanismsofepigenetic
activity includeDNAmethylation, smallRNA–mediated regulation, DNA–protein interactions, histonemodification, and
more.

Methylation Sequencing

Acritical focus inepigenetics is the studyofcytosinemethylation (5mC)statesacrossspecific areasof regulation, suchas
promotorsorheterochromatin. Cytosinemethylationcansignificantlymodify temporaland spatialgene expressionand
chromatin remodeling.20While there aremanymethods for the studyofgeneticmethylation,methylationsequencing
leverages the advantagesofNGStechnologyand genome-wide analysiswhile assessingmethylationstatesat the single-
nucleotide level. Twomethylationsequencingmethodsarewidelyused: whole-genomebisulfite sequencing (WGBS)and
reduced representationbisulfite sequencing (RRBS).WithWGBS, sodiumbisulfite chemistryconvertsnonmethylated
cytosines touracils, whichare thenconverted to thymines in the sequence readsordata output. InRRBS, DNAisdigested
withMspI, a restrictionenzymeunaffected bymethylationstatus. Fragments in the 100–150 bp size range are isolated to
enrich forCpGand promotorcontainingDNAregions. Sequencing librariesare thenconstructed using the standardNGS
protocols.

Formore informationonmethylationsequencingsolutions, visit
www.illumina.com/techniques/sequencing/methylation-sequencing.html

ChIP Sequencing

Protein–DNAorprotein–RNAinteractionshave a significant impact onmanybiologicalprocessesand disease states. These
interactionscanbe surveyedwithNGSbycombiningchromatin immunoprecipitation (ChIP) assaysandNGSmethods.
ChIP-Seq protocolsbeginwith the chromatin immunoprecipitationstep (ChIPprotocolsvarywidelyas theymust be specific
to the species, tissue type, and experimentalconditions).

Formore informationonChIP-Seq, visit
www.illumina.com/techniques/sequencing/dna-sequencing/chip-seq.html.

Ribosome Profiling

Ribosomeprofiling isamethod based ondeep sequencingof ribosomeprotected–mRNAfragments. Purificationand
sequencingof these fragmentsprovidesa “snapshot” ofall the ribosomesactive ina cellat a specific timepoint. This
informationcandeterminewhat proteinsare beingactively translated ina cell, and canbeuseful for investigating translational
control, measuringgene expression, determining the rate ofprotein synthesis, orpredictingproteinabundance. Ribosome
profilingenablessystematicmonitoringofcellular translationprocessesand predictionofproteinabundance. Determining
what regionsofa transcript are being translated canhelp define theproteomeofcomplexorganisms.WithNGS, ribosome
profilingallowsdetailed and accurate in vivoanalysisofproteinproduction.

To learnmore about Illumina ribosomeprofiling, visit
www.illumina.com/applications/sequencing/rna.html.

For Research Use Only. Not for use in diagnostic procedures.

III. Illumina DNA-to-Data NGS Solutions

a. The Illumina NGS Workflow

Illuminaoffersa comprehensive solution for theNGSworkflow, from librarypreparation todata analysis (Figure 10). Library
preparationkitsare available for allNGSmethods, includingWGS, exomesequencing, targeted sequencing, RNA-Seq,
andmore. Illumina librarypreparationprotocolscanaccommodate a rangeof throughput needs, frommanualprotocols for
smaller laboratories to fully automated librarypreparationworkstations for larger laboratoriesorgenomecenters. Likewise,
Illuminaoffersa fullportfolioofsequencingplatforms, from thebenchtopMiniSeq andMiSeq®Systemsto the factory-scale
HiSeq X andNovaSeqSeriesofSequencingSystemsthat deliver the right levelofspeed, capacity, and cost for various
laboratoryor sequencingcenter requirements. For the last step in theNGSworkflow, Illuminaoffersuser-friendly
bioinformatics tools that are easily accessible through theweb, on instrument, or throughonsite servers.

Figure 10: Illumina DNA-to-Data Solutions—Illumina provides fully integrated, DNA-to-data solutions, with technology and support for every step of the NGS workflow
including library preparation, sequencing, and final data analysis.

b. Integrated Data Analysis

Data fromany Illumina sequencingsystemcanbe streamed intoBaseSpace®SequenceHub, a user-friendlygenomics
cloud computingplatform that offerssimplified datamanagement, analyticalsequencing tools, and data storage.
BaseSpaceSequenceHub isoptimized toautomateprocessingof the large volumeofdata generated. Researcherswill find
a richecosystemofcommercialand open-source tools, from Illumina and third-partydevelopers, fordata analysis, including
alignment and variant detection, annotation, visualization, interpretation, and somatic variant calling. BaseSpaceOnsite
SequenceHub isa localversionofBaseSpaceSequenceHub that enablesdata storage and analysisonsite throughan
installed localserver. On-instrument access toBaseSpaceSequenceHub enables the integrationofmanyworkflow steps,
including libraryprep planningwithBaseSpacePrep,‡ runset-up and chemistry validation, and real-timeautomatic data
transfer to theBaseSpace computingenvironment.

TheNGSworkflow thenproceedsseamlessly throughalignment and subsequent data analysisstepswithBaseSpace
Apps. BaseSpaceAppsoffer awide varietyofanalysispipelines, includinganalysis forde novoassembly, SNPand indel
variant analysis, RNAexpressionprofiling, 16Smetagenomics, tumor-normalcomparisons, epigenetic/gene regulation
analysis, andmanymore. Illumina collaboratescloselywithcommercialand academic software developers tocreate a full
ecosystemofdata analysis tools that address the needsofvarious researchobjectives. In the finalstagesof theNGS
workflow, data canbe sharedwithcollaboratorsordelivered instantly tocustomersaround theworld.§

To learnmore aboutBaseSpaceSequenceHub, visit
www.illumina.com/basespace.

‡Currently available with MiniSeq and NextSeq 500/550 Systems only. HiSeq and MiSeq Systems can use Illumina Experiment Manager (IEM) for the same planning
and validation functions.

§Cloud-based environment only. BaseSpace Onsite Sequence Hub restricts data sharing to local users.

For Research Use Only. Not for use in diagnostic procedures.

IV. Glossary

adapters: Theoligosbound to the5′and 3′end ofeachDNAfragment ina sequencing library. The adaptersare
complementary to the lawnofoligospresent on the surfaceof Illumina sequencing flowcells.

bridge amplification: Anamplification reaction that occurson the surfaceofan Illumina flowcell. During flowcell
manufacturing, the surface iscoatedwitha lawnof twodistinct oligonucleotidesoften referred toas“P5” and “P7.” In the first
step ofbridge amplification, a single-stranded sequencing library (withcomplementaryadapterends) is loaded into the flow
cell. Individualmolecules in the librarybind tocomplementaryoligosas they “flow” across theoligo lawn. Primingoccursas
theopposite end ofa ligated fragment bendsoverand “bridges” toanothercomplementaryoligoon the surface. Repeated
denaturationand extensioncycles (similar toPCR) results in localized amplificationofsinglemolecules intomillionsofunique,
clonalclustersacross the flowcell. Thisprocess, alsoknownas“clustering,” occurs inanautomated, flowcell instrument
called a cBotSystemor inanonboard clustermodulewithinanNGSinstrument.

clusters: Aclonalgroupingof templateDNAbound to the surfaceofa flowcell. Eachcluster isseeded bya single template
DNAstrand and isclonally amplified throughbridge amplificationuntil the clusterhas~1000copies. Eachclusteron the flow
cellproducesa single sequencingread. Forexample, 10,000clusterson the flowcellwould produce10,000single reads
and 20,000paired-end reads.

contigs: Astretchofcontinuoussequence, in silico, generated byaligningoverlappingsequencingreads.

coverage level: The averagenumberofsequenced bases that align toeachbaseof the referenceDNA. Forexample, a
whole genomesequenced at 30×coveragemeansthat, onaverage, eachbase in the genomewassequenced 30times.

flowcell: Aglassslidewithone, two, oreight physically separated lanes, dependingon the instrument platform. Each lane is
coatedwitha lawnofsurfacebound, adapter-complimentaryoligos. Asingle libraryora poolofup to96multiplexed libraries
canbe runper lane, dependingonapplicationparameters.

indexes/barcodes/tags: AuniqueDNAsequence ligated to fragmentswithina sequencing library fordownstream insilico
sortingand identification. Indexesare typically a component ofadaptersorPCRprimersand are ligated to the library
fragmentsduring the sequencing librarypreparationstage. Illumina indexesare typicallybetween8–12bp. Librarieswith
unique indexescanbepooled together, loaded intoone laneofa sequencing flowcell, and sequenced in the same run.
Readsare later identified and sorted via bioinformatic software. All together, thisprocess isknownas“multiplexing.”

insert: During the librarypreparationstage, the sampleDNAis fragmented, and the fragmentsofa specific size (typically 200–
500bp, but canbe larger) are ligated or “inserted” inbetween twooligoadapters. TheoriginalsampleDNAfragmentsare
alsoreferred toas“inserts.”

matepair library: Asequencing librarywith long inserts ranging in size from2–5 kb typically runaspaired-end libraries. The
longgap length inbetween the sequencepairs isuseful forbuildingcontigs indenovosequencing, identificationof indels,
and othermethods.

multiplexing: See “indexes/barcodes/tags."

read: NGSusessophisticated instruments todetermine the nucleotide sequenceofaDNAorRNAsample. Ingeneral terms,
a sequence “read” refers to thedata stringofA,T, C, andGbasescorresponding to the sampleDNAorRNA.With Illumina
technology,millionsof readsare generated ina single sequencingrun.

referencegenome: Areferencegenome isa fully sequenced and assembled genome that actsasa scaffold againstwhich
newsequence readsare aligned and compared. Typically, readsgenerated fromasequencingrunare aligned toa
referencegenomeasa first step indata analysis.

sequencingbysynthesis (SBS): SBStechnologyuses four fluorescently labeled nucleotides tosequence the tensofmillions
ofclusterson the flowcell surface inparallel. Duringeachsequencingcycle, a single labeled dNTP isadded to the nucleic
acid chain. Thenucleotide labelservesasa “reversible terminator” forpolymerization: afterdNTP incorporation, the
fluorescent dye is identified through laserexcitationand imaging, thenenzymatically cleaved toallow the next round of
incorporation. Base callsaremadedirectly fromsignal intensitymeasurementsduringeachcycle.

For Research Use Only. Not for use in diagnostic procedures.

V. References
1. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. PNAS. 1977;74(12):5463–5467.
2. Collins FS, Morgan M, PatrinosA. The human genome project: lessons from large-scale biology. Science. 2003;300(5617):286–290.
3. DaviesK. 13 years ago, a beer summit in an English pub led to the birth of Solexa. BioIT World. September 28, 2010. (www.bio-itworld.com/2010/issues/sept-

oct/solexa.html).
4. Illumina. HiSeq X Ten Series of Sequencing Systems. 2014. (www.illumina.com/documents/products/datasheets/datasheet-hiseq-x-ten.pdf).
5. Fallows J. When will genomics cure cancer?. The Atlantic. January 2014. (www.theatlantic.com/magazine/archive/2014/01/when-will-genomics-cure-

cancer/355739/)
6. RossMG, RussC, Costello M, et al. Characterizing andmeasuring bias in sequence data. Genome Biol. 2013;14(5):R51.
7. Bentley DR, Balasubramanian S, Swerdlow HP, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nat. 2008;456(7218):53–

59.
8. Nakazato T, Ohta T, Bono H. Experimental design-based functional mining and characterization of high-throughput sequencing data in the sequence read archive.

PLoS One. 2013;8(10):e77910.
9. Illumina. Nextera DNA Library Preparation Kits data sheet. 2014. (www.illumina.com/documents/products/datasheets/datasheet_nextera_dna_sample_prep.pdf).
10. Illumina. Nextera XT DNA Library Preparation Kit data sheet. 2014.(www.illumina.com/documents/products/datasheets/datasheet_nextera_xt_dna_sample_

prep.pdf).
11. Illumina. TruSeqDNA PCR-Free Library Preparation Kit data sheet. 2013. (www.illumina.com/documents/products/datasheets/datasheet_truseq_dna_pcr_free_

sample_prep.pdf).
12. Kircher M, Sawyer S, Meyer M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic AcidsRes. 2012:2513–2524.
13. Grad YH, Lipsitch M, Feldgarden M, et al. Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, 2011. PNAS. 2012;109(8):3065–3070.
14. van Dijk EL, Auger H, Jaszczyszyn Y, ThermesC. Ten years of next-generation sequencing technology. TrendsGenet. 2014;(9):418–426.
15. McEllistrem MC. Genetic diversity of the pneumococcal capsule: implications for molecular-based serotyping. Future Microbiol. 2009;4(7):857–865.
16. Lo YMD, Chiu RWK. Next-generation sequencing of plasma/serum DNA: an emerging research andmolecular diagnostic tool. Clin Chem. 2009;55:607–608.
17. Ram JL, Karim AS, Sendler ED, Kato I. Strategy for microbiome analysis using 16S rRNA gene sequence analysis on the Illumina sequencing platform.

Syst Biol Reprod Med. 2011;57(3):117–118.
18. Wang Y, Kim S, Kim IM. Regulation ofmetastasis bymicroRNAs in ovarian cancer. Front Oncol. 2014;10:143.
19. Dior Up, Kogan L, Chill HH, Eizenberg N, Simon A, Revel A. Emerging roles ofmicroRNA in the embryo-endometrium cross talk. Semin ReprodMed. 2014;32

(5):402–409.
20. Phillips T. The role ofmethylation in gene expression. Nat Education. 2008;1(1):116.

For Research Use Only. Not for use in diagnostic procedures.

Illumina, Inc. • 1.800.809.4566 toll-free (US) • +1.858.202.4566 tel • techsupport@illumina.com • www.illumina.com

©2017 Illumina, Inc. All rights reserved. Illumina, BaseSpace, DesignStudio, HiSeq, HiSeq X, MiniSeq, MiSeq, NextSeq, Nextera, TruSeq, and the pumpkin
orange color are trademarks of Illumina, Inc. and/or its affiliate(s) in the U.S. and/or other countries. Pub. No. 770-2012-008-B

For Research Use Only. Not for use in diagnostic procedures.

 1

Using Galaxy for NGS Analyses
Luce Skrabanek

Registering for a Galaxy account
Before we begin, first create an account on the main public Galaxy portal.
Go to:
https://main.g2.bx.psu.edu/
Under the User tab at the top of the page, select the Register link and follow the instructions
on that page.

This will only take a moment, and will allow all the work that you do to persist between
sessions and allow you to name, save, share, and publish Galaxy histories, workflows,
datasets and pages.

Disk quotas
As a registered user on the Galaxy main server, you are now entitled to store up to 250GB of
data on this public server. The little green bar at the top right of your Galaxy page will always
show you how much of your allocated resources you are currently using. If you exceed your
disk quota, no further jobs will be run until you have (permanently) deleted some of your
datasets.

Note: Many of the examples throughout this document have been taken from published
Galaxy pages. Thanks to users james, jeremy and aun1 for making these pages and the
associated datasets available.

 2

Importing data into Galaxy
The right hand panel of the Galaxy window is called the Tools panel. Here we can access all
the tools that are available in this build of Galaxy. Which tools are available will depend on
how the administrator of the Galaxy instance you are using has set it up.

The first tools we will look at will be the built-in tools for importing data into Galaxy. There
are multiple ways of importing data into Galaxy. Under the Get Data tab, you will see a list
of 15+ tools that you can use to import data into your history.

Upload from database queries
You can upload data from a number of different databases. For example, you can retrieve
data from different sections of the UCSC Genome Browser, using the UCSC Main, UCSC
Archaea and BX Main tools.

Retrieving data from UCSC
The Galaxy tool will open up the Table Browser from UCSC in the Galaxy window. At this
point, you can use the Table Browser exactly as you would normally. For example, let’s say
we want to obtain a BED-formatted dataset of all RefSeq genes from platypus.

1. Open the Get Data → UCSC Main tool.
2. Select platypus from the Genome pulldown menu.
3. Change the Track pulldown menu to RefSeq genes.
4. Keep all other options fixed (including region: genome and output format: BED and

the ‘Send output to Galaxy’ box checked).
5. Click on the ‘Get Output’ button.
6. Select the desired format (here we will choose the default one BED record per whole

gene).
7. Click the ‘Send query to Galaxy’ button.

Similarly, you can access BioMart through the BioMart and Gramene tools. In these cases,
the Galaxy window will be replaced by the query forms for these databases, but once you
have retrieved your results, you will get the option to upload them to Galaxy.

Other database query systems that open up within Galaxy include:
FlyMine, MouseMine, RatMine, YeastMine, EuPathDB, EpiGRAPH, GenomeSpace.

The others will open up in their own window, replacing the Galaxy window, but will have an
option to export the results from your query to Galaxy:
WormBase, modENCODE fly, modENCODE modMine, modENCODE worm.

 3

Upload data from a File
The Get Data → Upload File tool is probably the easiest way of getting data into a history.
Using this tool, you can import data from a file on your computer, or from a website or FTP
site. Here we will import a file from the website associated with this Galaxy workshop.

1. Open the Get Data → Upload File tool.
2. Enter the following URL into the text-entry box (either by typing it or right-click the

link on the course webpage, select ‘Copy Link’ and paste the link into the text-entry
box.)

 http://chagall.med.cornell.edu/galaxy/rnaseq/GM12878_rnaseq1.fastqsanger
3. Change the File-Format pulldown menu from ‘Auto-detect’ to ‘Fastqsanger’.

Although Galaxy is usually quite good at recognizing formats, it is always safer, if you
know the format of your file, not to leave its recognition to chance. This is especially
important with FastQ formats, as they all look similar but will give different results if
Galaxy assumes the wrong format (see FastQ quality scores section.)

4. Click Execute.

Galaxy will usually have some kind of help text below the parameters for any tool. However,
the help text is not always up-to-date or covers all the options available. This is the case here,
where the help text details many of the formats listed in the File Format pulldown menu, but
not all of them.

As mentioned, we chose the fastqsanger format here. The FastQ format is a format that
includes not only the base sequence, but also the quality scores for each position. You will
see five possible different FastQ formats in the pulldown menu [fastq, fastqcssanger,
fastqillumina, fastqsanger, fastqsolexa]. The fastq format is the “default” FastQ format. If
your dataset becomes tagged with this format, it will have to be converted into one of the
other named formats before you can begin to do analysis with it. The fastqcssanger format is
for color space sequences and the other three are FastQ formats that encode quality scores
into ASCII with different conversions.

 4

History
The right hand panel of the Galaxy window is called the History panel. Histories are the way
that datasets are stored in an organized fashion within Galaxy.

1. To change the name of your history, click on the Unnamed history text. This will
highlight the history name window and allow you to type the new name of the
history.

Histories can also be associated with tags and annotations which can help to identify the
purpose of a history. As the number of histories in your Galaxy account grows, these
tags/annotations become more and more important to help you keep track of what the
function of each history is.

Every dataset that you create gets a new window in this history panel. Clicking on the name
of the dataset will open the window up to a slightly larger preview version, which shows the
first few lines of that dataset.

There are many icons associated with each dataset.

1. The eye icon will show the contents of that dataset in the main Galaxy panel.
2. The pencil icon will allow you to edit any attributes associated with the dataset.
3. The X icon deletes the dataset from the history. Note that a dataset is not

permanently deleted unless you choose to make it so.
4. The disk icon allows you to download the dataset to your computer.
5. The “i” icon gives you details about how you obtained that dataset (i.e., if you

downloaded it from somewhere, or if it is the result of running a job within the
Galaxy framework.)

6. The scroll icon allows you to associate tags with the dataset. Similarly to the tags for
the history itself, these tags can help to quickly identify particular datasets.

7. The post-it-note icon allows you associate annotations with a dataset. These
annotations are also accessible via the Edit Attributes pencil icon.

All datasets belonging to a certain analysis are grouped together within one history. Histories
are sharable, meaning that you can allow other users to access a specific history (including all
the datasets in it). To make a history accessible to other users:

1. Click the gear icon at the top of the history panel that you want to share.
2. Choose the Share or Publish option.

a. To make the history accessible via a specific URL, click the Make History
Accessible via Link button.

b. To publish the history on Galaxy’s Published Histories section, click the
Make History Accessible and Publish option. To see the other histories that
have been made accessible at this site, click the Shared Data tab at the top of
the page and select Published Histories.

To go back to your current Galaxy history, click the Analyze Data tab at the top of the page.
To see a list of all of your current histories, click the gear icon at the top of the history panel
and select Saved Histories.

 5

All initial datasets used in this class, as well as prepared mapping runs, are available via two
shared histories.
https://main.g2.bx.psu.edu/u/luce/h/workshopdatasets
https://main.g2.bx.psu.edu/u/luce/h/mappingresults

You can import these histories into your own account, using the green “+” icon at the top
of the page. You can now either directly start using these histories, or copy any dataset from
these histories into any other history you happen to be working with, by using the Copy
Datasets command, accessible from the gear icon in the History panel.

 6

Changing dataset formats, editing attributes
If Galaxy does not detect the format of your dataset correctly, you can always change the
format of your dataset manually by editing the attributes of the dataset (the pen icon to the
upper right of the dataset link in your history.) Specifically, there is a “Change data type”
section, where you can select from a pulldown menu the correct format that you want
associated with your dataset.

If not already included in the details section of a dataset, it can also be helpful to include
other notes about a) where you got the data, b) when you got the data (although the dataset
should have a Created attribute, visible from the “view details” icon, the “i”), c) if importing
from a database, what query you used to select the data.

Exercises
Update the attributes of the GM12878 dataset that we previously downloaded.
1. Click the pencil icon for the GM12878 dataset.
2. Change the name of the dataset to GM12878 in the Name field.
3. Associate the dataset that we just downloaded with the human hg19 genome in the

Database/Build field.
4. Add to the Notes field that we downloaded it from a website. Include the website

URL.
5. Click Save.

 7

Examining and Manipulating FastQ data

Quality Scores
The FastQ format provides a simple extension to the FastA format, and stores a simple
numeric quality score with each base position. Despite being a “standard” format, FastQ has
a number of variants, deriving from different ways of calculating the probability that a base
has been called in error, to different ways of encoding that probability in ASCII, using one
character per base position.

PHRED scores
Quality scores were originally derived from the PHRED program which was used to read
DNA sequence trace files, and linked various sequencing metrics such as peak resolution and
shape to known sequence accuracy. The PHRED program assigned quality scores to each
base, according to the following formula:

𝑄_𝑃𝐻𝑅𝐸𝐷 = −10 𝑙𝑜𝑔10 (𝑃𝑒)

where Pe is the probability of erroneously calling a base. PHRED put all of these quality
scores into another file called QUAL (which has a header line as in a FastA file, followed by
whitespace-separated integers. The lower the integer, the higher the probability that the base
has been called incorrectly.

PHRED Quality Score Probability of incorrect base call Base call accuracy
10 1 in 10 90 %
20 1 in 100 99 %
30 1 in 1000 99.9 %
40 1 in 10000 99.99 %
50 1 in 100000 99.999 %
While scores of higher than 50 in raw reads are rare, with post-processing (such as read
mapping or assembly), scores of as high as 90 are possible.

Quality scores for NGS data are generated in a similar way. Parameters relevant to a
particular sequencing chemistry are analyzed for a large empirical data set of known accuracy.
The resulting quality score lookup tables are then used to calculate a quality score for de novo
next-generation sequencing data.

Solexa scores
The Solexa quality scores, which were used in the earlier Illumina pipelines, are calculated
differently from the PHRED scores:
 𝑄_𝑆𝑂𝐿𝐸𝑋𝐴 = −10 𝑙𝑜𝑔10 (!"

!!!"
)

 8

FastQ Conversion

Changing between FastQ formats
Galaxy is able to interchange between the different FastQ formats with a tool called FASTQ
Groomer, found under the NGS: QC and manipulation tab. Since Galaxy tools are designed
to work with the Sanger FastQ format, it is advisable to convert any FastQ datasets in
another FastQ format to Sanger FastQ. The FASTQ Groomer tool takes as input any
dataset designated as FastQ format and converts it according to the equations found in
Cock et al. NAR 2009.

Description
Galaxy format name

ASCII characters Quality score
Range Offset Type Range

Sanger standard/Illumina 1.7+
fastqsanger

33 to 126 33 PHRED 0 to 93

Solexa/early Illumina
fastqsolexa

59 to 126 64 Solexa -5 to 62

Illumina 1.3+
fastqillumina

64 to 126 64 PHRED 0 to 62

 9

FastQ Quality Control
There are two standard ways of examining FastQ data in Galaxy: using the Summary
Statistics method and the FastQC method.

Summarizing and visualizing statistics about FastQ reads
A very important tool that Galaxy provides for FastQ dataset is the NGS: QC and
manipulation → FASTQ Summary Statistics tool. For every column in a set of sequences,
this tool will calculate the minimum, maximum, mean, median and first and third quartile
quality scores, as well as an overall count of each type of base found for that column. This
tool is especially useful for determining at which base sequences should be trimmed so that
only high quality sequence is used in your NGS analysis.

The output from the Summary Statistics tool is designed to be used as input to the
Graph/Display Data → Boxplot tool. This tool creates a boxplot graph from tabular data.
For our purposes, its main function is to visualize the statistics from the Summary Statistics
tool. Much of the output from the summary statistics tool is not used by the boxplot tool,
since to draw a boxplot, you only need to specify the median, first and third quartiles,
whiskers and outliers (if any). The output will be a PNG image viewed in GnuPlot.

Exercise
Run a quality control on the GM12878 dataset that we previously downloaded.

1. Open the NGS: QC and manipulation → FASTQ Summary Statistics tool. Make
sure the GM12878 dataset is selected.

2. Click Execute.
3. Open the Graph/Display Data → Boxplot tool. Make sure the input dataset is the

output from the Summary Statistics tool in the last step.
4. Change the X-axis label to “read position” and the Y-axis label to “quality score”.
5. Click Execute.

 10

FastQC quality control
Another way of looking at your data to determine the overall quality of your run and to warn
you of any potential problems before beginning your analysis is to use the NGS: QC and
manipulation → FastQC tool, from Babraham Bioinformatics. It takes as input either a
FastQ dataset, or BAM or SAM datasets. FastQC bundles into one executable what many of
the individual tools available in Galaxy do for specific FastQ formats.

Basic Stat i s t i c s
This section gives some simple composition statistics for the input dataset, including
filename, filetype (base calls or colorspace), encoding (which FastQ format), total number of
sequences, sequence length and %GC.

Per Base Sequence Quali ty
This plot shows the range of quality values over all bases at each position (similar to the
boxplot from the BoxPlot tool.)

Per Sequence Quali ty Scores
This plot allows you to see if there is a subset of your sequences which has universally low
scores (perhaps due to poor imaging). These should represent only a small number of the
total sequences. See for comparison the “good” dataset and the “bad” dataset, below. All of
the reads in the “good” dataset have a mean quality score of 37; the “bad” dataset has
10,000+ reads with a mean quality score of around 17.

(from http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/)

Per Base Sequence Content
This plot shows the proportion of each base at each position in the read. In a random library,
you would expect that all frequencies are approximately equal at all positions, over all
sequences. If you see strong biases which change for different bases then this usually
indicates an overrepresented sequence which is contaminating your library. A bias which is
consistent across all bases either indicates that the original library was sequence biased, or
that there was a systematic problem during the sequencing of the library.

Per Base GC Content
This plots shows the GC content of each position in the run. In a random library, there
should be minimal difference between positions, and the overall GC content should reflect
the GC content of the genome under study. As in the Per Base Sequence Content plot,
deviations across all positions could indicate an over-represented sequence. Similarly, if a

 11

bias is consistent across all bases, this could either indicate that the original library was
sequence biased, or that there was a systematic problem during the sequencing of the library.

Per Sequence GC content
This plots the GC content across each sequence and compares it to a modeled GC content
plot. In a random library, the plot should look normal and the peak should correspond to
the overall GC of the genome under study. A non-normal distribution may indicate a
contaminated library or biased subset.

Per Base N Content
This plots the percentage of base calls that were Ns (i.e., a base call could not be made with
certainty) at every position. Ns more commonly appear towards the end of a run.

Sequence Length Distr ibut ion
This plots the distribution of all read lengths found.

Duplicate Sequences
This counts the number of times any sequence appears in the dataset and shows a plot of the
relative number of sequences with different degrees of duplication. In a diverse library most
sequences will occur only once in the final set. A low level of duplication may indicate a very
high level of coverage of the target sequence, but a high level of duplication is more likely to
indicate some kind of enrichment bias (e.g., PCR over-amplification).

Overrepresented Sequences
This creates a list of all the sequences which make up more than 0.1% of the total. A normal
high-throughput library will contain a diverse set of sequences. Finding that a single
sequence is very over-represented in the set either means that it is highly biologically
significant, or indicates that the library is contaminated, or not as diverse as you expected.

Overrepresented Kmers
This counts the enrichment of every 5-mer within the sequence library. It calculates an
expected level at which this k-mer should have been seen based on the base content of the
library as a whole and then uses the actual count to calculate an observed/expected ratio for
that k-mer. In addition to reporting a list of hits it will draw a graph for the top 6 hits to
show the pattern of enrichment of that k-mer across the length of your reads. This will show
if you have a general enrichment, or if there is a pattern of bias at different points over your
read length.

Exercise
Run a quality control on the GM12878 dataset using the FastQC tool.

1. Open the NGS: QC and manipulation → FastQC tool.
2. Select the GM12878 dataset.
3. Click Execute.

 12

FastQ Manipulation

Trimming the ends off reads
In general, we hope that most of the bases at the start of a run are of predominantly high
quality. If, as the run progresses, the overall quality of the reads decreases, it may be wise to
trim the reads before engaging in downstream analysis.

NGS: QC and manipulation → FastQ Trimmer [under Generic FASTQ
manipulation]
This tool trims 3’ and 5’ ends from each read in a dataset. This is especially useful with
Illumina data which can be of poorer quality towards the 3’ end of a set of reads. For fixed-
length reads such as Illumina and SOLiD data, the base offsets should be defined by the
absolute number of bases that you want to take off either end, whereas for variable length
reads like 454, the number of bases to be trimmed off the end is defined by the percentage
of the entire length. Foe example, to take the last 20 bases off the end of each read, the
offset from the 3’ end is changed to 20.

Removing individual sequences
It is possible that you may want to get rid of some reads which contain one or more bases of
low quality within the read. This is done using the Filter FastQ tool

NGS: QC and manipulation → Filter FastQ [under Generic FASTQ manipulation]
This tool allows the user to filter out reads that have some number of low quality bases and
return only those reads of the highest quality. For example, if we wanted to remove from our
dataset all reads where the quality of any base was less than 20, we change the Minimum
quality box to 20. The “Maximum number of bases allowed outside of quality range” allows
us to select how many bases per read must be below our threshold before we discard that
read. If we leave this at the default setting of 0, all bases in a read must pass the threshold
minimum quality score to be kept.

More complex manipulations
The Manipulate FastQ tool in Galaxy also allows much more complex manipulation of
FastQ data, whether manipulating the read names, the sequence content or the quality score
content. This tool also allows the removal of reads that match some given criteria.

NGS: QC and manipulation → Manipulate FASTQ [under Generic FASTQ
manipulation]
This tool can work on all, or a subset of, reads in a dataset. The subset is selected using
regular expressions on either the read name, sequence content, or quality score content. If
no ‘Match Reads’ filter is added, the manipulation is performed on all reads. One of the
more common manipulations used from this suite is the DNA to RNA manipulation on
sequence content, which will have the effect of replacing all Ts in a read with Us.

 13

Exercises
The GM12878 dataset seems to be of poor quality.

1. Trim the reads in the GM12878 dataset using the Generic FASTQ manipulation →
FastQ Trimmer tool. Determine from the boxplot and FastQC figures where the
quality of the reads begins to drop off sharply. Calculate how many bases have to be
trimmed from the end and use that number as the Offset from 3' end.

2. Using the Generic FASTQ manipulation → Filter FastQ tool, filter out all sequences
with any bases that have a quality less than 20. How many sequences do you have
left in your dataset?

3. Run another QC (summary statistics and boxplot) on both of the new datasets from
steps 1 and 2.

4. Modify the trimmed dataset from step 1 so that all Thymines are replaced by Uracils.

 14

Operating on tabular/interval data
One of the advantages of Galaxy is that it makes available many database operations quite
transparently. In a database setting, we would use those operations for “joining” tables on a
common field, but another common usage is to join information from tables by finding
overlapping genomic segments. In Galaxy, tables that include genomic intervals are said to
be in interval format.

Joining two tables with interval data
In this exercise we will upload some TAF1 sites that have been detected using a ChIP-Seq
experiment, and try to identify the genes that are associated with these sites.

1. Create a new history by clicking the gear icon and selecting Create New.
2. Name your new history to Simple database operations.
3. Upload the file from the following URL by using the Get Data → Upload File tool

and entering http://galaxy.psu.edu/CPMB/TAF1_ChIP.txt into the URL/text entry
box.

4. Click Execute.
5. Once the dataset has been downloaded, we can take a look at it. It is a tabular dataset

where each line represents a location of a predicted TAF1 binding site in the genome.
For this information to be meaningful, we need to tell Galaxy which genome build
these genomic locations are referring to. In this case, this dataset was generated using
the hg18 dataset.

a. Change the attributes of the dataset by clicking the pencil icon.
b. Move the URL from the Name field to the Annotation/Notes field.
c. Change the name of the dataset to something manageable, like ‘TAF1 Sites’.
d. Change the Database/Build field to hg18 (rather than trying to scroll through

the list in the pulldown menu, click in the pulldown menu box and start
typing hg18; the list of options in the pulldown menu matching this keyword
are quickly narrowed).

e. Change the data type of the dataset (from the Datatype tab) from tabular to
interval to tell Galaxy that this is a specific type of tabular data that contains
genomic intervals.

6. Click on Save. Genomic interval data is defined by having a chromosome location,
and start and stop positions. Galaxy will attempt to figure out which columns
correspond to these data. In this case, the chromosome column is 2, the start column
is 3, the end column is 4, and the name is located in column 5.

 15

We now need to get the gene annotations from UCSC.
1. Open the Get Data → UCSC Main tool.
2. Change the assembly to March 2006 (hg18) in the assembly pull down menu.
3. Select RefSeq genes as the track to be queried.
4. Make sure the output format is set to BED and the Send Output to Galaxy box is

checked.
5. Click ‘get output’.
6. On the following page, make sure that you are downloading one BED record per

whole gene.
7. Click the Send query to Galaxy button.
8. Use the Edit attributes function to rename the dataset to ‘RefSeq genes’, once this

dataset of RefSeq genes has finished downloading.

Next we want to get a set of putative promoter sequences. Here, we are going to use the
upstream sequence as a simple definition of a promoter sequence. (Note that, although in
this example we are using a Galaxy tool to accomplish this, we could also have done this
through the UCSC Main interface.)

1. Open the Operate on Genomic Intervals → Get Flanks tool to extract the upstream
region of the RefSeq genes.

2. Change the length of the flanking region to 1000.
3. Click Execute.
4. Change the name of the resultant dataset to RefSeq promoters.

Now we will use the database join operation to join the original TAF1 binding site dataset
with the promoter regions of the RefSeq genes.

1. Open the Operate on Genomic Intervals → Join tool. Note that this tool can only
be used with interval datasets.

2. Select the promoters dataset as the first dataset and the TAF1 sites dataset as the
second dataset to be joined.

3. Click Execute.
This operation returns a dataset of all those records where the genomic interval overlaps by
at least one base, one pair per line. The UCSC “promoter” dataset contains a lot of extra
exon information, so you will have to scroll all the way to the right to see the information
about the TAF1 site that is being associated with each gene promoter region.
We can tidy this table up by selecting only a handful of columns to display in our final
dataset.

1. Open the Text Manipulation → Cut tool.
2. Select c1,c2,c3,c4,c6,c15,c16,c17 as the columns to be cut. This will select only the

columns with the chromosome information, start and stop positions of the promoter,
the gene name, the strand the gene is coded on, the start and stop positions of the
TAF1 site and the TAF1 site name.

 16

Performing calculations on the result of interval data joining
The next example is slightly more complicated. Let’s say we want to list all the exons on
chromosome 22, sorted by the number of single nucleotide polymorphisms they contain.
What genes do the five exons with the highest number of SNPs come from?

First, create a new history. Call it “SNPs in coding exons”.

Next retrieve all coding exons from UCSC.

1. Use Get Data → UCSC Main tool.
2. Change the position to search to chr22.
3. Click the get Output button.
4. On the output format screen, change it to one BED record per coding exon.
5. Click Send query to Galaxy.
6. Rename this exon dataset to “Exons_22”.

Now retrieve the SNP data, again from UCSC.

1. Use Get Data → UCSC Main tool.
2. This time, change the group to Variation and Repeats.
3. Change the position to chr22 again.
4. On the output format page, the one BED record per gene should again be selected.

In this case, “gene” is actually “SNP” (or “feature”).
5. Click the Send query to Galaxy button.
6. Rename this dataset to “SNPs_22”.

To find the exon with the highest number of SNPs, we must first associate the SNPs with
their exons. We do this using the database join command, which will associate with an exon
any SNP whose given genomic interval overlaps that of any exon by at least one base (in this
case, each SNP location is only one base in length).

1. Open the Operate on Genomics Intervals → Join tool.
2. Use the exons dataset as the first dataset and the SNPs dataset as the second dataset.
3. Click Execute.

Each line in this new dataset is the “join” of an exon and a SNP that is found within that
exon (more exactly, whose genomic region overlaps that of the corresponding exon). The
first six columns are those associated with the exon, the next six are those associated with
the SNP.

Next, we want to count the number of SNPs associated with each exon.

1. Open the Join, Subtract, and Group → Group tool.
2. Change the Group by Column to c4 (i.e., the exon name).
3. Add a new operation.
4. Change the type of the new operation to Count and the column to c4. This groups

the dataset on the exon name, and count how many exons of the same name are in
each unique group.

 17

The resulting dataset will have two columns: one is a list of all the distinct exon names, and
the other is the number of times that exon name was associated with a SNP. We can now
rearrange this dataset such that the exons with the highest number of SNPs are at the top.

1. Open the Filter and Sort → Sort tool.
2. Sort the dataset by column 2 (SNP count), in descending order (i.e., highest first).

We can see that the first exon (cds_0) of gene uc003bhh.3 has the highest number of SNPs
with 26.

Finally, we want to select the five exons with the most SNPs.

1. Open the Text Manipulation → Select First tool.
2. Make sure the sorted dataset is selected.
3. Change the number of lines to select to 5.
4. Click Execute.

This dataset will simply be the first 5 lines of the previous dataset.

If we want to view these five exons in a genome browser, we will have to get their genomic
coordinates, which we lost when we grouped the data. However, we still have this
information in our original dataset, and we can re-associate this information with our exons
of interest.

1. Open the Join, Subtract and Group → Compare two Datasets tool.
2. Choose c4 from our Exons_22 dataset and c1 from our final set of five exons (where

c4 and c1 are the exon name column in each respective dataset).
3. Click Execute.

This extracts from our Exons_22 dataset any lines which match the exon name from our
final dataset.
To visualize these regions, we can click on any of the visualization tools listed for that
dataset (UCSC, GeneTrack, Ensembl or RViewer).

 18

Converting to interval format
Not all datasets will be in interval format, and will have to be converted before they can be
used in analyses like the above.
Download the variations from the ENSEMBL database for chromosome 22. We can access
it through the BioMart portal in Galaxy.

1. Open the Get Data → BioMart tool. This will take us away from the Galaxy page
and to the query interface to the BioMart databases.

2. Choose the Ensembl Variation 69 → Homo sapiens Somatic Variation (GRCh37.p8)
database.

3. Click the Filters link. This is the section where you restrict the entries that will be
retrieved.

a. Open the Region section.
b. In the chromosome pulldown menu, choose 22. The chromosome checkbox

should be automatically checked as soon as you choose a chromosome.
4. Click the Attributes link. This is the section where you determine the fields that will

be shown in the output.
a. Check the Variation ID, Chromosome name and Position on Chromosome

(bp) checkboxes, if they are not already checked.
5. Click the Results tab. The first 10 results will be shown.
6. In the Export results section, make sure that Galaxy and TSV are selected and click

the Go button.
You will be redirected back to Galaxy and the dataset will be imported to your current
history.
If for some reason the results are shown in HTML format, they will not be imported
correctly into Galaxy. If this happens, reload the page and reselect the Results tab.

The variation data that we imported from BioMart is in tabular format, with the position of
the variation being noted by a single column. The interval data format expects a start and an
end position for every feature. To convert the tabular data to interval format:

1. Open the Text Manipulation → Compute tool.
2. Add the expression c3+1 as a new column to the current dataset, where c3 is our

original position column.
3. Set Round Result to Yes to ensure that the new position column is an integer.
4. Click Execute.

This will add a new final column to the dataset. We now have to indicate to Galaxy that this
dataset is in interval format, which we can do by clicking the pencil icon and editing the
attributes.

1. Change the data type to interval.
2. Click Save.
3. Change the corresponding columns to name, chromosome, start and end. In this

case, the name is in column 1, the chromosome is in column 2, the start in 3 and our
newly computed end position is in column 4.

4. Click Save.

In the event that we had not included the chromosome field when importing from BioMart,
we could add a chromosome column using the Text Manipulation → Add Column tool to
add a new column, fully populated with a single number, the chromosome of interest.

 19

Workflows
Workflows are great a great method to redo analyses automatically and simply on many
datasets. They are also a good way to ensure reproducibility, especially if you share the
workflows with your colleagues.

Extract Genomic Sequence Workflow
In this exercise, we are going to extract the genomic sequence flanking all the SNPs in the
rhodopsin gene and then learn how to package those steps into a reusable workflow.

We will upload the data using the database query method.

1. Create a new history.
2. Open the Get Data → UCSC Main tool, which will bring up the query interface for

the UCSC Genome Browser.
3. Making sure that the Mammal, Human and Feb 2009 options are selected, choose

the Variation and Repeats dataset, which should change the track to the most recent
SNP dataset (135).

4. Change the region radio button to position and enter uc003emt.3 in the textbox.
Click the lookup button to automatically convert this to the assocaiated genomic
region (uc003emt.3 is rhodopsin). Make sure that the position radio button is still
checked.

5. Make sure the output format is set at BED and that the Send to Galaxy checkbox is
checked.

6. Click the Get Output button. This takes you to a page which the information to be
contained in the output. We want one BED record per gene which, in this case, is
actually one record per SNP.

7. Click the Send query to Galaxy button.

Once the data has been downloaded, the history item will turn green. We can now edit the
attributes for this dataset by clicking the pencil icon. Because this dataset is in BED format,
it assumes that these are genomic regions, and has labeled the columns accordingly. In
general, it is a good idea to make some notes in the Info field about where you got the
information from (although some of this should automatically have been filled in the
Database/Build field). We can also change the name of the dataset to something simpler,
such as ‘SNP locations’. Once you have entered your changes, click Save.

Now we want to get 50 bases of flanking sequence around each of these SNPs.

1. Select the Operate on Genomic Intervals → Get flanks tool.
2. Change the Location of the flanking regions to both (since we want flanking

sequence on both sides of the SNP), and leave all other values as default.
3. Click Execute.
4. Change the annotations for this new dataset, by clicking the pencil button associated

with this operation in the history. Change the name to ‘SNP flank regions’.
This dataset looks very similar to our initial dataset, but has twice the number of lines: one
for each 50 base flank on either side of every SNP.

 20

Now we get the DNA sequence of each of these flanking regions.

1. Open the Fetch Sequences → Extract Genomic DNA tool.
2. Making sure the second dataset is selected, change the Output data type to interval,

which returns a tab delimited dataset with the sequence, as well as chromosome, start
and stop positions and associated SNPs.

3. Change the name of this dataset to ‘Flanking Genomic Sequence’ by editing the
attributes with the pencil icon.

To make this series of steps into a reusable workflow, click the gear icon at the top of the
history window and choose Extract Workflow. There should be three steps; ensure that all
are checked for inclusion in the workflow. Rename the workflow to ‘Retrieve flanking SNP
sequence’ and click Create Workflow. This workflow has now been added to the list of your
workflows at the bottom of the leftmost column.

To use this workflow with another gene of interest, let us get some SNP data for another
gene, say p53.

1. Create a new history by clicking on the gear icon and selecting Create New.
2. Go to the Get Data → UCSC Main tool.
3. Change the group to Variation and Repeats, input uc010vug.2 (p53) into the text

entry box, and click lookup.
4. Making sure that the output is set at BED and is being sent to Galaxy, click the Get

Output button.
5. On the following page, click the Send query to Galaxy button.
6. Once the dataset has been downloaded, change the name in the attributes panel by

clicking on the pencil icon.
To run the workflow with this new dataset, choose the Workflow tab from the top of the
screen. Locate your newly created workflow, and choose Run from the pulldown menu. The
steps in the workflow are now listed. Step 1 requires you to input a dataset. Choose the p53
SNPs dataset that we just downloaded from UCSC, and click Run Workflow. The workflow
will automatically run both the step that defined the flanking regions for each SNP, as well as
the retrieval of the genomic sequence. Once the workflow is complete, you can click the eye
icon of the final dataset in your history to view the interval-formatted genomic sequence for
the flanking sequence for the 46 SNPs found in p53 (i.e., 92 flanking regions).

 21

Filtering Exons by Feature Count Workflow
For an even more complicated workflow, let’s use the “SNPs in coding exons” example
from the previous section. Go to the coding exons history by finding it in your Saved
Histories list. Convert that history to a workflow, by choosing Extract Workflow from the
list of options accessible by clicking the gear icon. Rename the workflow to Coding Exon
SNPs and click Create Workflow. Your workflow is now accessible from the Workflows tab
at the top of the page.

We can now edit this workflow by clicking on its name and choosing Edit from the
pulldown menu. Clicking on any of the boxes in this figure will bring up the list of options
associated with that tool. There are a number of ways to use and edit workflows, but one of
the most useful is the ability to hide certain intermediate steps so that when you re-use the
workflow, you don’t end up with multiple intermediate datasets shown in your history when
all you really want is the end result. If we want to hide all intermediate steps except the last
one, click the asterisk in the lower right corner of the box for the final step. Note that as
soon as we do this, it turns darker orange in the overview window. We can also ensure that
any datasets are named in a sensible manner within the editor. For example, we can rename
each input dataset to indicate what kind of data that dataset should contain. In this case, we
can rename one input dataset as Exons, and the other as SNPs, by simply clicking on the
box representing that dataset and changing the name in the right hand panel. We can also
rename the final dataset by clicking on its representation and choosing Rename Dataset in
the Edit Step Actions section, and clicking the Create button. This opens a small text entry
box where we can enter what we would like the dataset resulting from this workflow to be
called. Call it Top 5 Exons. Within this editor, you can also change the value of any
parameter in a tool. Once our changes are complete, choose Save from the menu (the cog) at
the top right of the editor.

We can now run this new workflow.

1. Create a new history.
a. Click the Analyze Data tab.
b. Choose Create New from the gear icon.

2. Before we run the workflow, we need to download some data.
3. Retrieve the coding exons from chromosome 21 (remember to choose one BED

record per coding exon) from the Get Data → UCSC Main tool.
4. Retrieve the common SNPs for chromosome 21.
5. Once the two datasets are downloaded, rename them to shorter names.
6. Start the workflow.

a. Go to the Workflow menu.
b. Select the Coding Exon SNPs workflow.
c. Choose Run.

7. Choose the Exons dataset as the first dataset, the SNPs dataset as the second.
8. Click Run Workflow.

While waiting to be run, each dataset will be shown in the history, whether we marked it to
be hidden or not. Once an operation is finished, if it was marked to be hidden, it will
disappear from the history pane. When the workflow has finished running, we will be left
with only the dataset that we did not hide, i.e., the list of the five exons with the highest
number of SNPs.

 22

Mapping Illumina data with BWA

Next Generation Sequencing
Next gen sequencing experiments result in millions of relatively small reads that must be
mapped to a reference genome. Since using the standard alignment algorithms is unfeasible
for such large numbers of reads, a lot of effort has been put into developing methods which
are fast and are relatively memory-efficient.

Mappers
There are two mappers available in Galaxy: Bowtie and BWA. The crucial difference
between these mappers is that BWA performs gapped alignments, whereas Bowtie does not
(although there is a version of Bowtie available which does perform gapped alignments, it is
not the one available in Galaxy). This, therefore, gives BWA greater power to detect indels
and SNPs. Bowtie tends to be much faster, and have a smaller memory footprint, than BWA.
BWA is generally used for DNA projects, whereas Bowtie is used for RNA-Seq projects
since the exonic aligner TopHat uses Bowtie to do the initial mapping of reads.

Aligning reads with BWA [Burrows-Wheeler Alignment]
Create a new history by clicking the gear icon and selecting Create New. We will be working
with the Blood-PCR1 dataset from the mtProjectDemo library. This is a dataset derived
from the blood of a single individual, which has been enriched for mitochondrial sequence
using PCR. Each eukaryotic cell contains many hundreds of mitochondria with many copies
of mtDNA. Heteroplasmy is the (not uncommon) presence of multiple mtDNA variants
within a single individual. We are going to search this dataset for heteroplasmic sites. This
will use a similar methodology as if we were looking for SNPs, although the frequency of
heteroplasmic sites will be much lower than would be seen for SNPs.

1. Click the Shared Data tab.
2. Choosing Data Libraries
3. Clicking on the mtProjectDemo link.
4. Check the box beside Blood-PCR1.
5. Make sure the Import to current history option is selected.
6. Click Go.

Return to your Galaxy analysis page by clicking the Analyze Data tab. As usual, with a new
dataset:

1. Do a quality control check using the NGS: QC and manipulation → FASTQ
Summary Statistics tool.

2. Click Execute.
3. Visualize these data using the Graph/Display Data → Boxplot tool.
4. Inspect the resulting graph by clicking on the eye icon associated with the result of

this tool. We can see that the read length is 76 bases, and the quality ranges from 35
at the 5’ end to 18 at the 3’ end.

 23

Since we will be using these reads to look for heteroplasmic sites, we will map these reads to
the human genome using BWA. This action will take some time to complete, as we are
mapping 500,000 reads to the complete human genome.

1. Select the NGS: Mapping → Map with BWA for Illumina tool.
2. Choose hg19 Full as the reference genome.
3. Click Execute.

Understanding some of the options for BWA

BWA in Galaxy is designed for short queries up to ~200bp with low error rate (<3%). It
performs gapped global alignment with respect to reads, supports paired-end reads, and also
visits suboptimal hits. This is probably the most widely used and least understood mapping
algorithm.

BWA is based on the Burrows-Wheeler transform, a reversible string transformation. This is
a way of matching strings that has a small memory footprint and is able to count the number
of matches to a string independent of the size of the genome.

The first step is to transform the genome. This is done via the index algorithm in BWA, and
will usually take a few hours, but is already done in Galaxy for all the major genomes.

The Burrows-Wheeler transform essentially:

1. Adds a symbol to the end of the string to be transformed, which is lexicographically
smaller than all the other symbols in the string.

2. Generates a list of strings, the same length as the original string (with added symbol),
but where each letter is circularly moved forward one step.

3. Lexicographically sorts the generated strings.
4. We end up with four different variables to store:

a. A suffix array for that string which lists the original indices of each of the sorted
strings;

b. The BWT string, made up of the last symbols of each of the newly ordered
circulated strings;

c. An indexed first column, where we have the start and end index of any given
letter in the alphabet;

d. A rank for each letter at each position, which tells us the number of occurrences
of that letter above that row in the BWT.

Now, if we are trying to match a new string that is a substring of the original string, each
occurrence of that substring will occur within an interval of the suffix array, because all the
circulated strings that begin with that substring will have been sorted together. Once we find
the suffix interval, we can deduce, from the suffix array, the position(s) of that substring in
the original string.

 24

Li and Durbin, Bioinformatics. 2009 Jul 15;25(14):1754-60. “Fast and accurate short read alignment with
Burrows-Wheeler transform.”

For exact matching, the interval is found by working backwards on your query string:

1. Find the start and end indices of the last character of your query in the indexed first
column.

2. At the extremes of this range, find the rank for the next letter in the query string in
the BWT.

3. Jump to these ranks of the next letter in the indexed first column.
4. Repeat until you have matched your whole query string. The positions of the final

range in the index column will give the suffix array range for the query sequence,
where the prefix of every row is our query. If at any time the ranks returned are the
same, that means that the next character we want to find is not present in this range
and our search stops.

For a very nice visual explanation of this algorithm, visit:
http://blog.avadis-ngs.com/2012/04/elegant-exact-string-match-using-bwt-2/

The ‘aln’ command finds the suffix array (SA) coordinates (i.e., the suffix interval) of good
hits of each individual read, and the ‘samse/sampe’ command converts the SA coordinates
to chromosomal coordinates, and pairs reads (for ‘sampe’) and generates the SAM-formatted
alignments.

In the BWA tool in Galaxy, both the aln and samse/sampe commands are run to result in a
SAM format output dataset.

 25

For aln [default values]
-n NUM Maximum edit distance if the value is INT, or the fraction of missing
alignments given 2% uniform base error rate if FLOAT. In the latter case, the maximum edit
distance is automatically chosen for different read lengths. The maximum number of
differences allowed is defined as: 15-37 bp reads: 2; 38-63: 3; 64-92: 4; 93-123: 5; 124-156: 6.
[0.04]
-o INT Maximum number of gap opens. [1]
-e INT Maximum number of gap extensions, -1 for k-difference mode (disallowing
long gaps) [-1]. This option is critical in allowing the discovery of indels.
-d INT Disallow a long deletion within INT bp towards the 3’-end. [16]
-i INT Disallow an indel within INT bp towards the ends. [5]
-l INT Take the first INT subsequence as seed. If INT is larger than the query
sequence, seeding will be disabled. For long reads, this option is typically ranged from 25 to
35 for -k 2. [inf]
-k INT Maximum edit distance in the seed. [2]
-M INT Mismatch penalty. BWA will not search for suboptimal hits with a score
lower than (bestScore-misMatchPenalty). [3]
-O INT Gap open penalty. [11]
-E INT Gap extension penalty. [4]
-R INT For paired-end reads only. Proceed with suboptimal alignments if there are
no more than INT top hits. By default, BWA only searches for suboptimal alignments if the
top hit is unique. Using this option has no effect on accuracy for single-end reads. It is
mainly designed for improving the alignment accuracy of paired-end reads. However, the
pairing procedure will be slowed down, especially for very short reads (~32bp).
-N Disable iterative search. All hits with fewer than the maximum allowed
number of differences will be found. This mode is much slower than the default.

For samse/sampe:
-n INT (samse/sampe) Maximum number of alignments to output in the XA tag for
reads paired properly. If a read has more than INT hits, the XA tag will not be written. [3]
This is another critical parameter, and will determine whether suboptimal matches are
returned.
-r STR (samse/sampe) Specify the read group, formatted as
“@RG\tID:text\tSM:text”. [null]
-a INT (sampe only) Maximum insert size for a read pair to be considered as being
mapped properly. This option is only used when there are not enough good alignments to
infer the distribution of insert sizes. [500]
-N INT (sampe only) Maximum number of alignments to output in the XA tag for
disconcordant read pairs (excluding singletons). If a read has more than INT hits, the XA tag
will not be written. [10]
-o INT (sampe only) Maximum occurrences of a read for pairing. A read with more
occurrences will be treated as a single-end read. Reducing this parameter helps faster pairing.
[100000]

[INT: integer; STR: string]

 26

SAM [Sequence Alignment/Map] Format
The Sequence Alignment/Map (SAM) format is a generic nucleotide alignment format that
describes the alignment of query sequences or sequencing reads to a reference sequence. It
can store all the information about an alignment that is generated by most alignment
programs. Importantly, it is a compact representation of the alignment, and can allow many
of the operations on the alignment to be performed without loading the whole alignment
into memory. The SAM format also allows the alignment to be indexed by reference
sequence position to efficiently retrieve all reads aligning to a locus.

The SAM format consists of a header section and an alignment section.

Header section
The header section includes information about the alignment and the program that
generated it. All lines in the header section are tab-delimited and begin with a “@” character,
followed by tag:value pairs, where tag is a two-letter string that defines the content and the
format of value.

There are five main sections to the header, each of which is optional:
@HD. The header line. If this is present, it must be the first line, and must include:
 VN: the format version.
@SQ. Includes information about the reference sequence(s). If this section is present, it
must include two fields for each sequence:
 SN: the reference sequence name.
 LN: the reference sequence length.
@RG. Includes information about read groups. This can be used multiple times, once for
each read group. If this section is present, each @RG section must include:
 ID: the read group identifier.
If an RG tag appears anywhere in the alignment section, there should be a single
corresponding @RG line with matching ID tag in the header section.
@PG. Includes information about the program generating the alignment. Must include:
 ID: The program identifier.
If a PG tag appears anywhere in the alignment section, there should be a single
corresponding @PG line with matching ID tag in the header section.
@CO. These are unstructured one-line comment lines which can be used multiple times.

 27

Alignment section
Each alignment line has 11 mandatory fields and a variable number of optional fields. These
fields always appear in the same order and must be present, but their values can be ‘0’ or ‘*’
(depending on the field) if the corresponding information is unavailable.

Mandatory Alignment Section Fields
Position Field Description
1 QNAME Query template (or read) name
2 FLAG Information about read mapping (see next section)
3 RNAME Reference sequence name. This should match a @SQ

line in the header.
4 POS 1-based leftmost mapping position of the first

matching base. Set as 0 for an unmapped read without
coordinate.

5 MAPQ Mapping quality of the alignment. Based on base
qualities of the mapped read.

6 CIGAR Detailed information about the alignment (see relevant
section).

7 RNEXT Used for paired end reads. Reference sequence name of
the next read. Set to “=” if the next segment has the
same name.

8 PNEXT Used for paired end reads. Position of the next read.
9 TLEN Observed template length. Used for paired end reads

and is defined by the length of the reference aligned to.
10 SEQ The sequence of the aligned read.
11 QUAL ASCII of base quality plus 33 (same as the quality

string in the Sanger FASTQ format).
12 OPT Optional fields (see relevant section).

 28

FLAG field
The FLAG field includes information about the mapping of the individual read. It is a
bitwise flag, which is a way of compactly storing multiple logical values as a short series of
bits where each of the single bits can be addressed separately.

FLAG fields
Hex Binary Description
0x1 00000000001 (1) The read is paired
0x2 00000000010 (2) Both reads in a pair are mapped “properly” (i.e., in the

correct orientation with respect to one another)
0x4 00000000100 (4) The read itself is unmapped
0x8 00000001000 (8) The mate read is unmapped
0x10 00000010000 (16) The read has been reverse complemented
0x20 00000100000 (32) The mate read has been reverse complemented
0x40 00001000000 (64) The read is the first read in a pair
0x80 00010000000 (128) The read is the second read in a pair
0x100 00100000000 (256) The alignment is not primary (a read with split matches

may have multiple primary alignment records)
0x200 01000000000 (512) The read fails platform/vendor quality checks
0x400 10000000000 (1024) PCR or optical duplicate

In a run with single reads, the only flags you will see are:
0 None of the bitwise flags have been set. This read has been mapped to the forward
strand.
4 The read is unmapped.
16 The read is mapped to the reverse strand.

Some common flags that you may see in a paired experiment include:
69 1 + 4 + 64 The read is paired, is the first read in the pair, and is unmapped.
73 1 + 8 + 64 The read is paired, is the first read in the pair, and it is mapped while

its mate is not.
77 1 + 4 + 8 +

64
The read is paired, is the first read in the pair, but both are unmapped.

133 1 + 4 + 128 The read is paired, is the second read in the pair, and it is unmapped.
137 1 + 8 + 128 The read is paired, is the second read in the pair, and it is mapped

while its mate is not.
141 1 + 4 + 8 +

128
The read is paired, is the second read in the pair, but both are
unmapped.

 29

CIGAR [Concise Idiosyncratic Gapped Alignment Report] String
The CIGAR string describes the alignment of the read to the reference sequence. It is able
to handle (soft- and hard-) clipped alignments, spliced alignments, multi-part alignments and
padded alignments (as well as alignments in color space). The following operations are
defined in CIGAR format:

CIGAR Format Operations
Operation Description
M Alignment match (can be a sequence match or mismatch)
I Insertion to the reference
D Deletion from the reference
N Skipped region from the reference
S Soft clipping (clipped sequences present in read)
H Hard clipping (clipped sequences NOT present in alignment record)
P Padding (silent deletion from padded reference)
= Sequence match (not widely used)
X Sequence mismatch (not widely used)

• H can only be present as the first and/or last operation.
• S may only have H operations between them and the ends of the CIGAR string.
• For mRNA-to-genome alignments, an N operation represents an intron. For other

types of alignments, the interpretation of N is not defined.
• The sum of lengths of the M/I/S/=/X operations must equal the length of the read.

Li et al, Bioinformatics (2009) 25 (16): 2078-2079. “The Sequence Alignment/Map format and SAMtools”

 30

OPT field
The optional fields are presented as key-value pairs in the format of TAG:TYPE:VALUE,
where TYPE is one of:

• A Printable character
• I Signed 32-bin integer
• F Single-precision float number
• Z Printable string
• H Hex string

The information stored in these optional fields will vary widely with the mapper.

They can be used to store extra information from the platform or aligner. For example, the
RG tag keeps the ‘read group’ information for each read, where a read group can be any set
of reads that use the same protocol (sample/library/lane). In combination with the @RG
header lines, this tag allows each read to be labeled with metadata about its origin,
sequencing center and library.

Other commonly used optional tags include:
NM:i Edit distance to the reference
MD:Z Number matching positions/mismatching base
AS:i Alignment score
BC:Z Barcode sequence
X0:i Number of best hits
X1:i Number of suboptimal hits found by BWA
XN:i Number of ambiguous bases in the reference
XM:i Number of mismatches in the alignment
XO:i Number of gap opens
XG:i Number of gap extensions
XT:A Type of match (Unique/Repeat/N/Mate-sw)
XA:Z Alternative hits; format: (chr,pos,CIGAR,NM)
XS:i Suboptimal alignment score
XF: Support from forward/reverse alignment
XE:i Number of supporting seeds

Thus, for example, we can use the NM:i:0 tag to select only those reads which map perfectly
to the reference (i.e., have no mismatches). If we wanted to select only those reads which
mapped uniquely to the genome, we could filter on the XT:A:U (where the U stands for
“unique”).

 31

Mapping example continued
Once the mapping is complete, we want to select only those reads that have mapped
uniquely to the genome.
[Note: if your BWA mapping run hasn’t finished yet, get a prepared result file from the shared history
named MappingResults, using the Copy Datasets function]
Note that the header lines of our output include all the names of the reference sequences
that our reads were being mapped to, i.e., every chromosome and its length.

In the final OPT column of the SAM output, BWA includes many additional pieces of
information. For example, we can use the NM:i:0 tag to select only those reads which map
perfectly to the reference (i.e., have no mismatches). In this case, we want to select only
those reads which mapped uniquely to the genome. To do this, we filter on the XT:A:U
(where the U stands for “unique”).

1. Open the Filter and Sort → Select tool.
2. Input XT:A:U as the pattern to match.

Now that we have a filtered set of results, in SAM format, we want to convert them into
BAM format (which is the binary indexed version of the SAM data).

1. Open the NGS SAM Tools → SAM to BAM tool. Make sure the filtered SAM
dataset is selected.

2. Click Execute.

We can retrieve some simple statistics on our BAM file:

1. Open the NGS: SAM Tools → flagstat tool. This reads the bitwise flags from the
SAM/BAM output and prints out their interpretation.

2. Click Execute.
We can see that 99.91% of our (filtered) reads were mapped to the reference genome.

The SAM and BAM formats are read-specific, in that every line in the file refers to a read.
We want to convert the data to a format where every line represents a position in the
genome instead, known as a pile-up.

1. Open the NGS SAM Tools → MPileup tool. The MPileup tool is a newer, more
complex, version of the pileup tool which can handle multiple BAM files. It also
introduces the concept of BAQ (base alignment quality) which takes into account
local realignment of reads around putative SNP positions and will modify base
qualities around these positions in an attempt to avoid calling false SNPs.

2. Set the reference genome to hg19.
3. Select the Advanced Options.
4. Change the coefficient for downgrading mapping quality for reads containing

excessive mismatches to 50. This reduces the effect of reads with excessive
mismatches and is a fix for overestimated mapping quality.

5. Click Execute.

 32

Pileup Format
Each line in the pileup format includes information on:

1. The reference sequence (chromosome) name.
2. The position in the reference sequence.
3. The reference base at that position (uppercase indicates the positive strand;

lowercase the negative strand). An asterisk marks an indel at that position.
4. The number of reads covering that position.
5. The read base at that position. This column also includes information about whether

the reads match the reference position or not. A “.” stands for a match to the
reference base on the forward strand, a “,” for a match on the reverse strand,
“[ACGTN]” for a mismatch on the forward strand and “[acgtn]” for a mismatch on
the reverse strand. A pattern “\[+-][0-9]+[ACGTNacgtn]+” indicates there is an
insertion (+) or deletion (-) between this reference position and the next reference
position. Finally, a “^” indicates the start of a new, or soft- or hard-clipped read,
followed by the mapping quality of the read. The “$” symbol marks the end of a read
segment.

6. The quality scores for each read covering that position.
For more detailed information on the pileup format, go to
http://samtools.sourceforge.net/pileup.shtml

Analyze pileup
Since this is a heteroplasmic experiment, we reduce this dataset to ensure we only include the
mitochondrial genome.

1. Use the Filter and Sort → Filter tool.
2. Set the search condition to c1 == ‘chrM’. Make sure to include the quotes around

the search term.

To see how well the various positions in the mitochondrial genome are covered

1. Open the Statistics → Summary Statistics tool.
2. Choose c4. This is the fourth column from the pileup (i.e., the column which shows

the number of reads covering that position.)
In this case, we can see that the coverage is quite high (the mean is 1856 reads per base).

To extract positions that are likely to be heteroplasmic, we should include two pieces of
information: the coverage (only keep those positions above a certain threshold of coverage)
and the quality (only keep those base reads above a certain quality threshold, as they are
more likely to be real heteroplasmic sites rather than sequencing errors). To filter out only
those positions which pass these thresholds:

1. Open the NGS: SAM Tools → Filter pileup tool.
2. Make sure that the dataset that you are working on is the filtered pileup, not the

summary statistics dataset.
3. Require that a base call must have a quality of at 30 to be considered.
4. Remove all bases covered by fewer than 200 reads.

 33

5. Change the pulldown menus so that:
a. the tool reports variants only;
b. coordinates are converted to intervals (this makes it easier to join the results

of this analysis with gene/promoter annotations);
c. the total number of differences is reported;
d. the quality and base strings are not returned (since these will be very large

fields).

We can now remove any positions whose quality adjusted coverage does not meet our
threshold of 200 using a secondary filtering step.

1. Open the Filter and Sort → Filter tool.
2. Use “c10>=200” as the filter condition.

We may also want to perform additional filtering steps, such as only keeping those sites
which show at least a 0.15% frequency.

1. Open the Text Manipulation → Compute tool.
2. Enter (c11/c10) * 100.0 into the expression box. This will calculate the percentage of

the quality adjusted coverage at each base that is represented by the total number of
variants.

3. Do not round the result; keep the calculation as a floating point number.
4. Click Execute.
5. Open the Filter and Sort → Filter tool.
6. Enter c12 > 0.15 as the condition to filter on.
7. Click Execute.
8. Open the Filter and Sort → Sort tool.
9. Sort on c12 (the percentage column).
10. Sort in descending order.
11. Click Execute.

Note that this is a very simplistic way of filtering as it ignores the fact that some of the
variant positions differ from the reference in every read (and will be seen here as 100%
different) but show no heteroplasmy amongst themselves. Another possibility may be to
filter out those sites which only have one difference from the reference.

Exercise
1. Make a workflow of this history. Leave out the summary statistics and boxplot steps.
Name the workflow Mapping BWA Reads. Make sure all the steps connect correctly to one
another.
Import the Blood-PCR2 dataset from the mtProjectDemo library into your history.
Rerun the workflow with this new dataset. (Run a quality control check on this dataset
before running the workflow).

2. Associate the resulting heteroplasmies with gene / transcript / exon / intron information.

 34

Filtering Reads by Mapping Quality Workflow
We can build a workflow that incorporates filtering on the SAM output.
Upload some PhiX reads and a PhiX genome from Emory using the following URLs:
http://bx.mathcs.emory.edu/outgoing/data/phiX174_genome.fa
http://bx.mathcs.emory.edu/outgoing/data/phiX174_reads.fastqsanger

1. Use the Get Data → Upload File tool.
2. Enter the URLs into the URL/Text entry box.
3. Click Execute.

The PhiX genome has been successfully identified as a FastA file. Change the name of this
dataset to PhiX Genome. The reads have been identified as being in the FastQ format, but
we need to specify which FastQ format. In the attributes panel, accessed by clicking the
pencil icon for that dataset, change the name of this dataset to PhiX reads, and change the
data type to fastqsanger.

We next align the reads to a PhiX genome. Although Galaxy has a built-in PhiX genome, we
will use the one that we downloaded from Emory.

1. Select the NGS: Mapping → Map with BWA for Illumina tool.
2. Change the reference genome pulldown menu to say Use one from the history.
3. Make sure that the PhiX Genome dataset is selected in the second pulldown menu,

and that the PhiX reads are selected as the FastQ file.
4. For this example, leave the settings at the default option.

This will generate a set of reads aligned to the PhiX genome in SAM format.

We can now mine the SAM data however we wish. Say we want to only select those reads
that mapped perfectly to the genome. One of the optional pieces of information that is
output by the BWA program is the edit distance to the reference (NM:i:x). If we want to
select only those reads which matched the reference exactly, the number at the end of that
tag should be zero.

1. Open the Filter and Sort → Select tool.
2. Input NM:i:0 as the string to be matched.
3. Click Execute.

Extract this workflow using the Extract Workflow option from the gear icon. Rename it to
Subset Reads and save. Select the workflow from the Workflows tab. Clicking on the
representation of the Select tool allows you to change the pattern that is being matched (for
example, if we wanted to change it to select reads that were an edit distance of 1 away from
the reference, we could change the pattern to NM:i:1. You can change the name of the
output from this Select operation by choosing the Rename Dataset from the pulldown menu
in the Edit Step Actions section and clicking Create. Make sure to save the updated
workflow from the Options menu at the top right of the workflow editor.

 35

RNA-Seq analysis with TopHat tools

RNA-Seq
RNA-Seq experiments are designed to identify the RNA content (or transcriptome) of a
sample directly. These experiments allow the identification of relative levels of alleles, as well
as detection of post-transcriptional mutations or detection of fusion genes. Most importantly,
the RNA-Seq technique allows the comparison of the transcriptomes of different samples,
most usually between tumor and normal tissue, to enable insight into the differential
expression patterns seen in each state. RNA-Seq is the next generation version of other
experimental techniques for describing transcriptomes, such as microarrays or EST
sequencing, and can do so with fewer biases and at a higher resolution.

The alignment of RNA-Seq read data to a genome is complicated by the fact that the reads
come from spliced transcripts and therefore there will be many intronic regions to deal with
(i.e., regions that are present in the genome being aligned to, but not in the reads). One way
of dealing with this problem is to align the reads against a set of (already spliced) known
exonic sequences. The main drawback with this method is that if the set of known exonic
sequences is incomplete, there will be many unalignable reads. Another approach is that
taken by TopHat, which allows the identification of novel splice junctions.

Mapping reads to the transcriptome with TopHat
We are going to use two small datasets of under 100,000 single 75-bp reads from the
ENCODE GM12878 cell line and ENCODE h1-hESC cell line, and compare the
transcriptomes between the two cell lines.

1. Open the Get Data → Upload File tool.
2. Get the two RNA-Seq Analysis datasets by entering the following URLs in the text

entry box.
http://chagall.med.cornell.edu/galaxy/rnaseq/GM12878_rnaseq1.fastqsanger
http://chagall.med.cornell.edu/galaxy/rnaseq/h1hESC_rnaseq2.fastqsanger

3. Change the File-Format pulldown menu from ‘Auto-detect’ to ‘Fastqsanger’.
4. Do a quality control check on the data before beginning any analysis.

a. Run the NGS: QC and manipulation → FASTQ Summary Statistics tool.
b. Use the Graph/Display Data → Boxplot tool to visualize the quality score

data summary.

In the case of the GM12878 dataset, there is a dramatic decrease in quality around base 60,
so we want to trim off the last 16 bases from each read.

1. Open the NGS: QC and manipulation → FASTQ Trimmer tool.
2. Use 16 as offset from the 3’ end.

 36

In the case of the h1-hESC data, the data is mostly high quality with a single base in the
middle with a median quality of 20, and tailing off to a median quality of around 22. These
are all acceptable, so we will not trim the h1-hESC dataset at all.

The next step is to align the now filtered reads to the genome using TopHat.

1. Open the NGS: RNA Analysis → Tophat for Illumina tool.
2. Select the hg19 Full genome from the organism pull down menu.
3. Change the settings from defaults to display the full parameter list. In general, it is

usually okay to keep most of the default parameters, but it is usually good practice to
go down the list and make sure that they all look appropriate for the current analysis.
Note that some of the options are only applicable to paired end reads (e.g., Library
type and Use closure search).

4. Reduce the maximum intron length (both for initial (whole read) searches and split-
segment searches) down to 100000.

5. Turn off indel search and coverage search, to speed up the analysis.
6. Do this for both datasets.

TopHat
TopHat is designed specifically to deal with junction mapping and overcomes the limitation
of relying on annotation of known splice junctions. It does this by first aligning as many
reads as it can to the genome, using the Bowtie aligner; those reads that align will be the ones
that fit completely within an exonic region (any reads that are mapped non-contiguously are
those that contain intronic regions). TopHat then tries to assemble the mapped reads into
consensus sequences, using the reference sequence to determine consensus. To ensure that
the edges of the exons are also covered, TopHat uses a small amount of flanking sequence
from the reference on both sides to extend the consensus.

Once these alignment steps are complete, TopHat builds a database of possible splice
junctions and tries to map reads against these junctions to confirm them. Specifically,
TopHat tries to identify splice junctions with the known splice acceptor and donor sites
GT-AG, GC-AG and AT-AC. TopHat has three ways in which it can define a potential
junction. The first method of identifying/verifying potential junctions is when the short
segments of a single read map far apart from each other on the same chromosome (“split-
segment search”). For each splice junction, TopHat will search the initially unmapped reads
to find any that can span that junction. The second method by which TopHat predicts
junctions is called “coverage search”, where TopHat tries to find possible introns within
deeply sequenced islands. The third method is called “closure search”, applicable only to
paired end reads. If the two reads are mapped further apart from one another than the
expected distance, TopHat assumes that they come from different exons and attempts to
join them by looking for subsequences in the genomic interval between them that
approximates the expected distance between them.

 37

Options in TopHat
Mean inner distance between mate pairs. [PE only] If dealing with paired end reads, TopHat
needs to be told the expected distance between those paired reads.
Library type. [PE only] Determines to which strand TopHat will attempt to align reads. fr-
unstranded is the standard Illumina paired end situation where the left-most end of the read
is mapped to the transcript strand and the right-most end is mapped to the other strand. fr-
firststrand assumes that only the right-most end of a fragment is sequenced, whereas fr-
secondstrand assumes that only the left-most end of the fragment is sequenced.
Anchor length. This is the minimum number of bases from aligned reads that have to be
present on either side of a junction for it to be recognized by TopHat as a potential junction.
Default: 8.
Maximum number of mismatches in anchor region. This defines the maximum number of
mismatches allowed in the anchor region defined by the Anchor Length option. Default: 0.
Minimum intron length. This is the minimum amount of distance that can separate two
exons (i.e., if two exons are closer than this, TopHat will not search for splice
acceptor/donor sites between them and instead will assume that the exon has low coverage
in the middle and attempt to merge it into one exon instead). Default: 70.
Maximum intron length. This is the maximum amount of distance that can separate two
exons (i.e., if two exons are further apart than this, TopHat will not search for splice
acceptor/donor sites between them, except in those cases where two shorter segments of a
split-up read support such a distant pairing). Decreasing this distance will increase the speed
of the search with a concomitant decrease in sensitivity. Default: 500000.
Allow indel search. Checking this option will allow TopHat to include insertions and
deletions in your reads relative to the genome sequence. The length of the allowed insertions
and deletions are determined by the two options that open up once this option is checked:
Max insertion length and Max deletion length.
Minimum isoform fraction. For each junction, the average depth of read coverage is
computed for the left and right flanking regions of the junction separately. The number of
alignments crossing the junction is divided by the coverage of the more deeply covered side
to obtain an estimate of the minor isoform frequency. The default value for this is set at 0.15,
since Wang et al (2008) reported that 86% of the minor isoforms of alternative splicing
events in humans were expressed at 15% or higher of the level of the major isoform.
Maximum number alignments. Discards from further analysis reads that map to an excessive
number of different regions on the genome. This allows ‘multireads’ from genes with
multiple copies to be reported, but tends to discard failed reads wich map to multiple low
complexity regions. Default: 20.
Minimum intron length in split-segment search. The minimum intron length that may be
found during split-segment search. Default: 50.
Maximum intron length in split-segment search. The maximum intron length that may be
found during split-segment search. Default: 500000.
Number mismatches allowed in initial read mapping. The maximum number of mismatches
that may appear in the initial (unsegmented) alignment. Default: 2.
Number of mismatches allowed in each segment alignment. The maximum number of
mismatches that may appear in each segment of a segmented read. Default: 2.
Minimum length of read segments. The length of the segments that the reads are split into
for the split-segment search.

 38

Use own junctions. This allows you to give TopHat a set of junctions that it can add into its
database of potential junctions. This is most commonly used when you have a mixed dataset
(e.g., of paired end reads and single reads); run Tophat with one set of reads, save the
potential junction database that TopHat produces, and then feed that database into the
second run with the rest of original dataset.

Use gene annotation model. Available if supplying junctions to TopHat. TopHat uses
the supplied exon records to build a set of known splice junctions for each gene and will
add those junctions to its potential junction database.
Use raw junctions. Available if supplying junctions to TopHat. This allows you to supply
TopHat with a list of raw junctions, usually from a previous TopHat run. Junctions are
specified one per line, in a tab-delimited format. Records are defined as [chrom] [left]
[right] [+/-], where left and right are zero-based coordinates, and specify the last
character of the left sequence to be spliced to the first character of the right sequence,
inclusive.
Only look for supplied junctions. Available if supplying junctions to TopHat. Forces
TopHat to not add any more junctions from initial mapping results to its database and
only use the junctions that you have supplied (either as gene annotations or as raw
junctions.)

Use closure search. Enables the mate pair closure-based search for junctions. Closure-based
search should only be used when the expected inner distance between mates is small (<=
50bp).
Use coverage search. Enables the coverage based search for junctions, so that TopHat can
search for junctions within islands. Coverage search is disabled by default (such as for reads
75bp or longer), for maximum sensitivity. Enabling this will slow down the analysis
dramatically.
Microexon search. With this option, the pipeline will attempt to map reads to microexons
(very short exons, usually about 25 bases or less) by cutting up reads into smaller segments
and attempting to align them to the genome. Works only for reads 50bp or longer.

 39

Analysis continued
Each TopHat run will result in four files: a list of accepted mapped reads in BAM format ,
and three BED files: one for raw splice junctions (which can then be fed into a subsequent
TopHat analysis), one each for detected insertions and deletions (although these will be
empty if the indel search was disabled.)

The splice junctions file is formatted as a BED file, using all optional columns. This will
enable the visualization of splice junctions as a pair of boxes joined by a thin line. The
column headings are:

1. Chromosome name
2. Start position of junction representation
3. End position of junction representation
4. Name of the junction
5. Junction score (how many reads support the junction)
6. Strand
7. Position at which to start drawing the first box
8. Position at which to end drawing the last box
9. Color with which to paint the junction representation
10. Number of thick boxes (almost always 2)
11. Size of each of the thick boxes
12. Distance of the start position of each box from the start position of the junction

representation (first number always 0)

The accepted hits file is a standard BAM file (with the standard SAM information). To verify
the contents of this file, we can convert it to a human-readable SAM formatted file with the
NGS: SAM Tools → BAM-to-SAM tool.

Because Bowtie allows reads to map to multiple places, and will return all found matches,
there are a few tags that you will see in the SAM file that were not used in the BWA output.

NH:i Number of hits (i.e., number of times the read mapped)
HI:i Hit index (a way to refer to each separate mapping)
CC:Z Reference name of the next hit
CP:i Leftmost coordinate of the next hit

Assembly
Once the reads have been mapped, we want to assemble the reads into complete transcripts
which can then be analyzed for differential splicing events, or differential expression.

This is done using CuffLinks.

1. Run NGS: RNA Analysis → Cufflinks on the two accepted_hits datasets produced
by our earlier Tophat analysis (one for each of our two original FastQ input datasets).

2. Change the max intron length to 100000.
3. Click Execute.

 40

CuffLinks
CuffLinks uses a directed acyclic graph algorithm to identify the minimum set of
independent transcripts that can explain the reads observed in an RNA-Seq experiment. It
does this by grouping reads into clusters that all map to the same region of the genome and
then identifying “incompatible” reads, which cannot possibly have come from the same
transcript. Once the minimum number of possible transcripts has been identified, it then
assigns each read in the cluster to one or more of those transcripts, depending on
compatibility. Abundance for each transcript is estimated based on the number of
compatible reads mapping to each transcript.

Trapnell et al, Nat Biotechnol (2010) 28(5): 511-515. “Transcript assembly and abundance estimation from
RNA-Seq reveals thousands of new transcripts and switching among isoforms”

It is important to note that the input to CuffLinks must be a SAM/BAM file sorted by
reference position. If your input is from TopHat, it is probably already in the correct format,
but if this is a SAM file of some other provenance, it should be sorted. Below is a sample
workflow to sort your SAM data. If you are starting with a BAM file, convert it to a SAM file
first, and then back to BAM format after sorting.

1. Open the Filter and Sort → Select tool.
2. Use the pattern ^@ as the criterion for selecting lines. This will select all the SAM

header lines.
3. Click Execute.
4. Open the Filter and Sort → Select tool again.
5. Use the same pattern as before, but this time change the pulldown menu to say NOT

matching. This ignores all the header lines and selects all the alignment lines that now
need to be sorted by reference position.

6. Open the Filter and Sort → Sort tool.
7. Sort the alignment lines file on column 3 (the reference chromosome number),

alphabetically in ascending order.
8. Add a second column selection and sort on column 4 (the chromosome position),

numerically, in ascending order.
9. Open the Text Manipulation → Concatenate datasets tool.
10. Ensure the first dataset selected is the SAM headers dataset from step 2.
11. Click the Add a new dataset button.
12. Add the sorted alignment lines dataset from step 8.

 41

Options in CuffLinks
Maximum intron length. CuffLinks will not report transcripts with introns longer than this.
Default: 300,000.
Minimum isoform fraction. After calculating isoform abundance for a gene, CuffLinks filters
out transcripts that it believes are very low abundance, because isoforms expressed at
extremely low levels often cannot reliably be assembled, and may even be artifacts of
incompletely spliced precursors of processed transcripts. This parameter is also used to filter
out introns that have very few spliced alignments supporting them. Default: 0.1 (i.e., 10% of
the major isoform).
Pre MRNA fraction. Some RNA-Seq protocols produce a significant amount of reads that
originate from incompletely spliced transcripts, and these reads can confound the assembly
of fully spliced mRNAs. CuffLinks uses this parameter to filter out alignments that lie within
the intronic intervals implied by the spliced alignments. The minimum depth of coverage in
the intronic region covered by the alignment is divided by the number of spliced reads, and
if the result is lower than this parameter value, the intronic alignments are ignored. Default:
0.15.
Perform quartile normalization. In some cases, a small number of abundant, differentially
expressed genes can create the (incorrect) impression that less abundant genes are also
differentially expressed. This option allows CuffLinks to exclude the contribution of the top
25 percent most highly expressed genes from the number of mapped fragments used in the
FPKM denominator, improving robustness of differential expression calls for less abundant
genes and transcripts.
Use reference annotation. Tells CuffLinks to use the supplied reference annotation to
estimate isoform expression. It will not assemble novel transcripts, and the program will
ignore alignments not structurally compatible with any reference transcript.
Perform bias correction. Requires a reference sequence file. This option forces CuffLinks to
detect sequences which are overrepresented due to library preparation or sequencing bias
and correct for this. Bias detection and correction can significantly improve accuracy of
transcript abundance estimates.
Mean inner distance between mate pairs. [PE only] This is the expected (mean) inner
distance between mate pairs. For, example, for paired end runs with fragments selected at
300bp, where each end is 50bp, you should set -r to be 200. The default is 20bp.
Standard deviation for inner distance between mate pairs. [PE only] The standard deviation
for the distribution on inner distances between mate pairs. The default is 20bp.

The output from CuffLinks consists of three datasets: a GTF formatted dataset listing the
assembled isoforms detected by CuffLinks, and two datasets separating out the coverage
data from the GTF datasets for transcripts and for genes.

 42

The GTF dataset contains the following information:
1. Chromosome name
2. Source (always Cufflinks)
3. Feature type (always either ‘transcript’ or ‘exon’)
4. Start position of the feature
5. End position of the feature
6. Score (the most abundant isoform for each gene is assigned a score of 1000. Minor

isoforms are scored by the ratio (minor FPKM/major FPKM))
7. Strand of isoform
8. Frame (not used)
9. Attributes

a. gene_id: Cufflinks gene id
b. transcript_id: Cufflinks transcript id
c. exon_number: Exon position in isoform. Only used if feature type is exon
d. FPKM: Relative abundance of isoform
e. frac (not used)
f. conf_lo: Lower bound of the 95% CI for the FPKM
g. conf_hi: Upper bound of the 95% CI for the FPKM
h. cov: Depth of read coverage across the isoform

RPKM [Reads Per Kilobase per Million reads mapped]
RPKM is a measurement of transcript reads that has been normalized both for transcript
length and for the total number of mappable reads from an experiment. This normalized
number helps in the comparison of transcript levels both within and between samples.
Normalizing by the total number of mapped reads allows comparison between experiments
(since you may get more mapped reads in one experiment), whereas normalizing by the
length of the transcript allows the direct comparison of expression level between differently
sized transcripts (since longer transcripts are more likely to have more reads mapped to them
than shorter ones).

𝑅𝑃𝐾𝑀 =
𝑡𝑜𝑡𝑎𝑙𝑇𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑅𝑒𝑎𝑑𝑠

𝑚𝑎𝑝𝑝𝑒𝑑𝑅𝑒𝑎𝑑𝑠 𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑠 𝑥 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝐿𝑒𝑛𝑔𝑡ℎ(𝐾𝑏)

where mappedReads is the number of mapped reads in that experiment.

You will also see the term FPKM, where the F stands for Fragments. This is a similar
measure to RPKM used for paired end experiments, where a fragment is a pair of reads.

Note that in our example, the RPKM numbers will be far higher than normally seen since
the total number of mapped reads in our dataset is small (because our input dataset was a
subset selected to map to a small region of chromosome 19).

Note that RPKM may not be the best method of quantifying differential expression. Other
methods include DESeq and TMM from the Bioconductor package.

 43

Comparison with reference annotations
We need to download a set of reference annotations against which to compare the
transcripts assembled from the RNA-Seq experiments.

1. Open the Get Data → UCSC Main tool.
2. Select the hg19 assembly.
3. Make sure the Genes and Gene Prediction Tracks group is selected, choose the

RefSeq genes track.
4. Change the region from the genome radio button to the position button, and enter

chr19 (since all our reads map to chromosome 19).
5. Change the output format to GTF (gene transfer format). Make sure the Send to

Galaxy button is checked and click the Get Output button.

To compare the assembled transcripts against the RefSeq data:

1. Open the NGS: RNA Analysis → Cuffcompare tool.
2. Select the CuffLinks assembled transcripts GTF-formatted dataset for the h1-hESC

data.
3. Add a new Additional GTF Input File and select the GM12878 assembled

transcripts.
4. Set the Use Reference Annotation to Yes and choose the GTF-formatted RefSeq

Genes datasets.
5. Since we will be looking at only a small section of chromosome 19, check the box

for Ignore reference transcripts that are not overlapped by any transcript in input
files.

6. Set Use Sequence Data to Yes.
7. Click Execute.

CuffCompare
CuffCompare compares the assembled transcripts to a reference annotation and details the
identities and differences between them.

Options in CuffCompare
Use Reference Annotation. An optional “reference” annotation GTF. Each sample is
matched against this file, and sample isoforms are tagged as overlapping, matching, or novel
where appropriate.
 Ignore reference transcripts that are not overlapped by any transcript in input files.
Causes CuffCompare to ignore reference transcripts that are not overlapped by any
transcript in your assembled transcripts datasets. Useful for ignoring annotated transcripts
that are not present in your RNA-Seq samples and thus adjusting the "sensitivity" calculation
in the accuracy report written in the transcripts_accuracy file
Use Sequence Data. Use sequence data for some optional classification functions, including
the addition of the p_id attribute required by CuffDiff, which is the identifier for the coding
sequence contained by this transcript. Set to Yes if comparing multiple experiments.

 44

Running CuffCompare results in a number of different datasets.

The transcript accuracy dataset calculates the accuracy of each of the transcripts as compared
to the reference at various levels (nucleotide, exon, intron, transcript, gene), e.g., how often
an exon that was predicted by the output from CuffLinks was actually seen in the reference.
The Sn and Sp columns calculate sensitivity (the proportion of exons, for example, that have
been correctly identified) and specificity (the proportion of predicted exons that are
annotated as such in the reference) at each level, while the fSn and fSp columns are “fuzzy”
variants of these same accuracy calculations, allowing for a very small variation in exon
boundaries to still be counted as a match.

There are two tmap datasets, one for each of the input assembled transcripts dataset. The
tmap dataset lists the most closely matching reference transcript for each transcript identified
by CuffLinks for that dataset. Each row in the dataset contains the following information:

1. ref_gene_id: Reference gene name, derived from the gene_name attribute from the
reference GTF record, if present, else the gene_id.

2. ref_id: Reference transcript id, derived from the transcript_id attribute from the
reference GTF record.

3. class_code: Relationship between the CuffLinks transcript and the reference
transcript.

4. cuff_gene_id: The gene_id from the CuffLinks assembled transcripts dataset.
5. cuff_id: The transcript_id from the CuffLinks assembled transcripts dataset.
6. FMI: Expression level of transcript expressed as fraction of major isoform. Ranges

from 1 to 100.
7. FPKM: Expression of this transcript.
8. FPKM_conf_lo: The lower limit of the 95% FPKM CI.
9. FPKM_conf_hi: The upper limit of the 95% FPKM CI.
10. cov: The estimated average depth of read coverage across the transcript.
11. len: The length of the transcript.
12. major_iso_id: The CuffLinks transcript_id of the major isoform for this transcript’s

gene.
13. ref_match_len: Length of the matching reference gene.

The class codes are defined as follows:
= Match.
c Contained.
j New isoform.
e A single exon transcript overlapping a reference exon and at least 10 bp of a

reference intron, indicating a possible pre-mRNA fragment.
i A single exon transcript falling entirely with a reference intron.
r Repeat. Currently determined by looking at the reference sequence and applied

to transcripts where at least 50% of the bases are lower case.
p Possible polymerase run-on fragment.
u Unknown, intergenic transcript.
o Unknown, generic overlap with reference.
x Exonic overlap with reference on the opposite strand.

 45

Using these codes, we could now, for example, extract all new isoforms from the tmap
dataset by using the Filter and Sort → Filter and using c3 == ‘j’ as our match criterion.

There are two refmap datasets, one for each input assembled transcripts dataset. The refmap
dataset lists, for each reference transcript, all the transcripts identified by CuffLinks for that
dataset that at least partially match it. Each row in the dataset contains the following
information:

1. ref_gene_id: Reference gene name, derived from the gene_name attribute from the
reference GTF record, if present, else the gene_id.

2. ref_id: Reference transcript id, derived from the transcript_id attribute from the
reference GTF record.

3. class_code: Relationship between the CuffLinks transcript and the reference
transcript. (Can only be either = (full match) or c (partial match)).

4. cuff_id_list: A list of all CuffLinks transcript_ids matching the reference transcript.

The transcript tracking dataset is created when multiple assembled transcript datasets are
given to CuffCompare as input. The tracking file matches transcripts up between samples,
assigning each (unified) transcript its own internal transfrag and locus id.

The last dataset is a GTF-formatted combined transcripts dataset which contains one line
for every exon identified, its position in the genome, along with a number of attributes

1. gene_id: the internal locus id (XLOC_*) as defined in the tracking file.
2. transcript_id: the internal transcript id (TCONS_*) as defined in the tracking file.
3. exon_number: the position of that exon in the transcript.
4. gene_name: if mapped to an annotated CDS, the name of the gene the transcript has

been mapped to.
5. oId: the transcript id assigned to that transcript by CuffLinks.
6. nearest_ref: the name of the nearest gene in the reference annotation.
7. class_code: Relationship between the CuffLinks transcript and the reference

transcript.
8. tss_id: an identifier for the inferred transcription start site for the transcript that

contains that exon. Determines which primary transcript this processed transcript is
believed to come from.

9. p_id: if mapped to an annotated CDS, an identifier for the sequence coded for by
that gene.

Comparison between RNA-Seq experiments
Finally, we can use the combined transcripts dataset to compare the relative expression levels
of each exon and each transcript in both of our original input datasets, using CuffDiff.

1. Open the NGS: RNA Analysis → Cuffdiff tool.
2. Select the combined transcripts dataset from CuffCompare.
3. For the first BAM file, choose the output from TopHat of accepted reads for the

GM12878 input dataset, and for the second, the one for the h1-hESC dataset.
4. Click Execute.

 46

CuffDiff
CuffDiff tests the significance of gene and transcript expression levels in more than one
condition. It takes as input the GTF-formatted dataset of transcripts, along with (at least)
two SAM/BAM datasets containing the accepted mappings for the samples under
consideration and outputs changes in expression at the level of transcripts, primary
transcripts, and genes as well as changes in the relative abundance of transcripts sharing a
common transcription start site (tss_id), and in the relative abundances of the primary
transcripts of each gene. The p_id which was generated by CuffCompare is used to denote a
coding sequence (and is only used when the reference sequence includes CDS records). To
calculate whether the relative expression of a transcript isoform is significantly different
between two samples, CuffDiff uses a two-tailed t-test which incorporates information
about the variability in the number of fragments generated by the transcript across replicates
(if available), and also incorporates any uncertainty in the expression estimate itself, which is
calculated based on how many other transcript expression levels a read could be contributing
to.

Options in CuffDiff
False Discovery Rate. The allowed false discovery rate (used for multiple hypothesis
correction). Default: 0.05.
Min Alignment Count. The minimum number of alignments needed to conduct significance
testing on changes for a transcript. If a transcript does not have the minimum number of
alignments, no testing is performed, and any expression changes are deemed not significant,
and that transcript does not contribute to correction for multiple testing. Default: 10.
Perform quartile normalization. As for CuffLinks, this option allows the exclusion of the
contribution of the top 25 percent most highly expressed genes from the number of mapped
fragments used in the FPKM denominator, to improve robustness of differential expression
calls for less abundant genes and transcripts.
Perform Bias Correction. Again, similar to the option in CuffLinks, designed to significantly
improve accuracy of transcript abundance estimates. Requires a reference sequence file.
Detects sequences which are overrepresented due to library preparation or sequencing bias
and corrects for this.

CuffDiff outputs many files, including FPKM tracking datasets at different levels
(i.e., individual transcripts, gene (combines all transcripts sharing a gene_id), coding
sequence (combines all transcripts sharing a p_id), transcript start site (combines all
transcripts sharing a tss_id)) and differential expression test datasets for each of these same
levels, testing the significance of the relative expression levels of each group between
samples.

In addition to the standard information about each object (id, position, annotation), each of
the FPKM tracking datasets also includes information about the estimated read depth for
each sample, the FPKM +/- 95% CI for each sample as well as the quantification status for
that sample (options include: OK (deconvolution successful), LOWDATA (too complex or
shallowly sequenced), HIDATA (too many fragments in locus), or FAIL, (when an ill-
conditioned covariance matrix or other numerical exception prevents deconvolution)).

 47

The differential expression test datasets summarize the t-test result that calculates the
significance of the differential expression levels between samples. These datasets include
information about the calculated p-value, the corrected p-value (called q-value) adjusted for
FDR using Benjamini-Hochberg multiple hypothesis correction and whether the q-value is
significant or not.

We can now inspect these datasets and retrieve transcripts that may be of interest. For
example, we can search for novel isoforms.

1. Open the Filter and Sort → Filter tool.
2. Select the transcript FPKM tracking dataset.
3. Use c2 == ‘j’ as a filter, where c2 is the column containing the class code for the

relationship between the assembled CuffLinks transcript and the reference
annotation. This will retrieve all assembled transcripts that do match any annotated
isoforms (‘j’ indicating a new isoform).

4. Click Execute.
5. Open the Filter and Sort → Filter GTF data by attribute values_list tool.
6. Select the Cuffcompare combined transcripts dataset.
7. Select the transcript_id field from the pulldown menu and make sure that the filtered

dataset containing only the significantly differentially expressed transcripts is selected
as the dataset to filter on. Note that if you want to select on any other field, the
filtered dataset must be manipulated such that the field you want to select on is the
first field in the dataset.

8. Click Execute.
9. The result will be a GTF formatted dataset containing only the novel transcript

isoforms, one exon per line, that is now viewable in a genome browser.

We can also search for transcripts that are significantly differentially expressed between the
two samples.

1. Open the Filter and Sort → Filter tool.
2. Choose the transcript differential expression testing dataset generated by CuffDiff.
3. Filter on c14==’yes’ (where c14 is the column that denotes whether the corrected

differential expression is significant).
4. Click Execute.

 48

Visualization in UCSC Genome Browser
The best way to investigate the data is to visualize it. The output of TopHat includes a BED
and a BAM file which are both formats that the UCSC Genome Browser knows how to deal
with. To view the data for the h1-hESC experiment, we can simply click the display at UCSC
main link in the history preview window for the h1-hESC Tophat accepted hits dataset.
Using the UCSC Genome Browser is useful because it already contains all the features that
we may want to compare our results against (i.e., gene annotations). A new browser tab will
be opened which now contains the TopHat accepted hits as a custom track. The default
appearance of that custom track will be set to ‘dense’, but that can be changed to ‘pack’
which will enable us to see each read mapped to the genome. Clicking on any read will take
you to a page with detailed information derived from the SAM file about the read, including
the alignment of the sequence and the mapping quality.
Going back to the Galaxy browser window, we can now click the display at UCSC main link
in the history preview window for the splice junctions file for the h1-hESC experiment and
this will be added to the custom tracks and can be viewed simultaneously with the accepted
hits file. We can now see the reads spanning exons, and the junctions that define those exon
boundaries.
Finally, we can add the CuffLinks assembled transcripts dataset for the h1-hESC dataset to
the visualization which shows the complete transcripts alongside the mapped reads,
junctions, and reference genes.
Scroll around the genome browser to find examples of correctly and incorrectly called
junctions or missed annotations (e.g., at positions chr19:274,000-297,000, chr19:1,010,000-
1,020,000 or chr19:75,353-86,513). Of note is that this particular experiment fails to join
many of the longer exons as there are not enough reads spanning their whole length, and
annotates them as two (or more) different transcripts (e.g., KLF16).

Visualization in Galaxy
Galaxy also has a framework for visualizing results. Unlike the UCSC Genome Browser,
though, we need to import all the annotations that we would like to compare our results to.

To create a new visualization in Galaxy:

1. Select New Visualization from the Visualization tab in the main Galaxy menu at the
top of the page.

2. Name your visualization.
3. Assign the hg19 build as the reference genome.
4. Add datasets to your visualization by clicking on the Add Datasets to Visualization

button. Choose both the accepted_hits and splice junctions files from your current
history, as well as the uploaded chromosome 19 RefSeq annotations.

5. Choose Insert.
6. To view the data, choose chr19 from the Select Chrom/Contig pulldown menu. The

controls are similar to those at the UCSC Genome Browser. To zoom in to the first
section of chromosome 19 where all the hits are located, just drag a box over the
base positions you want to see in greater detail.

7. To save your visualization, click on the small disk icon in the upper right hand corner.

 49

ChIP-Seq analyses with MACS

ChIP-Seq
ChIP-Seq experiments are designed to map DNA-protein interactions by identifying all the
genomic elements that are bound by a protein or transcription factor, coupling chromatin
immunoprecipitation with NGS sequencing techniques. Although ChIP-Seq has many
advantages over other ChIP-type experiments, the NGS side of it also lends it some
idiosyncratic disadvantages. The first of these is that the reads represent only the ends of the
ChIP fragments and the user has to extrapolate from these partials where the fragment lies
on the genome. Secondly, there are regional biases along the genome, due to sequencing and
mapping biases, chromatin structure and genome copy number variations.

MACS
For this exercise, we will be using the MACS (Model-based Analysis of ChIP-Seq) program
to call peaks. MACS attempts to address both of these issues. The first issue, of reads
representing the ends of the ChIP fragments, is dealt with by searching for patterns of
bimodally mapped reads (since the expectation is that fragments are sequenced, on average,
at the same rate from either end), with plus-strand reads enriched in one peak, and minus-
strands in the other. It calculates the distance between the forward and reverse strand peaks,
and then shifts each fragment inward (towards the center of the peak) by half that distance,
resulting in the region between the two peaks now being narrowed somewhat and “filled in”
as one peak. The second issue of dealing with biases along the genome is dealt with by using
a control dataset (which is not available with all datasets). A control dataset will also show
many of the same biases that are present in the experimental dataset, so the implication is
that any time the experimental dataset shows peaks that are not mirrored by the control
dataset, that these peaks are not accounted for by biases and are therefore real.

Options in MACS tool
Note that the version of MACS in Galaxy is not the latest version!
Paired end Sequencing. If this is selected, the tool will expect two input files, and if using a
control, will expect two control files. Additionally, it will include a new option Best distance
between Pair-End Tags which MACS will use to decide the best mapped locations for 3’ and
5’ pairs of reads (optimized over distance and incurred mismatches.)
Effective genome size. This is the mappable genome size and should be changed according
to the genome you are working with. In general, the effective size will be smaller than the
actual size of the genome, because of repetitive sequences, etc. The effective genome sizes
for some of the more common organisms are: human: 2.7e+9, mouse: 1.87e+9,
C. elegans: 9e+7, fruitfly: 1.2e+8. Default: 2.7e+9.
Tag size. This is the length of your tags, which should be specified, otherwise MACS will
take the length of your first 10 sequences as being representative of your dataset.
Band width. This is used in the first step of finding bimodal peaks and is expected to
approximate the sonication fragment size.

 50

MFOLD. Only regions above the selected range of high-confidence enrichment ratio of
background to build model are returned. Using two numbers here, delimited by a comma,
will return only those regions that have ratios within those limits.
Wiggle. Saves all the shifted tag file locations as a wiggle file. If you choose to save this
information, you also need to tell MACS how far out to extend each fragment (default is the
distance calculated between the forward and reverse strand peaks) and at what resolution to
save the wiggle information (the default is 10 bases.) Note that wiggle tracks can be
converted to BigWig format using the Convert Formats → Wig-to-bigWig tool, and
visualized in your preferred genome browser.
Background lambda. The lambda is used to describe the Poisson distribution of tags along
the genome. If this is checked, then the background lambda is used as the local lambda and
MACS will not consider the local bias at peak candidate regions.
3 levels of regions. This determines the different levels of regions that are used to calculate
the local lambda. A large region like 10000bps will capture the bias from long range effects
like open chromatin domains.
Build shifting model. If this is not selected, then instead of looking for bimodal pairs of
peaks, calculating the distance between them and moving each tag inwards by d/2, you can
tell MACS by exactly how much you want the tags moved in a 3’ direction. For example, if
you knew that your protein footprint was 200bp, you could choose not to build the shifting
model and instead set the Arbitrary shift size to 100 (this parameter becomes available once
this option is selected).

Download the input file
1. Open the Get Data → Upload File tool.
2. Download the input file at

http://chagall.med.cornell.edu/galaxy/chipseq/G1E-estradiol.fastqsanger
3. This is a reduced dataset (chr19) looking for CTCF binding sites, derived from the

G1E line, a GATA1 null-derived line used as a model for erythropoiesis. In this case,
the cell line has been induced to differentiate by estradiol treatment.

4. Choose the fastqsanger option from the File Format menu.
5. Associate this input file with the mm9 genome build.
6. Click Execute.
7. Open the NGS: QC and Manipulation → FASTQ Summary Statistics tool and run a

quality control check on the imported dataset.
8. Visualize the results with Graph/Display Data → Boxplot.
9. From the boxplot, it can be seen that the sequences are 36 bases long, and all quality

scores are above 30, so we do not have to trim or discard any data.

Map the reads against the mouse genome
1. Open the NGS: Mapping → Map with Bowtie for Illumina tool.
2. Select the fastqsanger formatted reads dataset.
3. Select the mm9 Full genome.
4. Click Execute.

 51

Find peaks using MACS
Once the reads have been mapped to the mouse genome, we can run the MACS program to
determine where the peaks are.

1. Open the NGS: Peak Calling → MACS tool.
2. Change the experiment name so that the track will have a unique name when we

visualize it.
3. Select the dataset of reads mapped by Bowtie.
4. Change the Tag Size to 36 (the length of the reads as determined in the QC step).
5. Change the genome size to “1.87e+9” (effective size for mouse genome).
6. Click Execute.

Once the MACS program finishes, there are two results files, one with the positions of the
peaks and the other a more general HTML report file. The html report has links to various
statistics files, as well as the log of the MACS run. This includes, at the end of the output,
the number of peaks that were called. In this case, we found 750 peaks.

Find peaks, using control data
Since some of the peaks that are predicted may be due to experimental set up and
sequencing biases, it is often useful to use a control dataset (i.e., one where no transcription
factor is bound to the DNA) to detect such biases and eliminate them from our predictions.

1. Open the Get Data → Upload File tool.
2. Download the control input file at

http://chagall.med.cornell.edu/galaxy/chipseq/G1E-estradiolControl.fastqsanger
3. This is a control dataset, derived from the same G1E line as that experiment, that

has also been induced to differentiate by estradiol treatment, but has no CTCF
bound to the DNA.

4. Choose the fastqsanger option from the File Format menu.
5. Associate this input file with the mm9 genome build.
6. Click Execute.
7. Open the NGS: QC and Manipulation → FASTQ Summary Statistics tool and run a

quality control check on the imported dataset.
8. Visualize the results with Graph/Display Data → Boxplot tool.
9. From the boxplot, it can be seen that the sequences are 36 bases long, and all the

reads have a median quality score of at least 26, so we do not have to trim or discard
any data.

10. Open the NGS: Mapping → Map with Bowtie for Illumina tool.
11. Select the fastqsanger formatted control reads dataset.
12. Select the mm9 Full genome as the reference genome.
13. Click Execute.

Now we can compare the mapped reads from both the experiment and control.

14. Open the NGS: Peak Calling → MACS tool.
15. Select the dataset of experimental mapped reads as the ChIP-Seq Tag File.
16. Select the dataset of control mapped reads as the ChIP-Seq Control File.
17. Change the Tag Size to 36 (the length of the reads as determined in the QC step).

 52

18. Change the genome size to “1.87e+9” (effective size for mouse genome.)
19. Click Execute.

This time, we get 852 peaks. This indicates that corrections due to sequencing bias along the
genome go both ways, both removing and adding peaks. Since our output is a BED file, we
can visualize the peaks at the UCSC Genome Browser by choosing the Display at UCSC
main link.

Comparison between conditions
We can also compare predicted peaks between different conditions. Here, we will identify
sites that have differential binding across the differentiated and undifferentiated states.

First, create a workflow from the above analysis, such that it takes as input two fastqsanger
datasets, one a control and the other the experiment, maps both of them with Bowtie against
the mm9 mouse genome build, and then analyzes the reads with MACS to come up with a
set of predicted peaks.

1. Import two more datasets using the Get Data → Upload File tool. These datasets
are from the same cell line, but this time without estradiol treatment (i.e., it remains
undifferentiated). The experimental dataset is:

http://chagall.med.cornell.edu/galaxy/chipseq/G1E-undifferentiated.fastqsanger
2. and the control dataset is:

http://chagall.med.cornell.edu/galaxy/chipseq/G1E-undifferentiatedControl.fastqsanger
3. Run a quality control check on both, using the NGS: QC and Manipulation →

FASTQ Summary Statistics and Graph/Display Data → Boxplot tool.
4. Use these files as input into the workflow you just created.

Note. If Bowtie is taking too long to run, copy over the four datasets of Bowtie-mapped
reads from the accessible history and run MACS on them.
https://main.g2.bx.psu.edu/u/luce/h/mappingresults

Once we have access to all the peaks called by MACS, we can compare the peaks from the
two samples to identify CTCF sites that are a) found in both conditions (exposed and not
exposed to estradiol); b) found in the differentiated state (+ER4) but not in the
undifferentiated state (-ER4); c) found in the undifferentiated state but not in the
differentiated state.
To obtain a dataset of all peaks found in both conditions:

1. Open the Operate on Genomic Intervals → Intersect tool.
2. Choose the dataset of CTCF peaks identified with estradiol treatment as the first

dataset.
3. Choose the dataset of CTCF peaks identified without estradiol treatment as the

second dataset.
4. Click Execute.

 53

To get a dataset of all CTCF peaks identified in the cell line when treated with estradiol, but
not in the undifferentiated line:

5. Open the Operate on Genomic Intervals → Subtract tool.
6. Choose the dataset of CTCF peaks identified without estradiol treatment as the first

dataset.
7. Choose the dataset of CTCF peaks identified with estradiol treatment as the second
8. Click Execute.

And finally, to get a dataset of all CTCF peaks identified in the undifferentiated cell line that
disappear when treated with estradiol:

9. Open the Operate on Genomic Intervals → Subtract tool.
10. Choose the dataset of CTCF peaks identified with estradiol treatment as the first

dataset.
11. Choose the dataset of CTCF peaks identified without estradiol treatment as the

second
12. Click Execute.

We can create a custom track with information on all three datasets above for visualization
in the UCSC Genome Browser.

1. Open the Graph / Display Data → Build Custom Track tool.
2. Add a new track for each of the three datasets above.
3. Give each track a different name and color, and specify pack as the visibility option.
4. Once the custom track has been created, choose the link to display it at UCSC in the

history preview window. A region where examples of peaks from all three
comparisons can be seen is chr19:3,156,415-3,556,414.

Finally, we might like to identify those sites predicted to bind CTCF in the estradiol-treated
cell line that lie near promoters.

1. Open the Get Data → UCSC Main tool.
2. Select mouse as the organism and mm9 as the genome build.
3. Select the RefSeq genes track.
4. Make sure the BED output format is selected and the Send to Galaxy checkbox is

checked.
5. Click Get Output.
6. Select the “promoters” by selecting 1000 bases upstream (or you can get the gene

data now and then transform it with the Operate on Genomic Intervals → Get
flanks tool.)

7. Click the Send query to Galaxy button.
8. Open the Operate on Genomic Intervals → Join tool.
9. Select the peaks identified for the cell line with estradiol treatment as the first dataset

and the promoter dataset as the second.
10. Click Execute.

 54

Running Galaxy in the Cloud
The Galaxy wiki page http://wiki.g2.bx.psu.edu/Admin/Cloud for setting up an instance of
Galaxy in the Amazon cloud is very comprehensive and gives detailed step-by-step
instructions.

Before starting to set up a Galaxy instance, you will have to set up and verify an Amazon
Web Services account. This account gives you access to the Amazon cloud service. The
payment scheme is such that you only pay for the resources you use.

To start a Galaxy CloudMan cluster, we need to start a master instance which will be used to
control all of the needed services as well as worker instances which run the analysis jobs.

1. Log in to your Amazon Web Services account at
 http://aws.amazon.com/

2. From the My Account / Console tab, choose AWS Management Console and sign in.
3. Go to the Security Credentials options on the same tab and make a note of your

Access Key ID and your Secret Access Key.
4. Go to the EC2 tab.
5. Make sure your AWS Region is set to US East (Virginia).
6. Click Launch Instance.
7. Choose the Classic Wizard in the pop-up window.
8. Click on the Community AMIs tab and select ami-46d4792f as your AMI.
9. Set Number of Instances to 1. This is the head node of the cluster.
10. For the instance type, select at least a large node.
11. Choose any availability zone. It does not matter which zone you choose the first time,

but once selected, you must select this same zone every time you instantiate the
given cluster.

12. Click Continue.
13. Enter your user data in the format below, which specifies the desired name of the

cloud cluster and provides Galaxy CloudMan with user account information. Note
that there must be a space between the colon and the value of the field

cluster_name: <DESIRED CLUSTER NAME>
password: <DESIRED Galaxy CloudMan WEB UI PASSWORD>
access_key: <YOUR AWS ACCESS KEY>
secret_key: <YOUR AWS SECRET KEY>

14. The next popup allows you to Set Metadata Tags for this instance. Set the Name tag

for this instance, as that will appear in the instance list of the AWS EC2 Management
Console.

15. Choose the key pair you created during the initial setup.
16. Select the security group in the initial setup, and the default group and continue.
17. Check your entries one more time, and then Launch the instance and wait (about 5

minutes on average) for the instance and CloudMan to boot.

 55

18. Go to the AWS management console, and click Instances, then select the instance
you just launched. You need to wait until the instance state is Running, and Status
checks says “2/2 checks passed”.

19. Copy the URL that appears at the top of the instance details panels into a web
browser and hit enter. You should see a “Welcome to Galaxy on the cloud” page.

20. Click on the “please use the cloud console” link.
21. Login to the instance by entering the password you specified in User Data when

starting the master instance.
22. The first time you login to this instance's Galaxy CloudMan interface, an “Initial

Cluster Configuration” popup will appear, asking you how much disk space you
want to allocate for your data. This can be increased later.

23. Click on Start Cluster.
24. It will take a few minutes for the master node to come up. The Access Galaxy button

will go from grayed out to active. Disk status will show a disk with a green plus on it.
Service status for both Applications and Data will be green (instead of yellow).

25. Once the Access Galaxy button is no longer grayed out, you can add nodes to the
cluster by either clicking the Add Nodes button.

26. Once the worker nodes are up, click the Access Galaxy button. This opens up a new
window with Galaxy on the Cloud. You are now running an elastic and fully loaded
and populated version of Galaxy on the cloud.

27. Register yourself as a new user on the cloud instance and continue as you normally
would.

TRAINER’S MANUAL

Introduction to Next Generation Sequencing
Hands-on Workshop

Bioplatforms Australia (BPA)
The Commonwealth Scientific and Industrial Research Organisation (CSIRO)

TRAINER’S MANUAL

Licensing

This work is licensed under a Creative Commons Attribution 3.0 Unported License and
the below text is a summary of the main terms of the full Legal Code (the full licence)
available at http://creativecommons.org/licenses/by/3.0/legalcode.

You are free:
to copy, distribute, display, and perform the work
to make derivative works
to make commercial use of the work

Under the following conditions:
Attribution - You must give the original author credit.

With the understanding that:
Waiver - Any of the above conditions can be waived if you get permission from
the copyright holder.
Public Domain - Where the work or any of its elements is in the public domain
under applicable law, that status is in no way affected by the license.
Other Rights - In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions
and limitations;

• The author’s moral rights;
• Rights other persons may have either in the work itself or in how the work

is used, such as publicity or privacy rights.

Notice - For any reuse or distribution, you must make clear to others the licence
terms of this work.

http://creativecommons.org/licenses/by/3.0/legalcode

Contents

Licensing 3

Contents 4

Workshop Information 7
The Trainers . 9
Providing Feedback . 10
Document Structure . 10
Resources Used . 11

Data Quality 13
Key Learning Outcomes . 14
Resources You’ll be Using . 14
Useful Links . 14
Introduction . 15
Prepare the Environment . 16
Quality Visualisation . 16
Read Trimming . 19

Read Alignment 25
Key Learning Outcomes . 26
Resources You’ll be Using . 26
Useful Links . 26
Introduction . 28
Prepare the Environment . 28
Alignment . 28
Manipulate SAM output . 30
Visualize alignments in IGV . 31
Practice Makes Perfect! . 32

ChIP-Seq 33
Key Learning Outcomes . 34
Resources You’ll be Using . 34
Introduction . 36
Prepare the Environment . 36
Finding enriched areas using MACS . 36
Viewing results with the Ensembl genome browser 38
Annotation: From peaks to biological interpretation 40
Motif analysis . 41

Contents Contents

Reference . 43

RNA-Seq 45
Key Learning Outcomes . 46
Resources You’ll be Using . 46
Introduction . 48
Prepare the Environment . 48
Alignment . 49
Isoform Expression and Transcriptome Assembly 52
Differential Expression . 54
Visualising the CuffDiff expression analysis . 56
Functional Annotation of Differentially Expressed Genes 60
Differential Gene Expression Analysis using edgeR 61
References . 67

de novo Genome Assembly 69
Key Learning Outcomes . 70
Resources You’ll be Using . 70
Introduction . 72
Prepare the Environment . 72
Downloading and Compiling Velvet . 73
Assembling Single-end Reads . 75
Assembling Paired-end Reads . 82
Hybrid Assembly . 92

Post-Workshop Information 95
Access to Computational Resources . 96
Access to Workshop Documents . 110
Access to Workshop Data . 110

Space for Personal Notes or Feedback 111

TRAINER’S MANUAL 5

Workshop Information

Workshop Information

8 TRAINER’S MANUAL

The Trainers Workshop Information

The Trainers

Dr. Zhiliang Chen
Postdoctoral Research Associate
The University of New South Wales (UNSW), NSW
zhiliang@unsw.edu.au

Dr. Susan Corley
Postdoctoral Research Associate
The University of New South Wales (UNSW), NSW
s.corley@unsw.edu.au

Dr. Nandan Deshpande
Postdoctoral Research Associate
The University of New South Wales (UNSW), NSW
n.deshpande@unsw.edu.au

Dr. Konsta Duesing
Research Team Leader - Statistics & Bioinformatics
CSIRO Animal, Food and Health Science, NSW
konsta.duesing@csiro.au

Dr. Matthew Field
Computational Biologist
The John Curtin School of Medical Research ANU College of Medicine, Biology & Environment,
ACT
matt.field@anu.edu.au

Dr. Xi (Sean) Li
Bioinformatics Analyst
Bioinformatics Core, CSIRO Mathematics, Informatics and Statistics, ACT
sean.li@csiro.au

Dr. Annette McGrath
Bioinformatics Core Leader at CSIRO
Bioinformatics Core, CSIRO Mathematics, Informatics and Statistics, ACT
Annette.Mcgrath@csiro.au

Mr. Sean McWilliam
Bioinformatics Analyst
CSIRO Animal, Food and Health Sciences, QLD
sean.mcwilliam@csiro.au

Dr. Paula Moolhuijzen
Senior Bioinformatics Officer
Centre for Comparative Genomics, Murdoch University, WA
pmoolhuijzen@ccg.murdoch.edu.au

Dr. Sonika Tyagi
Bioinformatics Supervisor
Australian Genome Research Facility Ltd, The Walter and Eliza Hall Institute, VIC
sonika.tyagi@agrf.org.au

Dr. Nathan S. Watson-Haigh
Research Fellow in Bioinformatics
The Australian Centre for Plant Functional Genomics (ACPFG), SA
nathan.haigh@acpfg.com.au

Table 1:

TRAINER’S MANUAL 9

mailto:zhiliang@unsw.edu.au
mailto:s.corley@unsw.edu.au
mailto:n.deshpande@unsw.edu.au
mailto:konsta.duesing@csiro.au
mailto:matt.field@anu.edu.au
mailto:sean.li@csiro.au
mailto:Annette.Mcgrath@csiro.au
mailto:sean.mcwilliam@csiro.au
mailto:pmoolhuijzen@ccg.murdoch.edu.au
mailto:sonika.tyagi@agrf.org.au
mailto:nathan.haigh@acpfg.com.au

Workshop Information Providing Feedback

Providing Feedback

While we endeavour to deliver a workshop with quality content and documentation in a
venue conducive to an exciting, well run hands-on workshop with a bunch of knowledgeable
and likable trainers, we know there are things we could do better.
Whilst we want to know what didn’t quite hit the mark for you, what would be most
helpful and least depressing, would be for you to provide ways to improve the workshop.
i.e. constructive feedback. After all, if we knew something wasn’t going to work, we
wouldn’t have done it or put it into the workshop in the first place! Remember, we’re
experts in the field of bioinformatics not experts in the field of biology!
Clearly, we also want to know what we did well! This gives us that “feel good” factor
which will see us through those long days and nights in the lead up to such hands-on
workshops!
With that in mind, we’ll provide three really high tech mechanism through which you can
provide anonymous feedback during the workshop:

1. A sheet of paper, from a flip-chart, sporting a “happy” face and a “not so happy”
face. Armed with a stack of colourful post-it notes, your mission is to see how many
comments you can stick on the “happy” side!

2. Some empty ruled pages at the back of this handout. Use them for your own personal
notes or for write specific comments/feedback about the workshop as it progresses.

3. An online post-workshop evaluation survey. We’ll ask you to complete this before
you leave. If you’ve used the blank pages at the back of this handout to make
feedback notes, you’ll be able to provide more specific and helpful feedback with the
least amount of brain-drain!

Document Structure

We have provided you with an electronic copy of the workshop’s hands-on tutorial
documents. We have done this for two reasons: 1) you will have something to take away
with you at the end of the workshop, and 2) you can save time (mis)typing commands on
the command line by using copy-and-paste.
We advise you to use Acrobat Reader to view the PDF. This is because it properly supports
some features we have implemented to ensure that copy-and-paste of commands works as
expected. This includes the appropriate copy-and-paste of special characters like tilde and
hyphens as well as skipping line numbers for easy copy-and-past of whole code blocks.

While you could fly through the hands-on sessions doing copy-and-paste you will
learn more if you take the time, saved from not having to type all those commands,
to understand what each command is doing!

10 TRAINER’S MANUAL

Resources Used Workshop Information

The commands to enter at a terminal look something like this:
1 tophat --solexa-quals -g 2 --library-type fr-unstranded -j \

annotation/Danio_rerio.Zv9.66.spliceSites -o tophat/ZV9_2cells \
genome/ZV9 data/2cells_1.fastq data/2cells_2.fastq

The following styled code is not to be entered at a terminal, it is simply to show you the
syntax of the command. You must use your own judgement to substitute in the correct
arguments, options, filenames etc

tophat [options]* <index_base> <reads_1> <reads_2>

The following is an example how of R commands are styled:
1 R --no-save
2 library(plotrix)
3 data <- read.table("run_25/stats.txt", header=TRUE)
4 weighted.hist(data$short1_cov+data$short2_cov, data$lgth, breaks=0:70)
5 q()

The following icons are used in the margin, throughout the documentation to help you
navigate around the document more easily:

Important

For reference

Follow these steps

Questions to answer

Warning - STOP and read

Bonus exercise for fast learners

Advanced exercise for super-fast learners

Resources Used

We have provided you with an environment which contains all the tools and data you
need for the duration of this workshop. However, we also provide details about the tools
and data used by each module at the start of the respective module documentation.

TRAINER’S MANUAL 11

Module: Data Quality

Primary Author(s):
Sonika Tyagi sonika.tyagi@agrf.org.au

Contributor(s):
Nathan S. Watson-Haigh nathan.watson-haigh@awri.com.au

mailto:sonika.tyagi@agrf.org.au
mailto:nathan.watson-haigh@awri.com.au

Data Quality Key Learning Outcomes

Key Learning Outcomes

After completing this practical the trainee should be able to:

• Assess the overall quality of NGS sequence reads

• Visualise the quality, and other associated matrices, of reads to decide on filters and
cutoffs for cleaning up data ready for downstream analysis

• Clean up and pre-process the sequences data for further analysis

Resources You’ll be Using

Tools Used

FastQC
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

FASTX-Toolkit
http://hannonlab.cshl.edu/fastx_toolkit/

Picard
http://picard.sourceforge.net/

Useful Links

FASTQ Encoding
http://en.wikipedia.org/wiki/FASTQ_format#Encoding

14 TRAINER’S MANUAL

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://hannonlab.cshl.edu/fastx_toolkit/
http://picard.sourceforge.net/
http://en.wikipedia.org/wiki/FASTQ_format#Encoding

Introduction Data Quality

Introduction
Going on a blind date with your read set? For a better understanding of the consequences
please check the data quality!

For the purpose of this tutorial we are focusing only on Illumina sequencing which
uses ’sequence by synthesis’ technology in a highly parallel fashion. Although Illumina
high throughput sequencing provides highly accurate sequence data, several sequence
artifacts, including base calling errors and small insertions/deletions, poor quality reads
and primer/adapter contamination are quite common in the high throughput sequencing
data. The primary errors are substitution errors. The error rates can vary from 0.5-2.0%
with errors mainly rising in frequency at the 3’ ends of reads.
One way to investigate sequence data quality is to visualize the quality scores and other
metrics in a compact manner to get an idea about the quality of a read data set. Read
data sets can be improved by post processing in different ways like trimming off low
quality bases, cleaning up any sequencing adapters and removing PCR duplicates. We
can also look at other statistics such as, sequence length distribution, base composition,
sequence complexity, presence of ambiguous bases etc. to assess the overall quality of the
data set.
Highly redundant coverage (>15X) of the genome can be used to correct sequencing errors
in the reads before assembly and errors. Various k-mer based error correction methods
exist but are beyond the scope of this tutorial.

Quality Value Encoding Schema

In order to use a single character to encode Phred qualities, ASCII characters are
used (http://shop.alterlinks.com/ascii-table/ascii-table-us.php). All ASCII
characters have a decimal number associated with them but the first 32 characters are
non-printable (e.g. backspace, shift, return, escape). Therefore, the first printable ASCII
character is number 33, the exclamation mark (!). In Phred+33 encoded quality values
the exclamation mark takes the Phred quality score of zero.
Early Solexa (now Illumina) sequencing needed to encode negative quality values. Because
ASCII characters < 33 are non-printable, using the Phred+33 encoding was not possible.
Therefore, they simply moved the offset from 33 to 64 thus inventing the Phred+64
encoded quality values. In this encoding a Phred quality of zero is denoted by the ASCII
number 64 (the @ character). Since Illumina 1.8, quality values are now encoded using
Phred+33.
FASTQ does not provide a way to describe what quality encoding is used for the quality
values. Therefore, you should find this out from your sequencing provider. Alternatively,
you may be able to figure this out by determining what ASCII characters are present
in the FASTQ file. E.g the presence of numbers in the quality strings, can only mean
the quality values are Phred+33 encoded. However, due to the overlapping nature of
the Phred+33 and Phred+64 encoding schema it is not always possible to identify what

TRAINER’S MANUAL 15

http://shop.alterlinks.com/ascii-table/ascii-table-us.php

Data Quality Prepare the Environment

encoding is in use. For example, if the only characters seen in the quality string are
(@ABCDEFGHI), then it is impossible to know if you have really good Phred+33 encoded
qualities or really bad Phred+64 encoded qualities.
For a grapical representation of the different ASCII characters used in the two encoding
schema see: http://en.wikipedia.org/wiki/FASTQ_format#Encoding.

Prepare the Environment
To investigate sequence data quality we will demonstrate tools called FastQC and FASTX-
Toolkit. FastQC will process and present the reports in a visual manner. Based on the
results, the sequence data can be processed using the FASTX-Toolkit. We will use one
data set in this practical, which can be found in the QC directory on your desktop.

Open the Terminal and go to the directory where the data are stored:
1 cd ~/QC/
2 pwd

At any time, help can be displayed for FastQC using the following command:
1 fastqc -h

Quality Visualisation
We have a file for a good quality and bad quality statistics. FastQC generates results in
the form of a zipped and unzipped directory for each input file.

Execute the following command on the two files:
1 fastqc -f fastq bad_example.fastq
2 fastqc -f fastq good_example.fastq

View the FastQC report file of the bad data using a web browser such as firefox.
1 firefox bad_example_fastqc.html &

The report file will have a Basic Statistics table and various graphs and tables for different
quality statistics. E.g.:

16 TRAINER’S MANUAL

http://en.wikipedia.org/wiki/FASTQ_format#Encoding

Quality Visualisation Data Quality

Table 2: FastQC Basic Statistics table

Filename bad example.fastq
File type Conventional base calls
Encoding Sanger / Illumina 1.9
Total Sequences 40000
Filtered Sequences 0
Sequence length 100
%GC 48

Figure 1: Per base sequence quality plot for bad example.fastq.

A Phred quality score (or Q-score) expresses an error probability. In particular, it serves
as a convenient and compact way to communicate very small error probabilities. The
probability that base A is wrong (P (∼ A)) is expressed by a quality score, Q(A), according
to the relationship:

Q(A) = −10log10(P (∼ A))

The relationship between the quality score and error probability is demonstrated with the
following table:

TRAINER’S MANUAL 17

Data Quality Quality Visualisation

Table 3: Error probabilities associated with various quality (Q) values

Quality score, Q(A) Error probability, P(∼A) Accuracy of the base call

10 0.1 90%
20 0.01 99%
30 0.001 99.9%
40 0.0001 99.99%
50 0.00001 99.999%

How many sequences were there in your file? What is the read length? 40,000. read
length=100bp
Does the quality score values vary throughout the read length? (hint: look at the
’per base sequence quality plot’) Yes. Quality scores are dropping towards the end of
the reads.
What is the quality score range you see? 2-40
At around which position do the scores start falling below Q20? Around 80 bp
position
How can we trim the reads to filter out the low quality data? By trimming off the
bases after a fixed position of the read or by trimming off bases based on the quality
score.

Good Quality Data

View the FastQC report files fastqc report.html to see examples of a good quality
data and compare the quality plot with that of the bad example fastqc.
1 firefox good_example_fastqc.html &

Sequencing errors can complicate the downstream analysis, which normally requires that
reads be aligned to each other (for genome assembly) or to a reference genome (for
detection of mutations). Sequence reads containing errors may lead to ambiguous paths
in the assembly or improper gaps. In variant analysis projects sequence reads are aligned
against the reference genome. The errors in the reads may lead to more mismatches than
expected from mutations alone. But if these errors can be removed or corrected, the read
alignments and hence the variant detection will improve. The assemblies will also improve
after pre-processing the reads with errors.

18 TRAINER’S MANUAL

Read Trimming Data Quality

Read Trimming

Read trimming can be done in a variety of different ways. Choose a method which best
suits your data. Here we are giving examples of fixed-length trimming and quality-based
trimming.

Fixed Length Trimming

Low quality read ends can be trimmed using a fixed-length trimming. We will use the
fastx trimmer from the FASTX-Toolkit. Usage message to find out various options you
can use with this tool. Type fastx trimmer -h at anytime to display help.
We will now do fixed-length trimming of the bad example.fastq file using the following
command.
1 cd ~/QC
2 fastx_trimmer -h
3 fastx_trimmer -Q 33 -f 1 -l 80 -i bad_example.fastq -o \

bad_example_trimmed01.fastq

We used the following options in the command above:

-Q 33 Indicates the input quality scores are Phred+33
encoded

-f First base to be retained in the output

-l Last base to be retained in the output

-i Input FASTQ file name

-o Output file name

Run FastQC on the trimmed file and visualise the quality scores of the trimmed file.
1 fastqc -f fastq bad_example_trimmed01.fastq
2 firefox bad_example_trimmed01_fastqc.html &

The output should look like:

TRAINER’S MANUAL 19

Data Quality Read Trimming

Table 4: FastQC Basic Statistics table

Filename bad example trimmed01.fastq
File type Conventional base calls
Encoding Sanger / Illumina 1.9
Total Sequences 40000
Filtered Sequences 0
Sequence length 80
%GC 48

Figure 2: Per base sequence quality plot for the fixed-length trimmed bad example.fastq
reads.

What values would you use for -f if you wanted to trim off 10 bases at the 5’ end of
the reads? -f 11

20 TRAINER’S MANUAL

Read Trimming Data Quality

Quality Based Trimming

Base call quality scores can also be used to dynamically determine the trim points for
each read. A quality score threshold and minimum read length following trimming can be
used to remove low quality data.
Run the following command to quality trim your data:
1 cd ~/QC
2 fastq_quality_trimmer -h
3 fastq_quality_trimmer -Q 33 -t 20 -l 50 -i bad_example.fastq -o \

bad_example_quality_trimmed.fastq

-Q 33 Indicates the input quality scores are Phred+33
encoded

-t quality score cut-off

-l minimum length of reads to output

-i Input FASTQ file name

-o Output file name

Run FastQC on the quality trimmed file and visualise the quality scores.
1 fastqc -f fastq bad_example_quality_trimmed.fastq
2 firefox bad_example_quality_trimmed_fastqc.html &

The output should look like:

Table 5: FastQC Basic Statistics table

Filename bad example quality trimmed.fastq
File type Conventional base calls
Encoding Sanger / Illumina 1.9
Total Sequences 38976
Filtered Sequences 0
Sequence length 50-100
%GC 48

TRAINER’S MANUAL 21

Data Quality Read Trimming

Figure 3: Per base sequence quality plot for the quality-trimmed bad example.fastq
reads.

How did the quality score range change with two types of trimming? Some poor
quality bases (Q <20) are still present at the 3’ end of the fixed-length trimmed reads.
It also removes bases that are good quality.
Quality-based trimming retains the 3’ ends of reads which have good quality scores.
Did the number of total reads change after two types of trimming? Quality trimming
discarded >1000 reads. However, We retain a lot of maximal length reads which have
good quality all the way to the ends.
What reads lengths were obtained after quality based trimming? 50-100
Reads <50 bp, following quality trimming, were discarded.
Did you observe adapter sequences in the data? No. (Hint: look at the overrepresented
sequences.
How can you use -a option with fastqc ? (Hint: try fastqc -h). Adaptors can be
supplied in a file for screening.

22 TRAINER’S MANUAL

Read Trimming Data Quality

Adapter Clipping

Sometimes sequence reads may end up getting the leftover of adapters and primers
used in the sequencing process. It’s good practice to screen your data for these
possible contamination for more sensitive alignment and assembly based analysis.
This is particularly important when read lengths can be longer than the molecules
being sequenced. For example when sequencing miRNAs.

Various QC tools are available to screen and/or clip these adapter/primer sequences
from your data. (e.g. FastQC, FASTX-Toolkit, cutadapt).
Here we are demonstrating fastx clipper to trim a given adapter sequence.
1 cd ~/QC
2 fastx_clipper -h
3 fastx_clipper -v -Q 33 -l 20 -M 15 -a \

GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG -i bad_example.fastq -o \
bad_example_clipped.fastq

An alternative tool, not installed on this system, for adapter clipping is fastq-mcf.
A list of adapters is provided in a text file. For more information, see FastqMcf at
http://code.google.com/p/ea-utils/wiki/FastqMcf.

Removing Duplicates

Duplicate reads are the ones having the same start and end coordinates. This may be
the result of technical duplication (too many PCR cycles), or over-sequencing (very
high fold coverage). It is very important to put the duplication level in context of
your experiment. For example, duplication level in targeted or re-sequencing projects
may mean something different in RNA-seq experiments. In RNA-seq experiments
oversequencing is usually necessary when detecting low abundance transcripts.
The duplication level computed by FastQC is based on sequence identity at the end
of reads. Another tool, Picard, determines duplicates based on identical start and
end positions in SAM/BAM alignment files.
We will not cover Picard but provide the following for your information.
Picard is a suite of tools for performing many common tasks with SAM/BAM format
files. For more information see the Picard website and information about the various
command-line tools available:
http://picard.sourceforge.net/command-line-overview.shtml

TRAINER’S MANUAL 23

http://code.google.com/p/ea-utils/wiki/FastqMcf
http://picard.sourceforge.net/command-line-overview.shtml

Data Quality Read Trimming

Picard is installed on this system in /tools/Picard/picard-default

One of the Picard tools (MarkDuplicates) can be used to analyse and remove duplicates
from the raw sequence data. The input for Picard is a sorted alignment file in BAM
format. Short read aligners such as, bowtie, BWA and tophat can be used to align
FASTQ files against a reference genome to generate SAM/BAM alignment format.

Interested users can use the following general command to run the MarkDuplicates
tool at their leisure. You only need to provide a BAM file for the INPUT argument
(not provided):

cd ~/QC
java -jar /tools/Picard/picard-default/MarkDuplicates.jar \

INPUT=<alignment_file.bam> VALIDATION_STRINGENCY=LENIENT \
OUTPUT=alignment_file.dup METRICS_FILE=alignment_file.matric \
ASSUME_SORTED=true REMOVE_DUPLICATES=true

24 TRAINER’S MANUAL

Module: Read Alignment

Primary Author(s):
Myrto Kostadima kostadim@ebi.ac.uk

Contributor(s):
Xi Li sean.li@csiro.au

mailto:kostadim@ebi.ac.uk
mailto:sean.li@csiro.au

Read Alignment Key Learning Outcomes

Key Learning Outcomes

After completing this practical the trainee should be able to:

• Perform the simple NGS data alignment task against one interested reference data

• Interpret and manipulate the mapping output using SAMtools

• Visualise the alignment via a standard genome browser, e.g. IGV browser

Resources You’ll be Using

Tools Used

Bowtie
http://bowtie-bio.sourceforge.net/index.shtml

Bowtie 2
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

Samtools
http://picard.sourceforge.net/

BEDTools
http://code.google.com/p/bedtools/

UCSC tools
http://hgdownload.cse.ucsc.edu/admin/exe/

IGV genome browser
http://www.broadinstitute.org/igv/

Useful Links

SAM Specification
http://samtools.sourceforge.net/SAM1.pdf

Explain SAM Flags
http://picard.sourceforge.net/explain-flags.html

26 TRAINER’S MANUAL

http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://picard.sourceforge.net/
http://code.google.com/p/bedtools/
http://hgdownload.cse.ucsc.edu/admin/exe/
http://www.broadinstitute.org/igv/
http://samtools.sourceforge.net/SAM1.pdf
http://picard.sourceforge.net/explain-flags.html

Useful Links Read Alignment

Sources of Data

http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-11431

TRAINER’S MANUAL 27

http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-11431

Read Alignment Introduction

Introduction
The goal of this hands-on session is to perform an unspliced alignment for a small subset
of raw reads. We will align raw sequencing data to the mouse genome using Bowtie and
then we will manipulate the SAM output in order to visualize the alignment on the IGV
browser.

Prepare the Environment
We will use one data set in this practical, which can be found in the ChIP-seq directory
on your desktop.

Open the Terminal.
First, go to the right folder, where the data are stored.
1 cd ~/ChIP-seq

The .fastq file that we will align is called Oct4.fastq. This file is based on Oct4
ChIP-seq data published by Chen et al. (2008). For the sake of time, we will align these
reads to a single mouse chromosome.

Alignment
You already know that there are a number of competing tools for short read alignment,
each with its own set of strengths, weaknesses, and caveats. Here we will try Bowtie, a
widely used ultrafast, memory efficient short read aligner.

Bowtie has a number of parameters in order to perform the alignment. To view them all
type
1 bowtie --help

Bowtie uses indexed genome for the alignment in order to keep its memory footprint small.
Because of time constraints we will build the index only for one chromosome of the mouse
genome. For this we need the chromosome sequence in FASTA format. This is stored in a
file named mm10, under the subdirectory bowtie index.
The indexed chromosome is generated using the command:
1 bowtie-build bowtie_index/mm10.fa bowtie_index/mm10

This command will output 6 files that constitute the index. These files that have the
prefix mm10 are stored in the bowtie index subdirectory. To view if they files have been
successfully created type:
1 ls -l bowtie_index

28 TRAINER’S MANUAL

Alignment Read Alignment

Now that the genome is indexed we can move on to the actual alignment. The first
argument for bowtie is the basename of the index for the genome to be searched; in our
case this is mm10. We also want to make sure that the output is in SAM format using the
-S parameter. The last argument is the name of the FASTQ file.

Align the Oct4 reads using Bowtie:
1 bowtie bowtie_index/mm10 -S Oct4.fastq > Oct4.sam

The above command outputs the alignment in SAM format and stores them in the file
Oct4.sam.

In general before you run Bowtie, you have to know what quality encoding your FASTQ
files are in. The available FASTQ encodings for bowtie are:

--phred33-quals Input qualities are Phred+33 (default).

--phred64-quals Input qualities are Phred+64 (same as --solexa1.3-quals).

--solexa-quals Input qualities are from GA Pipeline ver. < 1.3.

--solexa1.3-quals Input qualities are from GA Pipeline ver. ≥ 1.3.

--integer-quals Qualities are given as space-separated integers (not
ASCII).

The FASTQ files we are working with are Sanger encoded (Phred+33), which is the
default for Bowtie.
Bowtie will take 2-3 minutes to align the file. This is fast compared to other aligners
which sacrifice some speed to obtain higher sensitivity.

Look at the top 10 lines of the SAM file by typing:
1 head -n 10 Oct4.sam

TRAINER’S MANUAL 29

Read Alignment Manipulate SAM output

Can you distinguish between the header of the SAM format and the actual alignments?
The header line starts with the letter ‘@’, i.e.:
@HD VN:1.0 SO:unsorted
@SQ SN:chr1 LN:197195432
@PG ID:Bowtie VN:0.12.8 CL:“bowtie bowtie index/mm10 -S Oct4.fastq”

While, the actual alignments start with read id, i.e.:
SRR002012.45 0 chr1 etc
SRR002012.48 16 chr1 etc

What kind of information does the header provide?

• @HD: Header line; VN: Format version; SO: the sort order of alignments.

• @SQ: Reference sequence information; SN: reference sequence name; LN: refer-
ence sequence length.

• @PG: Read group information; ID: Read group identifier; VN: Program version;
CL: the command line that produces the alignment.

To which chromosome are the reads mapped? Chromosome 1.

Manipulate SAM output
SAM files are rather big and when dealing with a high volume of NGS data, storage space
can become an issue. As we have already seen, we can convert SAM to BAM files (their
binary equivalent that are not human readable) that occupy much less space.

Convert SAM to BAM using samtools view and store the output in the file Oct4.bam.
You have to instruct samtools view that the input is in SAM format (-S), the output
should be in BAM format (-b) and that you want the output to be stored in the file
specified by the -o option:
1 samtools view -bSo Oct4.bam Oct4.sam

Compute summary stats for the Flag values associated with the alignments using:
1 samtools flagstat Oct4.bam

30 TRAINER’S MANUAL

Visualize alignments in IGV Read Alignment

Visualize alignments in IGV
IGV is a stand-alone genome browser. Please check their website (http://www.broadinstitute.
org/igv/) for all the formats that IGV can display. For our visualization purposes we
will use the BAM and bigWig formats.

When uploading a BAM file into the genome browser, the browser will look for the index
of the BAM file in the same folder where the BAM files is. The index file should have the
same name as the BAM file and the suffix .bai. Finally, to create the index of a BAM
file you need to make sure that the file is sorted according to chromosomal coordinates.

Sort alignments according to chromosomal position and store the result in the file with
the prefix Oct4.sorted:
1 samtools sort Oct4.bam Oct4.sorted

Index the sorted file.
1 samtools index Oct4.sorted.bam

The indexing will create a file called Oct4.sorted.bam.bai. Note that you don’t have to
specify the name of the index file when running samtools index, it simply appends a
.bai suffix to the input BAM file.

Another way to visualize the alignments is to convert the BAM file into a bigWig file.
The bigWig format is for display of dense, continuous data and the data will be displayed
as a graph. The resulting bigWig files are in an indexed binary format.

The BAM to bigWig conversion takes place in two steps. Firstly, we convert the BAM
file into a bedgraph, called Oct4.bedgraph, using the tool genomeCoverageBed from
BEDTools. Then we convert the bedgraph into a bigWig binary file called Oct4.bw, using
bedGraphToBigWig from the UCSC tools:
1 genomeCoverageBed -bg -ibam Oct4.sorted.bam -g \

bowtie_index/mouse.mm10.genome > Oct4.bedgraph
2 bedGraphToBigWig Oct4.bedgraph bowtie_index/mouse.mm10.genome Oct4.bw

Both of the commands above take as input a file called mouse.mm10.genome that is stored
under the subdirectory bowtie index. These genome files are tab-delimited and describe
the size of the chromosomes for the organism of interest. When using the UCSC Genome
Browser, Ensembl, or Galaxy, you typically indicate which species/genome build you are
working with. The way you do this for BEDTools is to create a “genome” file, which
simply lists the names of the chromosomes (or scaffolds, etc.) and their size (in basepairs).
BEDTools includes pre-defined genome files for human and mouse in the genomes subdi-
rectory included in the BEDTools distribution.

TRAINER’S MANUAL 31

http://www.broadinstitute.org/igv/
http://www.broadinstitute.org/igv/

Read Alignment Practice Makes Perfect!

Now we will load the data into the IGV browser for visualization. In order to launch
IGV double click on the IGV 2.3 icon on your Desktop. Ignore any warnings and when it
opens you have to load the genome of interest.
On the top left of your screen choose from the drop down menu Mus musculus (mm10).
Then in order to load the desire files go to:

File > Load from File

On the pop up window navigate to Desktop > ChIP-seq folder and select the file
Oct4.sorted.bam.
Repeat these steps in order to load Oct4.bw as well.
Select chr1 from the drop down menu on the top left. Right click on the name of
Oct4.bw and choose Maximum under the Windowing Function. Right click again and
select Autoscale.
In order to see the aligned reads of the BAM file, you need to zoom in to a specific region.
For example, look for gene Lemd1 in the search box.

What is the main difference between the visualization of BAM and bigWig files? The
actual alignment of reads that stack to a particular region can be displayed using
the information stored in a BAM format. The bigWig format is for display of dense,
continuous data that will be displayed in the Genome Browser as a graph.

Using the + button on the top right, zoom in to see more of the details of the alignments.

What do you think the different colors mean? The different color represents four
nucleotides, e.g. blue is Cytidine (C), red is Thymidine (T).

Practice Makes Perfect!
In the ChIP-seq folder you will find the file gfp.fastq. Follow the above described
analysis, from the bowtie alignment step, for this dataset as well. You will need these
files for the ChIP-Seq module.

32 TRAINER’S MANUAL

Module: ChIP-Seq

Primary Author(s):
Remco Loos, EMBL-EBI remco@ebi.ac.uk

Myrto Kostadima kostadim@ebi.ac.uk

Contributor(s):
Xi Li sean.li@csiro.au

mailto:remco@ebi.ac.uk
mailto:kostadim@ebi.ac.uk
mailto:sean.li@csiro.au

ChIP-Seq Key Learning Outcomes

Key Learning Outcomes

After completing this practical the trainee should be able to:

• Perform simple ChIP-Seq analysis, e.g. the detection of immuno-enriched areas
using the chosen peak caller program MACS

• Visualize the peak regions through a genome browser, e.g. Ensembl, and identify
the real peak regions

• Perform functional annotation and detect potential binding sites (motif) in the
predicted binding regions using motif discovery tool, e.g. MEME.

Resources You’ll be Using

Tools Used

MACS
http://liulab.dfci.harvard.edu/MACS/index.html

Ensembl
http://www.ensembl.org

PeakAnalyzer
http://www.ebi.ac.uk/bertone/software

MEME
http://meme.ebi.edu.au/meme/tools/meme

TOMTOM
http://meme.ebi.edu.au/meme/tools/tomtom

DAVID
http://david.abcc.ncifcrf.gov

GOstat
http://gostat.wehi.edu.au

34 TRAINER’S MANUAL

http://liulab.dfci.harvard.edu/MACS/index.html
http://www.ensembl.org
http://www.ebi.ac.uk/bertone/software
http://meme.ebi.edu.au/meme/tools/meme
http://meme.ebi.edu.au/meme/tools/tomtom
http://david.abcc.ncifcrf.gov
http://gostat.wehi.edu.au

Resources You’ll be Using ChIP-Seq

Sources of Data

http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-11431

TRAINER’S MANUAL 35

http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-11431

ChIP-Seq Introduction

Introduction
The goal of this hands-on session is to perform some basic tasks in the analysis of ChIP-seq
data. In fact, you already performed the first step, alignment of the reads to the genome,
in the previous session. We start from the aligned reads and we will find immuno-enriched
areas using the peak caller MACS. We will visualize the identified regions in a genome
browser and perform functional annotation and motif analysis on the predicted binding
regions.

Prepare the Environment
The material for this practical can be found in the ChIP-seq directory on your desktop.
This directory also contains an electronic version of this document, which can be useful
to copy and paste commands. Please make sure that this directory also contains the
SAM/BAM files you produced during the alignment practical.

If you didn’t have time to align the control file called gfp.fastq during the alignment
practical, please do it now. Follow the same steps, from the bowtie alignment step, as for
the Oct4.fastq file.

In ChIP-seq analysis (unlike in other applications such as RNA-seq) it can be useful to
exclude all reads that map to more than one location in the genome. When using Bowtie,
this can be done using the -m 1 option, which tells it to report only unique matches (See
bowtie --help for more details).

Open the Terminal and go to the ChIP-seq directory:
1 cd ~/ChIP-seq

Finding enriched areas using MACS
MACS stands for Model based analysis of ChIP-seq. It was designed for identifying
transcription factor binding sites. MACS captures the influence of genome complexity to
evaluate the significance of enriched ChIP regions, and improves the spatial resolution
of binding sites through combining the information of both sequencing tag position and
orientation. MACS can be easily used for ChIP-Seq data alone, or with a control sample
to increase specificity.

Consult the MACS help file to see the options and parameters:
1 macs --help

36 TRAINER’S MANUAL

Finding enriched areas using MACS ChIP-Seq

The input for MACS can be in ELAND, BED, SAM, BAM or BOWTIE formats (you
just have to set the --format option).
Options that you will have to use include:

-t To indicate the input ChIP file.

-c To indicate the name of the control file.

--format To change the file format. The default format is
bed.

--name To set the name of the output files.

--gsize This is the mappable genome size. With the read
length we have, 70% of the genome is a fair estima-
tion. Since in this analysis we include only reads
from chromosome 1 (197Mbases), we will use a
--gsize of 138Mbases (70% of 197Mbases).

--tsize To set the read length (look at the FASTQ files to
check the length).

--wig To generate signal wig files for viewing in a genome
browser. Since this process is time consuming,
it is recommended to run MACS first with this
flag off, and once you decide on the values of the
parameters, run MACS again with this flag on.

--diag To generate a saturation table, which gives an indi-
cation whether the sequenced reads give a reliable
representation of the possible peaks.

Now run macs using the following command:
macs -t <Oct4_aligned_bam_file> -c <gfp_aligned_bam_file> --format=BAM \

--name=Oct4 --gsize=138000000 --tsize=26 --diag --wig

Look at the output saturation table (Oct4 diag.xls). To open this file file, right-click on
it and choose “Open with” and select LibreOffice. Do you think that more sequencing is
necessary?
Open the Excel peak file and view the peak details. Note that the number of tags (column
6) refers to the number of reads in the whole peak region and not the peak height.

TRAINER’S MANUAL 37

ChIP-Seq Viewing results with the Ensembl genome browser

Viewing results with the Ensembl genome browser
It is often instructive to look at your data in a genome browser. Before, we used IGV,
a stand-alone browser, which has the advantage of being installed locally and providing
fast access. Web-based genome browsers, like Ensembl or the UCSC browser, are slower,
but provide more functionality. They do not only allow for more polished and flexible
visualisation, but also provide easy access to a wealth of annotations and external data
sources. This makes it straightforward to relate your data with information about repeat
regions, known genes, epigenetic features or areas of cross-species conservation, to name
just a few. As such, they are useful tools for exploratory analysis.
They will allow you to get a ‘feel’ for the data, as well as detecting abnormalities and
problems. Also, exploring the data in such a way may give you ideas for further analyses.

Launch a web browser and go to the Ensembl website at http://www.ensembl.org/
index.html

Choose the genome of interest (in this case, mouse) on the left side of the page, browse to
any location in the genome or click one of the demo links provided on the web page.
Click on the Manage your data link on the left, then choose Add your data in the
Personal Data tab.

Wig files are large so are inconvenient for uploading directly to the Ensemble Genome
browser. Instead, we will convert it to an indexed binary format and put this into a web
accessible place such as on a HTTP, HTTPS, or FTP server. This makes all the browsing
process much faster. Detailed instructions for generating a bigWig from a wig type file
can be found at:
http://genome.ucsc.edu/goldenPath/help/bigWig.html.

We have generated bigWig files in advance for you to upload to the Ensembl browser. They
are at the following URL: http://www.ebi.ac.uk/˜remco/ChIP-Seq_course/Oct4.bw

To visualise the data:

• Paste the location above in the field File URL.

• Choose data format bigWig.

• Choose some informative name and in the next window choose the colour of your
preference.

• Click Save and close the window to return to the genome browser.

Repeat the process for the gfp control sample, located at:
http://www.ebi.ac.uk/˜remco/ChIP-Seq_course/gfp.bw.
After uploading, to make sure your data is visible:

38 TRAINER’S MANUAL

http://www.ensembl.org/index.html
http://www.ensembl.org/index.html
http://genome.ucsc.edu/goldenPath/help/bigWig.html
http://www.ebi.ac.uk/~remco/ChIP-Seq_course/Oct4.bw
http://www.ebi.ac.uk/~remco/ChIP-Seq_course/gfp.bw

Viewing results with the Ensembl genome browser ChIP-Seq

• Switch to the Configure Region Image tab

• Click Your data in the left panel

• Choose each of the uploaded *.bw files to confirm the Wiggle plot in Change
track style pop up menu has been choosen.

• Closing the window will save these changes.

Go to a region on chromosome 1 (e.g. 1:34823162-35323161), and zoom in and out to
view the signal and peak regions. Be aware that the y-axis of each track is auto-scaled
independently of each other, so bigger-looking peaks may not actually be bigger! Always
look at the values on the left hand side axis.

What can you say about the profile of Oct4 peaks in this region? There are no
significant Oct4 peaks over the selected region.
Compare it with H3K4me3 histone modification wig file we have generated at http:
//www.ebi.ac.uk/˜remco/ChIP-Seq_course/H3K4me3.bw. H3K4me3 has a region
that contains relatively high peaks than Oct4.
Jump to 1:36066594-36079728 for a sample peak. Do you think H3K4me3 peaks
regions contain one or more modification sites? What about Oct4? Yes. There
are roughly three peaks, which indicate the possibility of having more than one
modification sites in this region.
For Oct4, no peak can be observed.

MACS generates its peak files in a file format called bed file. This is a simple text format
containing genomic locations, specified by chromosome, begin and end positions, and
some more optional information.
See http://genome.ucsc.edu/FAQ/FAQformat.html#format1 for details.
Bed files can also be uploaded to the Ensembl browser.

Try uploading the peak file generated by MACS to Ensembl. Find the first peak in
the file (use the head command to view the beginning of the bed file), and see if the
peak looks convincing to you.

TRAINER’S MANUAL 39

http://www.ebi.ac.uk/~remco/ChIP-Seq_course/H3K4me3.bw
http://www.ebi.ac.uk/~remco/ChIP-Seq_course/H3K4me3.bw
http://genome.ucsc.edu/FAQ/FAQformat.html#format1

ChIP-Seq Annotation: From peaks to biological interpretation

Annotation: From peaks to biological interpretation
In order to biologically interpret the results of ChIP-seq experiments, it is usually recom-
mended to look at the genes and other annotated elements that are located in proximity
to the identified enriched regions. This can be easily done using PeakAnalyzer.

Go to the PeakAnalyzer tool directory:
1 cd /tools/PeakAnalyzer/peakanalyzer-default

Launch the PeakAnalyzer program by typing:
1 java -jar PeakAnalyzer.jar &

The first window allows you to choose between the split application (which we will try
next) and peak annotation. Choose the peak annotation option and click Next.
We would like to find the closest downstream genes to each peak, and the genes that
overlap with the peak region. For that purpose you should choose the NDG option and
click Next.
Fill in the location of the peak file Oct4 peaks.bed, and choose the mouse GTF as the
annotation file. You don’t have to define a symbol file since gene symbols are included in
the GTF file.
Choose the output directory and run the program.

When the program has finished running, you will have the option to generate plots, by
pressing the Generate plots button. This is only possible if R is installed on your
computer, as it is on this system. A PDF file with the plots will be generated in the
output folder. You could generate similar plots with Excel using the output files that
were generated by PeakAnalyzer.

This list of closest downstream genes (contained in the file Oct4 peaks.ndg.bed) can
be the basis of further analysis. For instance, you could look at the Gene Ontology
terms associated with these genes to get an idea of the biological processes that may be
affected. Web-based tools like DAVID (http://david.abcc.ncifcrf.gov) or GOstat
(http://gostat.wehi.edu.au) take a list of genes and return the enriched GO categories.

We can pull out Ensemble Transcript IDs from the Oct4 peaks.ndg.bed file and
write them to another file ready for use with DAVID or GOstat:
1 cut -f 5 Oct4_peaks.ndg.bed | sed '1 d' > Oct4_peaks.ndg.tid

40 TRAINER’S MANUAL

http://david.abcc.ncifcrf.gov
http://gostat.wehi.edu.au

Motif analysis ChIP-Seq

Motif analysis
It is often interesting to find out whether we can associate identified the binding sites
with a sequence pattern or motif. We will use MEME for motif analysis. The input for
MEME should be a file in FASTA format containing the sequences of interest. In our case,
these are the sequences of the identified peaks that probably contain Oct4 binding sites.
Since many peak-finding tools merge overlapping areas of enrichment, the resulting peaks
tend to be much wider than the actual binding sites. Sub-dividing the enriched areas by
accurately partitioning enriched loci into a finer-resolution set of individual binding sites,
and fetching sequences from the summit region where binding motifs are most likely to
appear enhances the quality of the motif analysis. Sub-peak summit sequences can be
retrieved directly from the Ensembl database using PeakAnalyzer.

If you have closed the PeakAnalyzer running window, open it again. If it is still open,
just go back to the first window.
Choose the split peaks utility and click Next. The input consists of files generated by
most peak-finding tools: a file containing the chromosome, start and end locations of the
enriched regions, and a .wig signal file describing the size and shape of each peak. Fill in
the location of both files Oct4 peaks.bed and the wig file generated by MACS, which
is under the Oct4 MACS wiggle/treat/ directory, check the option to Fetch subpeak
sequences and click Next.
In the next window you have to set some parameters for splitting the peaks.

Separation float Keep the default value. This value determines
when a peak will be separated into sub-peaks. This
is the ratio between a valley and its neighbouring
summit (the lower summit of the two). For exam-
ple, if you set this height to be 0.5, two sub-peaks
will be separated only if the height of the lower
summit is twice the height of the valley.

Minimum height Set this to be 5. Only sub-peaks with at least
this number of tags in their summit region will be
separated. Change the organism name from the
default human to mouse and run the program.

Since the program has to read large wig files, it will take a few minutes to run. Once the
run is finished, two output files will be produced. The first describes the location of the
sub-peaks, and the second is a FASTA file containing 300 sequences of length 61 bases,
taken from the summit regions of the highest sub-peaks.

Open a web bowser and go to the MEME website at http://meme.ebi.edu.au/meme/
tools/meme, and fill in the necessary details, such as:

• Your e-mail address

TRAINER’S MANUAL 41

http://meme.ebi.edu.au/meme/tools/meme
http://meme.ebi.edu.au/meme/tools/meme

ChIP-Seq Motif analysis

• The sub-peaks FASTA file Oct4 peaks.bestSubPeaks.fa (will need uploading), or
just paste in the sequences.

• The number of motifs we expect to find (1 per sequence)

• The width of the desired motif (between 6 to 20)

• The maximum number of motifs to find (3 by default). For Oct4 one classical motif
is known.

You will receive the results by e-mail. This usually doesn’t take more than a few minutes.

Open the e-mail and click on the link that leads to the HTML results page.
Scroll down until you see the first motif logo. We would like to know if this motif is similar
to any other known motif. We will use TOMTOM for this. Scroll down until you see the
option Submit this motif to. Click the TOMTOM button to compare to known motifs
in motif databases, and on the new page choose to compare your motif to those in the
JASPAR and UniPROBE database.

Which motif was found to be the most similar to your motif? Sox2

42 TRAINER’S MANUAL

Reference ChIP-Seq

Reference

Chen, X et al.: Integration of external signaling pathways with the core transcriptional
network in embryonic stem cells. Cell 133:6, 1106-17 (2008).

TRAINER’S MANUAL 43

Module: RNA-Seq

Primary Author(s):
Myrto Kostadima, EMBL-EBI kostadmi@ebi.ac.uk

Remco Loos, EMBL-EBI remco@ebi.ac.uk
Sonika Tyagi, AGRF sonika.tyagi@agrf.org.au

Contributor(s):
Nathan S. Watson-Haigh nathan.watson-haigh@awri.com.au

Susan M Corley s.corley@unsw.edu.au

mailto:kostadmi@ebi.ac.uk
mailto:remco@ebi.ac.uk
mailto:sonika.tyagi@agrf.org.au
mailto:nathan.watson-haigh@awri.com.au
mailto:s.corley@unsw.edu.au

RNA-Seq Key Learning Outcomes

Key Learning Outcomes

After completing this practical the trainee should be able to:

• Understand and perform a simple RNA-Seq analysis workflow.

• Perform gapped alignments to an indexed reference genome using TopHat.

• Perform transcript assembly using Cufflinks.

• Visualize transcript alignments and annotation in a genome browser such as IGV.

• Be able to identify differential gene expression between two experimental conditions.

• Be familiar with R environment and be able to run R based RNA-seq packages.

Resources You’ll be Using

Tools Used

Tophat
http://tophat.cbcb.umd.edu/

Cufflinks
http://cufflinks.cbcb.umd.edu/

Samtools
http://samtools.sourceforge.net/

BEDTools
http://code.google.com/p/bedtools/

UCSC tools
http://hgdownload.cse.ucsc.edu/admin/exe/

IGV
http://www.broadinstitute.org/igv/

DAVID Functional Analysis
http://david.abcc.ncifcrf.gov/

edgeR pakcage
http://http://www.bioconductor.org/packages/release/bioc/html/edgeR.html/

CummeRbund manual
http://www.bioconductor.org/packages/release/bioc/vignettes/cummeRbund/
inst/doc/cummeRbund-manual.pdf

46 TRAINER’S MANUAL

http://tophat.cbcb.umd.edu/
http://cufflinks.cbcb.umd.edu/
http://samtools.sourceforge.net/
http://code.google.com/p/bedtools/
http://hgdownload.cse.ucsc.edu/admin/exe/
http://www.broadinstitute.org/igv/
http://david.abcc.ncifcrf.gov/
http://http://www.bioconductor.org/packages/release/bioc/html/edgeR.html/
http://www.bioconductor.org/packages/release/bioc/vignettes/cummeRbund/inst/doc/cummeRbund-manual.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/cummeRbund/inst/doc/cummeRbund-manual.pdf

Resources You’ll be Using RNA-Seq

Sources of Data

http://www.ebi.ac.uk/ena/data/view/ERR022484
http://www.ebi.ac.uk/ena/data/view/ERR022485
http://www.pnas.org/content/suppl/2008/12/16/0807121105.DCSupplemental

TRAINER’S MANUAL 47

http://www.ebi.ac.uk/ena/data/view/ERR022484
http://www.ebi.ac.uk/ena/data/view/ERR022485
http://www.pnas.org/content/suppl/2008/12/16/0807121105.DCSupplemental

RNA-Seq Introduction

Introduction

The goal of this hands-on session is to perform some basic tasks in the downstream analysis
of RNA-seq data. We will start from RNA-seq data aligned to the zebrafish genome using
Tophat.
We will perform transcriptome reconstruction using Cufflinks and we will compare the gene
expression between two different conditions in order to identify differentially expressed
genes.
In the second part of the tutorial we will also be demonstrating usage of R-based packages
to perform differential expression analysis. We will be using edgeR for the demonstration.
The gene/tag counts generated from the alignment are used as input for edgeR.

Prepare the Environment

We will use a dataset derived from sequencing of mRNA from Danio rerio embryos in
two different developmental stages. Sequencing was performed on the Illumina platform
and generated 76bp paired-end sequence data using polyA selected RNA. Due to the time
constraints of the practical we will only use a subset of the reads.
The data files are contained in the subdirectory called data and are the following:

2cells 1.fastq and 2cells 2.fastq
These files are based on RNA-seq data of a 2-cell zebrafish embryo

6h 1.fastq and 6h 2.fastq
These files are based on RNA-seq data of zebrafish embryos 6h post fertil-
ization

Open the Terminal and go to the RNA-seq working directory:
1 cd ~/RNA-seq/

All commands entered into the terminal for this tutorial should be from within the
∼/RNA-seq directory.

Check that the data directory contains the above-mentioned files by typing:
1 ls data

48 TRAINER’S MANUAL

Alignment RNA-Seq

Alignment

There are numerous tools for performing short read alignment and the choice of aligner
should be carefully made according to the analysis goals/requirements. Here we will use
Tophat, a widely used ultrafast aligner that performs spliced alignments.
Tophat is based on the Bowtie aligner and uses an indexed genome for the alignment to
speed up the alignment and keep its memory footprint small. The the index for the Danio
rerio genome has been created for you.

The command to create an index is as follows. You DO NOT need to run this
command yourself - we have done this for you.
1 bowtie-build genome/Danio_rerio.Zv9.66.dna.fa genome/ZV9

Tophat has a number of parameters in order to perform the alignment. To view them all
type:
1 tophat --help

The general format of the tophat command is:
tophat [options]* <index_base> <reads_1> <reads_2>

Where the last two arguments are the .fastq files of the paired end reads, and the
argument before is the basename of the indexed genome.

The quality values in the FASTQ files used in this hands-on session are Phred+33 encoded.
We explicitly tell tophat of this fact by using the command line argument --solexa-quals.

You can look at the first few reads in the file data/2cells 1.fastq with:
1 head -n 20 data/2cells_1.fastq

Some other parameters that we are going to use to run Tophat are listed below:

-g Maximum number of multihits allowed. Short
reads are likely to map to more than one location
in the genome even though these reads can have
originated from only one of these regions. In RNA-
seq we allow for a limited number of multihits, and
in this case we ask Tophat to report only reads
that map at most onto 2 different loci.

--library-type Before performing any type of RNA-seq analysis
you need to know a few things about the library
preparation. Was it done using a strand-specific

TRAINER’S MANUAL 49

RNA-Seq Alignment

protocol or not? If yes, which strand? In our data
the protocol was NOT strand specific.

-j Improve spliced alignment by providing Tophat
with annotated splice junctions. Pre-existing genome
annotation is an advantage when analysing RNA-
seq data. This file contains the coordinates of
annotated splice junctions from Ensembl. These
are stored under the sub-directory annotation in
a file called ZV9.spliceSites.

-o This specifies in which subdirectory Tophat should
save the output files. Given that for every run the
name of the output files is the same, we specify
different directories for each run.

It takes some time (approx. 20 min) to perform tophat spliced alignments, even for
this subset of reads. Therefore, we have pre-aligned the 2cells data for you using the
following command:

You DO NOT need to run this command yourself - we have done this for you.
1 tophat --solexa-quals -g 2 --library-type fr-unstranded -j \

annotation/Danio_rerio.Zv9.66.spliceSites -o tophat/ZV9_2cells \
genome/ZV9 data/2cells_1.fastq data/2cells_2.fastq

Align the 6h data yourself using the following command:
1 # Takes approx. 20mins
2 tophat --solexa-quals -g 2 --library-type fr-unstranded -j \

annotation/Danio_rerio.Zv9.66.spliceSites -o tophat/ZV9_6h \
genome/ZV9 data/6h_1.fastq data/6h_2.fastq

The 6h read alignment will take approx. 20 min to complete. Therefore, we’ll take a look
at some of the files, generated by tophat, for the pre-computed 2cells data.

Alignment Visualisation in IGV

The Integrative Genomics Viewer (IGV) is able to provide a visualisation of read alignments
given a reference sequence and a BAM file. We’ll visualise the information contained
in the accepted hits.bam and junctions.bed files for the pre-computed 2cells data.
The former, contains the tophat sliced alignments of the reads to the reference while the
latter stores the coordinates of the splice junctions present in the data set.
Open the RNA-seq directory on your Desktop and double-click the tophat subdirectory
and then the ZV9 2cells directory.

50 TRAINER’S MANUAL

Alignment RNA-Seq

1. Launch IGV by double-clicking the “IGV 2.3.*” icon on the Desktop (ignore any
warnings that you may get as it opens). NOTE: IGV may take several minutes to
load for the first time, please be patient.

2. Choose “Zebrafish (Zv9)” from the drop-down box in the top left of the IGV window.
Else you can also load the genome fasta file.

3. Load the accepted hits.sorted.bam file by clicking the “File” menu, selecting
“Load from File” and navigating to the Desktop/RNA-seq/tophat/ZV9 2cells di-
rectory.

4. Rename the track by right-clicking on its name and choosing “Rename Track”. Give
it a meaningful name like “2cells BAM”.

5. Load the junctions.bed from the same directory and rename the track “2cells
Junctions BED”.

6. Load the Ensembl annotations file Danio rerio.Zv9.66.gtf stored in the RNA-seq/annotation
directory.

7. Navigate to a region on chromosome 12 by typing chr12:20,270,921-20,300,943
into the search box at the top of the IGV window.

Keep zooming to view the bam file alignments
Some useful IGV manuals can be found below
http://www.broadinstitute.org/software/igv/interpreting_insert_size
http://www.broadinstitute.org/software/igv/alignmentdata

Can you identify the splice junctions from the BAM file? Slice junctions can be
identified in the alignment BAM files. These are the aligned RNA-Seq reads that
have skipped-bases from the reference genome (most likely introns).
Are the junctions annotated for CBY1 consistent with the annotation? Read alignment
supports an extended length in exon 5 to the gene model (cby1-001)
Are all annotated genes, from both RefSeq and Ensembl, expressed? No BX000473.1-
201 is not expressed

Once tophat finishes aligning the 6h data you will need to sort the alignments found in
the BAM file and then index the sorted BAM file.
1 samtools sort tophat/ZV9_6h/accepted_hits.bam \

tophat/ZV9_6h/accepted_hits.sorted
2 samtools index tophat/ZV9_6h/accepted_hits.sorted.bam

Load the sorted BAM file into IGV, as described previously, and rename the track
appropriately.

TRAINER’S MANUAL 51

http://www.broadinstitute.org/software/igv/interpreting_insert_size
http://www.broadinstitute.org/software/igv/alignmentdata

RNA-Seq Isoform Expression and Transcriptome Assembly

Isoform Expression and Transcriptome Assembly

There are a number of tools that perform reconstruction of the transcriptome and for
this workshop we are going to use Cufflinks. Cufflinks can do transcriptome assembly
either ab initio or using a reference annotation. It also quantifies the isoform expression
in Fragments Per Kilobase of exon per Million fragments mapped (FPKM).
Cufflinks has a number of parameters in order to perform transcriptome assembly and
quantification. To view them all type:
1 cufflinks --help

We aim to reconstruct the transcriptome for both samples by using the Ensembl annotation
both strictly and as a guide. In the first case Cufflinks will only report isoforms that are
included in the annotation, while in the latter case it will report novel isoforms as well.
The Ensembl annotation for Danio rerio is available in annotation/Danio rerio.Zv9.66.gtf.
The general format of the cufflinks command is:

cufflinks [options]* <aligned_reads.(sam|bam)>

Where the input is the aligned reads (either in SAM or BAM format).

Some of the available parameters for Cufflinks that we are going to use to run Cufflinks
are listed below:

-o Output directory.

-G Tells Cufflinks to use the supplied GTF annota-
tions strictly in order to estimate isoform annota-
tion.

-b Instructs Cufflinks to run a bias detection and cor-
rection algorithm which can significantly improve
accuracy of transcript abundance estimates. To do
this Cufflinks requires a multi-fasta file with the
genomic sequences against which we have aligned
the reads.

-u Tells Cufflinks to do an initial estimation proce-
dure to more accurately weight reads mapping to
multiple locations in the genome (multi-hits).

--library-type Before performing any type of RNA-seq analysis
you need to know a few things about the library
preparation. Was it done using a strand-specific
protocol or not? If yes, which strand? In our data
the protocol was NOT strand specific.

52 TRAINER’S MANUAL

Isoform Expression and Transcriptome Assembly RNA-Seq

Perform transcriptome assembly, strictly using the supplied GTF annotations, for the
2cells and 6h data using cufflinks:
1 # 2cells data (takes approx. 5mins):
2 cufflinks -o cufflinks/ZV9_2cells_gtf -G \

annotation/Danio_rerio.Zv9.66.gtf -b \
genome/Danio_rerio.Zv9.66.dna.fa -u --library-type fr-unstranded \
tophat/ZV9_2cells/accepted_hits.bam

3 # 6h data (takes approx. 5mins):
4 cufflinks -o cufflinks/ZV9_6h_gtf -G annotation/Danio_rerio.Zv9.66.gtf \

-b genome/Danio_rerio.Zv9.66.dna.fa -u --library-type fr-unstranded \
tophat/ZV9_6h/accepted_hits.bam

Cufflinks generates several files in the specified output directory. Here’s a short description
of these files:

genes.fpkm tracking Contains the estimated gene-level expression val-
ues.

isoforms.fpkm tracking Contains the estimated isoform-level expression
values.

skipped.gtf Contains loci skipped as a result of exceeding the
maximum number of fragments.

transcripts.gtf This GTF file contains Cufflinks’ assembled iso-
forms.

The complete documentation can be found at: http://cufflinks.cbcb.umd.edu/manual.
html#cufflinks_output

So far we have forced cufflinks, by using the -G option, to strictly use the GTF annotations
provided and thus novel transcripts will not be reported. We can get cufflinks to perform
a GTF-guided transcriptome assembly by using the -g option instead. Thus, novel
transcripts will be reported.

TRAINER’S MANUAL 53

http://cufflinks.cbcb.umd.edu/manual.html#cufflinks_output
http://cufflinks.cbcb.umd.edu/manual.html#cufflinks_output

RNA-Seq Differential Expression

GTF-guided transcriptome assembly is more computationally intensive than strictly
using the GTF annotations. Therefore, we have pre-computed these GTF-guided
assemblies for you and have placed the results under subdirectories:
cufflinks/ZV9 2cells gtf guided and cufflinks/ZV9 6h gft guided.
You DO NOT need to run these commands. We provide them so you know how we
generated the the GTF-guided transcriptome assemblies:
1 # 2cells guided transcriptome assembly (takes approx. 30mins):
2 cufflinks -o cufflinks/ZV9_2cells_gtf_guided -g \

annotation/Danio_rerio.Zv9.66.gtf -b \
genome/Danio_rerio.Zv9.66.dna.fa -u --library-type fr-unstranded \
tophat/ZV9_2cells/accepted_hits.bam

3 # 6h guided transcriptome assembly (takes approx. 30mins):
4 cufflinks -o cufflinks/ZV9_6h_gtf_guided -g \

annotation/Danio_rerio.Zv9.66.gtf -b \
genome/Danio_rerio.Zv9.66.dna.fa -u --library-type fr-unstranded \
tophat/ZV9_6h/accepted_hits.bam

1. Go back to IGV and load the pre-computed, GTF-guided transcriptome assembly
for the 2cells data (cufflinks/ZV9 2cells gtf guided/transcripts.gtf).

2. Rename the track as “2cells GTF-Guided Transcripts”.

3. In the search box type ENSDART00000082297 in order for the browser to zoom in to
the gene of interest.

Do you observe any difference between the Ensembl GTF annotations and the GTF-
guided transcripts assembled by cufflinks (the “2cells GTF-Guided Transcripts” track)?
Yes. It appears that the Ensembl annotations may have truncated the last exon.
However, our data also doesn’t contain reads that span between the last two exons.

Differential Expression

One of the stand-alone tools that perform differential expression analysis is Cuffdiff. We
use this tool to compare between two conditions; for example different conditions could
be control and disease, or wild-type and mutant, or various developmental stages.
In our case we want to identify genes that are differentially expressed between two
developmental stages; a 2cells embryo and 6h post fertilization.
The general format of the cuffdiff command is:

54 TRAINER’S MANUAL

Differential Expression RNA-Seq

cuffdiff [options]* <transcripts.gtf> \
<sample1_replicate1.sam[,...,sample1_replicateM]> \
<sample2_replicate1.sam[,...,sample2_replicateM.sam]>

Where the input includes a transcripts.gtf file, which is an annotation file of the
genome of interest or the cufflinks assembled transcripts, and the aligned reads (either in
SAM or BAM format) for the conditions. Some of the Cufflinks options that we will use
to run the program are:

-o Output directory.

-L Labels for the different conditions

-T Tells Cuffdiff that the reads are from a time series
experiment.

-b Instructs Cufflinks to run a bias detection and cor-
rection algorithm which can significantly improve
accuracy of transcript abundance estimates. To do
this Cufflinks requires a multi-fasta file with the
genomic sequences against which we have aligned
the reads.

-u Tells Cufflinks to do an initial estimation proce-
dure to more accurately weight reads mapping to
multiple locations in the genome (multi-hits).

--library-type Before performing any type of RNA-seq analysis
you need to know a few things about the library
preparation. Was it done using a strand-specific
protocol or not? If yes, which strand? In our data
the protocol was NOT strand specific.

-C Biological replicates and multiple group contrast
can be defined here

Run cuffdiff on the tophat generated BAM files for the 2cells vs. 6h data sets:
1 cuffdiff -o cuffdiff/ -L ZV9_2cells,ZV9_6h -T -b \

genome/Danio_rerio.Zv9.66.dna.fa -u --library-type fr-unstranded \
annotation/Danio_rerio.Zv9.66.gtf \
tophat/ZV9_2cells/accepted_hits.bam tophat/ZV9_6h/accepted_hits.bam

We are interested in the differential expression at the gene level. The results are reported
by Cuffdiff in the file cuffdiff/gene exp.diff. Look at the first few lines of the file
using the following command:
1 head -n 20 cuffdiff/gene_exp.diff

TRAINER’S MANUAL 55

RNA-Seq Differential Expression

We would like to see which are the most significantly differentially expressed genes.
Therefore we will sort the above file according to the q value (corrected p value for multiple
testing). The result will be stored in a different file called gene exp qval.sorted.diff.
1 sort -t$'\t' -g -k 13 cuffdiff/gene_exp.diff > \

cuffdiff/gene_exp_qval.sorted.diff

Look again at the first few lines of the sorted file by typing:
1 head -n 20 cuffdiff/gene_exp_qval.sorted.diff

Copy an Ensembl transcript identifier from the first two columns for one of these genes
(e.g. ENSDARG00000077178). Now go back to the IGV browser and paste it in the search
box.

What are the various outputs generated by cuffdiff? Hint: Please refer to the Cuffdiff
output section of the cufflinks manual online.
Do you see any difference in the read coverage between the 2cells and 6h con-
ditions that might have given rise to this transcript being called as differentially
expressed?

The coverage on the Ensembl browser is based on raw reads and no normalisation
has taken place contrary to the FPKM values.

The read coverage of this transcript (ENSDARG00000077178) in the 2cells data set is
much higher than in the 6h data set.

Cuffquant utility from the cufflinks suite can be used to generate the count files to be
used with count based differential analysis methods such as, edgeR and Deseq.

Visualising the CuffDiff expression analysis

We will use an R-Bioconductor package called cummeRbund to visualise, manipulate
and explore Cufflinks RNA-seq output. We will load an R environment and look at
few quick tips to generate simple graphical output of the cufflinks analysis we have
just run.

56 TRAINER’S MANUAL

Differential Expression RNA-Seq

CummeRbund takes the cuffdiff output and populates a SQLite database with various
type of output generated by cuffdiff e.g, genes, transcripts, transcription start site,
isoforms and CDS regions. The data from this database can be accessed and processed
easily. This package comes with a number of in-built plotting functions that are
commonly used for visualising the expression data. We strongly recommend reading
through the bioconductor manual and user guide of CummeRbund to learn about
functionality of the tool. The reference is provided in the resource section.

TRAINER’S MANUAL 57

RNA-Seq Differential Expression

Prepare the environment. Go to the cuffdiff output folder and copy the transcripts
file there.
1 cd ~/RNA-seq/cuffdiff
2 cp ~/RNA-seq/annotation/Danio_rerio.Zv9.66.gtf ~/RNA-seq/cuffdiff
3 ls -l

Load the R environment
1 R (press enter)

Load the require R package.
1 library(cummeRbund)

Read in the cuffdiff output
1 cuff<-readCufflinks(dir="/home/trainee/Desktop/RNA-seq/cuffdiff", \
2 gtfFile='Danio_rerio.Zv9.66.gtf',genome="Zv9", rebuild=T)

Assess the distribution of FPKM scores across samples
1 pdf(file = "SCV.pdf", height = 6, width = 6)
2 dens<-csDensity(genes(cuff))
3 dens
4 dev.off()

Box plots of the FPKM values for each samples
1 pdf(file = "BoxP.pdf", height = 6, width = 6)
2 b<-csBoxplot(genes(cuff))
3 b
4 dev.off()

Accessing the data
1 sigGeneIds<-getSig(cuff,alpha=0.05,level="genes")
2 head(sigGeneIds)
3 sigGenes<-getGenes(cuff,sigGeneIds)
4 sigGenes
5 head(fpkm(sigGenes))
6 head(fpkm(isoforms(sigGenes)))

Plotting a heatmap of the differentially expressed genes
1 pdf(file = "heatmap.pdf", height = 6, width = 6)
2 h<-csHeatmap(sigGenes,cluster="both")
3 h
4 dev.off()

58 TRAINER’S MANUAL

Differential Expression RNA-Seq

What options would you use to draw a density or boxplot for different replicates
if available ? (Hint: look at the manual at Bioconductor website)
1 densRep<-csDensity(genes(cuff),replicates=T)
2 brep<-csBoxplot(genes(cuff),replicates=T)

How many differentially expressed genes did you observe? type ’summary(sigGenes)’
on the R prompt to see.

TRAINER’S MANUAL 59

RNA-Seq Differential Expression

Functional Annotation of Differentially Expressed
Genes

After you have performed the differential expression analysis you are interested in
identifying if there is any functionality enrichment for your differentially expressed
genes. On your Desktop click:

Applications >> Internet >> Firefox Web Browser

And go to the following URL: http://david.abcc.ncifcrf.gov/ On the left side
click on Functional Annotation. Then click on the Upload tab. Under the section
Choose from File, click Choose File and navigate to the cuffdiff directory. Select
the file called globalDiffExprs Genes qval.01 top100.tab. Under Step 2 select
ENSEMBL GENE ID from the drop-down menu. Finally select Gene list and then
press Submit List. Click on Gene Ontology and then click on the CHART button of
the GOTERM BP ALL item.

Do these categories make sense given the samples we’re studying? Developmental
Biology
Browse around DAVID website and check what other information are available.
Cellular component, Molecular function, Biological Processes, Tissue expression,
Pathways, Literature, Protein domains

60 TRAINER’S MANUAL

http://david.abcc.ncifcrf.gov/

Differential Gene Expression Analysis using edgeR RNA-Seq

Differential Gene Expression Analysis using edgeR
The example we are working through today follows a case Study set out in the edgeR
Users Guide (4.3 Androgen-treated prostate cancer cells (RNA-Seq, two groups) which
is based on an experiment conducted by Li et al. (2008, Proc Natl Acad Sci USA, 105,
20179-84).
The researches used a prostate cancer cell line (LNCaP cells). These cells are sensitive to
stimulation by male hormones (androgens). Three replicate RNA samples were collected
from LNCaP cells treated with an androgen hormone (DHT). Four replicates were collected
from cells treated with an inactive compound. Each of the seven samples was run on a
lane (7 lanes) of an Illumina flow cell to produce 35 bp reads. The experimental design
was therefore:

Table 6: Experimental design

Lane Treatment Label

1 Control Con1
2 Control Con2
3 Control Con3
4 Control Con4
5 DHT DHT1
6 DHT DHT2
7 DHT DHT3

Prepare the environment and load R:
1 cd ~/RNA-seq/edgeR
2 R (press enter)

Once on the R prompt. Load libraries:
1 library(edgeR)
2 library(biomaRt)
3 library(gplots)

Read in count table and experimental design:
1 data <- read.delim("pnas_expression.txt", row.names=1, header=T)
2 targets <- read.delim("Targets.txt", header=T)

Create DGEList object:
1 y <- DGEList(counts=data[,1:7], group=targets$Treatment)

Change the column names of the object to align with treatment:
1 colnames(y) <- targets$Label

TRAINER’S MANUAL 61

RNA-Seq Differential Gene Expression Analysis using edgeR

Check the dimensions of the object:
1 dim(y)

We see we have 37435 rows (i.e. genes) and 7 columns (samples).
Now we will filter out genes with low counts by only keeping those rows where the count
per million (cpm) is at least 1 in at least three samples:
1 keep <-rowSums(cpm(y)>1) >=3
2 y <- y[keep,]

How many rows (genes) are retained now dim(y) would give you 16494
How many genes were filtered out? do 37435-16494.

We will now perform normalization to take account of different library size:
1 y<-calcNormFactors(y)

We will check the calculated normalization factors:
1 y$samples

Lets have a look at whether the samples cluster by condition. (You should produce a plot
as shown in Figure 4):
1 plotMDS(y)

62 TRAINER’S MANUAL

Differential Gene Expression Analysis using edgeR RNA-Seq

Figure 4: Visualization of sample clustering

We now estimate common and gene-specific dispersion:
1 y <- estimateCommonDisp(y)
2 y <- estimateTagwiseDisp(y)

We will plot the tagwise dispersion and the common dispersion (You should obtain a plot
as shown in the Figure 5):
1 plotBCV(y)

TRAINER’S MANUAL 63

RNA-Seq Differential Gene Expression Analysis using edgeR

Figure 5: Visualization of sample clustering

We see here that the common dispersion estimates the overall Biological Coefficient of
Variation (BCV) of the dataset averaged over all genes. The common dispersion is 0.02
and the BCV is the square root of the common dispersion (sqrt[0.02] = 0.14). A BCV of
14% is typical for cell line experiment.

We now test for differentially expressed BCV genes:
1 et <- exactTest(y)

Now we will use the topTags function to adjust for multiple testing. We will use the
Benjimini Hochberg (”BH”) method and we will produce a table of results:
1 res <- topTags(et, n=nrow(y$counts), adjust.method="BH")$table

Let’s have a look at the first rows of the table:
1 head(res)

You can see we have the ensemble gene identifier in the first column, the log fold change in
the second column, the the logCPM, the P-Value and the adjusted P-Value. The ensemble
gene identifier is not as helpful as the gene symbol so let’s add in a column with the gene

64 TRAINER’S MANUAL

Differential Gene Expression Analysis using edgeR RNA-Seq

symbol. We will use the BiomaRt package to do this.

item We start by using the useMart function of BiomaRt to access the human data base
of ensemble gene ids. Then we create a vector of our ensemble gene ids:
1 ensembl_names<-rownames(res)
2 ensembl<-useMart("ensembl", dataset="hsapiens_gene_ensembl")

We then use the function getBM to get the gene symbol data we want
Tthis can take about a minute or so to complete.

1 genemap <-getBM(attributes= c("ensembl_gene_id", "entrezgene", \
"hgnc_symbol"), filters="ensembl_gene_id", values=ensembl_names, \
mart=ensembl)

Have a look at the start of the genemap dataframe:
1 head(genemap)

We see that we have 3 columns, the ensemble id, the entrez gene id and the hgnc symbol
We use the match function to match up our data with the data we have just retrieved
from the database.
1 idx <- match(ensembl_names, genemap$ensembl_gene_id)
2 res$entrez <-genemap$entrezgene [idx]
3 res$hgnc_symbol <- genemap$hgnc_symbol [idx]

Next we have a look at the head of our res dataframe:
1 head(res)

As you see we have now added the hgnc symbol and the entrez id to our results.
Let’s now make a subset of the most significant upregulated and downregulated genes:
1 de<-res[res$FDR<0.05,]
2 de_upreg <-res[res$FDR<0.05 & res$logFC >0,]
3 de_downreg <-res[res$FDR<0.05 & res$logFC <0,]

How many differentially expressed genes are there? (Hint: Try str(de) 4429
How many upregulated genes and downregulated genes do we have? str(de upreg) =
2345 str(de downreg) = 2084

Lets write out these results:
1 write.csv(as.data.frame(de), file="DEGs.csv")

You can try running the list through DAVID for functional annotation. We will select top

TRAINER’S MANUAL 65

RNA-Seq Differential Gene Expression Analysis using edgeR

100 genes from the differential expressed list and write those to a separate list.
1 de_top_3000 <-de[1:3000,]
2 de_top_gene_symbols <-de_top_3000$hgnc_symbol
3 write(de_top_gene_symbols, "DE_gene_symbols.txt", sep="\t")

You can now quit the R prompt
1 q()

Please note that the output files you are creating are saved in your present working
directory. If you are not sure where you are in the file system try typing pwd on your
command prompt to find out.

66 TRAINER’S MANUAL

References RNA-Seq

References

1. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with
RNA-Seq. Bioinformatics 25, 1105-1111 (2009).

2. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoform switching during cell differentiation. Nat.
Biotechnol. 28, 511-515 (2010).

3. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol. 10, R25
(2009).

4. Roberts, A., Pimentel, H., Trapnell, C. & Pachter, L. Identification of novel tran-
scripts in annotated genomes using RNA-Seq. Bioinformatics 27, 2325-2329 (2011).

5. Roberts, A., Trapnell, C., Donaghey, J., Rinn, J. L. & Pachter, L. Improving RNA-
Seq expression estimates by correcting for fragment bias. Genome Biol. 12, R22
(2011).

6. Robinson MD, McCarthy DJ and Smyth GK. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics, 26
(2010).

7. Robinson MD and Smyth GK Moderated statistical tests for assessing differences in
tag abundance. Bioinformatics, 23, pp. -6.

8. Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial
dispersion, with applications to SAGE data.âĂİ Biostatistics, 9.

9. McCarthy, J. D, Chen, Yunshun, Smyth and K. G (2012). Differential expression
analysis of multifactor RNA-Seq experiments with respect to biological variation.
Nucleic Acids Research, 40(10), pp. -9.

TRAINER’S MANUAL 67

Module: de novo Genome Assembly

Primary Author(s):
Matthias Haimel mhaimel@ebi.ac.uk

Nathan S. Watson-Haigh nathan.watson-haigh@awri.com.au

Contributor(s):

mailto:mhaimel@ebi.ac.uk
mailto:nathan.watson-haigh@awri.com.au

de novo Genome Assembly Key Learning Outcomes

Key Learning Outcomes

After completing this practical the trainee should be able to:

• Compile velvet with appropriate compile-time parameters set for a specific analysis

• Be able to choose appropriate assembly parameters

• Assemble a set of single-ended reads

• Assemble a set of paired-end reads from a single insert-size library

• Be able to visualise an assembly in AMOS Hawkeye

• Understand the importance of using paired-end libraries in de novo genome assembly

Resources You’ll be Using

Although we have provided you with an environment which contains all the tools and
data you will be using in this module, you may like to know where we have sourced those
tools and data from.

Tools Used

Velvet
http://www.ebi.ac.uk/˜zerbino/velvet/

AMOS Hawkeye
http://apps.sourceforge.net/mediawiki/amos/index.php?title=Hawkeye

gnx-tools
https://github.com/mh11/gnx-tools

FastQC
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/

R
http://www.r-project.org/

70 TRAINER’S MANUAL

http://www.ebi.ac.uk/~zerbino/velvet/
http://apps.sourceforge.net/mediawiki/amos/index.php?title=Hawkeye
https://github.com/mh11/gnx-tools
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/
http://www.r-project.org/

Resources You’ll be Using de novo Genome Assembly

Sources of Data

• ftp://ftp.ensemblgenomes.org/pub/release-8/bacteria/fasta/Staphylococcus/
s_aureus_mrsa252/dna/s_aureus_mrsa252.EB1_s_aureus_mrsa252.dna.chromosome.
Chromosome.fa.gz

• http://www.ebi.ac.uk/ena/data/view/SRS004748

• ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR022/SRR022825/SRR022825.fastq.gz

• ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR022/SRR022823/SRR022823.fastq.gz

• http://www.ebi.ac.uk/ena/data/view/SRX008042

• ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR022/SRR022852/SRR022852_1.fastq.
gz

• ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR022/SRR022852/SRR022852_2.fastq.
gz

• ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR023/SRR023408/SRR023408_1.fastq.
gz

• ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR023/SRR023408/SRR023408_2.fastq.
gz

• http://www.ebi.ac.uk/ena/data/view/SRX000181

• ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR000/SRR000892/SRR000892.fastq.gz

• ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR000/SRR000893/SRR000893.fastq.gz

• http://www.ebi.ac.uk/ena/data/view/SRX007709

• ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR022/SRR022863/SRR022863_1.fastq.
gz

• ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR022/SRR022863/SRR022863_2.fastq.
gz

TRAINER’S MANUAL 71

ftp://ftp.ensemblgenomes.org/pub/release-8/bacteria/fasta/Staphylococcus/s_aureus_mrsa252/dna/s_aureus_mrsa252.EB1_s_aureus_mrsa252.dna.chromosome.Chromosome.fa.gz
ftp://ftp.ensemblgenomes.org/pub/release-8/bacteria/fasta/Staphylococcus/s_aureus_mrsa252/dna/s_aureus_mrsa252.EB1_s_aureus_mrsa252.dna.chromosome.Chromosome.fa.gz
ftp://ftp.ensemblgenomes.org/pub/release-8/bacteria/fasta/Staphylococcus/s_aureus_mrsa252/dna/s_aureus_mrsa252.EB1_s_aureus_mrsa252.dna.chromosome.Chromosome.fa.gz
http://www.ebi.ac.uk/ena/data/view/SRS004748
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR022/SRR022825/SRR022825.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR022/SRR022823/SRR022823.fastq.gz
http://www.ebi.ac.uk/ena/data/view/SRX008042
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR022/SRR022852/SRR022852_1.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR022/SRR022852/SRR022852_1.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR022/SRR022852/SRR022852_2.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR022/SRR022852/SRR022852_2.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR023/SRR023408/SRR023408_1.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR023/SRR023408/SRR023408_1.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR023/SRR023408/SRR023408_2.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR023/SRR023408/SRR023408_2.fastq.gz
http://www.ebi.ac.uk/ena/data/view/SRX000181
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR000/SRR000892/SRR000892.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR000/SRR000893/SRR000893.fastq.gz
http://www.ebi.ac.uk/ena/data/view/SRX007709
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR022/SRR022863/SRR022863_1.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR022/SRR022863/SRR022863_1.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR022/SRR022863/SRR022863_2.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR022/SRR022863/SRR022863_2.fastq.gz

de novo Genome Assembly Introduction

Introduction

The aim of this module is to become familiar with performing de novo genome assembly
using Velvet, a de Bruijn graph based assembler, on a variety of sequence data.

Prepare the Environment
The first exercise should get you a little more comfortable with the computer environment
and the command line.

First make sure that you are in your home directory by typing:
1 cd

and making absolutely sure you’re there by typing:
1 pwd

Now create sub-directories for this and the two other velvet practicals. All these directories
will be made as sub-directories of a directory for the whole course called NGS. For this
you can use the following commands:
1 mkdir -p NGS/velvet/{part1,part2,part3}

The -p tells mkdir (make directory) to make any parent directories if they don’t already
exist. You could have created the above directories one-at-a-time by doing this instead:
1 mkdir NGS
2 mkdir NGS/velvet
3 mkdir NGS/velvet/part1
4 mkdir NGS/velvet/part2
5 mkdir NGS/velvet/part3

After creating the directories, examine the structure and move into the directory ready
for the first velvet exercise by typing:
1 ls -R NGS
2 cd NGS/velvet/part1
3 pwd

72 TRAINER’S MANUAL

Downloading and Compiling Velvet de novo Genome Assembly

Downloading and Compiling Velvet
For the duration of this workshop, all the software you require has been set up for you
already. This might not be the case when you return to “real life”. Many of the programs
you will need, including velvet, are quite easy to set up, it might be instructive to try a
couple.

Although you will be using the preinstalled version of velvet, it is useful to know how to
compile velvet as some of the parameters you might like to control can only be set at
compile time. You can find the latest version of velvet at:

http://www.ebi.ac.uk/˜zerbino/velvet/

You could go to this URL and download the latest velvet version, or equivalently, you
could type the following, which will download, unpack, inspect, compile and execute your
locally compiled version of velvet:
1 cd ~/NGS/velvet/part1
2 pwd
3 tar xzf ~/NGS/Data/velvet_1.2.10.tgz
4 ls -R
5 cd velvet_1.2.10
6 make
7 ./velveth

The standout displayed to screen when ’make’ runs may contain an error message but it
is ignored

Take a look at the executables you have created. They will be displayed as green by the
command:
1 ls --color=always

The switch --color, instructs that files be coloured according to their type. This is often
the default but we are just being explicit. By specifying the value always, we ensure that
colouring is always applied, even from a script.

Have a look of the output the command produces and you will see that MAXKMERLENGTH=31
and CATEGORIES=2 parameters were passed into the compiler.
This indicates that the default compilation was set for de Bruijn graph k-mers of maximum
size 31 and to allow a maximum of just 2 read categories. You can override these, and
other, default configuration choices using command line parameters. Assume, you want
to run velvet with a k-mer length of 41 using 3 categories, velvet needs to be recompiled
to enable this functionality by typing:
1 make clean
2 make MAXKMERLENGTH=41 CATEGORIES=3
3 ./velveth

TRAINER’S MANUAL 73

http://www.ebi.ac.uk/~zerbino/velvet/

de novo Genome Assembly Downloading and Compiling Velvet

Discuss with the persons next to you the following questions:
What are the consequences of the parameters you have given make for velvet?
MAXKMERLENGTH: increase the max k-mer length from 31 to 41
CATEGORIES: paired-end data require to be put into separate categories. By
increasing this parameter from 2 to 3 allows you to process 3 paired / mate-pair
libraries and unpaired data.
Why does Velvet use k-mer 31 and 2 categories as default? Possibly a number of
reason:
- odd number to avoid palindromes
- The first reads were very short (20-40 bp) and there were hardly any paired-end
data
around so there was no need to allow for longer k-mer lengths / more categories.
- For programmers: 31 bp get stored in 64 bits (using 2bit encoding)
Should you get better results by using a longer k-mer length? If you can achieve a
good k-mer coverage - yes.

velvet can also be used to process SOLID colour space data. To do this you need
a further make parameter. With the following command clean away your last
compilation and try the following parameters:
1 make clean
2 make MAXKMERLENGTH=41 CATEGORIES=3 color
3 ./velveth_de

What effect would the following compile-time parameters have on velvet:
OPENMP=Y Turn on multithreading
LONGSEQUENCES=Y Assembling reads / contigs longer than 32kb long
BIGASSEMBLY=Y Using more than 2.2 billion reads
VBIGASSEMBLY=Y Not documented yet
SINGLE COV CAT=Y Merge all coverage statistics into a single variable - save memory

For a further description of velvet compile and runtime parameters please see the velvet
Manual: https://github.com/dzerbino/velvet/wiki/Manual

74 TRAINER’S MANUAL

https://github.com/dzerbino/velvet/wiki/Manual

Assembling Single-end Reads de novo Genome Assembly

Assembling Single-end Reads

The following exercise focuses on velvet using single-end reads, how the available parameters
effect an assembly and how to measure and compare the changes.
Even though you have carefully compiled velvet in your own workspace, we will be use the
pre-installed version.
The data you will use is from Staphylococcus aureus USA300 which has a genome of
around 3MBases. The reads are unpaired Illumina, also known as single-end library.
The data for this section was obtained from the Sequence Read Archive (SRA), using
SRR022825 and SRR022823 run data from SRA Sample SRS004748. The SRA experiment
can be viewed at:

http://www.ebi.ac.uk/ena/data/view/SRS004748

To begin with, first move back to the directory you prepared for this exercise, create a new
folder with a suitable name for this part and move into it. There is no need to download
the read files, as they are already stored locally. Instead we will create symlinks to the
files. Continue by copying (or typing):
1 cd ~/NGS/velvet/part1
2 mkdir SRS004748
3 cd SRS004748
4 pwd
5 ln -s ~/NGS/Data/SRR022825.fastq.gz ./
6 ln -s ~/NGS/Data/SRR022823.fastq.gz ./
7 ls -l

You are ready to process your data with Velvet. There are two main components to
Velvet:

velveth Used to construct, from raw read data, a dataset
organised in the fashion expected by the second
component, velvetg.

velvetg The core of velvet where the de Bruijn graph as-
sembly is built and manipulated.

You can always get further information about the usage of both velvet programs by typing
velvetg or velveth in your terminal.

Now run velveth for the reads in SRR022825.fastq.gz and SRR022823.fastq.gz using
the following options:

• A de Bruijn graph k-mer of 25

TRAINER’S MANUAL 75

http://www.ebi.ac.uk/ena/data/view/SRS004748

de novo Genome Assembly Assembling Single-end Reads

• An output directory called run 25

1 velveth run_25 25 -fastq.gz -short SRR022825.fastq.gz SRR022823.fastq.gz

velveth Once velveth finishes, move into the output directory run 25 and have a look
at what velveth has generated so far. The command less allows you to look at output
files (press q to quit and return to the command prompt). Here are some other options
for looking at file contents:
1 cd run_25
2 ls -l
3 head Sequences
4 cat Log

What did you find in the folder run 25? Sequences, Roadmaps, Log
Describe the content of the two velveth output files? Sequences: FASTA file version
of provided reads
Roadmaps: Internal file of velvet - basic information about number of reads, k-mer
size
What does the Log file store for you? Time stamp, Executed commands; velvet
version + compiler parameters, results

Now move one directory level up and run velvetg on your output directory, with the
commands:
1 cd ../
2 time velvetg run_25

Move back into your results directory to examine the effects of velvetg:
1 cd run_25
2 ls -l

What extra files do you see in the folder run 25? PreGraph, Graph, stats.txt,
contigs.fa, LastGraph
What do you suppose they might represent? PreGraph, Graph, LastGraph: Velvet
internal graph representation at different stages (see manual for more details about
the file format)
stats.txt: tab-delimited description of the nodes of the graph incl. coverage information
contigs.fa: assembly output file
In the Log file in run 25, what is the N50? 4409 bp

76 TRAINER’S MANUAL

Assembling Single-end Reads de novo Genome Assembly

Hopefully, we will have discussed what the N50 statistic is by this point. Broadly, it is the
median (not average) of a sorted data set using the length of a set of sequences. Usually
it is the length of the contig whose length, when added to the length of all longer contigs,
makes a total greater that half the sum of the lengths of all contigs. Easy, but messy - a
more formal definition can be found here:

http://www.broadinstitute.org/crd/wiki/index.php/N50

Backup the contigs.fa file and calculate the N50 (and the N25,N75) value with the
command:
1 cp contigs.fa contigs.fa.0
2 gnx -min 100 -nx 25,50,75 contigs.fa

Does the value of N50 agree with the value stored in the Log file? No
If not, why do you think this might be? K-mer N50 vs bp N50; contig length cut-off
value, estimated genome length

In order to improve our results, take a closer look at the standard options of velvetg
by typing velvetg without parameters. For the moment focus on the two options
-cov cutoff and -exp cov. Clearly -cov cutoff will allow you to exclude contigs for
which the k-mer coverage is low, implying unacceptably poor quality. The -exp cov
switch is used to give velvetg an idea of the coverage to expect.
If the expected coverage of any contig is substantially in excess of the suggested expected
value, maybe this would indicate a repeat. For further details of how to choose the
parameters, go to “Choice of a coverage cutoff”:

http://wiki.github.com/dzerbino/velvet/

Briefly, the k-mer coverage (and much more information) for each contig is stored in the
file stats.txt and can be used with R to visualize the k-mer coverage distribution. Take
a look at the stats.txt file, start R, load and visualize the data using the following
commands:
1 R --no-save --no-restore
2 install.packages('plotrix')
3 library(plotrix)
4 data <- read.table("stats.txt", header=TRUE)
5 weighted.hist(data$short1_cov, data$lgth, breaks=0:50)

A weighted histogram is a better way of visualizing the coverage information, because of
noise (lots of very short contigs). You can see an example output below:

TRAINER’S MANUAL 77

http://www.broadinstitute.org/crd/wiki/index.php/N50
http://wiki.github.com/dzerbino/velvet/

de novo Genome Assembly Assembling Single-end Reads

Figure 6: A weighted k-mer coverage histogram of the single-end reads.

After choosing the expected coverage and the coverage cut-off, you can exit R by typing:
1 q()

The weighted histogram suggests to me that the expected coverage is around 14 and that
everything below 6 is likely to be noise. Some coverage is also represented at around 20,
30 and greater 50, which might be contamination or repeats (depending on the dataset),
but at the moment this should not worry you. To see the improvements, rerun velvetg
first with -cov cutoff 6 and after checking the N50 use only / add -exp cov 14 to the
command line option. Also keep a copy of the contigs file for comparison:
1 cd ~/NGS/velvet/part1/SRS004748
2 time velvetg run_25 -cov_cutoff 6
3
4 # Make a copy of the run
5 cp run_25/contigs.fa run_25/contigs.fa.1
6
7 time velvetg run_25 -exp_cov 14
8 cp run_25/contigs.fa run_25/contigs.fa.2
9

10 time velvetg run_25 -cov_cutoff 6 -exp_cov 14
11 cp run_25/contigs.fa run_25/contigs.fa.3

78 TRAINER’S MANUAL

Assembling Single-end Reads de novo Genome Assembly

What is the N50 with no parameter: 4,447 bp
What is the N50 with -cov cutoff 6: 5,168 bp
What is the N50 with -exp cov 14: 4,903 bp
What is the N50 with -cov cutoff 6 -exp cov 14: 5,417 bp
Did you notice a variation in the time velvetg took to run? If so, can you explain
why that might be? Velvet reuses already calculated results (from PreGraph,Graph)

You were running velvetg with the -exp cov and -cov cutoff parameters. Now try to
experiment using different cut-offs, expected parameters and also explore other settings
(e.g. -max coverage, -max branch length, -unused reads, -amos file, -read trkg or
see velvetg help menu).

Make some notes about the parameters you’ve played with and the results you ob-
tained. -max coverage: cut-off value for the upper range (like cov cutoff for the lower
range)
-max branch length: length of branch to look for bubble
-unused reads: write unused reads into file
-amos file: write AMOS message file
-read trkg: tracking read (more memory usage) - automatically on for certain opera-
tions

AMOS Hawkeye

The -amos file argument tells velvetg to output the assembly as an AMOS message
file (*.afg) which can then be used by tools like Hawkeye from the AMOS suite of tools.
Lets create the AMOS message file by running velvetg with some appropriate parameters:
1 velvetg run_25 -cov_cutoff 6 -exp_cov 14 -amos_file yes

The -exp cov argument to enable read-tracking -read trkg yes in Velvet. Without read
tracking enabled, very little read-level information can be output to the AMOS message
file. This results in a pretty useless visualisation in Hawkeye! However, since reads are
being tracked, the analysis takes longer and uses more memory.

Now convert the AMOS message file velvet asm.afg into an AMOS bank using bank-transact
and view the assembly with AMOS Hawkeye.

TRAINER’S MANUAL 79

de novo Genome Assembly Assembling Single-end Reads

1 bank-transact -c -b run_25/velvet_asm.bnk -m run_25/velvet_asm.afg
2 hawkeye run_25/velvet_asm.bnk

Have a look around the interface, in particular try to look at the “Scaffold View” and
“Contig View” of the larges scaffold. You should see something like this:

Figure 7:

If you have time, try running the velvetg command without the -exp cov argument,
create the AMOS bank and see how the assemblies look different in Hawkeye. Here’s
a hint:
1 velvetg run_25 -cov_cutoff 6 -amos_file yes
2 bank-transact -c -b run_25/velvet_asm.bnk -m run_25/velvet_asm.afg
3 hawkeye run_25/velvet_asm.bnk

80 TRAINER’S MANUAL

Assembling Single-end Reads de novo Genome Assembly

Simple Assembly Simulation
The data for this section is from Staphylococcus aureus MRSA252, a genome closely
related to the genome that provided the short read data in the earlier sections of this
exercise. The sequence data this time is the fully assembled genome. The genome
size is therefore known exactly and is 2,902,619 bp.

In this exercise you will process the single whole genome sequence with velveth and
velvetg, look at the output only and go no further. The main intent of processing
this whole genome is to compute its N50 value. This must clearly be very close to the
ideal N50 value for the short reads assembly and so aid evaluation of that assembly.

To begin, move back to the main directory for this exercise, make a sub-directory for
the processing of this data and move into it. All in one go, this would be:
1 cd ~/NGS/velvet/part1/
2 mkdir MRSA252
3 cd MRSA252

Next, you need to download the genome sequence from http://www.ensemblgenomes.
org/ which holds five new sites, for bacteria, protists, fungi, plants and invertebrate
metazoa. You could browse for the data you require or use the file which we have
downloaded for you. For the easier of these options, make and check a symlink to the
local file and with the commands:
1 ln -s ~\

/NGS/Data/s_aureus_mrsa252.EB1_s_aureus_mrsa252.dna.chromosome.Chromosome.fa.gz \
./

2 ls -l

Usually Velvet expects relatively short sequence entries and for this reason has a read
limit of 32,767 bp per sequence entry. As the genome size is 2,902,619 bp - longer
as the allowed limit and does not fit with the standard settings into velvet. But
like the maximum k-mer size option, you can tell Velvet during compile time, using
LONGSEQUENCES=Y, to expect longer input sequences than usual. I already prepared
the executable which you can use by typing velveth long and velvetg long.

TRAINER’S MANUAL 81

http://www.ensemblgenomes.org/
http://www.ensemblgenomes.org/

de novo Genome Assembly Assembling Paired-end Reads

Now, run velveth long, using the file you either just downloaded or created a symlink
to as the input:
1 velveth_long run_25 25 -fasta.gz -long \

s_aureus_mrsa252.EB1_s_aureus_mrsa252.dna.chromosome.Chromosome.fa.gz
2 velvetg_long run_25

What is the N50? 24,142 bp
How does the N50 compare to the previous single end run (SRS004748)? Big
difference
Does the total length differ from the input sequence length? 2,817,181 (stats) vs
2,902,619 (input)
What happens when you rerun velvet with a different k-mer length? K-mer 31:
N50: 30,669 bp, total 2,822,878

Assembling Paired-end Reads

The use of paired-end data in de novo genome assembly results in better quality assemblies,
particularly for larger, more complex genomes. In addition, paired-end constraint violation
(expected distance and orientation of paired reads) can be used to identify misassemblies.

If you are doing de novo assembly, pay the extra and get paired-ends: they’re worth
it!

The data you will examine in this exercise is again from Staphylococcus aureus which has
a genome of around 3MBases. The reads are Illumina paired end with an insert size of
350 bp.
The required data can be downloaded from the SRA. Specifically, the run data (SRR022852)
from the SRA Sample SRS004748.

http://www.ebi.ac.uk/ena/data/view/SRS004748

The following exercise focuses on preparing the paired-end FASTQ files ready for Velvet,
using Velvet in paired-end mode and comparing results with Velvet’s ’auto’ option.

First move to the directory you made for this exercise and make a suitable named directory
for the exercise:
1 cd ~/NGS/velvet/part2
2 mkdir SRS004748

82 TRAINER’S MANUAL

http://www.ebi.ac.uk/ena/data/view/SRS004748

Assembling Paired-end Reads de novo Genome Assembly

3 cd SRS004748

There is no need to download the read files, as they are already stored locally. You will
simply create a symlink to this pre-downloaded data using the following commands:
1 ln -s ~/NGS/Data/SRR022852_?.fastq.gz ./

It is interesting to monitor the computer’s resource utilisation, particularly memory. A
simple way to do this is to open a second terminal and in it type:
1 top

top is a program that continually monitors all the processes running on your computer,
showing the resources used by each. Leave this running and refer to it periodically
throughout your Velvet analyses. Particularly if they are taking a long time or whenever
your curiosity gets the better of you. You should find that as this practical progresses,
memory usage will increase significantly.
Now, back to the first terminal, you are ready to run velveth and velvetg. The reads
are -shortPaired and for the first run you should not use any parameters for velvetg.

From this point on, where it will be informative to time your runs. This is very easy to
do, just prefix the command to run the program with the command time. This will cause
UNIX to report how long the program took to complete its task.

Set the two stages of velvet running, whilst you watch the memory usage as reported by
top. Time the velvetg stage:
1 velveth run_25 25 -fmtAuto -create_binary -shortPaired -separate \

SRR022852_1.fastq.gz SRR022852_2.fastq.gz
2 time velvetg run_25

What does -fmtAuto and -create binary do? (see help menu) -fmtAuto tries to
detect the correct format of the input files e.g. FASTA, FASTQ and whether they
are compressed or not.
-create binary outputs sequences as a binary file. That means that velvetg can
read the sequences from the binary file more quickly that from the original sequence
files.
Comment on the use of memory and CPU for velveth and velvetg? velveth uses
only one CPU while velvetg uses all possible CPUs for some parts of the calculation.

How long did velvetg take? My own measurements are:
real 1m8.877s; user 4m15.324s; sys 0m4.716s

TRAINER’S MANUAL 83

de novo Genome Assembly Assembling Paired-end Reads

Next, after saving your contigs.fa file from being overwritten, set the cut-off parameters
that you investigated in the previous exercise and rerun velvetg. time and monitor the
use of resources as previously. Start with -cov cutoff 16 thus:
1 mv run_25/contigs.fa run_25/contigs.fa.0
2 time velvetg run_25 -cov_cutoff 16

Up until now, velvetg has ignored the paired-end information. Now try running velvetg
with both -cov cutoff 16 and -exp cov 26, but first save your contigs.fa file. By
using -cov cutoff and -exp cov, velvetg tries to estimate the insert length, which you
will see in the velvetg output. The command is, of course:
1 mv run_25/contigs.fa run_25/contigs.fa.1
2 time velvetg run_25 -cov_cutoff 16 -exp_cov 26

Comment on the time required, use of memory and CPU for velvetg? Runtime
is lower when velvet can reuse previously calculated data. By using -exp cov, the
memory usage increases.
Which insert length does Velvet estimate? Paired-end library 1 has length: 228,
sample standard deviation: 26

Next try running velvetg in ‘paired-end mode‘. This entails running velvetg specifying
the insert length with the parameter -ins length set to 350. Even though velvet estimates
the insert length it is always advisable to check / provide the insert length manually as
velvet can get the statistics wrong due to noise. Just in case, save your last version of
contigs.fa. The commands are:
1 mv run_25/contigs.fa run_25/contigs.fa.2
2 time velvetg run_25 -cov_cutoff 16 -exp_cov 26 -ins_length 350
3 mv run_25/contigs.fa run_25/contigs.fa.3

How fast was this run? My own measurements are:
real 0m29.792s; user 1m4.372s; sys 0m3.880s

Take a look into the Log file.

What is the N50 value for the velvetg runs using the switches:
Base run: 19,510 bp -cov cutoff 16 24,739 bp
-cov cutoff 16 -exp cov 26 61,793 bp
-cov cutoff 16 -exp cov 26 -ins length 350 n50 of 62,740 bp; max 194,649 bp;
total 2,871,093 bp

84 TRAINER’S MANUAL

Assembling Paired-end Reads de novo Genome Assembly

Try giving the -cov cutoff and/or -exp cov parameters the value auto. See the velvetg
help to show you how. The information Velvet prints during running includes information
about the values used (coverage cut-off or insert length) when using the auto option.

What coverage values does Velvet choose (hint: look at the output that Velvet
produces while running)? Median coverage depth = 26.021837
Removing contigs with coverage < 13.010918 . . .
How does the N50 value change? n50 of 68,843 bp; max 194,645 bp; total 2,872,678
bp

Run gnx on all the contig.fa files you have generated in the course of this exercise. The
command will be:
1 gnx -min 100 -nx 25,50,75 run_25/contigs.fa*

For which runs are there Ns in the contigs.fa file and why? contigs.fa.2, contigs.fa.3,
contigs.fa
Velvet tries to use the provided (or infers) the insert length and fills ambiguous regions
with Ns.
Comment on the number of contigs and total length generated for each run.

Filename No. contigs Total length No. Ns
Contigs.fa.0 631 2,830,659 0
Contigs.fa.1 580 2,832,670 0
Contigs.fa.2 166 2,849,919 4,847
Contigs.fa.3 166 2,856,795 11,713
Contigs.fa 163 2,857,439 11,526

Table 7:

AMOS Hawkeye

We will now output the assembly in the AMOS massage format and visualise the assembly
using AMOS Hawkeye.
Run velvetg with appropriate arguments and output the AMOS message file, then
convert it to an AMOS bank and open it in Hawkeye:
1 time velvetg run_25 -cov_cutoff 16 -exp_cov 26 -ins_length 350 \

-amos_file yes -read_trkg yes
2 time bank-transact -c -b run_25/velvet_asm.bnk -m run_25/velvet_asm.afg

TRAINER’S MANUAL 85

de novo Genome Assembly Assembling Paired-end Reads

3 hawkeye run_25/velvet_asm.bnk

Looking at the scaffold view of a contig, comment on the proportion of “happy mates”
to “compressed mates” and “stretched mates”. Nearly all mates are compressed with
no stretched mates and very few happy mates.
What is the mean and standard deviation of the insert size reported under the
Libraries tab? Mean: 350 bp SD: 35 bp
Look at the actual distribution of insert sizes for this library. Can you explain where
there is a difference between the mean and SD reported in those two places? We
specified -ins length 350 to the velvetg command. Velvet uses this value, in the
AMOS message file that it outputs, rather than its own estimate.

You can get AMOS to re-estimate the mean and SD of insert sizes using intra-contig pairs.
First, close Hawkeye and then run the following commands before reopening the AMOS
bank to see what has changed.
1 asmQC -b run_25/velvet_asm.bnk -scaff -recompute -update -numsd 2
2 hawkeye run_25/velvet_asm.bnk

Looking at the scaffold view of a contig, comment on the proportion of “happy mates”
to “compressed mates” and “stretched mates”. There are only a few compressed and
stretched mates compared to happy mates. There are similar numbers of stretched
and compressed mates.
What is the mean and standard deviation of the insert size reported under the
Libraries tab? TODO Mean: 226 bp SD: 25 bp
Look at the actual distribution of insert sizes for this library. Does the mean and SD
reported in both places now match? Yes
Can you find a region with an unusually high proportion of stretched, compressed,
incorrectly orientated or linking mates? What might this situation indicate? This
would indicate a possible misassembly and worthy of further investigation.
Look at the largest scaffold, there are stacks of stretched pairs which span contig
boundaries. This indicates that the gap size has been underestimated during the
scaffolding phase.

86 TRAINER’S MANUAL

Assembling Paired-end Reads de novo Genome Assembly

Velvet and Data Quality

So far we have used the raw read data without performing any quality control or read
trimming prior to doing our velvet assemblies.

Velvet does not use quality information present in FASTQ files.

For this reason, it is vitally important to perform read QC and quality trimming. In
doing so, we remove errors/noise from the dataset which in turn means velvet will run
faster, will use less memory and will produce a better assembly. Assuming we haven’t
compromised too much on coverage.
To investigate the effect of data quality, we will use the run data (SRR023408) from the
SRA experiment SRX008042. The reads are Illumina paired end with an insert size of 92
bp.

Go back to the main directory for this exercise and create and enter a new directory
dedicated to this phase of the exercise. The commands are:
1 cd ~/NGS/velvet/part2
2 mkdir SRX008042
3 cd SRX008042

Create symlinks to the read data files that we downloaded for you from the SRA:
1 ln -s ~/NGS/Data/SRR023408_?.fastq.gz ./

We will use FastQC, a tool you should be familiar with, to visualise the quality of our
data. We will use FastQC in the Graphical User Interface (GUI) mode.

Start FastQC and set the process running in the background, by using a trailing &, so we
get control of our terminal back for entering more commands:
1 fastqc &

Open the two compressed FASTQ files (File − > Open) by selecting them both and
clicking OK). Look at tabs for both files:

Figure 8:

TRAINER’S MANUAL 87

de novo Genome Assembly Assembling Paired-end Reads

Are the quality scores the same for both files? Overall yes
Which value varies? Per sequence quality scores
Take a look at the Per base sequence quality for both files. Did you note that it is
not good for either file? The quality score of both files drop very fast. Qualities of
the REV strand drop faster than the FWD strand. This is because the template has
been sat around while the FWD strand was sequenced.
At which positions would you cut the reads if we did “fixed length trimming”? Looking
at the “Per base quality” and “Per base sequence content”, I would choose around 27
Why does the quality deteriorate towards the end of the read? Errors more likely for
later cycles
Does it make sense to trim the 5’ start of reads? Looking at the “Per base sequence
content”, yes - there is a clear signal at the beginning.

Have a look at the other options that FastQC offers.

Which other statistics could you use to support your trimming strategy? “Per base
sequence content”, “Per base GC content”, “Kmer content”, “Per base sequence
quality”

Figure 9:

Once you have decided what your trim points will be, close FastQC. We will use
fastx trimmer from the FASTX-Toolkit to perform fixed-length trimming. For usage
information see the help:
1 fastx_trimmer -h

fastx trimmer is not able to read compressed FASTQ files, so we first need to decompress
the files ready for input.

The suggestion (hopefully not far from your own thoughts?) is that you trim your reads

88 TRAINER’S MANUAL

Assembling Paired-end Reads de novo Genome Assembly

as follows:
1 gunzip < SRR023408_1.fastq.gz > SRR023408_1.fastq
2 gunzip < SRR023408_2.fastq.gz > SRR023408_2.fastq
3 fastx_trimmer -Q 33 -f 1 -l 32 -i SRR023408_1.fastq -o \

SRR023408_trim1.fastq
4 fastx_trimmer -Q 33 -f 1 -l 27 -i SRR023408_2.fastq -o \

SRR023408_trim2.fastq

Many NGS read files are large. This means that simply reading and writing files can
become the bottleneck, also known as I/O bound. Therefore, it is often good practice
to avoid unnecessary disk read/write.
We could do what is called pipelining to send a stream of data from one command to
another, using the pipe (|) character, without the need for intermediary files. The
following command would achieve this:
1 gunzip --to-stdout < SRR023408_1.fastq.gz | fastx_trimmer -Q 33 -f 4 \

-l 32 -o SRR023408_trim1.fastq
2 gunzip --to-stdout < SRR023408_2.fastq.gz | fastx_trimmer -Q 33 -f 3 \

-l 29 -o SRR023408_trim2.fastq

Now run velveth with a k-mer value of 21 for both the untrimmed and trimmed read
files in -shortPaired mode. Separate the output of the two executions of velveth into
suitably named directories, followed by velvetg:
1 # untrimmed reads
2 velveth run_21 21 -fmtAuto -create_binary -shortPaired -separate \

SRR023408_1.fastq SRR023408_2.fastq
3 time velvetg run_21
4
5 # trimmed reads
6 velveth run_21trim 21 -fmtAuto -create_binary -shortPaired -separate \

SRR023408_trim1.fastq SRR023408_trim2.fastq
7 time velvetg run_21trim

How long did the two velvetg runs take? run 25: real 3m16.132s; user 8m18.261s;
sys 0m7.317s
run 25trim: real 1m18.611s; user 3m53.140s; sys 0m4.962s

What N50 scores did you achieve? Untrimmed: 11
Trimmed: 15
What were the overall effects of trimming? Time saving, increased N50, reduced
coverage

TRAINER’S MANUAL 89

de novo Genome Assembly Assembling Paired-end Reads

The evidence is that trimming improved the assembly. The thing to do surely, is to
run velvetg with the -cov cutoff and -exp cov. In order to use -cov cutoff and
-exp cov sensibly, you need to investigate with R, as you did in the previous exercise,
what parameter values to use. Start up R and produce the weighted histograms:
1 R --no-save
2 library(plotrix)
3 data <- read.table("run_21/stats.txt", header=TRUE)
4 data2 <- read.table("run_21trim/stats.txt", header=TRUE)
5 par(mfrow=c(1,2))
6 weighted.hist(data$short1_cov, data$lgth, breaks=0:50)
7 weighted.hist(data2$short1_cov, data2$lgth, breaks=0:50)

Figure 10: Weighted k-mer coverage histograms of the paired-end reads pre-trimmed
(left) and post-trimmed (right).

For the untrimmed read histogram (left) there is an expected coverage of around 13 with a
coverage cut-off of around 7. For the trimmed read histogram (right) there is an expected
coverage of around 9 with a coverage cut-off of around 5.
If you disagree, feel free to try different settings, but first quit R before running velvetg:
1 q()

1 time velvetg run_21 -cov_cutoff 7 -exp_cov 13 -ins_length 92
2 time velvetg run_21trim -cov_cutoff 5 -exp_cov 9 -ins_length 92

90 TRAINER’S MANUAL

Assembling Paired-end Reads de novo Genome Assembly

How good does it look now?
Still not great Comment on:
Runtime Reduced runtime
Memory Lower memory usage
k-mer choice (Can you use k-mer 31 for a read of length 30 bp?) K-mer has to be
lower than the read length and the K-mer coverage should be sufficient to produce
results.
Does less data mean “worse” results? Not necessarily. If you have lots of data you
can safely remove poor data without too much impact on overall coverage.
How would a smaller/larger k-mer size behave?

Compare the results, produced during the last exercises, with each other:

Metric SRR022852 SRR023408 SRR023408.trimmed
Overall Quality (1-5)

bp Coverage

k-mer Coverage

N50 (k-mer used)

Table 8:

TRAINER’S MANUAL 91

de novo Genome Assembly Assembling Paired-end Reads

Metric SRR022852 SRR023408 SRR023408.trimmed
Overall Quality (1-5) 2 5 4

bp Coverage 136 x (36 bp;11,374,488) 95x (37bp; 7761796) 82x (32bp; 7761796)

k-mer Coverage 45x 43x (21); 33x (25) 30x (21); 20.5x (25)

N50 (k-mer used) 68,843 (25) 2,803 (21) 2,914 (21)

Table 9:

What would you consider as the “best” assembly? SRR022852
If you found a candidate, why do you consider it as “best” assembly? Overall data
quality and coverage
How else might you assess the the quality of an assembly? Hint: Hawkeye. By trying
to identify paired-end constraint violations using AMOS Hawkeye.

Hybrid Assembly
Like the previous examples, the data you will examine in this exercise is again from
Staphylococcus aureus which has a genome of around 3MB. The reads are 454 single
end and Illumina paired end with an insert size of 170 bp. You already downloaded
the required reads from the SRA in previous exercises. Specifically, the run data
(SRR022863, SRR000892, SRR000893) from the SRA experiments SRX007709 and
SRX000181.

The following exercise focuses on handing 454 long reads and paired-end reads with
velvet and the differences in setting parameters.

92 TRAINER’S MANUAL

Assembling Paired-end Reads de novo Genome Assembly

First move to the directory you made for this exercise, make a suitable named directory
for the exercise and check if all the three files are in place:
1 cd ~/NGS/velvet/part3
2 mkdir SRR000892-SRR022863
3 cd SRR000892-SRR022863
4 # 454 single end data
5 ln -s ~/NGS/Data/SRR00089[2-3].fastq.gz ./
6 # illumina paired end data
7 ln -s ~/NGS/Data/SRR022863_?.fastq.gz ./

The following command will run for a LONG time. This indicated the amount of
calculations being preformed by Velvet to reach a conclusion. To wait for velvet
to finish would exceed the time available in this workshop, but it is up to you
to either let it run over night or kill the process by using the key combination
CTRL+c.
1 velveth run_25 25 -fmtAuto -create_binary -long \

SRR00089?.fastq.gz -shortPaired -separate \
SRR022863_1.fastq.gz SRR022863_2.fastq.gz

2 time velvetg run_25

If you have decided to continue, we already inspected the weighted histograms
for the short and long read library separately, you can reuse this for the cut-off
values:
1 time velvetg run_25 -cov_cutoff 7 -long_cov_cutoff 9

What are your conclusions using Velvet in an hybrid assembly? 17 min: time
velvetg run 25

TRAINER’S MANUAL 93

Post-Workshop Information

Post-Workshop Information Access to Computational Resources

Access to Computational Resources

By the end of the workshop we hope you’re thinking one or more of the following:

• I’m interested in dabbling some more during my day-job!

• How do I access a Linux box like the one I’ve been using in the workshop - I really
don’t want the hassle of setting this all up myself!

• I’m hooked! I really want to get down and dirty with NGS data! What computational
resources do I need, what do I have access to and how do I access them?

We’re ecstatic you’re thinking this way and want to help guide you! However, lets take
this one step at a time.
The quickest way to dabble is to use a clone of the operating system (OS) you’ve been
using during this workshop. That means you’ll have hassle-free access to a plethora of
pre-installed, pre-configured bioinformatics tools. You could even set it up to contain a
copy of all the workshop data and handouts etc to go through the hands-on practicals in
your own time!
We have created an image file (approx. 10 GBytes in size) of the NGS Training OS for
you to use as you wish:

https://swift.rc.nectar.org.au:8888/v1/AUTH_33065ff5c34a4652aa2fefb292b3195a/
VMs/NGSTrainingV1.2.1.vdi

We would advise one of the following two approaches for making use of it:

• Import it into VirtualBox to setup a virtual machine (VM) on your own computer.

• Instantiate a VM on the NeCTAR Research Cloud.

Setting up a VM using VirtualBox

This approach requires the least amount of mind-bending to get up and running. However,
you will need to install some software. If you do not have administrator access or your
system administrator is slow or unwilling to install the software, you may find using the
NeCTAR Research Cloud to be viable alternative.
This approach will use, at most, the computational resources available on your own
computer. If you are analysing non-microbial organisms or performing de novo assemblies,
you may find these resources are insufficient. If this is the case, you really should speak
to someone from IT support at your institution or get in touch with a bioinformatician
for advise.
The software you need is VirtualBox, a freely available, Open Source virtualisation product
from Oracle (https://www.virtualbox.org/). This software essentially allows you to

96 TRAINER’S MANUAL

https://swift.rc.nectar.org.au:8888/v1/AUTH_33065ff5c34a4652aa2fefb292b3195a/VMs/NGSTrainingV1.2.1.vdi
https://swift.rc.nectar.org.au:8888/v1/AUTH_33065ff5c34a4652aa2fefb292b3195a/VMs/NGSTrainingV1.2.1.vdi
https://www.virtualbox.org/

Access to Computational Resources Post-Workshop Information

run an operating system (the guest OS) within another (the host OS). VirtualBox is
available for several different host OSes including MS Windows, OS X, Linux and Solaris
(https://www.virtualbox.org/wiki/Downloads). Once VirtualBox is installed on your
host OS, you can then install a guest OS inside VirtualBox. VirtualBox supports a lot of
different OSes (https://www.virtualbox.org/wiki/Guest_OSes).
Here are the steps to setting up a VM in VirtualBox with our image file:

1. Download and install VirtualBox for your OS: https://www.virtualbox.org/
wiki/Downloads

2. Start VirtualBox and click New to start the Create New Virtual Machine wizard

3. Give the VM a useful name like “NGS Training” and choose Linux and either
Ubuntu or Ubuntu (64-bit) as the OS Type

4. Give the VM access to a reasonable amount of the host Oses memory. i.e. somewhere
near the top of the green. If this value is < 2000 MB, you are likely to have insufficient
memory for your NGS data analysis needs.

5. For the virtual hard disk, select “Use existing hard disk” and browse to and select
the NGSTrainingV1.2.1.vdi file you downloaded.

6. Confirm remaining settings

7. Select the “NGS Training” VM and click Start to boot he machine.

8. Once booted, log into the VM as either ubuntu (a sudoer user; i.e. has admin rights)
or as ngstrainee (a regular unprivileged user). See table below for passwords.

Setting up a VM using the NeCTAR Research Cloud

All Australian researchers, who are members of an institution which subscribes to the
Australian Access Federation (AAF; http://www.aaf.edu.au/), have access to a small
amount of computing resources (2 CPU’s and 8 GBytes RAM) on the NeCTAR Research
Cloud (http://nectar.org.au/research-cloud).

TRAINER’S MANUAL 97

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Guest_OSes
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
http://www.aaf.edu.au/
http://nectar.org.au/research-cloud

Post-Workshop Information Access to Computational Resources

Login to the NeCTAR Research Cloud Dashboard

The online dashboard is a graphical interface for administering (creating, deleting, reboot-
ing etc) your virtual machines (VMs) on the NeCTAR research cloud.

1. Go to the dashboard: http://dashboard.rc.nectar.org.au

2. When you see the following page, click the “Log In” button:

Figure 11:

3. At the following screen, simply choose your institution from the dropdown box and
click “Select”. Now follow the on screen prompts and enter your regular institutional
login details.

Figure 12:

4. If you see the following screen, congratulations, you have successfully logged into
the NeCTAR Research Cloud dashboard!

98 TRAINER’S MANUAL

http://dashboard.rc.nectar.org.au

Access to Computational Resources Post-Workshop Information

Figure 13:

Instantiating Your Own VM

We will now show you how to instantiate the “NGS Training” image using your own
personal cloud allocation.

1. In the NeCTAR Research Cloud dashboard, click “Images & Snapshots” to list all the
publicly available images from which you can instantiate a VM. Under “Snapshots”
Click the “Launch” button for the latest version of the “NGSTraining” snapshot:

TRAINER’S MANUAL 99

Post-Workshop Information Access to Computational Resources

Figure 14:

2. You will now see a “Launch Instances” window where you are required to enter some
details about how you want the VM to be setup before clicking “Launch Instance”.
In the “Launch Instances” pop-up frame choose the following settings:

Server Name A human readable name for your convenience. e.g. “My NGS VM”
Flavor The resources you want to allocate to this VM. I suggest a Medium sized VM

(2 CPUs and 8 GBytes RAM). This will use all your personal allocation, but
anything less will probably be insufficient. You could request a new allocation
of resources if you want to instantiate a larger VM with more memory.

Security Groups Select SSH.

3. Click the “Launch Instance” button

100 TRAINER’S MANUAL

Access to Computational Resources Post-Workshop Information

Figure 15:

4. You will be taken to the “Instances” page and you will see the “Status” and “Task”
column for your new VM is “Building” and “Spawning”. Once the “IP Address” cell
is populated, take a note of it as you will need it for configuring the NX Client later
on.

TRAINER’S MANUAL 101

Post-Workshop Information Access to Computational Resources

Figure 16:

5. Once the Status and Task for the VM change to “Active and “None” respectively,
your VM is powered up and is configuring itself. Congratulations, you have now
instantiated a Virtual Machine! If you try to connect to the VM too quickly, you
might not be successful. The OS may still be configuring itself, so give it a few
minutes to finish before continuing.

Figure 17:

102 TRAINER’S MANUAL

Access to Computational Resources Post-Workshop Information

VM Stuck Building and Spawning

Sometimes, the cloud experiences a “hiccup” and a newly instantiated VM will get stuck
in the “Build” and “Spawning” state (step 3) for more than a few minutes. This can be
rectified by terminating the instance and creating a new VM from scratch:

1. Selecting “Terminate Instance” under the “Edit Instance” dropdown box:

Figure 18:

2. Go back to step 1 of “Instantiating Your Own VM” and create the VM from scratch:

Remote Desktop with the NoMachine NX Client

During the workshop you were using the free NX client from NoMachine (http://www.
nomachine.com/) to provide a remote desktop-like connection to VMs running on the
NeCTAR Research Cloud. Therefore, we provide information on how to setup your local
computer to connect to the VM you just instantiated in the steps above.
We assume that:

• You have administrator rights on your local computer for installing software.

NoMachine NX Client Installing

We show you instructions below for the MS Windows version of the NX Client, but
procedures for other supported OSes (Linux, Mac OSX and Solaris) should be very
similar.

1. Go to the NoMachine download page: http://www.nomachine.com/download.php

2. Click the download icon next to the NX Client for Windows:

TRAINER’S MANUAL 103

http://www.nomachine.com/
http://www.nomachine.com/
http://www.nomachine.com/download.php

Post-Workshop Information Access to Computational Resources

Figure 19:

3. On the ”NX Client for Windows” page, click the ”Download package” button:

Figure 20:

4. Run the file you just downloaded (accepting defaults is fine)

5. Congratulations, you just installed the NoMachine NX Client!

NoMachine NX Client Configuration

Now we have the NoMachine NX Client installed, we need to configure a new NX ”session”
which will point to the VM we instantiated in the NeCTAR Research Cloud.
We assume that:

• You know the IP address of the VM you want to remote desktop into.

1. Start the NX Connection Wizard and click ”Next” to advance to the ”Session”
settings page.

104 TRAINER’S MANUAL

Access to Computational Resources Post-Workshop Information

Figure 21:

2. On the ”Sessions” settings page enter the following details:

Session A memorable name so you know which VM this session is pointing at. You
could use the same name you chose for the VM you instantiated earlier e.g.
”NGS Training”.

Host Enter the IP address of the VM you instantiated on the NeCTAR Research
Cloud.

Figure 22:

TRAINER’S MANUAL 105

Post-Workshop Information Access to Computational Resources

3. Click ”Next” to advance to the ”Desktop” settings page. You should use the ”Unix
GNOME” setting.

Figure 23:

4. Click ”Next” and ”Finish” to complete the wizard.

Connecting to a VM

If you just completed the NX Connection Wizard described above, the wizard should have
opened the NX Client window. If not, run the ”NX Client”. You will be presented with a
window like this:

Figure 24:

106 TRAINER’S MANUAL

Access to Computational Resources Post-Workshop Information

The ”Login” and ”Password” boxes in the NX Client are for user accounts setup on the
VM. By default our image, from which you instantiated your VM, has two preconfigured
users:

Figure 25:

Unless you know what you are doing, we suggest you use the ngstrainee user account
details to initiate an NX connection to your VM. In less than a minute, you should see an
NX Window showing the desktop of your VM:

Figure 26:

TRAINER’S MANUAL 107

Post-Workshop Information Access to Computational Resources

NX Connection Failure

In the event that you don’t get the NX Window with your VM’s desktop displaying inside
it. The most common errors are:

• You failed to select the ”ssh” security group when instantiating the VM. You’ll need
to terminate the instance and create a new VM from scratch

• You failed to select ”Unix GNOME” when you configured the NX Client session.
You’ll need to reconfigure the session using the NX Client

• Your institutions firewall blocks TCP port 22. You may need to request this port to
be opened by your local network team or configure the NX client to use a proxy
server.

Advanced Configuration

In the session configuration, you can configure the size of the NX Window in which the
desktop of the VM is drawn:

Figure 27:

This can be useful if you want to:

108 TRAINER’S MANUAL

Access to Computational Resources Post-Workshop Information

• Have the NX Window occupy the entire screen, without window decorations. This
is often desirable if you wish to ”hide” the host OS from the person sitting at the
computer running the NX Client.

• Have the NX Window spread over multiple monitors.

TRAINER’S MANUAL 109

Post-Workshop Information Access to Workshop Documents

Access to Workshop Documents

This document has been written in LATEX and deposited in a public github repository
(https://github.com/nathanhaigh/ngs_workshop). The documentation has been re-
leased under a Creative Commons Attribution 3.0 Unported License (see the Licence page
at the beginning of this handout).
For convienience, you can access up-to-date PDF versions of the LATEX documents at:

Trainee Handout
https://github.com/nathanhaigh/ngs_workshop/raw/master/trainee_handout.pdf

Trainer Handout
https://github.com/nathanhaigh/ngs_workshop/raw/master/trainer_handout.pdf

Access to Workshop Data

Once you have created a VM from our image file, either locally using VirtualBox or on the
NeCTAR Research Cloud, you can configure the system with the workshop documents
and data. This way you can revisit and work through this workshop in your own time.
In order to do this, we have provided you with access to a shell script which should be
executed on your NGS Training VM by the ubuntu user. This pulls approx. 3.3 GBytes
of data from the NeCTAR Cloud storage and configures the system for running this
workshop:
1 # As the ubuntu user run the following commands:
2 cd /tmp
3 wget https://github.com/nathanhaigh/ngs_workshop/raw/master/\
4 workshop_deployment/NGS_workshop_deployment.sh
5 bash NGS_workshop_deployment.sh

While you’re at it, you may also like to change the timezone of your VM to match that of
your own. To do this simply run the following commands as the ubuntu user:
1 TZ="Australia/Adelaide"
2 echo "$TZ" | sudo tee /etc/timezone
3 sudo dpkg-reconfigure --frontend noninteractive tzdata

For further information about what this script does and possible command line arguments,
see the script’s help:
1 bash NGS_workshop_deployment.sh -h

For further information about setting up the VM for the workshop, please see:

https://github.com/nathanhaigh/ngs_workshop/blob/master/workshop_deployment/
README.md

110 TRAINER’S MANUAL

https://github.com/nathanhaigh/ngs_workshop
https://github.com/nathanhaigh/ngs_workshop/raw/master/trainee_handout.pdf
https://github.com/nathanhaigh/ngs_workshop/raw/master/trainer_handout.pdf
https://github.com/nathanhaigh/ngs_workshop/blob/master/workshop_deployment/README.md
https://github.com/nathanhaigh/ngs_workshop/blob/master/workshop_deployment/README.md

Space for Personal Notes or Feedback

Space for Personal Notes or Feedback

112 TRAINER’S MANUAL

Space for Personal Notes or Feedback

TRAINER’S MANUAL 113

Space for Personal Notes or Feedback

114 TRAINER’S MANUAL

Space for Personal Notes or Feedback

TRAINER’S MANUAL 115

An introduction to Linux for bioinformatics

Paul Stothard

January 17, 2016

Contents

1 Introduction 2

2 Getting started 3
2.1 Obtaining a Linux user account . 3
2.2 How to access your account from Mac OS X 3
2.3 How to access your account from Windows 4

2.3.1 Using PuTTY . 4
2.3.2 Using Cygwin . 5

2.4 Your home directory . 6
2.5 Some basic commands . 7
2.6 More commands and command-line options 8

3 Transferring files to and from your Linux account 10
3.1 Transferring files between Mac OS X and Linux 10

3.1.1 Using the Terminal application 10
3.1.2 Using Fugu . 11

3.2 Transferring files between Windows and Linux 11
3.3 File transfer exercise . 11

1

1 INTRODUCTION 2

4 Understanding Linux 12
4.1 Paths . 12
4.2 Typing shortcuts . 14
4.3 File permissions . 15
4.4 Redirecting output . 16
4.5 Piping output . 17
4.6 Using locate and find . 17
4.7 Working with tar and zip files . 18
4.8 Wildcard characters . 19
4.9 The grep command . 19
4.10 The root user . 20
4.11 The Linux file system . 20
4.12 Editing a text file using vi . 21

5 Bioinformatics tools 23
5.1 EMBOSS . 23
5.2 Using ClustalW . 24
5.3 Performing a BLAST search . 25
5.4 Performing a BLAT search . 26

6 Streamlining data analysis 29
6.1 The .bashrc file . 29
6.2 Modifying $PATH and other environment variables 30
6.3 Writing a simple Bash script . 31

7 Summary 32

1 Introduction

Linux is a free operating system for computers that is similar in many ways to propri-
etary Unix operating systems. The field of bioinformatics relies heavily on Linux-based
computers and software. Although most bioinformatics programs can be compiled to run

2 GETTING STARTED 3

on Mac OS X and Windows systems, it is often more convenient to install and use the
software on a Linux system, as pre-compiled binaries are usually available, and much of
the program documentation is often targeted to the Linux user. For most users, the sim-
plest way to access a Linux system is by connecting from their primary Mac or Windows
machine. This type of arrangement allows several users to run software on a single Linux
system, which can be maintained by an experienced systems administrator. Although
there are other ways for inexperienced users to become familiar with Linux (installing
Linux on a PC, using a Live CD to run Linux, running a Linux virtual machine), this doc-
ument focuses on accessing a remote Linux machine using a text-based terminal. Many
powerful statistics and bioinformatics programs can be run in this manner.

2 Getting started

2.1 Obtaining a Linux user account

To gain access to a Linux-based machine you first need to speak a system administrator
(sysadmin) to obtain a user name, hostname (or IP address), and password. Once you
have this information you can access your account. Alternatively, you can run a Linux
virtual machine on top of your present operating system. If you are using a Linux virtual
machine you can skip ahead to the section called “Your home directory” after launching
the machine and opening a Bash terminal).

2.2 How to access your account from Mac OS X

Mac OS X includes a Terminal application (located in the Applications >> Utilities
folder), which can be used to connect to other systems (Figure 2.2). Launch Terminal
and at the command prompt, enter ssh user@hostname, replacing “user” and “hostname”
with the user name and machine name you have been assigned. Press enter and you should
be prompted for a password. The first time you try to connect to your account, a warning
message may appear. Ignore the message and allow the connection to be established.

2 GETTING STARTED 4

Figure 1: The Mac OS X Terminal application.

2.3 How to access your account from Windows

2.3.1 Using PuTTY

On Windows systems you can use a variety of programs to connect to a Linux system.
PuTTY1 is a free program already available on many Windows machines, including most
of the student-accessible computers at the University of Alberta. If PuTTY is not installed
you can download an executable from the PuTTY website. Launching PuTTY will open
a configuration window resembling the one shown in Figure 2.3.1. Click Session in the
left pane and then in the Host Name (or IP address) text box enter user@hostname,
replacing “user” and “hostname” with the user name and machine name you have been
assigned. Click Open to establish a connection with the remote system. The first time
you try to connect to your account, a warning message may appear. Ignore the message
and allow the connection to be established. A new terminal window will open, and you
will be prompted for a password.

1http://www.chiark.greenend.org.uk/~sgtatham/putty/

http://www.chiark.greenend.org.uk/~sgtatham/putty/

2 GETTING STARTED 5

Figure 2: The PuTTY Telnet/SSH client running on Windows.

2.3.2 Using Cygwin

Cygwin2 is a program that can be installed on Windows to provide a Linux-like environ-
ment. An advantage of using Cygwin is that you gain access to a lot of the standard Linux
utilities, without having to connect to another computer. For example, after launching
Cygwin, you can use many of the Linux commands described elsewhere in this guide,
such as pwd and mkdir. You can also edit and run Bash scripts and Perl programs, and
you can manage software repositories using subversion (these topics, apart from Bash
scripts, are not covered in the tutorial). If you choose to install Cygwin, you can use it
to access your remote Linux account by entering ssh user@hostname (replace “user”
and “hostname” with the user name and machine name you have been assigned) on the
command line (Figure 2.3.2).

2http://www.cygwin.com/

http://www.cygwin.com/

2 GETTING STARTED 6

Figure 3: Cygwin, a Linux-like environment for Windows.

2.4 Your home directory

Once you have successfully signed in to your account, you can start exploring the di-
rectory structure of the remote computer. In your terminal you should see a command
prompt, which usually consists of your user name and the name of the computer on which
your account resides.

The examples in this guide will include $ as the command prompt to illustrate that the
commands should be entered into the terminal, and to differentiate the entered commands
from the output they return.

When you sign in you will be located in your home directory. To see where this
directory is located in the file system, use the pwd command:

1 pwd

In this case the output indicates that the current working directory is paul and that the
paul directory is located inside of the home directory. When you enter pwd after signing
in it should show that you are in a directory with the same name as your user name. The

2 GETTING STARTED 7

home directory is located inside the / directory, which is also called the “root” directory.
If at any time you want to return to your home directory, use the cd ˜ command. As
you will see, your home directory is where you can create and delete your own files and
directories.

2.5 Some basic commands

As in the previous example, you can see which directory is the current directory by using
the pwd command:

1 pwd

To change to a different directory, use the cd command (cd means change directory):

1 cd /home
2 pwd

Now you should be in the home directory. To see what is inside of this directory, use
the ls command (ls stands for list):

1 ls

The folders you see will likely differ from these. Now switch back to your home
directory:

1 cd ~

In addition to real directory names, you can supply certain alias terms to the cd com-
mand. One of these is the ˜ character, which represents your home directory. Another is
.., which represents the directory above the current directory. Try the following:

1 cd ~
2 cd ..
3 ls
4 pwd
5 cd ~
6 pwd

As you can see, cd, ls, and pwd can be used to explore the Linux file system. Don’t
forget that you can always use cd ˜ to move back to your home directory.

/

2 GETTING STARTED 8

2.6 More commands and command-line options

The pwd, ls, and cd commands point to programs on the Linux system that perform
specific tasks and return output. When you enter the commands, the system runs the
corresponding program for you. There are many other useful commands available.

To see which user you are signed in as, use the whoami command:

1 whoami

To see who else is signed in to the same system, use the who command:

1 who

To see the current time and date, using the date command:

1 date

To create your own directories use the mkdir (make directory) command:

1 cd ~
2 mkdir seqs
3 cd seqs
4 mkdir proteins
5 cd proteins
6 pwd

To create a new file, use the touch command:

1 cd ~/seqs/proteins
2 touch my_sequence.txt
3 ls -l

As you will see later, there are other ways to create new files (output redirection for
example). In the last command above, the -l (a lowercase “L”, not a “1”) option was used
with the ls command. The -l indicates that you want the directory contents shown in the
“long listing” format. Most commands accept a variety of options. To see which options
are available for a certain command, you can try typing man followed by the command
name (man ls for example to see what options are available for the ls command), or the
command name followed by --help (ls --help for example). One of these two methods
usually provides information. To see what options can be used with ls, enter man ls.
To get through the list of options that appears, keep pressing Space until the page stops
scrolling, then enter “q” to return to the command prompt:

2 GETTING STARTED 9

1 man ls

To delete a file, use the rm (remove) command:

1 cd ~/seqs/proteins
2 rm my_sequence.txt
3 ls

To remove a directory, use the rmdir (remove directory) command:

1 cd ~/seqs
2 rmdir proteins
3 ls

To copy a file, use the cp (copy) command:

1 cd ~/seqs/
2 touch testfile1
3 cp testfile1 testfile2
4 ls

To rename a file, or to move it to another directory, use the mv (move) command:

1 cd ~
2 touch testfile3
3 mv testfile3 junk
4 mkdir testdir
5 mv junk testdir
6 cd testdir
7 ls

The commands covered so far represent a small but useful subset of the many com-
mands available on a typical Linux system [1].

3 TRANSFERRING FILES TO AND FROM YOUR LINUX ACCOUNT 10

3 Transferring files to and from your Linux account

3.1 Transferring files between Mac OS X and Linux

3.1.1 Using the Terminal application

Recall that Mac OS X includes a Terminal application (located in the Applications >>
Utilities folder), which can be used to connect to other systems. This terminal can also
be used to transfer files, thanks to the scp command.

Try transferring a file from your Mac to your Linux account using the Terminal ap-
plication:

1. Launch the Terminal program.

2. Switch to your home directory on the Mac using the command cd ˜.

3. Create a text file containing your home directory listing using ls -l > myfiles.txt
(you will learn more about the meaning of > later).

4. Now use the scp command on your Mac to transfer the file you created to your
Linux account. This command requires two values: the file you want to transfer
and the destination. Be sure to replace “user” with your user name, and replace
hostname with the real hostname or IP address of the Linux system you want to
connect to:

1 scp myfiles.txt user@hostname:~/

You should be prompted for your user account password. Remember, in the above
example you are running the scp command on your Mac, not from your Linux account.

Now, delete the myfiles.txt file on your Mac, and see if you can use scp to retrieve
the file from your Linux account:

1. In the terminal on your Mac, switch to your home directory using cd˜.

2. Delete the myfiles.txt file using rm myfiles.txt.

3. Use the scp command to copy myfiles.txt from your Linux account back to your
Mac. Remember to replace “hostname” and “user” with the appropriate values
when you enter the command:

3 TRANSFERRING FILES TO AND FROM YOUR LINUX ACCOUNT 11

1 scp user@hostname:~/myfiles.txt ./

The above command will prompt you for your Linux account password. Remember
that ./ means “current directory”. This informs the scp program that you would like the
file myfiles.txt in your home directory on the remote system to be copied to the current
directory on your computer.

3.1.2 Using Fugu

For users who prefer to use a graphical interface when transferring files between Mac
and Linux, there is the freely available Fugu program.3 To use Fugu, launch the program
and enter the hostname of the computer you wish to connect to in the Connect to text
area, and enter your Linux account name in the Username text area (Figure 3.1.2). Click
Connect to connect to the remote system. You will be prompted for your Linux account
password. Once you are connected to your Linux account you should be able to copy files
between systems by dragging files and folders.

3.2 Transferring files between Windows and Linux

The simplest way to transfer files between Linux and Windows is to use the freely avail-
able WinSCP program.4 WinSCP is already installed on many Windows systems, includ-
ing those provided for student use at the University of Alberta. To use WinSCP, launch
the program and enter the appropriate information into the Host name, User name, and
Password text areas (Figure 3.2). Click Login to connect to the remote system. Once you
are connected you should be able to transfer files and directories between systems using
the simple graphical interface.

3.3 File transfer exercise

To test your ability to transfer files to your Linux account, download the following file to
your Mac or Windows system using a web browser:

http://www.ualberta.ca/~stothard/downloads/sample_sequences.zip

3http://rsug.itd.umich.edu/software/fugu/
4http://sourceforge.net/projects/winscp/

http://www.ualberta.ca/~stothard/downloads/sample_sequences.zip
http://rsug.itd.umich.edu/software/fugu/
http://sourceforge.net/projects/winscp/

4 UNDERSTANDING LINUX 12

Figure 4: Fugu, a graphical SSH and SCP tool for Mac OS X.

Once the file has been downloaded to your system, use the file transfer methods out-
lined above to transfer the file to your Linux account. Be sure to perform this exercise, as
the sample_sequences.zip file will be used later on in this tutorial.

4 Understanding Linux

4.1 Paths

Many commands require that you supply a directory or file name. For example, if you
enter the command touch without specifying a file name, an error message is returned:

1 touch

Directory and file names like “testdir” and “my_sequences.txt” are called relative
paths, since they specify the location of the file or directory in relation to the current
working directory. For example, if you are located in your home directory, the command

4 UNDERSTANDING LINUX 13

Figure 5: WinSCP.

mkdir some_dir will create a directory called “some_dir” in your home directory.
In the following example two directories are created, and cd is used to switch to

“dir2” so that a new file can be created there using touch:

1 cd ~
2 mkdir dir1
3 cd dir1
4 mkdir dir2
5 cd dir2
6 touch somefile

Alternatively, by specifying the names of the directories in the paths, the same direc-
tory structure and file can be created without using cd to switch to the new directories (in
this example the rm -rf dir1 is used to remove the existing “dir1” and all of its contents):

1 cd ~
2 rm -rf dir1
3 mkdir dir1
4 mkdir dir1/dir2
5 touch dir1/dir2/somefile

Relative paths can use .. to refer to the parent directory (i.e. the directory above the
current directory). In the following example, .. is used twice in the path passed to touch,

4 UNDERSTANDING LINUX 14

to create a file called “somefile2” in the directory two levels up from the current directory
(which in this case is your home directory):

1 cd ~
2 cd dir1/dir2

In contrast to relative paths, absolute paths specify the name of a file or directory in
relation to the root (top) directory. Absolute paths always begin with a forward slash (the
forward slash at the beginning of a path represents the root directory). In the following
example, an absolute path is used to instruct ls to list the contents of the “etc” directory,
which is used by Linux to store configuration files (i.e. the “etc” directory located in the
root directory):

1 ls /etc

Absolute paths are useful because their interpretation doesn’t depend on which direc-
tory is the current working directory.

4.2 Typing shortcuts

There are some useful tricks to save typing on the command line. One is to use Tab
to complete a command name or a file name. When you press Tab, the system will try
to complete the text you have partially entered, based on which characters are found in
known command names and file names. If there are multiple possible matches, the system
will not guess the matching text, however, if you press Tab twice a list of the possible
matches will be given. This method of using Tab on the command line is called “Tab
completion”.

Try the following:

1 cd ~
2 mkdir a_new_directory

Now begin by typing “cd a” and press Tab instead of entering the full directory name.
The full name should appear automatically.

To see what happens when there are multiple possibilities for a command or filename,
begin by typing “mk” and press Tab twice. You should see a list of commands starting
with the letters “mk”.

Another useful command-line shortcut is to use the up and down arrow keys to scroll
through commands you have recently used (ls is sometimes not stored in this list since it

4 UNDERSTANDING LINUX 15

is easy to type). If you scroll to a command you want to use again, press Enter to execute
the command.

4.3 File permissions

Linux uses file permissions to prevent accidental file deletion and to protect data from
being manipulated by others. Each file and directory is associated with three types of
file permissions: “user”, “group”, and “other” permissions. The meanings of these terms
are discussed below. To see the permission information for a directory or file, use the ls
command with the -l option. Try the following set of commands:

1 cd ~
2 mkdir somedir
3 cd somedir
4 touch somefile
5 mkdir anotherdir
6 ls -l

The permission information for the directory anotherdir and the file somefile is given
in the file listing. The first column is the file type and the file permissions (drwxr-xr-x
for example). The third column is the owner of the file or directory (probably you), and
the column after that is the group that owns the file. A group is simply a collection of
users (groups are created by the sysadmin). A group can be used, for example, to allow
different users to collaborate on a particular set of files, while protecting the files from
editing by users not in the designated group.

As mentioned above, the first column contains the file type and permission informa-
tion. The anotherdir entry begins with d, indicating it is a directory. The somefile entry
begins with a -, which indicates that it is a file. The first three letters after the file type
letter are the permissions for the user who owns the file or the directory. The next three
letters are the permissions for the group that owns the file or directory. The final three
letters define the access permissions for other users. The meanings of the letters are the
following:

r (read permission) indicates that the file can be read. In the case of a directory this
means that the contents of the directory can be listed.

w (write permission) indicates that the file can be modified. In the case of a directory
this means that the contents of the directory can be changed (i.e. create new files,
delete existing files, or rename files).

4 UNDERSTANDING LINUX 16

x (execute permission) indicates that the file can be executed as a program. In the case
of a directory, the execute attribute means you have permission to enter a directory
(i.e. make it the current working directory).

Returning to the example above, the permissions for somefile are rw-r--r--. This
series of characters means that the owner of the file has the read and write permissions
(rw-). Other users in the group users can read the file but not write or execute it (r--).
Similarly, all other users can only read the file (r--).

To change file permissions, use the chmod command. For example, the following
changes the permissions associated with somefile so that only the owner of the file (paul
in this case) can read it (along with the root user, who will be discussed later):

1 chmod go-r somefile
2 ls -l

The go-r portion of the above chmod command means “from the group (g) and other
(o) permission sets take away the read permission (r).”

To allow everyone to read the file somefile you could modify the permissions using
the following:

1 chmod a+r somefile

The a in the above command means “all users”. To refer to different types of users
separately, use u (user who owns the file), g (group that owns the file), and o (other users).

To see how permissions protect files and directories, try to delete the /etc directory,
which contains important system files:

1 rmdir /etc

Although the full rationale behind permissions may not be apparent to you at this
time, it is important to remember that they do exist and that they control who can do
what to specific files and directories. These permissions also automatically apply to any
program you run on a Linux system. For example, if you run a program that attempts to
copy a file for which you do not have the read permission, the program will be denied
access to the file and it will not be able to make the copy.

4.4 Redirecting output

Many commands return textual output (i.e. the ls command) that is written to the terminal
window. You can redirect the output to a file instead, by providing a filename preceded

4 UNDERSTANDING LINUX 17

by the ‘>’ character. Use the following to create a file called my_listing.txt containing
the output of the ls -l command:

1 cd ~
2 ls -l > my_listing.txt

To examine the contents of the my_listing.txt file, use the more command:

1 more my_listing.txt

Note that more is useful for viewing the contents of a file, one page at a time. To
advance a page press Space. To return to the command prompt, enter “q”.

Output redirection is useful for commands that return a lot of output. It is often used
so that the output can be used or processed at a later time.

4.5 Piping output

With pipes, which are represented by the | character, it is possible to send the output of
one program to another program as input. Consider the following command:

1 cat /etc/services | sort | tail -n 10

The above example uses the cat command to extract the text from the file /etc/ser-
vices. The text is then piped to the sort program, which sorts the lines alphanumerically.
Finally, the sorted text is piped to the tail program, which displays the last 10 lines of the
text. Piping provides a convenient way to perform a series of data manipulations.

4.6 Using locate and find

Occasionally you may want to search a Linux system for a particular file. A simple way
to do this is to use the locate command:

1 locate blastall

In this example the locate program was used to search for files or directories matching
the name “blastall” (blastall is a program that can be used to search DNA and protein
sequence databases). The locate program does not actually search the Linux file system.
Instead it uses a database that is usually updated daily. By using an optimized database,
locate is able to find items quickly, however you may not obtain results for files recently
added to the system.

4 UNDERSTANDING LINUX 18

Another tool for searching for files of interest is find. This command accepts several
options for specifying the types of files you want. For example, you can search for files
based on name, size, owner, modification date, and permissions.

To find files in the /etc directory that end with “.conf” and that are more than 10
kilobytes in size you could use this command:

1 find /etc -name "*.conf" -size +10k

4.7 Working with tar and zip files

Sometimes you may want to compress a file or a group of files into a zip file or a tar file.
Alternatively, you may have a tar or zip file you wish to extract. Note that tar files, which
are similar to zip files, are frequently used on Linux-based systems.

To explore the zip and tar commands, first, create a text file using the following:

1 cd ~
2 wget www.google.ca -O google.html

The wget command can be used to download web-based files. In this example it is
used to write the google homepage to a file called google.html.

To create a zip file of google.html use the zip command:

1 zip -r google.zip google.html
2 rm google.html

The -r (for recursive) is not necessary in the above example. However, it is needed if
you want to if you want to zip the contents of a directory.

To extract this zip file use the unzip command:

1 unzip google.zip

To create a tar file use the tar command:

1 tar -cvf google.tar google.html

The -c option tells tar that you would like to create an archive (as opposed to extract
one), and -v indicates that you want the tar program to be verbose (i.e. print comments
and progress messages). -f is used to specify the name of the archive you would like to
create (google.tar). This command is generally used on directory containing multiple
files, rather than on a single file as in the previous example.

4 UNDERSTANDING LINUX 19

To extract this tar file use the tar command again, this time with the -x (extract)
option:

1 tar -xvf google.tar

To create a tar file that is also compressed (like a zip file), use the -z option:

1 tar -cvzf google.tar.zip google.html

Note that a directory name can be specified instead of the name of a file. To extract
tar.gz or tar.zip files use tar with the -z option:

1 tar -xvzf google.tar.zip

4.8 Wildcard characters

Sign in to your Linux account and locate the sample_sequences.zip file you transferred
to your home directory (see the File transfer exercise section). Extract the file and then
use ls -l to examine the files that are produced:

1 unzip sample_sequences.zip
2 ls -l

As you can see, several “.fasta” files were extracted from the sample_sequences.zip
archive. Suppose you want to organize your home directory by placing these new se-
quence files into a single directory. You can do this easily using the * wildcard character.
Try the following:

1 cd ~
2 mkdir sequences
3 mv *.fasta sequences

The * represents any text. The *.fasta instructs the mv command to move any file
that ends with “.fasta” from the current directory to the sequences directory. The * can be
used will other commands as a simple way to refer to multiple files with similar names.

4.9 The grep command

A useful command for searching the contents of files is grep. grep can be used to look for
specific text in one or more files. In this example you will use grep to examine whether

4 UNDERSTANDING LINUX 20

the fasta files you downloaded contain a properly formatted title line. The title line should
start with the > character, and there should not be any additional > characters in the file.
Try the following command:

1 grep -r ">" sequences

The -r option stands for “recursive” and tells grep to examine all the files inside
the specified directory. The ‘>’ is the text you want to search for, and sequences is the
directory you want to search. For each match encountered, grep returns the name of the
file and the contents of the line containing the match. As you will see when you run the
above command, each file contains a single title line as expected.

4.10 The root user

You may have noticed that when you are signed in to your user account you are unable to
access many of the files and directories on the Linux system. One way to gain access to
these files is to sign in as user root. However, you are unlikely to be given the password for
the root user, since it is usually reserved for sysadmins, so that they install new programs,
create new user accounts, etc. Even sysadmins do not usually sign in as the root user,
since a small mistake when typing a command can have drastic consequences. Instead,
they switch to the root user only when they need to perform a specific task that they are
unable to perform as a regular user.

4.11 The Linux file system

So far you have worked inside your home directory, which is located in /home. You may
wonder what the other directories found on the typical Linux system are used for. Here is
a short description of what is typically stored in the directories:

/bin contains several useful programs that can be used by the root user and standard
users. For example, the ls program is located in /bin.

/boot contains files used during startup.

/dev contains files that represent hardware components of the system. When data is writ-
ten to these files it is redirected to the corresponding hardware device.

/etc contains system configuration files.

4 UNDERSTANDING LINUX 21

/home the user home directories.

/initrd information used for booting.

/lib software components used by many different programs.

/lost+found files saved during system failures are stored here.

/misc for miscellaneous purposes.

/mnt a directory that can be used to access external file systems, such as CD-ROMs and
digital cameras.

/opt usually contains third-party software.

/proc a virtual file system containing information about system resources.

/root the root user’s home directory.

/sbin essential programs used by the system and by the root user.

/tmp temporary space that can be used by the system and by users.

/usr programs, libraries, and documentation for all user-related programs.

/var contains log files and files created during processes such as printing and download-
ing.

To see which of these directories is present on the Linux system you are using, per-
form the following:

1 cd /
2 ls

4.12 Editing a text file using vi

Sometimes you may want to make changes to a text file while signed in to your Linux
account. There are several programs available for this purpose, one of which is called vi.
vi is somewhat difficult to operate, since you have to use keyboard shortcuts for all the
commands you typically access using menus in other text editing applications. However,

4 UNDERSTANDING LINUX 22

by learning a few key commands you can comfortably edit text files using vi. In the
example below, you will use vi to edit a text file containing multiple DNA sequences.

Many bioinformatics programs, such as clustalw, read in multiple sequences from a
single file. Each sequence in the file usually needs to be in fasta format, as in the following
example:

>seq 1
gatattta
>seq2
attatcc
>seq3
etc

To combine the p53 sequences in your sequences directory into a single file, use the
following:

1 cd ~/sequences
2 cat *p53.fasta > all_p53_seqs.fasta

Now examine the all_p53_seqs.fasta file using the more command. In a fasta file
containing multiple sequences, each sequence should have a separate title (titles normally
begin with a > character). In the current all_p53_seqs.fasta file the first sequence record
is missing the >. To edit this sequence’s title, begin by opening the file in vi:

1 vi all_p53_seqs.fasta

Next, press i to enter insert mode. Use the arrows on the keyboard to move the cursor
to top left if it isn’t already there, and then type “>”. Press Esc to leave the insert mode.
To save the changes and quit, type :wq and press Enter. If you had problems editing the
file and wish to quit without saving, press Esc and then type :q! and press Enter.

Use vi to correct the sequence title in the bos_taurus_p53.fasta file too, as we will
be using this file in the future.

Note that the goal of this exercise was to introduce you to vi. Usually you will not
need to edit your sequence files in this manner. However, you may find vi useful for
making changes to your .bashrc file and for creating and modifying Bash scripts (both of
these are described below).

5 BIOINFORMATICS TOOLS 23

5 Bioinformatics tools

5.1 EMBOSS

Now that you have been exposed to several of the built-in Linux commands and the Linux
file system, you are ready to use some third party bioinformatics applications. One of
these applications is called EMBOSS (The European Molecular Biology Open Software
Suite).5 EMBOSS contains several powerful bioinformatics programs for performing
tasks such as sequence alignment, PCR primer design, and protein property prediction
[2]. To see whether EMBOSS is installed on the Linux system you are using, try the
following:

1 which showalign

showalign is one of the programs included with the EMBOSS package. In the above
command, which is used to look for the showalign program on your PATH (the meaning
of “PATH” is explained in more detail below). If this command returns something like
“/usr/local/bin/showalign”, then EMBOSS is likely installed. If instead it returns “no
showalign in ..”, then talk to your sysadmin.

EMBOSS includes numerous applications. In the following examples you will ex-
plore just a few of them. First, switch to your sequences directory, which should contain
several sequences in fasta format.

1 cd ~/sequences

Now, use the EMBOSS transeq program to translate the Bos taurus p53 nucleotide
sequence into a protein sequence (note that the \ below is used to split the command
across multiple lines–when typing the command press Enter after the \ or omit the \ and
type the entire command on one line):

1 transeq -sequence bos_taurus_p53.fasta -outseq bovine_p53_protein

To see the resulting protein sequence use:

1 cat bovine_p53_protein

Next, perform a global sequence alignment of two of the p53 sequences using needle.
Note that when you run this command you will be prompted for some additional informa-
tion. For this example you can press Enter each time you are prompted for information,

5http://emboss.sourceforge.net/

\
\
\
http://emboss.sourceforge.net/

5 BIOINFORMATICS TOOLS 24

to indicate that you would like to use the default program settings:

1 needle macaca_mulatta_p53.fasta xenopus_laevis_p53.fasta -outfile \
alignment

To examine the alignment that is generated use:

1 more alignment

Finally, use the pepstats program to obtain protein statistics for the protein sequence
you created using transeq:

1 pepstats bovine_p53_protein -outfile stats

To examine the output use:

1 more stats

5.2 Using ClustalW

clustalw6 is a powerful sequence alignment program that can be used to generate large
multiple alignments [3]. To see whether clustalw is installed on the Linux system you are
using, use the which command again:

1 which clustalw

This command should return the full path to the clustalw program. If it returns “no
clustalw in ..”, talk to your sysadmin.

The clustalw program offers several command-line options for controlling the se-
quence alignment process. To see these options, enter clustalw -options. In the following
example clustalw is used to align the sequences in the all_p53_seqs.fasta file:

1 cd ~
2 clustalw -infile=sequences/all_p53_seqs.fasta -outfile=alignment -align

To view the completed alignment, use more:

1 more alignment

6http://www.ebi.ac.uk/Tools/clustalw2/index.html

http://www.ebi.ac.uk/Tools/clustalw2/index.html

5 BIOINFORMATICS TOOLS 25

5.3 Performing a BLAST search

BLAST7 is a powerful program for comparing a sequence of interest to large databases
of existing sequences [4]. By identifying related sequences you can gain insight into the
function and evolution of the genes and proteins you are interested. The BLAST pro-
gram can be installed on Windows, Mac, and Linux machines. However, to run BLAST
on your own computer you also need to download the sequence databases you wish to
search. These databases can be very large, and they become outdated quickly, since new
sequences are continually added. For these reasons, many users prefer to submit se-
quences using the web interfaces provided by NCBI. The main drawback of using the
web interface is that you can only submit one sequence at a time. If you have a large
collection of sequences you wish to analyze, this approach can be very time consuming.

To avoid these issues you can use the remote_blast_client.pl program.8 To download
remote_blast_client.pl to your Linux account, use the following command:

1 wget http://www.ualberta.ca/~stothard/downloads/remote_blast_client.\
zip --user-agent=IE

Now unzip the file you downloaded (don’t forget about Tab completion–you can type
“unzip re” and then press Tab to get the full file name):

1 unzip remote_blast_client.zip

Change the permissions on the remote_blast_client.pl file so that you can execute it:

1 chmod u+x remote_blast_client/remote_blast_client.pl

Now use the remote_blast_client.pl program to perform a BLAST search for each
of the sequences in the all_p53_seqs.fasta file you created in your sequences directory:

1 cd ~
2 ./remote_blast_client/remote_blast_client.pl -i \

sequences/all_p53_seqs.fasta -o blast_results.txt -b blastn -d nr

The -i option in the previous command is used to specify which file contains the
sequences you wish to submit and the -o is used to specify where you want the results
saved. The -b and -d options are used to specify which BLAST program and database
you want to use. The BLAST search may take a few minutes to complete. As the script

7http://blast.ncbi.nlm.nih.gov/Blast.cgi
8Note that NCBI provides a similar tool, called netblast, which is available at ftp://ftp.ncbi.nih.

gov/blast/executables/LATEST/

http://blast.ncbi.nlm.nih.gov/Blast.cgi
ftp://ftp.ncbi.nih.gov/blast/executables/LATEST/
ftp://ftp.ncbi.nih.gov/blast/executables/LATEST/

5 BIOINFORMATICS TOOLS 26

runs it will give you information about what it is doing. If you wish to cancel the search,
use Ctrl-C. Note that Ctrl-C can be used to return to the command prompt for many other
programs too.

Once the program has stopped running you can examine the results using more. Note
that this script returns results in a compact tabular format that does not include alignments.

To perform a BLAST search without relying on NCBI’s servers you can use the
blastall program. First you need to format a sequence database using the formatdb pro-
gram. The following command formats the genomic sequence of E. coli (which was
included in the sample_sequences.zip file) so that it can be used as a BLAST database:

1 cd ~
2 formatdb -i sequences/e_coli.fasta -p F

To see what the -i and -p options are used to indicate, try the following:

1 formatdb --help

You are now ready to search the E. coli database using any fasta or multi-fasta se-
quence as the query. The following command compares the two 16S rRNA sequences in
16S_rRNA.fasta to the E. coli genome:

1 cd ~
2 blastall -i sequences/16S_rRNA.fasta -d sequences/e_coli.fasta -p \

blastn -o local_blast_results.txt

To examine the results, use more:

1 more local_blast_results.txt

5.4 Performing a BLAT search

BLAT9 is a powerful tool for searching for sequences of interest in a completed genome
or proteome. It is faster than BLAST, and is much better at aligning cDNA sequences to
genomic sequence, because it looks for splice site consensus sequences [5]. BLAT is less
sensitive than BLAST, and is thus most useful for comparisons involving sequences from
the same species (e.g. a human cDNA vs. the human genome) or closely related species
(e.g. a human cDNA vs. the chimp genome).

9http://www.kentinformatics.com/

http://www.kentinformatics.com/

5 BIOINFORMATICS TOOLS 27

The following command uses the blat program to compare a bovine insulin cDNA to
bovine chromosome 29:

1 cd ~
2 blat sequences/bos_taurus_chromosome_29.fasta \

sequences/bos_taurus_insulin_cDNA.fasta blat_chr_29_output.txt

Note that blat interprets the first file to be the database, the second to be the query,
and the third to be the output. The output returned by blat contains the coordinates of
similar regions but not a sequence alignment. To generate a sequence alignment from the
coordinates, use the pslPretty program, which is included with BLAT:

1 cd ~
2 pslPretty blat_chr_29_output.txt \

sequences/bos_taurus_chromosome_29.fasta \
sequences/bos_taurus_insulin_cDNA.fasta blat_chr_29_alignment.txt

To view the alignment, use more:

1 more blat_chr_29_alignment.txt

The blat program is usually used to compare sequences to a full genome rather than
a single chromosome. The following commands download a complete bovine genome
sequence:

1 cd ~
2 mkdir bovine_genome
3 cd bovine_genome
4 wget -c -A "Chr*" -R "ChrY*" ftp://ftp.cbcb.umd.edu/pub/data/assembly/\

Bos_taurus/Bos_taurus_UMD_3.1/*
5 gunzip *.fa.gz

If you plan on performing several blat searches against a genome, you may want
to convert the chromosome sequence text files to “2bit” files. The 2bit format is more
compact and can lead to faster searches (the faToTwoBit program used below is included
with blat):

1 faToTwoBit Chr1.fa Chr1.2bit

To convert all the chromosome text files to 2bit files you can use find followed by
xargs. In the command below, find is used to obtain a list of the chromosome sequence
files. The file list is passed to xargs, which builds a faToTwoBit command for each file,

5 BIOINFORMATICS TOOLS 28

replacing all instances of “{}” with the name of file:

1 cd ~
2 find bovine_genome -name "*.fa" | xargs -I{} faToTwoBit {} {}.2bit

Another way to process multiple files is to use the -exec option of find. The command
placed after -exec is run for each file found by find. All instances of “{}” become the
name of the file when the command is executed:

1 cd ~
2 find bovine_genome -name "*.fa" -exec faToTwoBit {} {}.2bit \;

The -exec approach is generally preferred because it works when filenames contain
spaces. The resulting 2bit files (one per chromosome) can now be used as the target
sequences in blat searches. The following uses find, xargs, and blat to compare each
bovine chromosome to a single query sequence (bos_taurus_insulin_cDNA.fasta):

1 cd ~
2 find bovine_genome -name "*.2bit" | xargs -I{} blat {} \

sequences/bos_taurus_insulin_cDNA.fasta {}.insulin.out

To quickly examine all the output files produced by blat you can use the following:

1 cat bovine_genome/*insulin.out | more

To perform searches for multiple queries, first create a text file containing a list of
the query sequence files, one filename per line. Pass this list file to blat in place of the
query. This approach is faster than manually running a separate search for each query, in
part because each chromosome sequence needs to be loaded into memory just once. The
following creates a file called query_list.txt containing the names of all the files in the
sequences directory that have “bos_taurus” in their title and are less than 1 MB in size.
The list file is then used as the query in blat searches against each bovine chromosome:

1 cd ~
2 find ./sequences -name "*bos_taurus*" -size -1000k > query_list.txt
3 find bovine_genome -name "*.2bit" | xargs -I{} blat {} query_list.txt \

{}.list.out

To convert the blat results to alignments, first create a file containing a list of the
chromosome sequence files that were searched. This “targets” file can then be passed to
pslPretty along with the query_list.txt file you created earlier. These filename lists are
used by pslPretty when it obtains the sequences located between the match coordinates

6 STREAMLINING DATA ANALYSIS 29

given in the “list.out” files:

1 cd ~
2 find bovine_genome -name "*.fa" > target_list.txt
3 find bovine_genome -name "*list.out" | xargs -I{} pslPretty {} \

target_list.txt query_list.txt {}.pretty

The resulting alignments can be viewed using the following:

1 cat bovine_genome/*pretty | more

6 Streamlining data analysis

6.1 The .bashrc file

When you sign in to your Linux account, a file in your home directory called .bashrc is
run by the system. This file contains commands that are used to control the behavior of
the bash program (bash is the program that passes the commands you type to the actual
programs that do the work). You may not have noticed this file in your home directory,
because by default the ls command does not show files that start with a “.” character. To
see all the files in your home directory, use ls with the -a option.

1 cd ~
2 ls -a

In the following exercise you will make a few minor changes to your .bashrc file
using using vi. Start by copying your .bashrc file so that you can go back to the existing
version if the changes you make create problems:

1 cp .bashrc bashrc_backup

Now open your .bashrc file in vi:
1 vi .bashrc

Remember to press i to enter insert mode. Add the following text below the existing
contents:

alias rm="rm -i"
alias la="ls -al"

6 STREAMLINING DATA ANALYSIS 30

Now press Esc to leave insert mode, and then type :wq to save your changes and exit
vi. The first line you added to your .bashrc file will tell bash (the program that handles
the commands you type) to always pass the -i option to the rm program when you enter
the rm command. The -i option tells rm that you want to be warned before any files are
actually deleted, and that you want to have the option of canceling the delete process.
The second line tells bash that you want to use the command la to call the ls program
with the -a and -l options (show all files and use the long listing format). Defining the la
command in your .bashrc simply saves you the trouble of remembering and typing the
full command for listing all files.

Try the new la command:

1 la

Notice that the bash program is saying that it doesn’t know what is meant by la, even
though you defined it in the .bashrc file. Remember that the .bashrc file is only read
when you log in. To tell bash to read your .bashrc file again, use the source command:

1 source .bashrc

The la command should now be recognized by bash.

6.2 Modifying $PATH and other environment variables

Try running the remote_blast_client.pl program from your home directory by typing the
name of the program:

1 remote_blast_client.pl

The bash program, which interprets the commands you enter, doesn’t know anything
about the remote_blast_client.pl program. This is the reason you had to enter the exact
location of the remote_blast_client.pl script when you ran it in the previous example
(./remote_blast_client/remote_blast_client.pl). Remember that the ./ means the current
directory.

Whenever you type a command, bash searches for a program with the same name as
the command you enter, and for alias commands you specified in your .bashrc file. The
bash program does not however, search the entire file system for a matching program, as
this would be very time consuming. Instead, it searches a specified set of directories. The
names of these directories are stored in an environment variable called $PATH. To see
what is currently stored in your path, use the following:

6 STREAMLINING DATA ANALYSIS 31

1 echo $PATH

Notice that the directory containing remote_blast_client.pl is not stored in the $PATH
variable. You can temporarily add it using the following

1 export PATH=$PATH:~/remote_blast_client

To see that it was added, enter echo $PATH again. Note that this change to $PATH
only lasts while you are signed in. To make the change permanent, you could add the
above export command to the end of your .bashrc file using vi.

Now that the $PATH variable contains information about where to find remote_blast_client.pl,
try entering the following in your home directory:

1 remote_blast_client.pl

The remote_blast_client.pl program should start. Press Ctrl-C to return to the com-
mand line.

Although the benefits of editing the $PATH variable are minor in this case (it isn’t
difficult to enter the full path to the remote_blast_client.pl), understanding environment
variables and how to modify them is very important. Indeed, many programs require that
you add new environment variables to your .bashrc file.

6.3 Writing a simple Bash script

Sometimes you may find it hard to remember what command-line options a program like
remote_blast_client.pl or clustalw requires. Furthermore, you may always use the same
options, making all the typing seem quite repetitive. Suppose you want to be able to sign
in to your user account and quickly perform an alignment of whatever sequences you
have stored in a file called dna.fasta. You can do this by writing a simple Bash script that
contains the command you want to use.

First create the file that will contain your script:

1 touch align_dna.sh

Now edit the file in vi:
1 vi align_dna.sh

Using vi, add the following text (remember to press i to enter insert mode):

7 SUMMARY 32

#!/bin/bash
clustalw -infile=dna.fasta -outfile=dna.alignment -align -type=dna

Save your changes and exit vi.
Use chmod to make your script executable:

1 chmod u+x align_dna.sh

To test your script, first create a file called dna.fasta in your home directory by copy-
ing the fasta file you created previously in your sequences directory:

1 cd ~
2 cp sequences/all_p53_seqs.fasta ./dna.fasta

Now execute your script:

1 ./align_dna.sh

You should see output from clustalw appear, and a file called dna.alignment should
be created. Bash scripts are useful because they help to automate analysis steps, since you
do not need to enter a lot of text, and you can be sure the same parameters are used each
time. It is possible to build complex scripts consisting of many commands.

7 Summary

This tutorial has provided a brief introduction to the Linux operating system, and in partic-
ular the use of the command line. Although the transition to the command line can seem
difficult at first, it is well worth the effort if you plan on working with large data sets, such
as those arising from high-throughput sequencing projects. If you would like to become
even more proficient at analyzing data you should learn a programming language. Linux
is well-suited to such an endeavor, because of the wealth of programming tools available.
Once you can program you can perform almost any analysis you can imagine.

References

[1] http://ss64.com/bash/

http://ss64.com/bash/

REFERENCES 33

[2] Rice P, Longden I, Bleasby A (2000) EMBOSS: The European Molecular Biology
Open Software Suite (2000) Trends Genet 16:276-277.

[3] Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD
(2003) Multiple sequence alignment with the Clustal series of programs. Nucleic
Acids Res 31:3497-500.

[4] Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ
(1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Res 25:3389-3402.

[5] Kent WJ (2002) BLAT–the BLAST-like alignment tool. Genome Res 12:656-664.

R for Beginners

Emmanuel Paradis

Institut des Sciences de l’Évolution
Université Montpellier II

F-34095 Montpellier cédex 05
France

E-mail: paradis@isem.univ-montp2.fr

I thank Julien Claude, Christophe Declercq, Élodie Gazave, Friedrich Leisch,
Louis Luangkesron, François Pinard, and Mathieu Ros for their comments and
suggestions on earlier versions of this document. I am also grateful to all the
members of the R Development Core Team for their considerable efforts in
developing R and animating the discussion list ‘rhelp’. Thanks also to the
R users whose questions or comments helped me to write “R for Beginners”.
Special thanks to Jorge Ahumada for the Spanish translation.

c© 2002, 2005, Emmanuel Paradis (12th September 2005)

Permission is granted to make and distribute copies, either in part or in
full and in any language, of this document on any support provided the above
copyright notice is included in all copies. Permission is granted to translate
this document, either in part or in full, in any language provided the above
copyright notice is included.

Contents

1 Preamble 1

2 A few concepts before starting 3
2.1 How R works . 3
2.2 Creating, listing and deleting the objects in memory 5
2.3 The on-line help . 7

3 Data with R 9
3.1 Objects . 9
3.2 Reading data in a file . 11
3.3 Saving data . 14
3.4 Generating data . 15

3.4.1 Regular sequences . 15
3.4.2 Random sequences . 17

3.5 Manipulating objects . 18
3.5.1 Creating objects . 18
3.5.2 Converting objects . 23
3.5.3 Operators . 25
3.5.4 Accessing the values of an object: the indexing system . 26
3.5.5 Accessing the values of an object with names 29
3.5.6 The data editor . 31
3.5.7 Arithmetics and simple functions 31
3.5.8 Matrix computation . 33

4 Graphics with R 36
4.1 Managing graphics . 36

4.1.1 Opening several graphical devices 36
4.1.2 Partitioning a graphic 37

4.2 Graphical functions . 40
4.3 Low-level plotting commands 41
4.4 Graphical parameters . 43
4.5 A practical example . 44
4.6 The grid and lattice packages 48

5 Statistical analyses with R 55
5.1 A simple example of analysis of variance 55
5.2 Formulae . 56
5.3 Generic functions . 58
5.4 Packages . 61

6 Programming with R in pratice 64
6.1 Loops and vectorization . 64
6.2 Writing a program in R . 66
6.3 Writing your own functions . 67

7 Literature on R 71

1 Preamble

The goal of the present document is to give a starting point for people newly
interested in R. I chose to emphasize on the understanding of how R works,
with the aim of a beginner, rather than expert, use. Given that the possibilities
offered by R are vast, it is useful to a beginner to get some notions and
concepts in order to progress easily. I tried to simplify the explanations as
much as I could to make them understandable by all, while giving useful
details, sometimes with tables.

R is a system for statistical analyses and graphics created by Ross Ihaka
and Robert Gentleman1. R is both a software and a language considered as a
dialect of the S language created by the AT&T Bell Laboratories. S is available
as the software S-PLUS commercialized by Insightful2. There are important
differences in the designs of R and of S: those who want to know more on this
point can read the paper by Ihaka & Gentleman (1996) or the R-FAQ3, a copy
of which is also distributed with R.

R is freely distributed under the terms of the GNU General Public Licence4;
its development and distribution are carried out by several statisticians known
as the R Development Core Team.

R is available in several forms: the sources (written mainly in C and
some routines in Fortran), essentially for Unix and Linux machines, or some
pre-compiled binaries for Windows, Linux, and Macintosh. The files needed
to install R, either from the sources or from the pre-compiled binaries, are
distributed from the internet site of the Comprehensive R Archive Network
(CRAN)5 where the instructions for the installation are also available. Re-
garding the distributions of Linux (Debian, . . .), the binaries are generally
available for the most recent versions; look at the CRAN site if necessary.

R has many functions for statistical analyses and graphics; the latter are
visualized immediately in their own window and can be saved in various for-
mats (jpg, png, bmp, ps, pdf, emf, pictex, xfig; the available formats may
depend on the operating system). The results from a statistical analysis are
displayed on the screen, some intermediate results (P-values, regression coef-
ficients, residuals, . . .) can be saved, written in a file, or used in subsequent
analyses.

The R language allows the user, for instance, to program loops to suc-
cessively analyse several data sets. It is also possible to combine in a single
program different statistical functions to perform more complex analyses. The

1Ihaka R. & Gentleman R. 1996. R: a language for data analysis and graphics. Journal

of Computational and Graphical Statistics 5: 299–314.
2See http://www.insightful.com/products/splus/default.asp for more information
3http://cran.r-project.org/doc/FAQ/R-FAQ.html
4For more information: http://www.gnu.org/
5http://cran.r-project.org/

1

http://www.insightful.com/products/splus/default.asp
http://cran.r-project.org/doc/FAQ/R-FAQ.html
http://www.gnu.org/
http://cran.r-project.org/

R users may benefit from a large number of programs written for S and avail-
able on the internet6, most of these programs can be used directly with R.

At first, R could seem too complex for a non-specialist. This may not
be true actually. In fact, a prominent feature of R is its flexibility. Whereas
a classical software displays immediately the results of an analysis, R stores
these results in an “object”, so that an analysis can be done with no result
displayed. The user may be surprised by this, but such a feature is very useful.
Indeed, the user can extract only the part of the results which is of interest.
For example, if one runs a series of 20 regressions and wants to compare the
different regression coefficients, R can display only the estimated coefficients:
thus the results may take a single line, whereas a classical software could well
open 20 results windows. We will see other examples illustrating the flexibility
of a system such as R compared to traditional softwares.

6For example: http://stat.cmu.edu/S/

2

http://stat.cmu.edu/S/

2 A few concepts before starting

Once R is installed on your computer, the software is executed by launching
the corresponding executable. The prompt, by default ‘>’, indicates that R
is waiting for your commands. Under Windows using the program Rgui.exe,
some commands (accessing the on-line help, opening files, . . .) can be executed
via the pull-down menus. At this stage, a new user is likely to wonder “What
do I do now?” It is indeed very useful to have a few ideas on how R works
when it is used for the first time, and this is what we will see now.

We shall see first briefly how R works. Then, I will describe the “assign”
operator which allows creating objects, how to manage objects in memory,
and finally how to use the on-line help which is very useful when running R.

2.1 How R works

The fact that R is a language may deter some users who think “I can’t pro-
gram”. This should not be the case for two reasons. First, R is an interpreted
language, not a compiled one, meaning that all commands typed on the key-
board are directly executed without requiring to build a complete program
like in most computer languages (C, Fortran, Pascal, . . .).

Second, R’s syntax is very simple and intuitive. For instance, a linear
regression can be done with the command lm(y ~ x) which means “fitting
a linear model with y as response and x as predictor”. In R, in order to
be executed, a function always needs to be written with parentheses, even
if there is nothing within them (e.g., ls()). If one just types the name of a
function without parentheses, R will display the content of the function. In this
document, the names of the functions are generally written with parentheses in
order to distinguish them from other objects, unless the text indicates clearly
so.

When R is running, variables, data, functions, results, etc, are stored in
the active memory of the computer in the form of objects which have a name.
The user can do actions on these objects with operators (arithmetic, logical,
comparison, . . .) and functions (which are themselves objects). The use of
operators is relatively intuitive, we will see the details later (p. 25). An R
function may be sketched as follows:

arguments −→

options −→

function

↑
default arguments

=⇒result

The arguments can be objects (“data”, formulae, expressions, . . .), some

3

of which could be defined by default in the function; these default values may
be modified by the user by specifying options. An R function may require no
argument: either all arguments are defined by default (and their values can be
modified with the options), or no argument has been defined in the function.
We will see later in more details how to use and build functions (p. 67). The
present description is sufficient for the moment to understand how R works.

All the actions of R are done on objects stored in the active memory of
the computer: no temporary files are used (Fig. 1). The readings and writings
of files are used for input and output of data and results (graphics, . . .). The
user executes the functions via some commands. The results are displayed
directly on the screen, stored in an object, or written on the disk (particularly
for graphics). Since the results are themselves objects, they can be considered
as data and analysed as such. Data files can be read from the local disk or
from a remote server through internet.

functions and operators

?

“data” objects

?
6

����)
XXXXXXXz

“results” objects

.../library/base/

/stast/

/graphics/

...

library of
functions

�

data
files

� -

internet�

PS JPEG . . .

keyboard
mouse

-commands

screen

Active memory Hard disk

Figure 1: A schematic view of how R works.

The functions available to the user are stored in a library localised on
the disk in a directory called R HOME/library (R HOME is the directory
where R is installed). This directory contains packages of functions, which are
themselves structured in directories. The package named base is in a way the
core of R and contains the basic functions of the language, particularly, for
reading and manipulating data. Each package has a directory called R with
a file named like the package (for instance, for the package base, this is the
file R HOME/library/base/R/base). This file contains all the functions of the
package.

One of the simplest commands is to type the name of an object to display
its content. For instance, if an object n contents the value 10:

> n

[1] 10

4

The digit 1 within brackets indicates that the display starts at the first
element of n. This command is an implicit use of the function print and the
above example is similar to print(n) (in some situations, the function print

must be used explicitly, such as within a function or a loop).
The name of an object must start with a letter (A–Z and a–z) and can

include letters, digits (0–9), dots (.), and underscores (). R discriminates
between uppercase letters and lowercase ones in the names of the objects, so
that x and X can name two distinct objects (even under Windows).

2.2 Creating, listing and deleting the objects in memory

An object can be created with the “assign” operator which is written as an
arrow with a minus sign and a bracket; this symbol can be oriented left-to-right
or the reverse:

> n <- 15

> n

[1] 15

> 5 -> n

> n

[1] 5

> x <- 1

> X <- 10

> x

[1] 1

> X

[1] 10

If the object already exists, its previous value is erased (the modification
affects only the objects in the active memory, not the data on the disk). The
value assigned this way may be the result of an operation and/or a function:

> n <- 10 + 2

> n

[1] 12

> n <- 3 + rnorm(1)

> n

[1] 2.208807

The function rnorm(1) generates a normal random variate with mean zero
and variance unity (p. 17). Note that you can simply type an expression
without assigning its value to an object, the result is thus displayed on the
screen but is not stored in memory:

> (10 + 2) * 5

[1] 60

5

The assignment will be omitted in the examples if not necessary for un-
derstanding.

The function ls lists simply the objects in memory: only the names of the
objects are displayed.

> name <- "Carmen"; n1 <- 10; n2 <- 100; m <- 0.5

> ls()

[1] "m" "n1" "n2" "name"

Note the use of the semi-colon to separate distinct commands on the same
line. If we want to list only the objects which contain a given character in
their name, the option pattern (which can be abbreviated with pat) can be
used:

> ls(pat = "m")

[1] "m" "name"

To restrict the list of objects whose names start with this character:

> ls(pat = "^m")

[1] "m"

The function ls.str displays some details on the objects in memory:

> ls.str()

m : num 0.5

n1 : num 10

n2 : num 100

name : chr "Carmen"

The option pattern can be used in the same way as with ls. Another
useful option of ls.str is max.level which specifies the level of detail for the
display of composite objects. By default, ls.str displays the details of all
objects in memory, included the columns of data frames, matrices and lists,
which can result in a very long display. We can avoid to display all these
details with the option max.level = -1:

> M <- data.frame(n1, n2, m)

> ls.str(pat = "M")

M : ‘data.frame’: 1 obs. of 3 variables:

$ n1: num 10

$ n2: num 100

$ m : num 0.5

> ls.str(pat="M", max.level=-1)

M : ‘data.frame’: 1 obs. of 3 variables:

To delete objects in memory, we use the function rm: rm(x) deletes the
object x, rm(x,y) deletes both the objects x et y, rm(list=ls()) deletes all
the objects in memory; the same options mentioned for the function ls() can
then be used to delete selectively some objects: rm(list=ls(pat="^m")).

6

2.3 The on-line help

The on-line help of R gives very useful information on how to use the functions.
Help is available directly for a given function, for instance:

> ?lm

will display, within R, the help page for the function lm() (linear model). The
commands help(lm) and help("lm") have the same effect. The last one must
be used to access help with non-conventional characters:

> ?*

Error: syntax error

> help("*")

Arithmetic package:base R Documentation

Arithmetic Operators

...

Calling help opens a page (this depends on the operating system) with
general information on the first line such as the name of the package where
is (are) the documented function(s) or operators. Then comes a title followed
by sections which give detailed information.

Description: brief description.

Usage: for a function, gives the name with all its arguments and the possible
options (with the corresponding default values); for an operator gives
the typical use.

Arguments: for a function, details each of its arguments.

Details: detailed description.

Value: if applicable, the type of object returned by the function or the oper-
ator.

See Also: other help pages close or similar to the present one.

Examples: some examples which can generally be executed without opening
the help with the function example.

For beginners, it is good to look at the section Examples. Generally, it
is useful to read carefully the section Arguments. Other sections may be
encountered, such as Note, References or Author(s).

By default, the function help only searches in the packages which are
loaded in memory. The option try.all.packages, which default is FALSE,
allows to search in all packages if its value is TRUE:

7

> help("bs")

No documentation for ’bs’ in specified packages and libraries:

you could try ’help.search("bs")’

> help("bs", try.all.packages = TRUE)

Help for topic ’bs’ is not in any loaded package but

can be found in the following packages:

Package Library

splines /usr/lib/R/library

Note that in this case the help page of the function bs is not displayed.
The user can display help pages from a package not loaded in memory using
the option package:

> help("bs", package = "splines")

bs package:splines R Documentation

B-Spline Basis for Polynomial Splines

Description:

Generate the B-spline basis matrix for a polynomial spline.

...

The help in html format (read, e.g., with Netscape) is called by typing:

> help.start()

A search with keywords is possible with this html help. The section See
Also has here hypertext links to other function help pages. The search with
keywords is also possible in R with the function help.search. The latter
looks for a specified topic, given as a character string, in the help pages of all
installed packages. For instance, help.search("tree") will display a list of
the functions which help pages mention “tree”. Note that if some packages
have been recently installed, it may be useful to refresh the database used by
help.search using the option rebuild (e.g., help.search("tree", rebuild

= TRUE)).
The fonction apropos finds all functions which name contains the character

string given as argument; only the packages loaded in memory are searched:

> apropos(help)

[1] "help" ".helpForCall" "help.search"

[4] "help.start"

8

3 Data with R

3.1 Objects

We have seen that R works with objects which are, of course, characterized by
their names and their content, but also by attributes which specify the kind of
data represented by an object. In order to understand the usefulness of these
attributes, consider a variable that takes the value 1, 2, or 3: such a variable
could be an integer variable (for instance, the number of eggs in a nest), or
the coding of a categorical variable (for instance, sex in some populations of
crustaceans: male, female, or hermaphrodite).

It is clear that the statistical analysis of this variable will not be the same in
both cases: with R, the attributes of the object give the necessary information.
More technically, and more generally, the action of a function on an object
depends on the attributes of the latter.

All objects have two intrinsic attributes: mode and length. The mode
is the basic type of the elements of the object; there are four main modes:
numeric, character, complex7, and logical (FALSE or TRUE). Other modes exist
but they do not represent data, for instance function or expression. The length
is the number of elements of the object. To display the mode and the length
of an object, one can use the functions mode and length, respectively:

> x <- 1

> mode(x)

[1] "numeric"

> length(x)

[1] 1

> A <- "Gomphotherium"; compar <- TRUE; z <- 1i

> mode(A); mode(compar); mode(z)

[1] "character"

[1] "logical"

[1] "complex"

Whatever the mode, missing data are represented by NA (not available).
A very large numeric value can be specified with an exponential notation:

> N <- 2.1e23

> N

[1] 2.1e+23

R correctly represents non-finite numeric values, such as ±∞ with Inf and
-Inf, or values which are not numbers with NaN (not a number).

7The mode complex will not be discussed in this document.

9

> x <- 5/0

> x

[1] Inf

> exp(x)

[1] Inf

> exp(-x)

[1] 0

> x - x

[1] NaN

A value of mode character is input with double quotes ". It is possible
to include this latter character in the value if it follows a backslash \. The
two charaters altogether \" will be treated in a specific way by some functions
such as cat for display on screen, or write.table to write on the disk (p. 14,
the option qmethod of this function).

> x <- "Double quotes \" delimitate R’s strings."

> x

[1] "Double quotes \" delimitate R’s strings."

> cat(x)

Double quotes " delimitate R’s strings.

Alternatively, variables of mode character can be delimited with single
quotes (’); in this case it is not necessary to escape double quotes with back-
slashes (but single quotes must be!):

> x <- ’Double quotes " delimitate R\’s strings.’

> x

[1] "Double quotes \" delimitate R’s strings."

The following table gives an overview of the type of objects representing
data.

object modes several modes
possible in the
same object?

vector numeric, character, complex or logical No
factor numeric or character No
array numeric, character, complex or logical No
matrix numeric, character, complex or logical No
data frame numeric, character, complex or logical Yes
ts numeric, character, complex or logical No
list numeric, character, complex, logical, Yes

function, expression, . . .

10

A vector is a variable in the commonly admitted meaning. A factor is a
categorical variable. An array is a table with k dimensions, a matrix being
a particular case of array with k = 2. Note that the elements of an array
or of a matrix are all of the same mode. A data frame is a table composed
with one or several vectors and/or factors all of the same length but possibly
of different modes. A ‘ts’ is a time series data set and so contains additional
attributes such as frequency and dates. Finally, a list can contain any type of
object, included lists!

For a vector, its mode and length are sufficient to describe the data. For
other objects, other information is necessary and it is given by non-intrinsic
attributes. Among these attributes, we can cite dim which corresponds to the
dimensions of an object. For example, a matrix with 2 lines and 2 columns
has for dim the pair of values [2, 2], but its length is 4.

3.2 Reading data in a file

For reading and writing in files, R uses the working directory. To find this
directory, the command getwd() (get working directory) can be used, and the
working directory can be changed with setwd("C:/data") or setwd("/home/-
paradis/R"). It is necessary to give the path to a file if it is not in the working
directory.8

R can read data stored in text (ASCII) files with the following functions:
read.table (which has several variants, see below), scan and read.fwf. R
can also read files in other formats (Excel, SAS, SPSS, . . .), and access SQL-
type databases, but the functions needed for this are not in the package base.
These functionalities are very useful for a more advanced use of R, but we will
restrict here to reading files in ASCII format.

The function read.table has for effect to create a data frame, and so is
the main way to read data in tabular form. For instance, if one has a file
named data.dat, the command:

> mydata <- read.table("data.dat")

will create a data frame named mydata, and each variable will be named, by de-
fault, V1, V2, . . . and can be accessed individually by mydata$V1, mydata$V2,
. . . , or by mydata["V1"], mydata["V2"], . . . , or, still another solution, by
mydata[, 1], mydata[,2], . . . 9 There are several options whose default
values (i.e. those used by R if they are omitted by the user) are detailed in
the following table:

read.table(file, header = FALSE, sep = "", quote = "\"’", dec = ".",

8Under Windows, it is useful to create a short-cut of Rgui.exe then edit its properties
and change the directory in the field “Start in:” under the tab “Short-cut”: this directory
will then be the working directory if R is started from this short-cut.

9There is a difference: mydata$V1 and mydata[, 1] are vectors whereas mydata["V1"] is
a data frame. We will see later (p. 18) some details on manipulating objects.

11

row.names, col.names, as.is = FALSE, na.strings = "NA",

colClasses = NA, nrows = -1,

skip = 0, check.names = TRUE, fill = !blank.lines.skip,

strip.white = FALSE, blank.lines.skip = TRUE,

comment.char = "#")

file the name of the file (within "" or a variable of mode character),
possibly with its path (the symbol \ is not allowed and must be
replaced by /, even under Windows), or a remote access to a file of
type URL (http://...)

header a logical (FALSE or TRUE) indicating if the file contains the names of
the variables on its first line

sep the field separator used in the file, for instance sep="\t" if it is a
tabulation

quote the characters used to cite the variables of mode character

dec the character used for the decimal point

row.names a vector with the names of the lines which can be either a vector of
mode character, or the number (or the name) of a variable of the
file (by default: 1, 2, 3, . . .)

col.names a vector with the names of the variables (by default: V1, V2, V3,
. . .)

as.is controls the conversion of character variables as factors (if FALSE)
or keeps them as characters (TRUE); as.is can be a logical, numeric
or character vector specifying the variables to be kept as character

na.strings the value given to missing data (converted as NA)

colClasses a vector of mode character giving the classes to attribute to the
columns

nrows the maximum number of lines to read (negative values are ignored)

skip the number of lines to be skipped before reading the data

check.names if TRUE, checks that the variable names are valid for R

fill if TRUE and all lines do not have the same number of variables,
“blanks” are added

strip.white (conditional to sep) if TRUE, deletes extra spaces before and after
the character variables

blank.lines.skip if TRUE, ignores “blank” lines

comment.char a character defining comments in the data file, the rest of the
line after this character is ignored (to disable this argument, use
comment.char = "")

The variants of read.table are useful since they have different default
values:

read.csv(file, header = TRUE, sep = ",", quote="\"", dec=".",

fill = TRUE, ...)

read.csv2(file, header = TRUE, sep = ";", quote="\"", dec=",",

fill = TRUE, ...)

read.delim(file, header = TRUE, sep = "\t", quote="\"", dec=".",

fill = TRUE, ...)

read.delim2(file, header = TRUE, sep = "\t", quote="\"", dec=",",

fill = TRUE, ...)

12

The function scan is more flexible than read.table. A difference is that
it is possible to specify the mode of the variables, for example:

> mydata <- scan("data.dat", what = list("", 0, 0))

reads in the file data.dat three variables, the first is of mode character and the
next two are of mode numeric. Another important distinction is that scan()
can be used to create different objects, vectors, matrices, data frames, lists,
. . . In the above example, mydata is a list of three vectors. By default, that is
if what is omitted, scan() creates a numeric vector. If the data read do not
correspond to the mode(s) expected (either by default, or specified by what),
an error message is returned. The options are the followings.

scan(file = "", what = double(0), nmax = -1, n = -1, sep = "",

quote = if (sep=="\n") "" else "’\"", dec = ".",

skip = 0, nlines = 0, na.strings = "NA",

flush = FALSE, fill = FALSE, strip.white = FALSE, quiet = FALSE,

blank.lines.skip = TRUE, multi.line = TRUE, comment.char = "",

allowEscapes = TRUE)

file the name of the file (within ""), possibly with its path (the symbol
\ is not allowed and must be replaced by /, even under Windows),
or a remote access to a file of type URL (http://...); if file="", the
data are entered with the keyboard (the entree is terminated by a
blank line)

what specifies the mode(s) of the data (numeric by default)

nmax the number of data to read, or, if what is a list, the number of lines
to read (by default, scan reads the data up to the end of file)

n the number of data to read (by default, no limit)

sep the field separator used in the file

quote the characters used to cite the variables of mode character

dec the character used for the decimal point

skip the number of lines to be skipped before reading the data

nlines the number of lines to read

na.string the value given to missing data (converted as NA)

flush a logical, if TRUE, scan goes to the next line once the number of
columns has been reached (allows the user to add comments in the
data file)

fill if TRUE and all lines do not have the same number of variables,
“blanks” are added

strip.white (conditional to sep) if TRUE, deletes extra spaces before and after
the character variables

quiet a logical, if FALSE, scan displays a line showing which fields have
been read

blank.lines.skip if TRUE, ignores blank lines

multi.line if what is a list, specifies if the variables of the same individual are
on a single line in the file (FALSE)

comment.char a character defining comments in the data file, the rest of the line
after this character is ignored (the default is to have this disabled)

allowEscapes specifies whether C-style escapes (e.g., ‘\t’) be processed (the de-
fault) or read as verbatim

13

The function read.fwf can be used to read in a file some data in fixed
width format :

read.fwf(file, widths, header = FALSE, sep = "\t",

as.is = FALSE, skip = 0, row.names, col.names,

n = -1, buffersize = 2000, ...)

The options are the same than for read.table() ex-
cept widths which specifies the width of the fields
(buffersize is the maximum number of lines read si-
multaneously). For example, if a file named data.txt has
the data indicated on the right, one can read the data
with the following command:

A1.501.2

A1.551.3

B1.601.4

B1.651.5

C1.701.6

C1.751.7

> mydata <- read.fwf("data.txt", widths=c(1, 4, 3))

> mydata

V1 V2 V3

1 A 1.50 1.2

2 A 1.55 1.3

3 B 1.60 1.4

4 B 1.65 1.5

5 C 1.70 1.6

6 C 1.75 1.7

3.3 Saving data

The function write.tablewrites in a file an object, typically a data frame but
this could well be another kind of object (vector, matrix, . . .). The arguments
and options are:

write.table(x, file = "", append = FALSE, quote = TRUE, sep = " ",

eol = "\n", na = "NA", dec = ".", row.names = TRUE,

col.names = TRUE, qmethod = c("escape", "double"))

x the name of the object to be written

file the name of the file (by default the object is displayed on the screen)

append if TRUE adds the data without erasing those possibly existing in the file

quote a logical or a numeric vector: if TRUE the variables of mode character and
the factors are written within "", otherwise the numeric vector indicates
the numbers of the variables to write within "" (in both cases the names
of the variables are written within "" but not if quote = FALSE)

sep the field separator used in the file

eol the character to be used at the end of each line ("\n" is a carriage-return)

na the character to be used for missing data

dec the character used for the decimal point

row.names a logical indicating whether the names of the lines are written in the file

col.names id. for the names of the columns

qmethod specifies, if quote=TRUE, how double quotes " included in variables of mode
character are treated: if "escape" (or "e", the default) each " is replaced
by \", if "d" each " is replaced by ""

14

To write in a simpler way an object in a file, the command write(x,

file="data.txt") can be used, where x is the name of the object (which
can be a vector, a matrix, or an array). There are two options: nc (or ncol)
which defines the number of columns in the file (by default nc=1 if x is of mode
character, nc=5 for the other modes), and append (a logical) to add the data
without deleting those possibly already in the file (TRUE) or deleting them if
the file already exists (FALSE, the default).

To record a group of objects of any type, we can use the command save(x,

y, z, file= "xyz.RData"). To ease the transfert of data between differ-
ent machines, the option ascii = TRUE can be used. The data (which are
now called a workspace in R’s jargon) can be loaded later in memory with
load("xyz.RData"). The function save.image() is a short-cut for save(list
=ls(all=TRUE), file=".RData").

3.4 Generating data

3.4.1 Regular sequences

A regular sequence of integers, for example from 1 to 30, can be generated
with:

> x <- 1:30

The resulting vector x has 30 elements. The operator ‘:’ has priority on the
arithmetic operators within an expression:

> 1:10-1

[1] 0 1 2 3 4 5 6 7 8 9

> 1:(10-1)

[1] 1 2 3 4 5 6 7 8 9

The function seq can generate sequences of real numbers as follows:

> seq(1, 5, 0.5)

[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

where the first number indicates the beginning of the sequence, the second one
the end, and the third one the increment to be used to generate the sequence.
One can use also:

> seq(length=9, from=1, to=5)

[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

One can also type directly the values using the function c:

> c(1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5)

[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

15

It is also possible, if one wants to enter some data on the keyboard, to use
the function scan with simply the default options:

> z <- scan()

1: 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

10:

Read 9 items

> z

[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

The function rep creates a vector with all its elements identical:

> rep(1, 30)

[1] 1

The function sequence creates a series of sequences of integers each ending
by the numbers given as arguments:

> sequence(4:5)

[1] 1 2 3 4 1 2 3 4 5

> sequence(c(10,5))

[1] 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5

The function gl (generate levels) is very useful because it generates regular
series of factors. The usage of this fonction is gl(k, n) where k is the number
of levels (or classes), and n is the number of replications in each level. Two
options may be used: length to specify the number of data produced, and
labels to specify the names of the levels of the factor. Examples:

> gl(3, 5)

[1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

Levels: 1 2 3

> gl(3, 5, length=30)

[1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

Levels: 1 2 3

> gl(2, 6, label=c("Male", "Female"))

[1] Male Male Male Male Male Male

[7] Female Female Female Female Female Female

Levels: Male Female

> gl(2, 10)

[1] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

Levels: 1 2

> gl(2, 1, length=20)

[1] 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Levels: 1 2

> gl(2, 2, length=20)

[1] 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

Levels: 1 2

16

Finally, expand.grid() creates a data frame with all combinations of vec-
tors or factors given as arguments:

> expand.grid(h=c(60,80), w=c(100, 300), sex=c("Male", "Female"))

h w sex

1 60 100 Male

2 80 100 Male

3 60 300 Male

4 80 300 Male

5 60 100 Female

6 80 100 Female

7 60 300 Female

8 80 300 Female

3.4.2 Random sequences

law function

Gaussian (normal) rnorm(n, mean=0, sd=1)

exponential rexp(n, rate=1)

gamma rgamma(n, shape, scale=1)

Poisson rpois(n, lambda)

Weibull rweibull(n, shape, scale=1)

Cauchy rcauchy(n, location=0, scale=1)

beta rbeta(n, shape1, shape2)

‘Student’ (t) rt(n, df)

Fisher–Snedecor (F) rf(n, df1, df2)

Pearson (χ2) rchisq(n, df)

binomial rbinom(n, size, prob)

multinomial rmultinom(n, size, prob)

geometric rgeom(n, prob)

hypergeometric rhyper(nn, m, n, k)

logistic rlogis(n, location=0, scale=1)

lognormal rlnorm(n, meanlog=0, sdlog=1)

negative binomial rnbinom(n, size, prob)

uniform runif(n, min=0, max=1)

Wilcoxon’s statistics rwilcox(nn, m, n), rsignrank(nn, n)

It is useful in statistics to be able to generate random data, and R can
do it for a large number of probability density functions. These functions are
of the form rfunc(n, p1, p2, ...), where func indicates the probability
distribution, n the number of data generated, and p1, p2, . . . are the values of
the parameters of the distribution. The above table gives the details for each
distribution, and the possible default values (if none default value is indicated,
this means that the parameter must be specified by the user).

Most of these functions have counterparts obtained by replacing the letter
r with d, p or q to get, respectively, the probability density (dfunc(x, ...)),

17

the cumulative probability density (pfunc(x, ...)), and the value of quantile
(qfunc(p, ...), with 0 < p < 1). The last two series of functions can be
used to find critical values or P -values of statistical tests. For instance, the
critical values for a two-tailed test following a normal distribution at the 5%
threshold are:

> qnorm(0.025)

[1] -1.959964

> qnorm(0.975)

[1] 1.959964

For the one-tailed version of the same test, either qnorm(0.05) or 1 -

qnorm(0.95) will be used depending on the form of the alternative hypothesis.
The P -value of a test, say χ2 = 3.84 with df = 1, is:

> 1 - pchisq(3.84, 1)

[1] 0.05004352

3.5 Manipulating objects

3.5.1 Creating objects

We have seen previously different ways to create objects using the assign op-
erator; the mode and the type of objects so created are generally determined
implicitly. It is possible to create an object and specifying its mode, length,
type, etc. This approach is interesting in the perspective of manipulating ob-
jects. One can, for instance, create an ‘empty’ object and then modify its
elements successively which is more efficient than putting all its elements to-
gether with c(). The indexing system could be used here, as we will see later
(p. 26).

It can also be very convenient to create objects from others. For example,
if one wants to fit a series of models, it is simple to put the formulae in a list,
and then to extract the elements successively to insert them in the function
lm.

At this stage of our learning of R, the interest in learning the following
functionalities is not only practical but also didactic. The explicit construction
of objects gives a better understanding of their structure, and allows us to go
further in some notions previously mentioned.

Vector. The function vector, which has two arguments mode and length,
creates a vector which elements have a value depending on the mode
specified as argument: 0 if numeric, FALSE if logical, or "" if charac-
ter. The following functions have exactly the same effect and have for
single argument the length of the vector: numeric(), logical(), and
character().

18

Factor. A factor includes not only the values of the corresponding categorical
variable, but also the different possible levels of that variable (even if they
are not present in the data). The function factor creates a factor with
the following options:

factor(x, levels = sort(unique(x), na.last = TRUE),

labels = levels, exclude = NA, ordered = is.ordered(x))

levels specifies the possible levels of the factor (by default the unique
values of the vector x), labels defines the names of the levels, exclude
the values of x to exclude from the levels, and ordered is a logical
argument specifying whether the levels of the factor are ordered. Recall
that x is of mode numeric or character. Some examples follow.

> factor(1:3)

[1] 1 2 3

Levels: 1 2 3

> factor(1:3, levels=1:5)

[1] 1 2 3

Levels: 1 2 3 4 5

> factor(1:3, labels=c("A", "B", "C"))

[1] A B C

Levels: A B C

> factor(1:5, exclude=4)

[1] 1 2 3 NA 5

Levels: 1 2 3 5

The function levels extracts the possible levels of a factor:

> ff <- factor(c(2, 4), levels=2:5)

> ff

[1] 2 4

Levels: 2 3 4 5

> levels(ff)

[1] "2" "3" "4" "5"

Matrix. A matrix is actually a vector with an additional attribute (dim)
which is itself a numeric vector with length 2, and defines the numbers
of rows and columns of the matrix. A matrix can be created with the
function matrix:

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE,

dimnames = NULL)

19

The option byrow indicates whether the values given by data must fill
successively the columns (the default) or the rows (if TRUE). The option
dimnames allows to give names to the rows and columns.

> matrix(data=5, nr=2, nc=2)

[,1] [,2]

[1,] 5 5

[2,] 5 5

> matrix(1:6, 2, 3)

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> matrix(1:6, 2, 3, byrow=TRUE)

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

Another way to create a matrix is to give the appropriate values to the
dim attribute (which is initially NULL):

> x <- 1:15

> x

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

> dim(x)

NULL

> dim(x) <- c(5, 3)

> x

[,1] [,2] [,3]

[1,] 1 6 11

[2,] 2 7 12

[3,] 3 8 13

[4,] 4 9 14

[5,] 5 10 15

Data frame. We have seen that a data frame is created implicitly by the
function read.table; it is also possible to create a data frame with the
function data.frame. The vectors so included in the data frame must
be of the same length, or if one of the them is shorter, it is “recycled” a
whole number of times:

> x <- 1:4; n <- 10; M <- c(10, 35); y <- 2:4

> data.frame(x, n)

x n

1 1 10

2 2 10

20

3 3 10

4 4 10

> data.frame(x, M)

x M

1 1 10

2 2 35

3 3 10

4 4 35

> data.frame(x, y)

Error in data.frame(x, y) :

arguments imply differing number of rows: 4, 3

If a factor is included in a data frame, it must be of the same length than
the vector(s). It is possible to change the names of the columns with,
for instance, data.frame(A1=x, A2=n). One can also give names to the
rows with the option row.names which must be, of course, a vector of
mode character and of length equal to the number of lines of the data
frame. Finally, note that data frames have an attribute dim similarly to
matrices.

List. A list is created in a way similar to data frames with the function list.
There is no constraint on the objects that can be included. In contrast
to data.frame(), the names of the objects are not taken by default;
taking the vectors x and y of the previous example:

> L1 <- list(x, y); L2 <- list(A=x, B=y)

> L1

[[1]]

[1] 1 2 3 4

[[2]]

[1] 2 3 4

> L2

$A

[1] 1 2 3 4

$B

[1] 2 3 4

> names(L1)

NULL

> names(L2)

[1] "A" "B"

Time-series. The function ts creates an object of class "ts" from a vector
(single time-series) or a matrix (multivariate time-series), and some op-

21

tions which characterize the series. The options, with the default values,
are:

ts(data = NA, start = 1, end = numeric(0), frequency = 1,

deltat = 1, ts.eps = getOption("ts.eps"), class, names)

data a vector or a matrix
start the time of the first observation, either a number, or a

vector of two integers (see the examples below)
end the time of the last observation specified in the same way

than start

frequency the number of observations per time unit
deltat the fraction of the sampling period between successive

observations (ex. 1/12 for monthly data); only one of
frequency or deltat must be given

ts.eps tolerance for the comparison of series. The frequencies
are considered equal if their difference is less than ts.eps

class class to give to the object; the default is "ts" for a single
series, and c("mts", "ts") for a multivariate series

names a vector of mode character with the names of the individ-
ual series in the case of a multivariate series; by default
the names of the columns of data, or Series 1, Series
2, . . .

A few examples of time-series created with ts:

> ts(1:10, start = 1959)

Time Series:

Start = 1959

End = 1968

Frequency = 1

[1] 1 2 3 4 5 6 7 8 9 10

> ts(1:47, frequency = 12, start = c(1959, 2))

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1959 1 2 3 4 5 6 7 8 9 10 11

1960 12 13 14 15 16 17 18 19 20 21 22 23

1961 24 25 26 27 28 29 30 31 32 33 34 35

1962 36 37 38 39 40 41 42 43 44 45 46 47

> ts(1:10, frequency = 4, start = c(1959, 2))

Qtr1 Qtr2 Qtr3 Qtr4

1959 1 2 3

1960 4 5 6 7

1961 8 9 10

> ts(matrix(rpois(36, 5), 12, 3), start=c(1961, 1), frequency=12)

Series 1 Series 2 Series 3

22

Jan 1961 8 5 4

Feb 1961 6 6 9

Mar 1961 2 3 3

Apr 1961 8 5 4

May 1961 4 9 3

Jun 1961 4 6 13

Jul 1961 4 2 6

Aug 1961 11 6 4

Sep 1961 6 5 7

Oct 1961 6 5 7

Nov 1961 5 5 7

Dec 1961 8 5 2

Expression. The objects of mode expression have a fundamental role in R.
An expression is a series of characters which makes sense for R. All valid
commands are expressions. When a command is typed directly on the
keyboard, it is then evaluated by R and executed if it is valid. In many
circumstances, it is useful to construct an expression without evaluating
it: this is what the function expression is made for. It is, of course,
possible to evaluate the expression subsequently with eval().

> x <- 3; y <- 2.5; z <- 1

> exp1 <- expression(x / (y + exp(z)))

> exp1

expression(x/(y + exp(z)))

> eval(exp1)

[1] 0.5749019

Expressions can be used, among other things, to include equations in
graphs (p. 42). An expression can be created from a variable of mode
character. Some functions take expressions as arguments, for example D

which returns partial derivatives:

> D(exp1, "x")

1/(y + exp(z))

> D(exp1, "y")

-x/(y + exp(z))^2

> D(exp1, "z")

-x * exp(z)/(y + exp(z))^2

3.5.2 Converting objects

The reader has surely realized that the differences between some types of
objects are small; it is thus logical that it is possible to convert an object from
a type to another by changing some of its attributes. Such a conversion will be
done with a function of the type as.something . R (version 2.1.0) has, in the

23

packages base and utils, 98 of such functions, so we will not go in the deepest
details here.

The result of a conversion depends obviously of the attributes of the con-
verted object. Genrally, conversion follows intuitive rules. For the conversion
of modes, the following table summarizes the situation.

Conversion to Function Rules

numeric as.numeric FALSE → 0
TRUE → 1

"1", "2", . . . → 1, 2, . . .
"A", . . . → NA

logical as.logical 0 → FALSE

other numbers → TRUE

"FALSE", "F" → FALSE

"TRUE", "T" → TRUE

other characters → NA

character as.character 1, 2, . . . → "1", "2", . . .
FALSE → "FALSE"

TRUE → "TRUE"

There are functions to convert the types of objects (as.matrix, as.ts,
as.data.frame, as.expression, . . .). These functions will affect attributes
other than the modes during the conversion. The results are, again, generally
intuitive. A situation frequently encountered is the conversion of factors into
numeric values. In this case, R does the conversion with the numeric coding
of the levels of the factor:

> fac <- factor(c(1, 10))

> fac

[1] 1 10

Levels: 1 10

> as.numeric(fac)

[1] 1 2

This makes sense when considering a factor of mode character:

> fac2 <- factor(c("Male", "Female"))

> fac2

[1] Male Female

Levels: Female Male

> as.numeric(fac2)

[1] 2 1

Note that the result is not NA as may have been expected from the table
above.

24

To convert a factor of mode numeric into a numeric vector but keeping the
levels as they are originally specified, one must first convert into character,
then into numeric.

> as.numeric(as.character(fac))

[1] 1 10

This procedure is very useful if in a file a numeric variable has also non-
numeric values. We have seen that read.table() in such a situation will, by
default, read this column as a factor.

3.5.3 Operators

We have seen previously that there are three main types of operators in R10.
Here is the list.

Operators

Arithmetic Comparison Logical

+ addition < lesser than ! x logical NOT
- subtraction > greater than x & y logical AND
* multiplication <= lesser than or equal to x && y id.
/ division >= greater than or equal to x | y logical OR
^ power == equal x || y id.
%% modulo != different xor(x, y) exclusive OR
%/% integer division

The arithmetic and comparison operators act on two elements (x + y, a
< b). The arithmetic operators act not only on variables of mode numeric or
complex, but also on logical variables; in this latter case, the logical values
are coerced into numeric. The comparison operators may be applied to any
mode: they return one or several logical values.

The logical operators are applied to one (!) or two objects of mode logical,
and return one (or several) logical values. The operators “AND” and “OR”
exist in two forms: the single one operates on each elements of the objects and
returns as many logical values as comparisons done; the double one operates
on the first element of the objects.

It is necessary to use the operator “AND” to specify an inequality of the
type 0 < x < 1 which will be coded with: 0 < x & x < 1. The expression 0

< x < 1 is valid, but will not return the expected result: since both operators
are the same, they are executed successively from left to right. The comparison
0 < x is first done and returns a logical value which is then compared to 1
(TRUE or FALSE < 1): in this situation, the logical value is implicitly coerced
into numeric (1 or 0 < 1).

10The following characters are also operators for R: $, @, [, [[, :, ?, <-, <<-, =, ::. A
table of operators describing precedence rules can be found with ?Syntax.

25

> x <- 0.5

> 0 < x < 1

[1] FALSE

The comparison operators operate on each element of the two objects
being compared (recycling the values of the shortest one if necessary), and
thus returns an object of the same size. To compare ‘wholly’ two objects, two
functions are available: identical and all.equal.

> x <- 1:3; y <- 1:3

> x == y

[1] TRUE TRUE TRUE

> identical(x, y)

[1] TRUE

> all.equal(x, y)

[1] TRUE

identical compares the internal representation of the data and returns
TRUE if the objects are strictly identical, and FALSE otherwise. all.equal

compares the “near equality” of two objects, and returns TRUE or display a
summary of the differences. The latter function takes the approximation of
the computing process into account when comparing numeric values. The
comparison of numeric values on a computer is sometimes surprising!

> 0.9 == (1 - 0.1)

[1] TRUE

> identical(0.9, 1 - 0.1)

[1] TRUE

> all.equal(0.9, 1 - 0.1)

[1] TRUE

> 0.9 == (1.1 - 0.2)

[1] FALSE

> identical(0.9, 1.1 - 0.2)

[1] FALSE

> all.equal(0.9, 1.1 - 0.2)

[1] TRUE

> all.equal(0.9, 1.1 - 0.2, tolerance = 1e-16)

[1] "Mean relative difference: 1.233581e-16"

3.5.4 Accessing the values of an object: the indexing system

The indexing system is an efficient and flexible way to access selectively the
elements of an object; it can be either numeric or logical. To access, for
example, the third value of a vector x, we just type x[3] which can be used
either to extract or to change this value:

> x <- 1:5

26

> x[3]

[1] 3

> x[3] <- 20

> x

[1] 1 2 20 4 5

The index itself can be a vector of mode numeric:

> i <- c(1, 3)

> x[i]

[1] 1 20

If x is a matrix or a data frame, the value of the ith line and j th column
is accessed with x[i, j]. To access all values of a given row or column, one
has simply to omit the appropriate index (without forgetting the comma!):

> x <- matrix(1:6, 2, 3)

> x

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> x[, 3] <- 21:22

> x

[,1] [,2] [,3]

[1,] 1 3 21

[2,] 2 4 22

> x[, 3]

[1] 21 22

You have certainly noticed that the last result is a vector and not a matrix.
The default behaviour of R is to return an object of the lowest dimension
possible. This can be altered with the option drop which default is TRUE:

> x[, 3, drop = FALSE]

[,1]

[1,] 21

[2,] 22

This indexing system is easily generalized to arrays, with as many indices
as the number of dimensions of the array (for example, a three dimensional
array: x[i, j, k], x[, , 3], x[, , 3, drop = FALSE], and so on). It may
be useful to keep in mind that indexing is made with square brackets, while
parentheses are used for the arguments of a function:

> x(1)

Error: couldn’t find function "x"

27

Indexing can also be used to suppress one or several rows or columns
using negative values. For example, x[-1,] will suppress the first row, while
x[-c(1, 15),] will do the same for the 1st and 15th rows. Using the matrix
defined above:

> x[, -1]

[,1] [,2]

[1,] 3 21

[2,] 4 22

> x[, -(1:2)]

[1] 21 22

> x[, -(1:2), drop = FALSE]

[,1]

[1,] 21

[2,] 22

For vectors, matrices and arrays, it is possible to access the values of an
element with a comparison expression as the index:

> x <- 1:10

> x[x >= 5] <- 20

> x

[1] 1 2 3 4 20 20 20 20 20 20

> x[x == 1] <- 25

> x

[1] 25 2 3 4 20 20 20 20 20 20

A practical use of the logical indexing is, for instance, the possibility to
select the even elements of an integer variable:

> x <- rpois(40, lambda=5)

> x

[1] 5 9 4 7 7 6 4 5 11 3 5 7 1 5 3 9 2 2 5 2

[21] 4 6 6 5 4 5 3 4 3 3 3 7 7 3 8 1 4 2 1 4

> x[x %% 2 == 0]

[1] 4 6 4 2 2 2 4 6 6 4 4 8 4 2 4

Thus, this indexing system uses the logical values returned, in the above
examples, by comparison operators. These logical values can be computed
beforehand, they then will be recycled if necessary:

> x <- 1:40

> s <- c(FALSE, TRUE)

> x[s]

[1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

28

Logical indexing can also be used with data frames, but with caution since
different columns of the data drame may be of different modes.

For lists, accessing the different elements (which can be any kind of object)
is done either with single or with double square brackets: the difference is
that with single brackets a list is returned, whereas double brackets extract the
object from the list. The result can then be itself indexed as previously seen for
vectors, matrices, etc. For instance, if the third object of a list is a vector, its
ith value can be accessed using my.list[[3]][i], if it is a three dimensional
array using my.list[[3]][i, j, k], and so on. Another difference is that
my.list[1:2] will return a list with the first and second elements of the
original list, whereas my.list[[1:2]] will no not give the expected result.

3.5.5 Accessing the values of an object with names

The names are labels of the elements of an object, and thus of mode charac-
ter. They are generally optional attributes. There are several kinds of names
(names, colnames, rownames, dimnames).

The names of a vector are stored in a vector of the same length of the
object, and can be accessed with the function names.

> x <- 1:3

> names(x)

NULL

> names(x) <- c("a", "b", "c")

> x

a b c

1 2 3

> names(x)

[1] "a" "b" "c"

> names(x) <- NULL

> x

[1] 1 2 3

For matrices and data frames, colnames and rownames are labels of the
columns and rows, respectively. They can be accessed either with their re-
spective functions, or with dimnames which returns a list with both vectors.

> X <- matrix(1:4, 2)

> rownames(X) <- c("a", "b")

> colnames(X) <- c("c", "d")

> X

c d

a 1 3

b 2 4

> dimnames(X)

[[1]]

[1] "a" "b"

29

[[2]]

[1] "c" "d"

For arrays, the names of the dimensions can be accessed with dimnames:

> A <- array(1:8, dim = c(2, 2, 2))

> A

, , 1

[,1] [,2]

[1,] 1 3

[2,] 2 4

, , 2

[,1] [,2]

[1,] 5 7

[2,] 6 8

> dimnames(A) <- list(c("a", "b"), c("c", "d"), c("e", "f"))

> A

, , e

c d

a 1 3

b 2 4

, , f

c d

a 5 7

b 6 8

If the elements of an object have names, they can be extracted by using
them as indices. Actually, this should be termed ‘subsetting’ rather than
‘extraction’ since the attributes of the original object are kept. For instance,
if a data frame DF contains the variables x, y, and z, the command DF["x"]

will return a data frame with just x; DF[c("x", "y")] will return a data
frame with both variables. This works with lists as well if the elements in the
list have names.

As the reader surely realizes, the index used here is a vector of mode
character. Like the numeric or logical vectors seen above, this vector can be
defined beforehand and then used for the extraction.

To extract a vector or a factor from a data frame, on can use the operator
$ (e.g., DF$x). This also works with lists.

30

3.5.6 The data editor

It is possible to use a graphical spreadsheet-like editor to edit a “data” object.
For example, if X is a matrix, the command data.entry(X)will open a graphic
editor and one will be able to modify some values by clicking on the appropriate
cells, or to add new columns or rows.

The function data.entry modifies directly the object given as argument
without needing to assign its result. On the other hand, the function de

returns a list with the objects given as arguments and possibly modified. This
result is displayed on the screen by default, but, as for most functions, can be
assigned to an object.

The details of using the data editor depend on the operating system.

3.5.7 Arithmetics and simple functions

There are numerous functions in R to manipulate data. We have already seen
the simplest one, c which concatenates the objects listed in parentheses. For
example:

> c(1:5, seq(10, 11, 0.2))

[1] 1.0 2.0 3.0 4.0 5.0 10.0 10.2 10.4 10.6 10.8 11.0

Vectors can be manipulated with classical arithmetic expressions:

> x <- 1:4

> y <- rep(1, 4)

> z <- x + y

> z

[1] 2 3 4 5

Vectors of different lengths can be added; in this case, the shortest vector
is recycled. Examples:

> x <- 1:4

> y <- 1:2

> z <- x + y

> z

[1] 2 4 4 6

> x <- 1:3

> y <- 1:2

> z <- x + y

Warning message:

longer object length

is not a multiple of shorter object length in: x + y

> z

[1] 2 4 4

31

Note that R returned a warning message and not an error message, thus
the operation has been performed. If we want to add (or multiply) the same
value to all the elements of a vector:

> x <- 1:4

> a <- 10

> z <- a * x

> z

[1] 10 20 30 40

The functions available in R for manipulating data are too many to be
listed here. One can find all the basic mathematical functions (log, exp,
log10, log2, sin, cos, tan, asin, acos, atan, abs, sqrt, . . .), special func-
tions (gamma, digamma, beta, besselI, . . .), as well as diverse functions useful
in statistics. Some of these functions are listed in the following table.

sum(x) sum of the elements of x

prod(x) product of the elements of x

max(x) maximum of the elements of x

min(x) minimum of the elements of x

which.max(x) returns the index of the greatest element of x

which.min(x) returns the index of the smallest element of x

range(x) id. than c(min(x), max(x))

length(x) number of elements in x

mean(x) mean of the elements of x

median(x) median of the elements of x

var(x) or cov(x) variance of the elements of x (calculated on n − 1); if x is
a matrix or a data frame, the variance-covariance matrix is
calculated

cor(x) correlation matrix of x if it is a matrix or a data frame (1 if x
is a vector)

var(x, y) or cov(x, y) covariance between x and y, or between the columns of x and
those of y if they are matrices or data frames

cor(x, y) linear correlation between x and y, or correlation matrix if they
are matrices or data frames

These functions return a single value (thus a vector of length one), except
range which returns a vector of length two, and var, cov, and cor which may
return a matrix. The following functions return more complex results.

round(x, n) rounds the elements of x to n decimals

rev(x) reverses the elements of x

sort(x) sorts the elements of x in increasing order; to sort in decreasing order:
rev(sort(x))

rank(x) ranks of the elements of x

32

log(x, base) computes the logarithm of x with base base

scale(x) if x is a matrix, centers and reduces the data; to center only use
the option center=FALSE, to reduce only scale=FALSE (by default
center=TRUE, scale=TRUE)

pmin(x,y,...) a vector which ith element is the minimum of x[i], y[i], . . .

pmax(x,y,...) id. for the maximum

cumsum(x) a vector which ith element is the sum from x[1] to x[i]

cumprod(x) id. for the product

cummin(x) id. for the minimum

cummax(x) id. for the maximum

match(x, y) returns a vector of the same length than x with the elements of x

which are in y (NA otherwise)

which(x == a) returns a vector of the indices of x if the comparison operation is
true (TRUE), in this example the values of i for which x[i] == a (the
argument of this function must be a variable of mode logical)

choose(n, k) computes the combinations of k events among n repetitions = n!/[(n−
k)!k!]

na.omit(x) suppresses the observations with missing data (NA) (suppresses the
corresponding line if x is a matrix or a data frame)

na.fail(x) returns an error message if x contains at least one NA

unique(x) if x is a vector or a data frame, returns a similar object but with the
duplicate elements suppressed

table(x) returns a table with the numbers of the differents values of x (typically
for integers or factors)

table(x, y) contingency table of x and y

subset(x, ...) returns a selection of x with respect to criteria (..., typically com-
parisons: x$V1 < 10); if x is a data frame, the option select gives
the variables to be kept (or dropped using a minus sign)

sample(x, size) resample randomly and without replacement size elements in the
vector x, the option replace = TRUE allows to resample with replace-
ment

3.5.8 Matrix computation

R has facilities for matrix computation and manipulation. The functions
rbind and cbind bind matrices with respect to the lines or the columns,
respectively:

> m1 <- matrix(1, nr = 2, nc = 2)

> m2 <- matrix(2, nr = 2, nc = 2)

> rbind(m1, m2)

[,1] [,2]

[1,] 1 1

[2,] 1 1

[3,] 2 2

[4,] 2 2

> cbind(m1, m2)

[,1] [,2] [,3] [,4]

33

[1,] 1 1 2 2

[2,] 1 1 2 2

The operator for the product of two matrices is ‘%*%’. For example, con-
sidering the two matrices m1 and m2 above:

> rbind(m1, m2) %*% cbind(m1, m2)

[,1] [,2] [,3] [,4]

[1,] 2 2 4 4

[2,] 2 2 4 4

[3,] 4 4 8 8

[4,] 4 4 8 8

> cbind(m1, m2) %*% rbind(m1, m2)

[,1] [,2]

[1,] 10 10

[2,] 10 10

The transposition of a matrix is done with the function t; this function
works also with a data frame.

The function diag can be used to extract or modify the diagonal of a
matrix, or to build a diagonal matrix.

> diag(m1)

[1] 1 1

> diag(rbind(m1, m2) %*% cbind(m1, m2))

[1] 2 2 8 8

> diag(m1) <- 10

> m1

[,1] [,2]

[1,] 10 1

[2,] 1 10

> diag(3)

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

> v <- c(10, 20, 30)

> diag(v)

[,1] [,2] [,3]

[1,] 10 0 0

[2,] 0 20 0

[3,] 0 0 30

> diag(2.1, nr = 3, nc = 5)

[,1] [,2] [,3] [,4] [,5]

[1,] 2.1 0.0 0.0 0 0

[2,] 0.0 2.1 0.0 0 0

[3,] 0.0 0.0 2.1 0 0

34

R has also some special functions for matrix computation. We can cite
here solve for inverting a matrix, qr for decomposition, eigen for computing
eigenvalues and eigenvectors, and svd for singular value decomposition.

35

4 Graphics with R

R offers a remarkable variety of graphics. To get an idea, one can type
demo(graphics) or demo(persp). It is not possible to detail here the pos-
sibilities of R in terms of graphics, particularly since each graphical function
has a large number of options making the production of graphics very flexible.

The way graphical functions work deviates substantially from the scheme
sketched at the beginning of this document. Particularly, the result of a graph-
ical function cannot be assigned to an object11 but is sent to a graphical device.
A graphical device is a graphical window or a file.

There are two kinds of graphical functions: the high-level plotting func-
tions which create a new graph, and the low-level plotting functions which
add elements to an existing graph. The graphs are produced with respect to
graphical parameters which are defined by default and can be modified with
the function par.

We will see in a first time how to manage graphics and graphical devices;
we will then somehow detail the graphical functions and parameters. We will
see a practical example of the use of these functionalities in producing graphs.
Finally, we will see the packages grid and lattice whose functioning is different
from the one summarized above.

4.1 Managing graphics

4.1.1 Opening several graphical devices

When a graphical function is executed, if no graphical device is open, R opens a
graphical window and displays the graph. A graphical device may be open with
an appropriate function. The list of available graphical devices depends on the
operating system. The graphical windows are called X11 under Unix/Linux
and windows under Windows. In all cases, one can open a graphical window
with the command x11() which also works under Windows because of an alias
towards the command windows(). A graphical device which is a file will be
open with a function depending on the format: postscript(), pdf(), png(),
. . . The list of available graphical devices can be found with ?device.

The last open device becomes the active graphical device on which all
subsequent graphs are displayed. The function dev.list() displays the list
of open devices:

> x11(); x11(); pdf()

> dev.list()

11There are a few remarkable exceptions: hist() and barplot() produce also numeric
results as lists or matrices.

36

X11 X11 pdf

2 3 4

The figures displayed are the device numbers which must be used to change
the active device. To know what is the active device:

> dev.cur()

pdf

4

and to change the active device:

> dev.set(3)

X11

3

The function dev.off() closes a device: by default the active device is
closed, otherwise this is the one which number is given as argument to the
function. R then displays the number of the new active device:

> dev.off(2)

X11

3

> dev.off()

pdf

4

Two specific features of the Windows version of R are worth mentioning:
a Windows Metafile device can be open with the function win.metafile, and
a menu “History” displayed when the graphical window is selected allowing
recording of all graphs drawn during a session (by default, the recording system
is off, the user switches it on by clicking on “Recording” in this menu).

4.1.2 Partitioning a graphic

The function split.screen partitions the active graphical device. For exam-
ple:

> split.screen(c(1, 2))

divides the device into two parts which can be selected with screen(1) or
screen(2); erase.screen() deletes the last drawn graph. A part of the
device can itself be divided with split.screen() leading to the possibility to
make complex arrangements.

These functions are incompatible with others (such as layout or coplot)
and must not be used with multiple graphical devices. Their use should be
limited, for instance, to graphical exploration of data.

The function layout partitions the active graphic window in several parts
where the graphs will be displayed successively. Its main argument is a ma-
trix with integer numbers indicating the numbers of the “sub-windows”. For
example, to divide the device into four equal parts:

37

> layout(matrix(1:4, 2, 2))

It is of course possible to create this matrix previously allowing to better
visualize how the device is divided:

> mat <- matrix(1:4, 2, 2)

> mat

[,1] [,2]

[1,] 1 3

[2,] 2 4

> layout(mat)

To actually visualize the partition created, one can use the function layout.show

with the number of sub-windows as argument (here 4). In this example, we
will have:

> layout.show(4)

1

2

3

4

The following examples show some of the possibilities offered by layout().

> layout(matrix(1:6, 3, 2))

> layout.show(6)

1

2

3

4

5

6

> layout(matrix(1:6, 2, 3))

> layout.show(6)

1

2

3

4

5

6

> m <- matrix(c(1:3, 3), 2, 2)

> layout(m)

> layout.show(3)

1

2

3

In all these examples, we have not used the option byrow of matrix(), the
sub-windows are thus numbered column-wise; one can just specify matrix(...,

byrow=TRUE) so that the sub-windows are numbered row-wise. The numbers

38

in the matrix may also be given in any order, for example, matrix(c(2, 1,

4, 3), 2, 2).
By default, layout() partitions the device with regular heights and widths:

this can be modified with the options widths and heights. These dimensions
are given relatively12. Examples:

> m <- matrix(1:4, 2, 2)

> layout(m, widths=c(1, 3),

heights=c(3, 1))

> layout.show(4)

1

2

3

4

> m <- matrix(c(1,1,2,1),2,2)

> layout(m, widths=c(2, 1),

heights=c(1, 2))

> layout.show(2)

1

2

Finally, the numbers in the matrix can include zeros giving the possibility
to make complex (or even esoterical) partitions.

> m <- matrix(0:3, 2, 2)

> layout(m, c(1, 3), c(1, 3))

> layout.show(3)
1

2

3

> m <- matrix(scan(), 5, 5)

1: 0 0 3 3 3 1 1 3 3 3

11: 0 0 3 3 3 0 2 2 0 5

21: 4 2 2 0 5

26:

Read 25 items

> layout(m)

> layout.show(5)

1

2

3

4

5

12They can be given in centimetres, see ?layout.

39

4.2 Graphical functions

Here is an overview of the high-level graphical functions in R.

plot(x) plot of the values of x (on the y-axis) ordered on the x-axis

plot(x, y) bivariate plot of x (on the x-axis) and y (on the y-axis)

sunflowerplot(x,

y)

id. but the points with similar coordinates are drawn as a flower
which petal number represents the number of points

pie(x) circular pie-chart

boxplot(x) “box-and-whiskers” plot

stripchart(x) plot of the values of x on a line (an alternative to boxplot() for
small sample sizes)

coplot(x~y | z) bivariate plot of x and y for each value (or interval of values) of
z

interaction.plot

(f1, f2, y)

if f1 and f2 are factors, plots the means of y (on the y-axis) with
respect to the values of f1 (on the x-axis) and of f2 (different
curves); the option fun allows to choose the summary statistic
of y (by default fun=mean)

matplot(x,y) bivariate plot of the first column of x vs. the first one of y, the
second one of x vs. the second one of y, etc.

dotchart(x) if x is a data frame, plots a Cleveland dot plot (stacked plots
line-by-line and column-by-column)

fourfoldplot(x) visualizes, with quarters of circles, the association between two
dichotomous variables for different populations (x must be an
array with dim=c(2, 2, k), or a matrix with dim=c(2, 2) if
k = 1)

assocplot(x) Cohen–Friendly graph showing the deviations from indepen-
dence of rows and columns in a two dimensional contingency
table

mosaicplot(x) ‘mosaic’ graph of the residuals from a log-linear regression of a
contingency table

pairs(x) if x is a matrix or a data frame, draws all possible bivariate plots
between the columns of x

plot.ts(x) if x is an object of class "ts", plot of x with respect to time, x
may be multivariate but the series must have the same frequency
and dates

ts.plot(x) id. but if x is multivariate the series may have different dates
and must have the same frequency

hist(x) histogram of the frequencies of x

barplot(x) histogram of the values of x

qqnorm(x) quantiles of x with respect to the values expected under a normal
law

qqplot(x, y) quantiles of y with respect to the quantiles of x

contour(x, y, z) contour plot (data are interpolated to draw the curves), x

and y must be vectors and z must be a matrix so that
dim(z)=c(length(x), length(y)) (x and y may be omitted)

filled.contour (x,

y, z)

id. but the areas between the contours are coloured, and a legend
of the colours is drawn as well

image(x, y, z) id. but the actual data are represented with colours

persp(x, y, z) id. but in perspective

stars(x) if x is a matrix or a data frame, draws a graph with segments
or a star where each row of x is represented by a star and the
columns are the lengths of the segments

40

symbols(x, y, ...) draws, at the coordinates given by x and y, symbols (circles,
squares, rectangles, stars, thermometres or “boxplots”) which
sizes, colours, etc, are specified by supplementary arguments

termplot(mod.obj) plot of the (partial) effects of a regression model (mod.obj)

For each function, the options may be found with the on-line help in R.
Some of these options are identical for several graphical functions; here are
the main ones (with their possible default values):

add=FALSE if TRUE superposes the plot on the previous one (if it
exists)

axes=TRUE if FALSE does not draw the axes and the box
type="p" specifies the type of plot, "p": points, "l": lines, "b":

points connected by lines, "o": id. but the lines are over
the points, "h": vertical lines, "s": steps, the data are
represented by the top of the vertical lines, "S": id. but
the data are represented by the bottom of the vertical
lines

xlim=, ylim= specifies the lower and upper limits of the axes, for ex-
ample with xlim=c(1, 10) or xlim=range(x)

xlab=, ylab= annotates the axes, must be variables of mode character
main= main title, must be a variable of mode character
sub= sub-title (written in a smaller font)

4.3 Low-level plotting commands

R has a set of graphical functions which affect an already existing graph: they
are called low-level plotting commands. Here are the main ones:

points(x, y) adds points (the option type= can be used)

lines(x, y) id. but with lines

text(x, y, labels,

...)

adds text given by labels at coordinates (x,y); a typical use is:
plot(x, y, type="n"); text(x, y, names)

mtext(text,

side=3, line=0,

...)

adds text given by text in the margin specified by side (see
axis() below); line specifies the line from the plotting area

segments(x0, y0,

x1, y1)

draws lines from points (x0,y0) to points (x1,y1)

arrows(x0, y0,

x1, y1, angle= 30,

code=2)

id. with arrows at points (x0,y0) if code=2, at points (x1,y1) if
code=1, or both if code=3; angle controls the angle from the
shaft of the arrow to the edge of the arrow head

abline(a,b) draws a line of slope b and intercept a

abline(h=y) draws a horizontal line at ordinate y

abline(v=x) draws a vertical line at abcissa x

abline(lm.obj) draws the regression line given by lm.obj (see section 5)

41

rect(x1, y1, x2,

y2)

draws a rectangle which left, right, bottom, and top limits are
x1, x2, y1, and y2, respectively

polygon(x, y) draws a polygon linking the points with coordinates given by x

and y

legend(x, y,

legend)

adds the legend at the point (x,y) with the symbols given by
legend

title() adds a title and optionally a sub-title

axis(side, vect) adds an axis at the bottom (side=1), on the left (2), at the top
(3), or on the right (4); vect (optional) gives the abcissa (or
ordinates) where tick-marks are drawn

box() adds a box around the current plot

rug(x) draws the data x on the x-axis as small vertical lines

locator(n,

type="n", ...)

returns the coordinates (x, y) after the user has clicked n times
on the plot with the mouse; also draws symbols (type="p") or
lines (type="l") with respect to optional graphic parameters
(...); by default nothing is drawn (type="n")

Note the possibility to add mathematical expressions on a plot with text(x,

y, expression(...)), where the function expression transforms its argu-
ment in a mathematical equation. For example,

> text(x, y, expression(p == over(1, 1+e^-(beta*x+alpha))))

will display, on the plot, the following equation at the point of coordinates
(x, y):

p =
1

1 + e−(βx+α)

To include in an expression a variable we can use the functions substitute
and as.expression; for example to include a value of R2 (previously com-
puted and stored in an object named Rsquared):

> text(x, y, as.expression(substitute(R^2==r, list(r=Rsquared))))

will display on the plot at the point of coordinates (x, y):

R2 = 0.9856298

To display only three decimals, we can modify the code as follows:

> text(x, y, as.expression(substitute(R^2==r,

+ list(r=round(Rsquared, 3)))))

will display:

R2 = 0.986

Finally, to write the R in italics:

> text(x, y, as.expression(substitute(italic(R)^2==r,

+ list(r=round(Rsquared, 3)))))

R2 = 0.986

42

4.4 Graphical parameters

In addition to low-level plotting commands, the presentation of graphics can
be improved with graphical parameters. They can be used either as options
of graphic functions (but it does not work for all), or with the function par to
change permanently the graphical parameters, i.e. the subsequent plots will
be drawn with respect to the parameters specified by the user. For instance,
the following command:

> par(bg="yellow")

will result in all subsequent plots drawn with a yellow background. There
are 73 graphical parameters, some of them have very similar functions. The
exhaustive list of these parameters can be read with ?par; I will limit the
following table to the most usual ones.

adj controls text justification with respect to the left border of the text so that
0 is left-justified, 0.5 is centred, 1 is right-justified, values > 1 move the text
further to the left, and negative values further to the right; if two values are
given (e.g., c(0, 0)) the second one controls vertical justification with respect
to the text baseline

bg specifies the colour of the background (e.g., bg="red", bg="blue"; the list of
the 657 available colours is displayed with colors())

bty controls the type of box drawn around the plot, allowed values are: "o",
"l", "7", "c", "u" ou "]" (the box looks like the corresponding character); if
bty="n" the box is not drawn

cex a value controlling the size of texts and symbols with respect to the default; the
following parameters have the same control for numbers on the axes, cex.axis,
the axis labels, cex.lab, the title, cex.main, and the sub-title, cex.sub

col controls the colour of symbols; as for cex there are: col.axis, col.lab,
col.main, col.sub

font an integer which controls the style of text (1: normal, 2: italics, 3: bold, 4:
bold italics); as for cex there are: font.axis, font.lab, font.main, font.sub

las an integer which controls the orientation of the axis labels (0: parallel to the
axes, 1: horizontal, 2: perpendicular to the axes, 3: vertical)

lty controls the type of lines, can be an integer (1: solid, 2: dashed, 3: dotted,
4: dotdash, 5: longdash, 6: twodash), or a string of up to eight characters
(between "0" and "9") which specifies alternatively the length, in points or
pixels, of the drawn elements and the blanks, for example lty="44" will have
the same effet than lty=2

lwd a numeric which controls the width of lines

mar a vector of 4 numeric values which control the space between the axes and the
border of the graph of the form c(bottom, left, top, right), the default
values are c(5.1, 4.1, 4.1, 2.1)

mfcol a vector of the form c(nr,nc) which partitions the graphic window as a ma-
trix of nr lines and nc columns, the plots are then drawn in columns (see
section 4.1.2)

mfrow id. but the plots are then drawn in line (see section 4.1.2)

pch controls the type of symbol, either an integer between 1 and 25, or any single
character within "" (Fig. 2)

ps an integer which controls the size in points of texts and symbols

43

* ? X a

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 "*" "?" "." "X" "a"

Figure 2: The plotting symbols in R (pch=1:25). The colours were obtained
with the options col="blue", bg="yellow", the second option has an effect
only for the symbols 21–25. Any character can be used (pch="*", "?", ".",
. . .).

pty a character which specifies the type of the plotting region, "s": square, "m":
maximal

tck a value which specifies the length of tick-marks on the axes as a fraction of
the smallest of the width or height of the plot; if tck=1 a grid is drawn

tcl id. but as a fraction of the height of a line of text (by default tcl=-0.5)

xaxt if xaxt="n" the x-axis is set but not drawn (useful in conjunction with
axis(side=1, ...))

yaxt if yaxt="n" the y-axis is set but not drawn (useful in conjunction with
axis(side=2, ...))

4.5 A practical example

In order to illustrate R’s graphical functionalities, let us consider a simple
example of a bivariate graph of 10 pairs of random variates. These values
were generated with:

> x <- rnorm(10)

> y <- rnorm(10)

The wanted graph will be obtained with plot(); one will type the command:

> plot(x, y)

and the graph will be plotted on the active graphical device. The result
is shown on Fig. 3. By default, R makes graphs in an “intelligent” way:

44

−0.5 0.0 0.5 1.0
−

1.
0

−
0.

5
0.

0
0.

5

x

y

Figure 3: The function plot used without options.

the spaces between tick-marks on the axes, the placement of labels, etc, are
calculated so that the resulting graph is as intelligible as possible.

The user may, nevertheless, change the way a graph is presented, for in-
stance, to conform to a pre-defined editorial style, or to give it a personal
touch for a talk. The simplest way to change the presentation of a graph is to
add options which will modify the default arguments. In our example, we can
modify significantly the figure in the following way:

plot(x, y, xlab="Ten random values", ylab="Ten other values",

xlim=c(-2, 2), ylim=c(-2, 2), pch=22, col="red",

bg="yellow", bty="l", tcl=0.4,

main="How to customize a plot with R", las=1, cex=1.5)

The result is on Fig. 4. Let us detail each of the used options. First,
xlab and ylab change the axis labels which, by default, were the names of the
variables. Then, xlim and ylim allow us to define the limits on both axes13.
The graphical parameter pch is used here as an option: pch=22 specifies a
square which contour and background colours may be different and are given
by, respectively, col and bg. The table of graphical parameters gives the
meaning of the modifications done by bty, tcl, las and cex. Finally, a title
is added with the option main.

The graphical parameters and the low-level plotting functions allow us to
go further in the presentation of a graph. As we have seen previously, some
graphical parameters cannot be passed as arguments to a function like plot.

13By default, R adds 4% on each side of the axis limit. This behaviour may be altered by
setting the graphical parameters xaxs="i" and yaxs="i" (they can be passed as options to
plot()).

45

−2 −1 0 1 2

−2

−1

0

1

2

How to customize a plot with R

Ten random values

T
en

 o
th

er
 v

al
ue

s

Figure 4: The function plot used with options.

We will now modify some of these parameters with par(), it is thus necessary
to type several commands. When the graphical parameters are changed, it
is useful to save their initial values beforehand to be able to restore them
afterwards. Here are the commands used to obtain Fig. 5.

opar <- par()

par(bg="lightyellow", col.axis="blue", mar=c(4, 4, 2.5, 0.25))

plot(x, y, xlab="Ten random values", ylab="Ten other values",

xlim=c(-2, 2), ylim=c(-2, 2), pch=22, col="red", bg="yellow",

bty="l", tcl=-.25, las=1, cex=1.5)

title("How to customize a plot with R (bis)", font.main=3, adj=1)

par(opar)

Let us detail the actions resulting from these commands. First, the default
graphical parameters are copied in a list called here opar. Three parameters
will be then modified: bg for the colour of the background, col.axis for the
colour of the numbers on the axes, and mar for the sizes of the margins around
the plotting region. The graph is drawn in a nearly similar way to Fig. 4. The
modifications of the margins allowed to use the space around the plotting area.
The title here is added with the low-level plotting function title which allows
to give some parameters as arguments without altering the rest of the graph.
Finally, the initial graphical parameters are restored with the last command.

Now, total control! On Fig. 5, R still determines a few things such as
the number of tick marks on the axes, or the space between the title and the
plotting area. We will see now how to totally control the presentation of the
graph. The approach used here is to plot a “blank” graph with plot(...,

type="n"), then to add points, axes, labels, etc, with low-level plotting func-

46

−2 −1 0 1 2

−2

−1

0

1

2

Ten random values

T
en

 o
th

er
 v

al
ue

s

How to customize a plot with R (bis)

Figure 5: The functions par, plot and title.

tions. We will fancy a few arrangements such as changing the colour of the
plotting area. The commands follow, and the resulting graph is on Fig. 6.

opar <- par()

par(bg="lightgray", mar=c(2.5, 1.5, 2.5, 0.25))

plot(x, y, type="n", xlab="", ylab="", xlim=c(-2, 2),

ylim=c(-2, 2), xaxt="n", yaxt="n")

rect(-3, -3, 3, 3, col="cornsilk")

points(x, y, pch=10, col="red", cex=2)

axis(side=1, c(-2, 0, 2), tcl=-0.2, labels=FALSE)

axis(side=2, -1:1, tcl=-0.2, labels=FALSE)

title("How to customize a plot with R (ter)",

font.main=4, adj=1, cex.main=1)

mtext("Ten random values", side=1, line=1, at=1, cex=0.9, font=3)

mtext("Ten other values", line=0.5, at=-1.8, cex=0.9, font=3)

mtext(c(-2, 0, 2), side=1, las=1, at=c(-2, 0, 2), line=0.3,

col="blue", cex=0.9)

mtext(-1:1, side=2, las=1, at=-1:1, line=0.2, col="blue", cex=0.9)

par(opar)

Like before, the default graphical parameters are saved, and the colour
of the background and the margins are modified. The graph is then drawn
with type="n" to not plot the points, xlab="", ylab="" to not write the
axis labels, and xaxt="n", yaxt="n" to not draw the axes. This results in
drawing only the box around the plotting area, and defining the axes with
respect to xlim et ylim. Note that we could have used the option axes=FALSE

but in this case neither the axes, nor the box would have been drawn.

47

How to customize a plot with R (ter)

Ten random values

Ten other values

−2 0 2

−1

0

1

Figure 6: A “hand-made” graph.

The elements are then added in the plotting region so defined with some
low-level plotting functions. Before adding the points, the colour inside the
plotting area is changed with rect(): the size of the rectangle are chosen so
that it is substantially larger than the plotting area.

The points are plotted with points(); a new symbol was used. The axes
are added with axis(): the vector given as second argument specifies the
coordinates of the tick-marks. The option labels=FALSE specifies that no
annotation must be written with the tick-marks. This option also accepts a
vector of mode character, for example labels=c("A", "B", "C").

The title is added with title(), but the font is slightly changed. The
annotations on the axes are written with mtext() (marginal text). The first
argument of this function is a vector of mode character giving the text to be
written. The option line indicates the distance from the plotting area (by
default line=0), and at the coordinnate. The second call to mtext() uses
the default value of side (3). The two other calls to mtext() pass a numeric
vector as first argument: this will be converted into character.

4.6 The grid and lattice packages

The packages grid and lattice implement the grid and lattice systems. Grid is
a new graphical mode with its own system of graphical parameters which are
distinct from those seen above. The two main distinctions of grid compared
to the base graphics are:

• a more flexible way to split graphical devices using viewports which could
be overpalling (graphical objects may even be shared among distinct
viewports, e.g., arrows);

48

• graphical objects (grob) may be modified or removed from a graph with-
out requiring the re-draw all the graph (as must be done with base
graphics).

Grid graphics cannot usually be combined or mixed with base graphics
(the gridBase package must be used to do this). However, it is possible to use
both graphical modes in the same session on the same graphical device.

Lattice is essentially the implementation in R of the Trellis graphics of
S-PLUS. Trellis is an approach for visualizing multivariate data which is par-
ticularly appropriate for the exploration of relations or interactions among
variables14. The main idea behind lattice (and Trellis as well) is that of con-
ditional multiple graphs: a bivariate graph will be split in several graphs with
respect to the values of a third variable. The function coplot uses a similar
approach, but lattice offers much wider functionalities. Lattice uses the grid
graphical mode.

Most functions in lattice take a formula as their main argument15, for
example y ~ x. The formula y ~ x | z means that the graph of y with
respect to x will be plotted as several graphs with respect to the values of z.

The following table gives the main functions in lattice. The formula given
as argument is the typical necessary formula, but all these functions accept
a conditional formula (y ~ x | z) as main argument; in the latter case, a
multiple graph, with respect to the values of z, is plotted as will be seen in
the examples below.

barchart(y ~ x) histogram of the values of y with respect to those of x

bwplot(y ~ x) “box-and-whiskers” plot

densityplot(~ x) density functions plot

dotplot(y ~ x) Cleveland dot plot (stacked plots line-by-line and
column-by-column)

histogram(~ x) histogram of the frequencies of x

qqmath(~ x) quantiles of x with respect to the values expected under
a theoretical distribution

stripplot(y ~ x) single dimension plot, x must be numeric, y may be a
factor

qq(y ~ x) quantiles to compare two distributions, x must be nu-
meric, y may be numeric, character, or factor but must
have two ‘levels’

xyplot(y ~ x) bivariate plots (with many functionalities)

levelplot(z ~ x*y)

contourplot(z ~ x*y)

coloured plot of the values of z at the coordinates given
by x and y (x, y and z are all of the same length)

cloud(z ~ x*y) 3-D perspective plot (points)

wireframe(z ~ x*y) id. (surface)

splom(~ x) matrix of bivariate plots

parallel(~ x) parallel coordinates plot

Let us see now some examples in order to illustrate a few aspects of lattice.
The package must be loaded in memory with the command library(lattice)

14http://cm.bell-labs.com/cm/ms/departments/sia/project/trellis/index.html
15plot() also accepts a formula as its main argument: if x and y are two vectors of the

same length, plot(y ~ x) and plot(x, y) will give identical graphs.

49

http://cm.bell-labs.com/cm/ms/departments/sia/project/trellis/index.html

x

D
en

si
ty

0

0.1

0.2

0.3

0.4

0.5

0.6

−4 −2 0 2 4

n = 5 n = 10

−4 −2 0 2 4

n = 15

n = 20 n = 25

0

0.1

0.2

0.3

0.4

0.5

0.6

n = 30
0

0.1

0.2

0.3

0.4

0.5

0.6

n = 35 n = 40

−4 −2 0 2 4

n = 45

Figure 7: The function densityplot.

so that the functions can be accessed.
Let us start with the graphs of density functions. Such graphs can be

done simply with densityplot(~ x) which will plot a curve of the empirical
density function with the points corresponding to the observations on the x-
axis (similarly to rug()). Our example will be slightly more complicated with
the superposition, on each plot, of the curves of empirical density and those
predicted from a normal law. It is necessary to use the argument panel which
defines what is drawn on each plot. The commands are:

n <- seq(5, 45, 5)

x <- rnorm(sum(n))

y <- factor(rep(n, n), labels=paste("n =", n))

densityplot(~ x | y,

panel = function(x, ...) {

panel.densityplot(x, col="DarkOliveGreen", ...)

panel.mathdensity(dmath=dnorm,

args=list(mean=mean(x), sd=sd(x)),

col="darkblue")

})

The first three lines of command generate a random sample of independent
normal variates which is split in sub-samples of size equal to 5, 10, 15, . . . , and
45. Then comes the call to densityplot producing a plot for each sub-sample.
panel takes as argument a function. In our example, we have defined a func-
tion which calls two functions pre-defined in lattice: panel.densityplot to
draw the empirical density function, and panel.mathdensity to draw the den-
sity function predicted from a normal law. The function panel.densityplot

is called by default if no argument is given to panel: the command densityplot

50

long

la
t

−40

−35

−30

−25

−20

−15

−10

165 170 175 180 185

40−112 112−184

165 170 175 180 185

184−256

256−328 328−400

−40

−35

−30

−25

−20

−15

−10
400−472

−40

−35

−30

−25

−20

−15

−10
472−544 544−616

165 170 175 180 185

616−688

Figure 8: The function xyplot with the data “quakes”.

(~ x | y) would have resulted in the same graph than Fig. 7 but without the
blue curves.

The next examples are taken, more or less modified, from the help pages
of lattice, and use some data sets available in R: the locations of 1000 seismic
events near the Fiji Islands, and some flower measurements made on three
species of iris.

Fig. 8 shows the geographic locations of the seismic events with respect to
depth. The commands necessary for this graph are:

data(quakes)

mini <- min(quakes$depth)

maxi <- max(quakes$depth)

int <- ceiling((maxi - mini)/9)

inf <- seq(mini, maxi, int)

quakes$depth.cat <- factor(floor(((quakes$depth - mini) / int)),

labels=paste(inf, inf + int, sep="-"))

xyplot(lat ~ long | depth.cat, data = quakes)

The first command loads the data quakes in memory. The five next com-
mands create a factor by dividing the depth (variable depth) in nine equally-
ranged intervals: the levels of this factor are labelled with the lower and upper
bounds of these intervals. It then suffices to call the function xyplot with the
appropriate formula and an argument data indicating where xyplot must look
for the variables16.

With the data iris, the overlap among the different species is sufficiently
small so they can be plotted on the figure (Fig. 9). The commands are:

16plot() cannot take an argument data, the location of the variables must be given
explicitly, for example plot(quakes$long ~ quakes$lat).

51

Petal.Width

P
et

al
.L

en
gt

h
oo
o
o
o

o

o
o
o

o o
o

o

o
o

o
o

o

o
o

o
o

o

o
o

o o
o
o
oo

oo
o
o

o
o

o
o
o

ooo

o

o

o
o
o
o
o

o
o

o

o

o
o

o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o
o

o
o

o
o

o

o

o
o

o

o

o o
o

o

o
o

o
o

o

o

oo o
o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o
o

o
o

o
o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o
o

o

o
o

oo

o
o

o
o

o
o

o

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5

setosa
versicolor
virginica

Figure 9: The function xyplot with the data “iris”.

data(iris)

xyplot(

Petal.Length ~ Petal.Width, data = iris, groups=Species,

panel = panel.superpose,

type = c("p", "smooth"), span=.75,

auto.key = list(x = 0.15, y = 0.85)

)

The call to the function xyplot is here a bit more complex than in the
previous example and uses several options that we will detail. The option
groups, as suggested by its name, defines groups that will be used by the
other options. We have already seen the option panel which defines how the
different groups will be represented on the graph: we use here a pre-defined
function panel.superpose in order to superpose the groups on the same plot.
No option is passed to panel.superpose, the default colours will be used to
distinguish the groups. The option type, like in plot(), specifies how the
data are represented, but here we can give several arguments as a vector:
"p" to draw points and "smooth" to draw a smooth curve which degree of
smoothness is specified by span. The option auto.key adds a legend to the
graph: it is only necessary to give, as a list, the coordinates where the legend
is to be plotted. Note that here these coordinates are relative to the size of
the plot (i.e. in [0, 1]).

We will see now the function splom with the same data on iris. The
following commands were used to produce Fig. 10:

splom(

~iris[1:4], groups = Species, data = iris, xlab = "",

panel = panel.superpose,

52

Sepal.Length

5

5

6

6

7

78 8

oo oo
o

o

o
o

o
o

o

oo
o

o o
o

o

o

o
o

o
o

o
oo ooo

oo

o o
o

oo
o

o
o

oo
o o

o o
o

o
o

o
o

o

o
o

o

o

o

o

o

o

oo

oo o
o

o

oo
o

o
ooo o

ooo o

o
ooo
oo

o

o

o
o

ooo

o
o

o

o oo
o

o

o

o
o

o

oo

o

o

o

o
o

oo
o

o o

oo

oo

o

o

o

o

o
o

o

o o
o

oo
o

ooo

o

oo
o

ooo

o

ooo
o o

o
o

oooo
o
o

o
o

o
o
o

oo
o

oo
o
o

o

o
o

o
o

o
ooooo

oo

oo
o

oo
o

o
o

oo
oo

oo
o
o

o

o
o

o

o
o

o

o

o

o

o

o

oo

oo o
o

o

oo
o

o
oo oo

oo
oo

o
ooo

o o

o

o

o
o

ooo

o
o

o

ooo
o

o

o

o
o

o

oo

o

o

o

o
o

oo
o

oo

oo

oo

o

o

o

o

o
o
o

oo
o

oo
o

oo o

o

oo
o

ooo

o

ooo
ooo
o

oooo
o

o

o
o

o
o
o

oo
o

o o
o

o

o

o
o

o
o

o
oo ooo
oo

oo
o

oo
o

o
o

oo
oo

oo
o

o
o

o
o

o

o
o

o

o

o

o

o

o

oo

oo o
o

o

oo
o

o
oo oo

ooo o

o
ooo

o o

o

o

o
o

ooo

o
o

o

ooo
o

o

o

o
o

o

o o

o

o

o

o
o

oo
o

o o

oo

oo

o

o

o

o

o
o

o

oo
o

o o
o

ooo

o

oo
o

o oo

o

o oo
oo

o
o

o

o
oo

o
o

o o

o
o

o
o

oo

o

o

o

o
oo

o
oo
oo

o

ooo
oo

o

o o

oo
oo

o

oo

o

o
o
o

o

o

o

o

o oo o

o

oo

o

o

o
o

o

o

o

oo
oo

o

o
o

o

o
o

o oo
o

oo
o

oo
oo

o

o
o

o

o

oo

o

o
o

o
oo o

o
o

o

o
ooo o

o

o

o

o

o

o
o

o
o

o
o

o

o

o

o

o oo

o o

o
o

o
o

o

o

oo
o

o

o
oo ooo

o

oo
o

o

o

o

o
Sepal.Width

22

2.5

2.5

3

3

3.5

3.5
4

4
4.5

4.5

o

o
oo

o
o

oo

o
o

o
o

oo

o

o

o

o
oo

o
oo
oo

o

ooo
oo
o

oo

oo
oo

o

oo

o

o
o
o

o

o

o

o

o ooo

o

oo

o

o

o
o

o

o

o

oo
oo

o

o
o

o

o
o

oooo
oo

o
oo
o o

o

o
o

o

o

oo

o

o
o

o
ooo

o
o

o

o
ooo o

o

o

o

o

o

o
o

o
o

o
o

o

o

o

o

o oo

oo

o
o

o
o
o

o

oo
o

o

o
oo ooo

o

oo
o

o

o

o

o

o

o
oo

o
o

oo

o
o

o
o

oo

o

o

o

o
oo

o
oo
oo

o

ooo
oo

o

oo

oo
oo

o

oo

o

o
o

o

o

o

o

o

o ooo

o

oo

o

o

o
o

o

o

o

oo
oo

o

o
o

o

o
o

ooo
o

oo
o
oo
o o

o

o
o

o

o

oo

o

o
o

o
ooo

o
o

o

o
oo oo

o

o

o

o

o

o
o

o
o

o
o

o

o

o

o

ooo

oo

o
o

o
o

o

o

oo
o

o

o
oo o oo

o

o o
o

o

o

o

o

oooo o oo oo o oooo oooo oo oo
o

oooooooo oo ooo ooo oooo ooo oo oo

oo
o

o
oo o

o

o
o

o
oo

o

o
oo

o
o

o

o
o

oo
oo

ooo

ooo o

o
o o oooo
o o

o
o

ooo o

o

o

o

o
ooo

o

o

o
o o

oo
o

oo oo

oo

o
o

o

o

o
o o

oo
o oo o
o

o
o

o
oo

o
oo
oo

oo
ooooo

oo oo o oooo o oooo o ooo ooo o
o

ooo ooooo o oooo ooo ooo o o o
o oo oo

oo
o

o
oo o

o

o
o

o
oo

o

o
oo

o
o

o

o
o

o o
oo

o o
o

ooo o

o
o ooo oo

o o
o

o

o ooo

o

o

o

o
ooo
o

o

o
o o

oo o
o o oo

oo

o
o

o

o

o
oo

o o
o oo o
o
o

o
o

oo
o
oooo
oo

oo o oo

Petal.Length

11

2

2

3

3

4

4

4

4

5

5
6

67 7

ooooo
oooooooooo oooooo o

o
ooo ooooo oooooooooooo oo

ooooo

oo
o

o
oo o

o

o
o

o
oo

o

o
oo

o
o

o

o
o

oo
oo
o o
o

ooo o

o
oooooo

o o
o

o

oooo

o

o

o

o
oo o
o

o

o
o o

oo o
o ooo

oo

o
o

o

o

o
oo

oo
oo oo
o

o
o

o
oo

o
o o

oo
o o
ooo oo

oooo o
oo oo o oooo o

ooo oo o
o

o
o

oo
o

oooo
o

o ooo ooo oooo

o
oo oo oo

oo o
o

o
o

o

o
oo

o

o

o

oo oo

o

o

o

o

o
o

o ooo
o

o

ooo
o

oo o o
oooo

o
o

o
ooo o

o
o

o

o
o

o

o o

o oo

o

oo
oo

o o

o

oo

o

o
o o

o
o

ooo
o

o
o o

o

oo

oo

oo
o

oo

o

o
o
o

oo
o

o

oo oo o
oooo o oooo o

ooo ooo
o

o
o
oo
o
oooo

o
oooo ooo ooo o

o
oo oo oo

ooo
o

o
o

o

o
oo

o

o

o

oo oo

o

o

o

o

o
o

oooo
o

o

ooo
o

o o oo
o ooo

o
o

o
o ooo

o
o

o

o
o

o

oo

o oo

o

oo
oo

o o

o

oo

o

o
oo

o
o

oo o
o

o
o o
o

oo

o o

oo
o
oo

o

o
o

o

o o
o

o

ooooo
oooooooooo

oooooo
o

o
o
oo

o
oooo
o
oooooooo

ooo

o
oooooo

ooo
o

o
o
o

o
oo

o

o

o

oo oo

o

o

o

o

o
o

oooo
o

o

ooo
o

oooo
oooo
o

o
o

ooooo
o

o

o
o

o

o o

o oo

o

oo
oo

oo

o

oo

o

o
o o
o

o
ooo

o

o
oo

o

o o

oo

oo
o
oo

o

o
o

o

oo
o

o

Petal.Width

0
0

0.5
0.5

1

1

1.5

1.5

2

22.5 2.5

Setosa Versicolor Virginica

Figure 10: The function splom with the data “iris” (1).

auto.key = list(columns = 3)

)

The main argument is this time a matrix (the four first columns of iris).
The result is the set of possible bivariate plots among the columns of the
matrix, like the standard function pairs. By default, splom adds the text
“Scatter Plot Matrix” under the x-axis: to avoid this, the option xlab=""

was used. The other options are similar to the previous example, except that
columns = 3 for auto.key was specified so the legend is displayed in three
columns.

Fig. 10 could have been done with pairs(), but this latter function cannot
make conditional graphs like on Fig. 11. The code used is relatively simple:

splom(~iris[1:3] | Species, data = iris, pscales = 0,

varnames = c("Sepal\nLength", "Sepal\nWidth", "Petal\nLength"))

The sub-graphs being relatively small, we added two options to improve
the legibility of the figure: pscales = 0 removes the tick-marks on the axes
(all sub-graphs are drawn on the same scales), and the names of the variables
were re-defined to display them on two lines ("\n" codes for a line break in a
character string).

The last example uses the method of parallel coordinates for the ex-
ploratory analysis of multivariate data. The variables are arranged on an
axis (e.g., the y-axis), and the observed values are plotted on the other axis
(the variables are scaled similarly, e.g., by standardizing them). The different
values of the same individual are joined by a line. With the data iris, Fig. 12
is obtained with the following code:

parallel(~iris[, 1:4] | Species, data = iris, layout = c(3, 1))

53

Scatter Plot Matrix

Sepal
Length

Sepal
Width

Petal
Length

setosa

Sepal
Length

Sepal
Width

Petal
Length

versicolor

Sepal
Length

Sepal
Width

Petal
Length

virginica

Figure 11: The function splom with the data “iris” (2).

Sepal.Length

Sepal.Width

Petal.Length

Petal.Width

Min Max

setosa versicolor

Min Max

Min Max

virginica

Figure 12: The function parallel with the data “iris”.

54

5 Statistical analyses with R

Even more than for graphics, it is impossible here to go in the details of the
possibilities offered by R with respect to statistical analyses. My goal here is
to give some landmarks with the aim to have an idea of the features of R to
perform data analyses.

The package stats contains functions for a wide range of basic statisti-
cal analyses: classical tests, linear models (including least-squares regression,
generalized linear models, and analysis of variance), distributions, summary
statistics, hierarchical clustering, time-series analysis, nonlinear least squares,
and multivariate analysis. Other statistical methods are available in a large
number of packages. Some of them are distributed with a base installation
of R and are labelled recommanded, and many other packages are contributed
and must be installed by the user.

We will start with a simple example which requires no other package than
stats in order to introduce the general approach to data analysis in R. Then,
we will detail some notions, formulae and generic functions, which are useful
whatever the type of analysis performed. We will conclude with an overview
on packages.

5.1 A simple example of analysis of variance

The function for the analysis of variance in stats is aov. In order to try it, let
us take a data set distributed with R: InsectSprays. Six insecticides were
tested in field conditions, the observed response was the number of insects.
Each insecticide was tested 12 times, thus there are 72 observations. We will
not consider here the graphical exploration of the data, but will focus on a
simple analysis of variance of the response with respect to the insecticide. After
loading the data in memory with the function data, the analysis is performed
after a square-root transformation of the response:

> data(InsectSprays)

> aov.spray <- aov(sqrt(count) ~ spray, data = InsectSprays)

The main (and mandatory) argument of aov is a formula which specifies
the response on the left-hand side of the tilde symbol ~ and the predictor
on the right-hand side. The option data = InsectSprays specifies that the
variables must be found in the data frame InsectSprays. This syntax is
equivalent to:

> aov.spray <- aov(sqrt(InsectSprays$count) ~ InsectSprays$spray)

or still (if we know the column numbers of the variables):

55

> aov.spray <- aov(sqrt(InsectSprays[, 1]) ~ InsectSprays[, 2])

The first syntax is to be preferred since it is clearer.
The results are not displayed since they are assigned to an object called

aov.spray. We will then used some functions to extract the results, for exam-
ple print to display a brief summary of the analysis (mostly the estimated pa-
rameters) and summary to display more details (included the statistical tests):

> aov.spray

Call:

aov(formula = sqrt(count) ~ spray, data = InsectSprays)

Terms:

spray Residuals

Sum of Squares 88.43787 26.05798

Deg. of Freedom 5 66

Residual standard error: 0.6283453

Estimated effects may be unbalanced

> summary(aov.spray)

Df Sum Sq Mean Sq F value Pr(>F)

spray 5 88.438 17.688 44.799 < 2.2e-16 ***

Residuals 66 26.058 0.395

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We may remind that typing the name of the object as a command is similar
to the command print(aov.spray). A graphical representation of the results
can be done with plot() or termplot(). Before typing plot(aov.spray) we
will divide the graphics into four parts so that the four diagnostics plots will
be done on the same graph. The commands are:

> opar <- par()

> par(mfcol = c(2, 2))

> plot(aov.spray)

> par(opar)

> termplot(aov.spray, se=TRUE, partial.resid=TRUE, rug=TRUE)

and the resulting graphics are on Figs. 13 and 14.

5.2 Formulae

Formulae are a key element in statistical analyses with R: the notation used
is the same for (almost) all functions. A formula is typically of the form y

~ model where y is the analysed response and model is a set of terms for
which some parameters are to be estimated. These terms are separated with
arithmetic symbols but they have here a particular meaning.

56

1.5 2.5 3.5

−
1.

5
0.

0
1.

0

Fitted values

R
es

id
ua

ls

Residuals vs Fitted
27 39

25

−2 −1 0 1 2
−

2
0

1
2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s Normal Q−Q plot

2739

25

1.5 2.5 3.5

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s Scale−Location plot

27 3925

0 20 40 60

0.
00

0.
04

0.
08

Obs. number

C
oo

k’
s

di
st

an
ce

Cook’s distance plot
27

39
25

Figure 13: Graphical representation of the results from the function aov with
plot().

a+b additive effects of a and of b
X if X is a matrix, this specifies an additive effect of each of

its columns, i.e. X[,1]+X[,2]+...+X[,ncol(X)]; some
of the columns may be selected with numeric indices (e.g.,
X[,2:4])

a:b interactive effect between a and b

a*b additive and interactive effects (identical to a+b+a:b)
poly(a, n) polynomials of a up to degree n

^n includes all interactions up to level n, i.e. (a+b+c)^2 is
identical to a+b+c+a:b+a:c+b:c

b %in% a the effects of b are nested in a (identical to a+a:b, or
a/b)

-b removes the effect of b, for example: (a+b+c)^2-a:b is
identical to a+b+c+a:c+b:c

-1 y~x-1 is a regression through the origin (id. for y~x+0 or
0+y~x)

1 y~1 fits a model with no effects (only the intercept)
offset(...) adds an effect to the model without estimating any pa-

rameter (e.g., offset(3*x))

We see that the arithmetic operators of R have in a formula a different
meaning than they have in expressions. For example, the formula y~x1+x2

defines the model y = β1x1 + β2x2 + α, and not (if the operator + would have
its usual meaning) y = β(x1 + x2) + α. To include arithmetic operations in a
formula, we can use the function I: the formula y~I(x1+x2) defines the model
y = β(x1 + x2) + α. Similarly, to define the model y = β1x + β2x

2 + α, we
will use the formula y ~ poly(x, 2) (and not y ~ x + x^2). However, it is

57

0 1 2 3 4 5 6
−

3
−

2
−

1
0

1
2

spray

P
ar

tia
l f

or
 s

pr
ay

Figure 14: Graphical representation of the results from the function aov with
termplot().

possible to include a function in a formula in order to transform a variable as
seen above with the insect sprays analysis of variance.

For analyses of variance, aov() accepts a particular syntax to define ran-
dom effects. For instance, y ~ a + Error(b) means the additive effects of
the fixed term a and the random one b.

5.3 Generic functions

We remember that R’s functions act with respect to the attributes of the
objects possibly passed as arguments. The class is an attribute deserving some
attention here. It is very common that the R statistical functions return an
object of class with the same name (e.g., aov returns an object of class "aov",
lm returns one of class "lm"). The functions that we can use subsequently to
extract the results will act specifically with respect to the class of the object.
These functions are called generic.

For instance, the function which is most often used to extract results from
analyses is summary which displays detailed results. Whether the object given
as argument is of class "lm" (linear model) or "aov" (analysis of variance),
it sounds obvious that the information to display will not be the same. The
advantage of generic functions is that the syntax is the same in all cases.

An object containing the results of an analysis is generally a list, and the
way it is displayed is determined by its class. We have already seen this notion
that the action of a function depends on the kind of object given as argument.
It is a general feature of R17. The following table gives the main generic func-

17There are more than 100 generic functions in R.

58

tions which can be used to extract information from objects resulting from an
analysis. The typical usage of these functions is:

> mod <- lm(y ~ x)

> df.residual(mod)

[1] 8

print returns a brief summary

summary returns a detailed summary

df.residual returns the number of residual degrees of freedom

coef returns the estimated coefficients (sometimes with their standard-errors)

residuals returns the residuals

deviance returns the deviance

fitted returns the fitted values

logLik computes the logarithm of the likelihood and the number of parameters

AIC computes the Akaike information criterion or AIC (depends on logLik())

A function like aov or lm returns a list with its different elements corre-
sponding to the results of the analysis. If we take our example of an analysis
of variance with the data InsectSprays, we can look at the structure of the
object returned by aov:

> str(aov.spray, max.level = -1)

List of 13

- attr(*, "class")= chr [1:2] "aov" "lm"

Another way to look at this structure is to display the names of the object:

> names(aov.spray)

[1] "coefficients" "residuals" "effects"

[4] "rank" "fitted.values" "assign"

[7] "qr" "df.residual" "contrasts"

[10] "xlevels" "call" "terms"

[13] "model"

The elements can then be extracted as we have already seen:

> aov.spray$coefficients

(Intercept) sprayB sprayC sprayD

3.7606784 0.1159530 -2.5158217 -1.5963245

sprayE sprayF

-1.9512174 0.2579388

summary() also creates a list which, in the case of aov(), is simply a table
of tests:

59

> str(summary(aov.spray))

List of 1

$:Classes anova and ‘data.frame’: 2 obs. of 5 variables:

..$ Df : num [1:2] 5 66

..$ Sum Sq : num [1:2] 88.4 26.1

..$ Mean Sq: num [1:2] 17.688 0.395

..$ F value: num [1:2] 44.8 NA

..$ Pr(>F) : num [1:2] 0 NA

- attr(*, "class")= chr [1:2] "summary.aov" "listof"

> names(summary(aov.spray))

NULL

Generic functions do not generally perform any action on objects: they
call the appropriate function with respect to the class of the argument. A
function called by a generic is a method in R’s jargon. Schematically, a method
is constructed as generic.cls , where cls is the class of the object. For
instance, in the case of summary, we can display the corresponding methods:

> apropos("^summary")

[1] "summary" "summary.aov"

[3] "summary.aovlist" "summary.connection"

[5] "summary.data.frame" "summary.default"

[7] "summary.factor" "summary.glm"

[9] "summary.glm.null" "summary.infl"

[11] "summary.lm" "summary.lm.null"

[13] "summary.manova" "summary.matrix"

[15] "summary.mlm" "summary.packageStatus"

[17] "summary.POSIXct" "summary.POSIXlt"

[19] "summary.table"

We can see the difference for this generic in the case of a linear regression,
compared to an analysis of variance, with a small simulated example:

> x <- y <- rnorm(5)

> lm.spray <- lm(y ~ x)

> names(lm.spray)

[1] "coefficients" "residuals" "effects"

[4] "rank" "fitted.values" "assign"

[7] "qr" "df.residual" "xlevels"

[10] "call" "terms" "model"

> names(summary(lm.spray))

[1] "call" "terms" "residuals"

[4] "coefficients" "sigma" "df"

[7] "r.squared" "adj.r.squared" "fstatistic"

[10] "cov.unscaled"

The following table shows some generic functions that do supplementary
analyses from an object resulting from an analysis, the main argument being

60

this latter object, but in some cases a further argument is necessary like for
predict or update.

add1 tests successively all the terms that can be added to a model

drop1 tests successively all the terms that can be removed from a model

step selects a model with AIC (calls add1 and drop1)

anova computes a table of analysis of variance or deviance for one or several
models

predict computes the predicted values for new data from a fitted model

update re-fits a model with a new formula or new data

There are also various utilities functions that extract information from a
model object or a formula, such as alias which finds the linearly dependent
terms in a linear model specified by a formula.

Finally, there are, of course, graphical functions such as plot which dis-
plays various diagnostics, or termplot (see the above example), though this
latter function is not generic but calls predict.

5.4 Packages

The following table lists the standard packages which are distributed with a
base installation of R. Some of them are loaded in memory when R starts; this
can be displayed with the function search:

> search()

[1] ".GlobalEnv" "package:methods"

[3] "package:stats" "package:graphics"

[5] "package:grDevices" "package:utils"

[7] "package:datasets" "Autoloads"

[9] "package:base"

The other packages may be used after being loaded:

> library(grid)

The list of the functions in a package can be displayed with:

> library(help = grid)

or by browsing the help in html format. The information relative to each
function can be accessed as previously seen (p. 7).

61

Package Description

base base R functions
datasets base R datasets
grDevices graphics devices for base and grid graphics
graphics base graphics
grid grid graphics
methods definition of methods and classes for R objects and program-

ming tools
splines regression spline functions and classes
stats statistical functions
stats4 statistical functions using S4 classes
tcltk functions to interface R with Tcl/Tk graphical user interface

elements
tools tools for package development and administration
utils R utility functions

Many contributed packages add to the list of statistical methods available
in R. They are distributed separately, and must be installed and loaded in
R. A complete list of the contributed packages, with descriptions, is on the
CRAN Web site18. Several of these packages are recommanded since they cover
statistical methods often used in data analysis. The recommended packages
are often distributed with a base installation of R. They are briefly described
in the following table.

Package Description

boot resampling and bootstraping methods
class classification methods
cluster clustering methods
foreign functions for reading data stored in various formats (S3,

Stata, SAS, Minitab, SPSS, Epi Info)
KernSmooth methods for kernel smoothing and density estimation (in-

cluding bivariate kernels)
lattice Lattice (Trellis) graphics
MASS contains many functions, tools and data sets from the li-

braries of “Modern Applied Statistics with S” by Venables
& Ripley

mgcv generalized additive models
nlme linear and non-linear mixed-effects models
nnet neural networks and multinomial log-linear models
rpart recursive partitioning
spatial spatial analyses (“kriging”, spatial covariance, . . .)
survival survival analyses

18http://cran.r-project.org/src/contrib/PACKAGES.html

62

http://cran.r-project.org/src/contrib/PACKAGES.html

There are two other main repositories of R packages: the Omegahat Project
for Statistical Computing19 which focuses on web-based applications and in-
terfaces between softwares and languages, and the Bioconductor Project20

specialized in bioinformatic applications (particularly for the analysis of micro-
array data).

The procedure to install a package depends on the operating system and
whether R was installed from the sources or pre-compiled binaries. In the
latter situation, it is recommended to use the pre-compiled packages available
on CRAN’s site. Under Windows, the binary Rgui.exe has a menu “Packages”
allowing to install packages via internet from the CRAN Web site, or from
zipped files on the local disk.

If R was compiled, a package can be installed from its sources which are
distributed as a ‘.tar.gz’ file. For instance, if we want to install the package gee,
we will first download the file gee 4.13-6.tar.gz (the number 4.13-6 indicates
the version of the package; generally only one version is available on CRAN).
We will then type from the system (and not in R) the command:

R CMD INSTALL gee_4.13-6.tar.gz

There are several useful functions to manage packages such as installed.
packages, CRAN.packages, or download.packages. It is also useful to type
regularly the command:

> update.packages()

which checks the versions of the packages installed against those available
on CRAN (this command can be called from the menu “Packages” under
Windows). The user can then update the packages with more recent versions
than those installed on the computer.

19http://www.omegahat.org/R/
20http://www.bioconductor.org/

63

http://www.omegahat.org/R/
http://www.bioconductor.org/

6 Programming with R in pratice

Now that we have done an overview of R’s functionalities, let us return to the
language and programming. We will see a few simple ideas likely to be used
in practice.

6.1 Loops and vectorization

An advantage of R compared to softwares with pull-down menus is the possibil-
ity to program simply a series of analyses which will be executed successively.
This is common to any computer language, but R has some particular features
which make programming easier for non-specialists.

Like other languages, R has some control structures which are not dissim-
ilar to those of the C language. Suppose we have a vector x, and for each
element of x with the value b, we want to give the value 0 to another variable
y, otherwise 1. We first create a vector y of the same length than x:

y <- numeric(length(x))

for (i in 1:length(x)) if (x[i] == b) y[i] <- 0 else y[i] <- 1

Several instructions can be executed if they are placed within braces:

for (i in 1:length(x)) {

y[i] <- 0

...

}

if (x[i] == b) {

y[i] <- 0

...

}

Another possible situation is to execute an instruction as long as a condi-
tion is true:

while (myfun > minimum) {

...

}

However, loops and control structures can be avoided in most situations
thanks to a feature of R: vectorization. Vectorization makes loops implicit in
expression, and we have seen many cases. Let us consider the addition of two
vectors:

64

> z <- x + y

This addition could be written with a loop, as this is done in most lan-
guages:

> z <- numeric(length(x))

> for (i in 1:length(z)) z[i] <- x[i] + y[i]

In this case, it is necessary to create the vector z beforehand because of
the use of the indexing system. We realize that this explicit loop will work
only if x and y are of the same length: it must be changed if this is not true,
whereas the first expression will work in all situations.

The conditional executions (if ... else) can be avoided with the use
of the logical indexing; coming back to the above example:

> y[x == b] <- 0

> y[x != b] <- 1

In addition to being simpler, vectorized expressions are computationally
more efficient, particularly with large quantities of data.

There are also several functions of the type ‘apply’ which avoids writing
loops. apply acts on the rows and/or columns of a matrix, its syntax is
apply(X, MARGIN, FUN, ...), where X is a matrix, MARGIN indicates whether
to consider the rows (1), the columns (2), or both (c(1, 2)), FUN is a function
(or an operator, but in this case it must be specified within brackets) to apply,
and ... are possible optional arguments for FUN. A simple example follows.

> x <- rnorm(10, -5, 0.1)

> y <- rnorm(10, 5, 2)

> X <- cbind(x, y) # the columns of X keep the names "x" and "y"

> apply(X, 2, mean)

x y

-4.975132 4.932979

> apply(X, 2, sd)

x y

0.0755153 2.1388071

lapply() acts on a list: its syntax is similar to apply and it returns a list.

> forms <- list(y ~ x, y ~ poly(x, 2))

> lapply(forms, lm)

[[1]]

Call:

FUN(formula = X[[1]])

Coefficients:

65

(Intercept) x

31.683 5.377

[[2]]

Call:

FUN(formula = X[[2]])

Coefficients:

(Intercept) poly(x, 2)1 poly(x, 2)2

4.9330 1.2181 -0.6037

sapply() is a flexible variant of lapply() which can take a vector or a
matrix as main argument, and returns its results in a more user-friendly form,
generally as a table.

6.2 Writing a program in R

Typically, an R program is written in a file saved in ASCII format and named
with the extension ‘.R’. A typical situation where a program is useful is when
one wants to do the same tasks several times. In our first example, we want
to do the same plot for three different species of birds, the data being in three
distinct files. We will proceed step by step, and see different ways to program
this very simple problem.

First, let us make our program in the most intuitive way by executing suc-
cessively the needed commands, taking care to partition the graphical device
beforehand.

layout(matrix(1:3, 3, 1)) # partition the graphics

data <- read.table("Swal.dat") # read the data

plot(data$V1, data$V2, type="l")

title("swallow") # add a title

data <- read.table("Wren.dat")

plot(data$V1, data$V2, type="l")

title("wren")

data <- read.table("Dunn.dat")

plot(data$V1, data$V2, type="l")

title("dunnock")

The character ‘#’ is used to add comments in a program: R then goes to
the next line.

The problem of this first program is that it may become quite long if we
want to add other species. Moreover, some commands are executed several
times, thus they can be grouped together and executed after changing some
arguments. The strategy used here is to put these arguments in vectors of
mode character, and then use the indexing to access these different values.

66

layout(matrix(1:3, 3, 1)) # partition the graphics

species <- c("swallow", "wren", "dunnock")

file <- c("Swal.dat" , "Wren.dat", "Dunn.dat")

for(i in 1:length(species)) {

data <- read.table(file[i]) # read the data

plot(data$V1, data$V2, type="l")

title(species[i]) # add a title

}

Note that there are no double quotes around file[i] in read.table()

since this argument is of mode character.
Our program is now more compact. It is easier to add other species since

the vectors containing the species and file names are at the beginning of the
program.

The above programs will work correctly if the data files ‘.dat’ are located
in the working directory of R, otherwise the user must either change the work-
ing directory, or specifiy the path in the program (for example: file <-

"/home/paradis/data/Swal.dat"). If the program is written in the file My-
birds.R, it will be called by typing:

> source("Mybirds.R")

Like for any input from a file, it is necessary to give the path to access the
file if it is not in the working directory.

6.3 Writing your own functions

We have seen that most of R’s work is done with functions which arguments
are given within parentheses. Users can write their own functions, and these
will have exactly the same properties than other functions in R.

Writing your own functions allows an efficient, flexible, and rational use of
R. Let us come back to our example of reading some data followed by plotting
a graph. If we want to do this operation in different situations, it may be a
good idea to write a function:

myfun <- function(S, F)

{

data <- read.table(F)

plot(data$V1, data$V2, type="l")

title(S)

}

To be executed, this function must be loaded in memory, and this can be
done in several ways. The lines of the function can be typed directly on the
keyboard, like any other command, or copied and pasted from an editor. If
the function has been saved in a text file, it can be loaded with source()

67

like another program. If the user wants some functions to be loaded each
time when R starts, they can be saved in a workspace .RData which will be
loaded in memory if it is in the working directory. Another possibility is to
configure the file ‘.Rprofile’ or ‘Rprofile’ (see ?Startup for details). Finally,
it is possible to create a package, but this will not be discussed here (see the
manual “Writing R Extensions”).

Once the function is loaded, we will be able with a single command to read
the data and plot the graph, for instance with myfun("swallow", "Swal.dat").
Thus, we have now a third version of our program:

layout(matrix(1:3, 3, 1))

myfun("swallow", "Swal.dat")

myfun("wren", "Wrenn.dat")

myfun("dunnock", "Dunn.dat")

We may also use sapply() leading to a fourth version of our program:

layout(matrix(1:3, 3, 1))

species <- c("swallow", "wren", "dunnock")

file <- c("Swal.dat" , "Wren.dat", "Dunn.dat")

sapply(species, myfun, file)

In R, it is not necessary to declare the variables used within a function.
When a function is executed, R uses a rule called lexical scoping to decide
whether an object is local to the function, or global. To understand this
mechanism, let us consider the very simple function below:

> foo <- function() print(x)

> x <- 1

> foo()

[1] 1

The name x is not used to create an object within foo(), so R will seek
in the enclosing environment if there is an object called x, and will print its
value (otherwise, a message error is displayed, and the execution is halted).

If x is used as the name of an object within our function, the value of x in
the global environment is not used.

> x <- 1

> foo2 <- function() { x <- 2; print(x) }

> foo2()

[1] 2

> x

[1] 1

This time print() uses the object x that is defined within its environment,
that is the environment of foo2.

68

The word “enclosing” above is important. In our two example functions,
there are two environments: the global one, and the one of the function foo

or foo2. If there are three or more nested environments, the search for the
objects is made progressively from a given environment to the enclosing one,
and so on, up to the global one.

There are two ways to specify arguments to a function: by their positions
or by their names (also called tagged arguments). For example, let us consider
a function with three arguments:

foo <- function(arg1, arg2, arg3) {...}

foo() can be executed without using the names arg1, . . . , if the corre-
sponding objects are placed in the correct position, for instance: foo(x, y,

z). However, the position has no importance if the names of the arguments
are used, e.g. foo(arg3 = z, arg2 = y, arg1 = x). Another feature of
R’s functions is the possibility to use default values in their definition. For
instance:

foo <- function(arg1, arg2 = 5, arg3 = FALSE) {...}

The commands foo(x), foo(x, 5, FALSE), and foo(x, arg3 = FALSE) will
have exactly the same result. The use of default values in a function definition
is very useful, particularly when used with tagged arguments (i.e. to change
only one default value such as foo(x, arg3 = TRUE).

To conclude this section, let us see another example which is not purely
statistical, but it illustrates the flexibility of R. Consider we wish to study the
behaviour of a non-linear model: Ricker’s model defined by:

Nt+1 = Nt exp

[

r

(

1 −
Nt

K

)]

This model is widely used in population dynamics, particularly of fish. We
want, using a function, to simulate this model with respect to the growth rate
r and the initial number in the population N0 (the carrying capacity K is
often taken equal to 1 and this value will be taken as default); the results will
be displayed as a plot of numbers with respect to time. We will add an option
to allow the user to display only the numbers in the last few time steps (by
default all results will be plotted). The function below can do this numerical
analysis of Ricker’s model.

ricker <- function(nzero, r, K=1, time=100, from=0, to=time)

{

N <- numeric(time+1)

N[1] <- nzero

for (i in 1:time) N[i+1] <- N[i]*exp(r*(1 - N[i]/K))

Time <- 0:time

plot(Time, N, type="l", xlim=c(from, to))

}

69

Try it yourself with:

> layout(matrix(1:3, 3, 1))

> ricker(0.1, 1); title("r = 1")

> ricker(0.1, 2); title("r = 2")

> ricker(0.1, 3); title("r = 3")

70

7 Literature on R

Manuals. Several manuals are distributed with R in R HOME/doc/manual/:

• An Introduction to R [R-intro.pdf],

• R Installation and Administration [R-admin.pdf],

• R Data Import/Export [R-data.pdf],

• Writing R Extensions [R-exts.pdf],

• R Language Definition [R-lang.pdf].

The files may be in different formats (pdf, html, texi, . . .) depending on
the type of installation.

FAQ. R is also distributed with an FAQ (Frequently Asked Questions) local-
ized in the directory R HOME/doc/html/. A version of the R-FAQ is
regularly updated on CRAN’s Web site:

http://cran.r-project.org/doc/FAQ/R-FAQ.html

On-line resources. The CRAN Web site hosts several documents, biblio-
graphic resources, and links to other sites. There are also a list of publi-
cations (books and articles) about R or statistical methods21 and some
documents and tutorials written by R’s users22.

Mailing lists. There are four discussion lists on R; to subscribe, send a mes-
sage, or read the archives see: http://www.R-project.org/mail.html.

The general discussion list ‘r-help’ is an interesting source of information
for the users of R (the three other lists are dedicated to annoucements
of new versions, and for developers). Many users have sent to ‘r-help’
functions or programs which can be found in the archives. If a problem
is encountered with R, it is thus important to proceed in the following
order before sending a message to ‘r-help’:

1. read carefully the on-line help (possibly using the search engine);

2. read the R-FAQ;

3. search the archives of ‘r-help’ at the above address, or by using one
of the search engines developed on some Web sites23;

4. read the “posting guide”24 before sending your question(s).

21http://www.R-project.org/doc/bib/R-publications.html
22http://cran.r-project.org/other-docs.html
23The addresses of these sites are listed at http://cran.r-project.org/search.html
24http://www.r-project.org/posting-guide.html

71

http://cran.r-project.org/doc/FAQ/R-FAQ.html
http://www.R-project.org/mail.html
http://www.R-project.org/doc/bib/R-publications.html
http://cran.r-project.org/other-docs.html
http://cran.r-project.org/search.html
http://www.r-project.org/posting-guide.html

R News. The electronic journal R News aims to fill the gap between the
electronic discussion lists and traditional scientific publications. The
first issue was published on January 200125.

Citing R in a publication. Finally, if you mention R in a publication, you
must cite the following reference:

R Development Core Team (2005). R: A language and envi-
ronment for statistical computing. R Foundation for Statisti-
cal Computing, Vienna, Austria. ISBN 3-900051-07-0, URL:
http://www.R-project.org.

25http://cran.r-project.org/doc/Rnews/

72

http://cran.r-project.org/doc/Rnews/

High-throughput sequence analysis with R and

Bioconductor

Marc Carlson, Valerie Obenchain, Hervé Pagès, Paul Shannon,
Daniel Tenenbaum, Martin Morgan∗

June 2012

Contents

1 Introduction 3
1.1 This workshop . 3
1.2 Bioconductor . 3
1.3 High-throughput sequence analysis 4
1.4 Statistical programming . 4
1.5 Bioconductor for high-throughput sequence analysis 7
1.6 Resources . 7

2 R 8
2.1 R data types . 8
2.2 Useful functions . 13
2.3 Packages . 18
2.4 Help . 19
2.5 Efficient scripts . 22
2.6 Warnings, errors, and debugging 25

3 Ranges and Strings 27
3.1 Genomic ranges . 27
3.2 Working with strings . 34
3.3 Resources . 35

4 Reads and Alignments 36
4.1 The pasilla data set . 36
4.2 Reads and the ShortRead package 36
4.3 Alignments and the Rsamtools package 41

5 RNA-seq 47
5.1 Varieties of RNA-seq . 47
5.2 Differential expression with the edgeR package 47
5.3 Additional steps in RNA-seq work flows 52
5.4 Resources . 55

∗mcarlson,vobencha,hpages,pshannon,dtenenba,mtmorgan@fhcrc.org

1

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
mailto:mtmorgan@fhcrc.org

6 ChIP-seq 56
6.1 Varieties of ChIP-seq . 56
6.2 Initial Work Flow . 57

6.2.1 Peak calling with R / Bioconductor (advanced) 59
6.3 Comparison of multiple experiments: DiffBind 63
6.4 Working with called peaks . 63

7 Annotation 68
7.1 Gene-centric annotations with AnnotationDbi 68
7.2 Genome-centric annotations with GenomicFeatures 71
7.3 Using biomaRt . 73

8 Annotation of Variants 74
8.1 Variant call format (VCF) files 74
8.2 Coding consequences . 76

A Appendix: data retrieval 81
A.1 RNA-seq data retrieval . 81
A.2 ChIP-seq data retrieval and MACS analysis 81

2

http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html

Table 1: Tentative schedule.

R / Bioconductor for Sequence Analysis
R data types & functions; help; objects; essential packages, ef-
ficient programming (Section 2). Working with ranges, strings,
reads and alignments. Quality assessment (Sections 3, 4).

RNA-Seq
Differential representation, gene set enrichment, annotation,
exon use (Sections 5, 7).

ChIP-Seq
Peak calling (3rd party); collated experiments; motifs; annota-
tion (Section 6, 7).

Variant Annotation
Common work flows; variants in and around genes, amino acid
and coding consequences (Sections 8).

1 Introduction

1.1 This workshop

This workshop introduces use of R and Bioconductor for analysis of high-
throughput sequence data. The workshop is structured as a series of short
remarks followed by group exercises. The exercises explore the diversity of tasks
for which R / Bioconductor are appropriate, but are far from comprehensive.

The goals of the workshop are to: (1) develop familiarity with R / Biocon-
ductor software for high-throughput analysis; (2) expose key statistical issues in
the analysis of sequence data; and (3) provide inspiration and a framework for
further independent exploration. An approximate schedule is shown in Table 1.

1.2 Bioconductor

Bioconductor is a collection of R packages for the analysis and comprehension
of high-throughput genomic data. Bioconductor started more than 10 years
ago. It gained credibility for its statistically rigorous approach to microarray
pre-preprocessing and analysis of designed experiments, and integrative and re-
producible approaches to bioinformatic tasks. There are now more than 500
Bioconductor packages for expression and other microarrays, sequence analy-
sis, flow cytometry, imaging, and other domains. The Bioconductor web site
provides installation, package repository, help, and other documentation.

The Bioconductor web site is at bioconductor.org. Features include:

� Introductory work flows.

� A manifest of Bioconductor packages arranged in BiocViews.

� Annotation (data bases of relevant genomic information, e.g., Entrez gene
ids in model organisms, KEGG pathways) and experiment data (contain-
ing relatively comprehensive data sets and their analysis) packages.

� Mailing lists, including searchable archives, as the primary source of help.

� Course and conference information, including extensive reference material.

� General information about the project.

3

http://bioconductor.org
bioconductor.org
http://bioconductor.org/help/workflows/
http://bioconductor.org/packages/release/bioc/
http://bioconductor.org/packages/release/BiocViews.html
http://bioconductor.org/packages/release/data/annotation/
http://bioconductor.org/packages/release/data/experiment/
http://bioconductor.org/help/mailing-list/
http://bioconductor.org/help/course-materials/
http://bioconductor.org/about/

� Package developer resources, including guidelines for creating and submit-
ting new packages.

Exercise 1
Scavenger hunt. Spend five minutes tracking down the following information.

a. From the Bioconductor web site, instructions for installing or updating
Bioconductor packages.

b. A list of all packages in the current release of Bioconductor.

c. The URL of the Bioconductor mailing list subscription page.

Solution: Possible solutions from the Bioconductor web site are, e.g., http://
bioconductor.org/install/ (installation instructions), http://bioconductor.
org/packages/release/bioc/ (current software packages), and http://bioconductor.

org/help/mailing-list/ (mailing lists).

1.3 High-throughput sequence analysis

Recent technological developments introduce high-throughput sequencing ap-
proaches. A variety of experimental protocols and analysis work flows address
gene expression, regulation, and encoding of genetic variants. Experimental pro-
tocols produce a large number (millions per sample) of short (e.g., 35-100, single
or paired-end) nucleotide sequences. These are aligned to a reference or other
genome. Analysis work flows use the alignments to infer levels of gene expression
(RNA-seq), binding of regulatory elements to genomic locations (ChIP-seq), or
prevalence of structural variants (e.g., SNPs, short indels, large-scale genomic
rearrangements). Sample sizes range from minimal replication (e.g,. 2 samples
per treatment group) to thousands of individuals.

1.4 Statistical programming

Many academic and commercial software products are available; why would
one use R and Bioconductor? One answer is to ask about the demands high-
throughput genomic data places on effective computational biology software.

Effective computational biology software High-throughput questions make
use of large data sets. This applies both to the primary data (microarray ex-
pression values, sequenced reads, etc.) and also to the annotations on those
data (coordinates of genes and features such as exons or regulatory regions;
participation in biological pathways, etc.). Large data sets place demands on
our tools that preclude some standard approaches, such as spread sheets. Like-
wise, intricate relationships between data and annotation, and the diversity of
research questions, require flexibility typical of a programming language rather
than a narrowly-enabled graphical user interface.

Analysis of high-throughput data is necessarily statistical. The volume of
data requires that it be appropriately summarized before any sort of compre-
hension is possible. The data are produced by advanced technologies, and these
introduce artifacts (e.g., probe-specific bias in microarrays; sequence or base

4

http://bioconductor.org/developers/
http://bioconductor.org/install/
http://bioconductor.org/install/
http://bioconductor.org/packages/release/bioc/
http://bioconductor.org/packages/release/bioc/
http://bioconductor.org/help/mailing-list/
http://bioconductor.org/help/mailing-list/

calling bias in RNA-seq experiments) that need to be accommodated to avoid
incorrect or inefficient inference. Data sets typically derive from designed ex-
periments, requiring a statistical approach both to account for the design and
to correctly address the large number of observed values (e.g., gene expression
or sequence tag counts) and small number of samples accessible in typical ex-
periments.

Research needs to be reproducible. Reproducibility is both an ideal of the
scientific method, and a pragmatic requirement. The latter comes from the
long-term and multi-participant nature of contemporary science. An analysis
will be performed for the initial experiment, revisited again during manuscript
preparation, and revisited during reviews or in determining next steps. Like-
wise, analyses typically involve a team of individuals with diverse domains of
expertise. Effective collaborations result when it is easy to reproduce, perhaps
with minor modifications, an existing result, and when sophisticated statistical
or bioinformatic analyses can be effectively conveyed to other group members.

Science moves very quickly. This is driven by the novel questions that are
the hallmark of discovery, and by technological innovation and accessibility.
Rapidity of scientific development places significant burdens on software, which
must also move quickly. Effective software cannot be too polished, because that
requires that the correct analyses are ‘known’ and that significant resources of
time and money have been invested in developing the software; this implies
software that is tracking the trailing edge of innovation. On the other hand,
leading-edge software cannot be too idiosyncratic; it must be usable by a wider
audience than the creator of the software, and fit in with other software relevant
to the analysis.

Effective software must be accessible. Affordability is one aspect of acces-
sibility. Another is transparent implementation, where the novel software is
sufficiently documented and source code accessible enough for the assumptions,
approaches, practical implementation decisions, and inevitable coding errors to
be assessed by other skilled practitioners. A final aspect of affordability is that
the software is actually usable. This is achieved through adequate documenta-
tion, support forums, and training opportunities.

Bioconductor as effective computational biology software What fea-
tures of R and Bioconductor contribute to its effectiveness as a software tool?

Bioconductor is well suited to handle extensive data and annotation. Bio-
conductor ‘classes’ represent high-throughput data and their annotation in an
integrated way. Bioconductor methods use advanced programming techniques
or R resources (such as transparent data base or network access) to minimize
memory requirements and integrate with diverse resources. Classes and meth-
ods coordinate complicated data sets with extensive annotation. Nonetheless,
the basic model for object manipulation in R involves vectorized in-memory
representations. For this reason, particular programming paradigms (e.g., block
processing of data streams; explicit parallelism) or hardware resources (e.g.,
large-memory computers) are sometimes required when dealing with extensive
data.

R is ideally suited to addressing the statistical challenges of high-throughput
data. Three examples include the development of the ‘RMA’ and other normal-
ization algorithm for microarray pre-processing, use of moderated t-statistics for

5

assessing microarray differential expression, and development of negative bino-
mial approaches to estimating dispersion read counts necessary for appropriate
analysis of RNAseq designed experiments.

Many of the ‘old school’ aspects of R and Bioconductor facilitate repro-
ducible research. An analysis is often represented as a text-based script. Repro-
ducing the analysis involves re-running the script; adjusting how the analysis is
performed involves simple text-editing tasks. Beyond this, R has the notion of
a ‘vignette’, which represents an analysis as a LATEX document with embedded
R commands. The R commands are evaluated when the document is built, thus
reproducing the analysis. The use of LATEX means that the symbolic manipula-
tions in the script are augmented with textual explanations and justifications for
the approach taken; these include graphical and tabular summaries at appropri-
ate places in the analysis. R includes facilities for reporting the exact version of
R and associated packages used in an analysis so that, if needed, discrepancies
between software versions can be tracked down and their importance evaluated.
While users often think of R packages as providing new functionality, packages
are also used to enhance reproducibility by encapsulating a single analysis. The
package can contain data sets, vignette(s) describing the analysis, R functions
that might have been written, scripts for key data processing stages, and docu-
mentation (via standard R help mechanisms) of what the functions, data, and
packages are about.

The Bioconductor project adopts practices that facilitate reproducibility.
Versions of R and Bioconductor are released twice each year. Each Bioconductor
release is the result of development, in a separate branch, during the previous
six months. The release is built daily against the corresponding version of R on
Linux, Mac, and Windows platforms, with an extensive suite of tests performed.
The biocLite function ensures that each release of R uses the corresponding
Bioconductor packages. The user thus has access to stable and tested package
versions. R and Bioconductor are effective tools for reproducible research.

R and Bioconductor exist on the leading portion of the software life cycle.
Contributors are primarily from academic institutions, and are directly involved
in novel research activities. New developments are made available in a familiar
format, i.e., the R language, packaging, and build systems. The rich set of
facilities in R (e.g., for advanced statistical analysis or visualization) and the
extensive resources in Bioconductor (e.g., for annotation using third-party data
such as Biomart or UCSC genome browser tracks) mean that innovations can
be directly incorporated into existing work flows. The ‘development’ branches
of R and Bioconductor provide an environment where contributors can explore
new approaches without alienating their user base.

R and Bioconductor also fair well in terms of accessibility. The software
is freely available. The source code is easily and fully accessible for critical
evaluation. The R packaging and check system requires that all functions are
documented. Bioconductor requires that each package contain vignettes to illus-
trate the use of the software. There are very active R and Bioconductor mailing
lists for immediate support, and regular training and conference activities for
professional development.

6

Table 2: Selected Bioconductor packages for high-throughput sequence analysis.

Concept Packages
Data representation IRanges, GenomicRanges, GenomicFeatures,

Biostrings, BSgenome, girafe.
Input / output ShortRead (fastq), Rsamtools (bam), rtrack-

layer (gff, wig, bed), VariantAnnotation (vcf),
R453Plus1Toolbox (454).

Annotation GenomicFeatures, ChIPpeakAnno, VariantAnnota-
tion.

Alignment Rsubread, Biostrings.
Visualization ggbio, Gviz.
Quality assessment qrqc, seqbias, ReQON , htSeqTools, TEQC , Rolexa,

ShortRead.
RNA-seq BitSeq, cqn, cummeRbund, DESeq, DEXSeq,

EDASeq, edgeR, gage, goseq, iASeq, tweeDEseq.
ChIP-seq, etc. BayesPeak, baySeq, ChIPpeakAnno, chipseq,

ChIPseqR, ChIPsim, CSAR, DiffBind, MEDIPS,
mosaics, NarrowPeaks, nucleR, PICS, PING, RED-
seq, Repitools, TSSi.

Motifs BCRANK , cosmo, cosmoGUI , MotIV , seqLogo,
rGADEM .

3C, etc. HiTC , r3Cseq.
Copy number cn.mops, CNAnorm, exomeCopy , seqmentSeq.
Microbiome phyloseq, DirichletMultinomial, clstutils, manta,

mcaGUI .
Work flows ArrayExpressHTS, Genominator, easyRNASeq,

oneChannelGUI , rnaSeqMap.
Database SRAdb.

1.5 Bioconductor for high-throughput sequence analysis

Table 2 enumerates many of the packages available for sequence analysis. The
table includes packages for representing sequence-related data (e.g., Genomi-
cRanges, Biostrings), as well as domain-specific analysis such as RNA-seq (e.g.,
edgeR, DEXSeq), ChIP-seq (e.g,. ChIPpeakAnno, DiffBind), and SNPs and
copy number variation (e.g., genoset, ggtools, VariantAnnotation).

1.6 Resources

Dalgaard [4] provides an introduction to statistical analysis with R. Kabaloff [9]
provides a broad survey of R. Matloff [15] introduces R programming concepts.
Chambers [3] provides more advanced insights into R. Gentleman [5] emphasizes
use of R for bioinformatic programming tasks. The R web site enumerates
additional publications from the user community.

The RStudio environment provides a nice, cross-platform environment for
working in R.

7

http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/bioc/html/girafe.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/R453Plus1Toolbox.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/Rsubread.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/ggbio.html
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://bioconductor.org/packages/release/bioc/html/qrqc.html
http://bioconductor.org/packages/release/bioc/html/seqbias.html
http://bioconductor.org/packages/release/bioc/html/ReQON.html
http://bioconductor.org/packages/release/bioc/html/htSeqTools.html
http://bioconductor.org/packages/release/bioc/html/TEQC.html
http://bioconductor.org/packages/release/bioc/html/Rolexa.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/BitSeq.html
http://bioconductor.org/packages/release/bioc/html/cqn.html
http://bioconductor.org/packages/release/bioc/html/cummeRbund.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/EDASeq.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/gage.html
http://bioconductor.org/packages/release/bioc/html/goseq.html
http://bioconductor.org/packages/release/bioc/html/iASeq.html
http://bioconductor.org/packages/release/bioc/html/tweeDEseq.html
http://bioconductor.org/packages/release/bioc/html/BayesPeak.html
http://bioconductor.org/packages/release/bioc/html/baySeq.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/chipseq.html
http://bioconductor.org/packages/release/bioc/html/ChIPseqR.html
http://bioconductor.org/packages/release/bioc/html/ChIPsim.html
http://bioconductor.org/packages/release/bioc/html/CSAR.html
http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/MEDIPS.html
http://bioconductor.org/packages/release/bioc/html/mosaics.html
http://bioconductor.org/packages/release/bioc/html/NarrowPeaks.html
http://bioconductor.org/packages/release/bioc/html/nucleR.html
http://bioconductor.org/packages/release/bioc/html/PICS.html
http://bioconductor.org/packages/release/bioc/html/PING.html
http://bioconductor.org/packages/release/bioc/html/REDseq.html
http://bioconductor.org/packages/release/bioc/html/REDseq.html
http://bioconductor.org/packages/release/bioc/html/Repitools.html
http://bioconductor.org/packages/release/bioc/html/TSSi.html
http://bioconductor.org/packages/release/bioc/html/BCRANK.html
http://bioconductor.org/packages/release/bioc/html/cosmo.html
http://bioconductor.org/packages/release/bioc/html/cosmoGUI.html
http://bioconductor.org/packages/release/bioc/html/MotIV.html
http://bioconductor.org/packages/release/bioc/html/seqLogo.html
http://bioconductor.org/packages/release/bioc/html/rGADEM.html
http://bioconductor.org/packages/release/bioc/html/HiTC.html
http://bioconductor.org/packages/release/bioc/html/r3Cseq.html
http://bioconductor.org/packages/release/bioc/html/cn.mops.html
http://bioconductor.org/packages/release/bioc/html/CNAnorm.html
http://bioconductor.org/packages/release/bioc/html/exomeCopy.html
http://bioconductor.org/packages/release/bioc/html/seqmentSeq.html
http://bioconductor.org/packages/release/bioc/html/phyloseq.html
http://bioconductor.org/packages/release/bioc/html/DirichletMultinomial.html
http://bioconductor.org/packages/release/bioc/html/clstutils.html
http://bioconductor.org/packages/release/bioc/html/manta.html
http://bioconductor.org/packages/release/bioc/html/mcaGUI.html
http://bioconductor.org/packages/release/bioc/html/ArrayExpressHTS.html
http://bioconductor.org/packages/release/bioc/html/Genominator.html
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/bioc/html/oneChannelGUI.html
http://bioconductor.org/packages/release/bioc/html/rnaSeqMap.html
http://bioconductor.org/packages/release/bioc/html/SRAdb.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/genoset.html
http://bioconductor.org/packages/release/bioc/html/ggtools.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://r-project.org
http://rstudio.org

2 R

R is an open-source statistical programming language. It is used to manipu-
late data, to perform statistical analyses, and to present graphical and other
results. R consists of a core language, additional ‘packages’ distributed with the
R language, and a very large number of packages contributed by the broader
community. Packages add specific functionality to an R installation. R has be-
come the primary language of academic statistical analyses, and is widely used
in diverse areas of research, government, and industry.

R has several unique features. It has a surprisingly ‘old school’ interface:
users type commands into a console; scripts in plain text represent work flows;
tools other than R are used for editing and other tasks. R is a flexible pro-
gramming language, so while one person might use functions provided by R to
accomplish advanced analytic tasks, another might implement their own func-
tions for novel data types. As a programming language, R adopts syntax and
grammar that differ from many other languages: objects in R are ‘vectors’,
and functions are ‘vectorized’ to operate on all elements of the object; R ob-
jects have ‘copy on change’ and ‘pass by value’ semantics, reducing unexpected
consequences for users at the expense of less efficient memory use; common
paradigms in other languages, such as the ‘for’ loop, are encountered much less
commonly in R. Many authors contribute to R, so there can be a frustrating
inconsistency of documentation and interface. R grew up in the academic com-
munity, so authors have not shied away from trying new approaches. Common
statistical analyses are very well-developed.

2.1 R data types

Opening an R session results in a prompt. The user types instructions at the
prompt. Here is an example:

> ## assign values 5, 4, 3, 2, 1 to variable 'x'

> x <- c(5, 4, 3, 2, 1)

> x

[1] 5 4 3 2 1

The first line starts with a # to represent a comment; the line is ignored
by R. The next line creates a variable x. The variable is assigned (using <-,
we could have used = almost interchangeably) a value. The value assigned is
the result of a call to the c function. That it is a function call is indicated by
the symbol named followed by parentheses, c(). The c function takes zero or
more arguments, and returns a vector. The vector is the value assigned to x.
R responds to this line with a new prompt, ready for the next input. The next
line asks R to display the value of the variable x. R responds by printing [1] to
indicate that the subsequent number is the first element of the vector. It then
prints the value of x.

R has many features to aid common operations. Entering sequences is a very
common operation, and expressions of the form 2:4 create a sequence from 2

to 4. Subsetting one vector by another is enabled with [. Here we create an
integer sequence from 2 to 4, and use the sequence as an index to select the
second, third, and fourth elements of x

8

> x[2:4]

[1] 4 3 2

R functions operate on variables. Functions are usually vectorized, acting
on all elements of their argument and obviating the need for explicit iteration.
Functions can generate warnings when performing suspect operations, or errors
if evaluation cannot proceed; try log(-1).

> log(x)

[1] 1.6094379 1.3862944 1.0986123 0.6931472 0.0000000

Essential data types R has a number of standard data types, to represent
integer, numeric (floating point), complex, character, logical (boolean),
and raw (byte) data. It is possible to convert between data types, and to
discover the type or mode of a variable.

> c(1.1, 1.2, 1.3) # numeric

[1] 1.1 1.2 1.3

> c(FALSE, TRUE, FALSE) # logical

[1] FALSE TRUE FALSE

> c("foo", "bar", "baz") # character, single or double quote ok

[1] "foo" "bar" "baz"

> as.character(x) # convert 'x' to character

[1] "5" "4" "3" "2" "1"

> typeof(x) # the number 5 is numeric, not integer

[1] "double"

> typeof(2L) # append 'L' to force integer

[1] "integer"

> typeof(2:4) # ':' produces a sequence of integers

[1] "integer"

R includes data types particularly useful for statistical analysis, including fac-

tor to represent categories and NA (used in any vector) to represent missing
values.

> sex <- factor(c("Male", "Female", NA), levels=c("Female", "Male"))

> sex

[1] Male Female <NA>

Levels: Female Male

9

Lists, data frames, and matrices All of the vectors mentioned so far are
homogeneous, consisting of a single type of element. A list can contain a
collection of different types of elements and, like all vectors, these elements can
be named to create a key-value association.

> lst <- list(a=1:3, b=c("foo", "bar"), c=sex)

> lst

$a

[1] 1 2 3

$b

[1] "foo" "bar"

$c

[1] Male Female <NA>

Levels: Female Male

Lists can be subset like other vectors to get another list, or subset with [[to
retrieve the actual list element; as with other vectors, subsetting can use names

> lst[c(3, 1)] # another list

$c

[1] Male Female <NA>

Levels: Female Male

$a

[1] 1 2 3

> lst[["a"]] # the element itself, selected by name

[1] 1 2 3

A data.frame is a list of equal-length vectors, representing a rectangular
data structure not unlike a spread sheet. Each column of the data frame is a
vector, so data types must be homogenous within a column. A data.frame can
be subset by row or column, and columns can be accessed with $ or [[.

> df <- data.frame(age=c(27L, 32L, 19L),

+ sex=factor(c("Male", "Female", "Male")))

> df

age sex

1 27 Male

2 32 Female

3 19 Male

> df[c(1, 3),]

age sex

1 27 Male

3 19 Male

10

> df[df$age > 20,]

age sex

1 27 Male

2 32 Female

A matrix is also a rectangular data structure, but subject to the constraint
that all elements are the same type. A matrix is created by taking a vector, and
specifying the number of rows or columns the vector is to represent. On subset-
ting, R coerces a single column data.frame or single row or column matrix to
a vector if possible; use drop=FALSE to stop this behavior.

> m <- matrix(1:12, nrow=3)

> m

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> m[c(1, 3), c(2, 4)]

[,1] [,2]

[1,] 4 10

[2,] 6 12

> m[, 3]

[1] 7 8 9

> m[, 3, drop=FALSE]

[,1]

[1,] 7

[2,] 8

[3,] 9

An array is a data structure for representing homogenous, rectangular data in
higher dimensions.

S3 and S4 classes More complicated data structures are represented using
the ‘S3’ or ‘S4’ object system. Objects are often created by functions (for ex-
ample, lm, below), with parts of the object extracted or assigned using accessor
functions. The following generates 1000 random normal deviates as x, and uses
these to create another 1000 deviates y that are linearly related to x but with
some error. We fit a linear regression using a ‘formula’ to describe the relation-
ship between variables, summarize the results in a familiar ANOVA table, and
access fit (an S3 object) for the residuals of the regression, using these as input
first to the var (variance) and then sqrt (square-root) functions. Objects can
be interrogated for their class.

11

> x <- rnorm(1000, sd=1)

> y <- x + rnorm(1000, sd=.5)

> fit <- lm(y ~ x) # formula describes linear regression

> fit # an 'S3' object

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

0.01043 1.00035

> anova(fit)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 945.90 945.90 3756.4 < 2.2e-16 ***

Residuals 998 251.31 0.25

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> sqrt(var(resid(fit))) # residuals accessor and subsequent transforms

[1] 0.5015571

> class(fit)

[1] "lm"

Many Bioconductor packages implement S4 objects to represent data. S3
and S4 systems are quite different from a programmer’s perspective, but fairly
similar from a user’s perspective: both systems encapsulate complicated data
structures, and allow for methods specialized to different data types; accessors
are used to extract information from the objects.

Functions R functions accept arguments, and return values. Arguments can
be required or optional. Some functions may take variable numbers of argu-
ments, e.g., the columns in a data.frame

> y <- 5:1

> log(y)

[1] 1.6094379 1.3862944 1.0986123 0.6931472 0.0000000

> args(log) # arguments 'x' and 'base'; see ?log

function (x, base = exp(1))

NULL

> log(y, base=2) # 'base' is optional, with default value

12

[1] 2.321928 2.000000 1.584963 1.000000 0.000000

> try(log()) # 'x' required; 'try' continues even on error

> args(data.frame) # ... represents variable number of arguments

function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE,

stringsAsFactors = default.stringsAsFactors())

NULL

Arguments can be matched by name or position. If an argument appears after
..., it must be named.

> log(base=2, y) # match argument 'base' by name, 'x' by position

[1] 2.321928 2.000000 1.584963 1.000000 0.000000

A function such as anova is a generic that provides an overall signature but
dispatches the actual work to the method corresponding to the class(es) of the
arguments used to invoke the generic. A generic may have fewer arguments
than a method, as with the S3 function anova and its method anova.glm.

> args(anova)

function (object, ...)

NULL

> args(anova.glm)

function (object, ..., dispersion = NULL, test = NULL)

NULL

The ... argument in the anova generic means that additional arguments are
possible; the anova generic hands these arguments to the method it dispatches
to.

2.2 Useful functions

R has a very large number of functions. The following is a brief list of those
that might be commonly used and particularly useful.

dir, read.table (and friends), scan List files in a directory, read spreadsheet-
like data into R, efficiently read homogenous data (e.g., a file of numeric
values) to be represented as a matrix.

c, factor, data.frame, matrix Create a vector, factor, data frame or matrix.
summary, table, xtabs Summarize, create a table of the number of times ele-

ments occur in a vector, cross-tabulate two or more variables.
t.test, aov, lm, anova Basic comparison of two (t.test) groups, or several groups

via analysis of variance / linear models (aov output is probably more fa-
miliar to biologists), or compare simpler with more complicated models
(anova).

dist, hclust Cluster data.
plot Plot data.

13

ls, str, library, search List objects in the current (or specified) workspace, or
peak at the structure of an object; add a library to or describe the search
path of attached packages.

lapply, sapply, mapply Apply a function to each element of a list (lapply, sap-
ply) or to elements of several lists (mapply).

with Conveniently access columns of a data frame or other element without
having to repeat the name of the data frame.

match, %in% Report the index or existence of elements from one vector that
match another.

split, cut Split one vector by an equal length factor, cut a single vector into
intervals encoded as levels of a factor.

strsplit, grep, sub Operate on character vectors, splitting it into distinct fields,
searching for the occurrence of a patterns using regular expressions (see
?regex, or substituting a string for a regular expression.

install.packages Install a package from an on-line repository into your R.
traceback, debug, browser Report the sequence of functions under evaluatino

at the time of the error; enter a debugger when a particular function or
statement is invoked.

See the help pages (e.g., ?lm) and examples (example(match)) for each of these
functions

Exercise 2
This exercise uses data describing 128 microarray samples as a basis for exploring
R functions. Covariates such as age, sex, type, stage of the disease, etc., are in
a data file pData.csv.

The following command creates a variable pdataFiles that is the location of
a comma-separated value (‘csv’) file to be used in the exercise. A csv file can
be created using, e.g., ‘Save as...’ in spreadsheet software.

> pdataFile <- system.file(package="SequenceAnalysisData", "extdata",

+ "pData.csv")

Input the csv file using read.table, assigning the input to a variable pdata.
Use dim to find out the dimensions (number of rows, number of columns) in the
object. Are there 128 rows? Use names or colnames to list the names of the
columns of pdata. Use summary to summarize each column of the data. What
are the data types of each column in the data frame?

A data frame is a list of equal length vectors. Select the ‘sex’ column of the
data frame using [[or $. Pause to explain to your neighbor why this subsetting
works. Since a data frame is a list, use sapply to ask about the class of each
column in the data frame. Explain to your neighbor what this produces, and
why.

Use table to summarize the number of males and females in the sample.
Consult the help page ?table to figure out additional arguments required to
include NA values in the tabulation.

The mol.biol column summarizes molecular biological attributes of each
sample. Use table to summarize the different molecular biology levels in the
sample. Use %in% to create a logical vector of the samples that are either BCR/ABL
or NEG. Subset the original phenotypic data to contain those samples that are
BCR/ABL or NEG.

14

After subsetting, what are the levels of the mol.biol column? Set the levels
to be BCR/ABL and NEG, i.e., the levels in the subset.

One would like covariates to be similar across groups of interest. Use t.test

to assess whether BCR/ABL and NEG have individuals with similar age. To do this,
use a formula that describes the response age in terms of the predictor mol.biol.
If age is not independent of molecular biology, what complications might this
introduce into subsequent analysis? Use

Solution: Here we input the data and explore basic properties.

> pdata <- read.table(pdataFile)

> dim(pdata)

[1] 128 21

> names(pdata)

[1] "cod" "diagnosis" "sex" "age"

[5] "BT" "remission" "CR" "date.cr"

[9] "t.4.11." "t.9.22." "cyto.normal" "citog"

[13] "mol.biol" "fusion.protein" "mdr" "kinet"

[17] "ccr" "relapse" "transplant" "f.u"

[21] "date.last.seen"

> summary(pdata)

cod diagnosis sex age BT

10005 : 1 11/15/1997: 2 F :42 Min. : 5.00 B2 :36

1003 : 1 1/15/1997 : 2 M :83 1st Qu.:19.00 B3 :23

remission CR date.cr t.4.11.

CR :99 CR :96 11/11/1997: 3 Mode :logical

REF :15 DEATH IN CR : 3 10/18/1999: 2 FALSE:86

t.9.22. cyto.normal citog mol.biol

Mode :logical Mode :logical normal :24 ALL1/AF4:10

FALSE:67 FALSE:69 simple alt. :15 BCR/ABL :37

fusion.protein mdr kinet ccr relapse

p190 :17 NEG :101 dyploid:94 Mode :logical Mode :logical

p190/p210: 8 POS : 24 hyperd.:27 FALSE:74 FALSE:35

transplant f.u date.last.seen

Mode :logical REL :61 12/15/1997: 2

FALSE:91 CCR :23 12/31/2002: 2

[reached getOption("max.print") -- omitted 5 rows]

A data frame can be subset as if it were a matrix, or a list of column vectors.

> head(pdata[,"sex"], 3)

[1] M M F

Levels: F M

> head(pdata$sex, 3)

[1] M M F

Levels: F M

15

> head(pdata[["sex"]], 3)

[1] M M F

Levels: F M

> sapply(pdata, class)

cod diagnosis sex age BT

"factor" "factor" "factor" "integer" "factor"

remission CR date.cr t.4.11. t.9.22.

"factor" "factor" "factor" "logical" "logical"

cyto.normal citog mol.biol fusion.protein mdr

"logical" "factor" "factor" "factor" "factor"

kinet ccr relapse transplant f.u

"factor" "logical" "logical" "logical" "factor"

date.last.seen

"factor"

The number of males and females, including NA, is

> table(pdata$sex, useNA="ifany")

F M <NA>

42 83 3

An alternative version of this uses the with function: with(pdata, table(sex,

useNA="ifany")).
The mol.biol column contains the following samples:

> with(pdata, table(mol.biol, useNA="ifany"))

mol.biol

ALL1/AF4 BCR/ABL E2A/PBX1 NEG NUP-98 p15/p16

10 37 5 74 1 1

A logical vector indicating that the corresponding row is either BCR/ABL or NEG

is constructed as

> ridx <- pdata$mol.biol %in% c("BCR/ABL", "NEG")

We can get a sense of the number of rows selected via table or sum (discuss with
your neighbor what sum does, and why the answer is the same as the number of
TRUE values in the result of the table function).

> table(ridx)

ridx

FALSE TRUE

17 111

> sum(ridx)

[1] 111

16

The original data frame can be subset to contain only BCR/ABL or NEG samples
using the logical vector ridx that we created.

> pdata1 <- pdata[ridx,]

The levels of each factor reflect the levels in the original object, rather than the
levels in the subset object, e.g.,

> levels(pdata$mol.biol)

[1] "ALL1/AF4" "BCR/ABL" "E2A/PBX1" "NEG" "NUP-98" "p15/p16"

These can be re-coded by updating the new data frame to contain a factor with
the desired levels.

> pdata1$mol.biol <- factor(pdata1$mol.biol)

> table(pdata1$mol.biol)

BCR/ABL NEG

37 74

To ask whether age differs between molecular biology types, we use a formula
age ~ mol.biol to describe the relationship (‘age as a function of molecular
biology’) that we wish to test

> with(pdata1, t.test(age ~ mol.biol))

Welch Two Sample t-test

data: age by mol.biol

t = 4.8172, df = 68.529, p-value = 8.401e-06

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

7.13507 17.22408

sample estimates:

mean in group BCR/ABL mean in group NEG

40.25000 28.07042

This summary can be visualize with, e.g., the boxplot function

> ## not evaluated

> boxplot(age ~ mol.biol, pdata1)

Molecular biology seem to be strongly associated with age; individuals in the
NEG group are considerably younger than those in the BCR/ABL group. We might
wish to include age as a covariate in any subsequent analysis seeking to relate
molecular biology to gene expression.

17

Table 3: Selected base and contributed packages.

Package Description
base Data input and essential manipulation; scripting and

programming concepts.
stats Essential statistical and plotting functions.
lattice, ggplot2 Approaches to advanced graphics.
methods ‘S4’ classes and methods.
parallel Facilities for parallel evaluation.

2.3 Packages

Packages provide functionality beyond that available in base R. There are over
3000 packages in CRAN (comprehensive R archive network) and more than 500
Bioconductor packages. Packages are contributed by diverse members of the
community; they vary in quality (many are excellent) and sometimes contain
idiosyncratic aspects to their implementation. Table 3 outlines key base pack-
ages and selected contributed packages; see a local CRAN mirror (including the
task views summarizing packages in different domains) and Bioconductor for
additional contributed packages.

The lattice package illustrates the value packages add to base R. lattice is
distributed with R but not loaded by default. It provides a very expressive
way to visualize data. The following example plots yield for a number of barley
varieties, conditioned on site and grouped by year. Figure 1 is read from the
lower left corner. Note the common scales, efficient use of space, and not-too-
pleasing default color palette. The Morris sample appears to be mis-labeled for
‘year’, an apparent error in the original data. Find out about the built-in data
set used in this example with ?barley.

> library(lattice)

> dotplot(variety ~ yield | site, data = barley, groups = year,

+ key = simpleKey(levels(barley$year), space = "right"),

+ xlab = "Barley Yield (bushels/acre)",

+ aspect=0.5, layout = c(2,3), ylab=NULL)

New packages can be added to an R installation using install.packages.
A package is installed only once per R installation, but needs to be loaded (with
library) in each session in which it is used. Loading a package also loads any
package that it depends on. Packages loaded in the current session are displayed
with search. The ordering of packages returned by search represents the order
in which the global environment (where commands entered at the prompt are
evaluated) and attached packages are searched for symbols; it is possible for a
package earlier in the search path to mask symbols later in the search path;
these can be disambiguated using ::.

> length(search())

[1] 11

> search()

18

http://cran.fhcrc.org
http://cran.fhcrc.org/web/views/
http://bioconductor.org

Barley Yield (bushels/acre)

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

20 30 40 50 60

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Grand Rapids

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Duluth
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

University Farm

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Morris
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Crookston

20 30 40 50 60

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Waseca

1932
1931

●

●

Figure 1: Variety yield conditional on site and grouped by year, for the barley

data set.

[1] ".GlobalEnv" "package:lattice" "package:BiocInstaller"

[4] "package:stats" "package:graphics" "package:grDevices"

[7] "package:utils" "package:datasets" "package:methods"

[10] "Autoloads" "package:base"

> base::log(1:3)

[1] 0.0000000 0.6931472 1.0986123

Exercise 3
Use the library function to load the SequenceAnalysis package. Use the ses-

sionInfo function to verify that you are using R version 2.15.0 and current
packages, similar to those reported here. What other packages were loaded
along with SequenceAnalysis?

Solution:

> library(SequenceAnalysis)

> sessionInfo()

2.4 Help

Find help using the R help system. Start a web browser with

> help.start()

The ‘Search Engine and Keywords’ link is helpful in day-to-day use.

19

Manual pages Use manual pages to find detailed descriptions of the argu-
ments and return values of functions, and the structure and methods of classes.
Find help within an R session as

> ?data.frame

> ?lm

> ?anova # a generic function

> ?anova.lm # an S3 method, specialized for 'lm' objects

S3 methods can be queried interactively. For S3,

> methods(anova)

[1] anova.glm anova.glmlist anova.lm anova.loess* anova.mlm

[6] anova.nls*

Non-visible functions are asterisked

> methods(class="glm")

[1] add1.glm* anova.glm confint.glm*

[4] cooks.distance.glm* deviance.glm* drop1.glm*

[7] effects.glm* extractAIC.glm* family.glm*

[10] formula.glm* influence.glm* logLik.glm*

[13] model.frame.glm nobs.glm* predict.glm

[16] print.glm residuals.glm rstandard.glm

[19] rstudent.glm summary.glm vcov.glm*

[22] weights.glm*

Non-visible functions are asterisked

It is often useful to view a method definition, either by typing the method name
at the command line or, for ‘non-visible’ methods, using getAnywhere:

> anova.lm

> getAnywhere("anova.loess")

For instance, the source code of a function is printed if the function is invoked
without parentheses. Here we discover that the function head (which returns
the first 6 elements of anything) defined in the utils package, is an S3 generic
(indicated by UseMethod) and has several methods. We use head to look at the
first six lines of the head method specialized for matrix objects.

> utils::head

function (x, ...)

UseMethod("head")

<environment: namespace:utils>

> methods(head)

[1] head.data.frame* head.default* head.ftable* head.function*

[5] head.matrix head.table*

Non-visible functions are asterisked

20

> head(head.matrix)

1 function (x, n = 6L, ...)

2 {

3 stopifnot(length(n) == 1L)

4 n <- if (n < 0L)

5 max(nrow(x) + n, 0L)

6 else min(n, nrow(x))

S4 classes and generics are queried in a similar way to S3 classes and generics,
but with different syntax, as for the complement generic in the Biostrings package:

> library(Biostrings)

> showMethods(complement)

Function: complement (package Biostrings)

x="DNAString"

x="DNAStringSet"

x="MaskedDNAString"

x="MaskedRNAString"

x="RNAString"

x="RNAStringSet"

x="XStringViews"

Methods defined on the DNAStringSet class of Biostrings can be found with

> showMethods(class="DNAStringSet", where=getNamespace("Biostrings"))

Obtaining help on S4 classes and methods requires syntax such as

> class ? DNAStringSet

> method ? "complement,DNAStringSet"

The specification of method and class in the latter must not contain a space
after the comma. The definition of a method can be retrieved as

> selectMethod(complement, "DNAStringSet")

Vignettes Vignettes, especially in Bioconductor packages, provide an exten-
sive narrative describing overall package functionality. Use

> vignette(package="SequenceAnalysis")

to see, in your web browser, vignettes available in the SequenceAnalysis package.
Vignettes usually consist of text with embedded R code, a form of literate
programming. The vignette can be read as a PDF document, while the R
source code is present as a script file ending with extension .R. The script file
can be sourced or copied into an R session to evaluate exactly the commands
used in the vignette.

Exercise 4
Scavenger hunt. Spend five minutes tracking down the following information.

a. The package containing the library function.

21

http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html

b. The author of the alphabetFrequency function, defined in the Biostrings
package.

c. A description of the GappedAlignments class.

d. The number of vignettes in the GenomicRanges package.

Solution: Possible solutions are found with the following R commands

> ?library

> library(Biostrings)

> ?alphabetFrequency

> class?GappedAlignments

> vignette(package="GenomicRanges")

2.5 Efficient scripts

There are often many ways to accomplish a result in R, but these different ways
often have very different speed or memory requirements. For small data sets
these performance differences are not that important, but for large data sets
(e.g., high-throughput sequencing; genome-wide association studies, GWAS) or
complicated calculations (e.g., bootstrapping) performance can be important.
There are several approaches to achieving efficient R programming.

Easy solutions Several common performance bottlenecks often have easy so-
lutions; these are outlined here.

Text files often contain more information, for example 1000’s of individuals
at millions of SNPs, when only a subset of the data is required, e.g., during
algorithm development. Reading in all the data can be demanding in terms of
both memory and time. A solution is to use arguments such as colClasses to
specify the columns and their data types that are required, and to use nrow to
limit the number of rows input. For example, the following ignores the first
and fourth column, reading in only the second and third (as type integer and
numeric).

> ## not evaluated

> colClasses <-

+ c("NULL", "integer", "numeric", "NULL")

> df <- read.table("myfile", colClasses=colClasses)

R is vectorized, so traditional programming for loops are often not necessary.
Rather than calculating 100000 random numbers one at a time, or squaring each
element of a vector, or iterating over rows and columns in a matrix to calculate
row sums, invoke the single function that performs each of these operations.

> x <- runif(100000); x2 <- x^2

> m <- matrix(x2, nrow=1000); y <- rowSums(m)

This often requires a change of thinking, turning the sequence of operations
‘inside-out’. For instance, calculate the log of the square of each element of

22

http://bioconductor.org/packages/release/bioc/html/Biostrings.html

a vector by calculating the square of all elements, followed by the log of all
elements x2 <- x^2; x3 <- log(x2), or simply logx2 <- log(x^2).

It may sometimes be natural to formulate a problem as a for loop, or the
formulation of the problem may require that a for loop be used. In these
circumstances the appropriate strategy is to pre-allocate the result object, and
to fill the result in during loop iteration.

> ## not evaluated

> result <- numeric(nrow(df))

> for (i in seq_len(nrow(df)))

+ result[[i]] <- some_calc(df[i,])

Some R operations are helpful in general, but misleading or inefficient in
particular circumstances. An example is the behavior of unlist when the list
is named – R creates new names that have been made unique. This can be
confusing (e.g., when Entrez gene identifiers are ‘mangled’ to unintentionally
look like other identifiers) and expensive (when a large number of new names
need to be created). Avoid creating unnecessary names, e.g.,

> unlist(list(a=1:2)) # name 'a' becomes 'a1', 'a2'

a1 a2

1 2

> unlist(list(a=1:2), use.names=FALSE) # no names

[1] 1 2

Names can be very useful for avoiding book-keeping errors, but are inefficient
for repeated look-ups; use vectorized access or numeric indexing.

Moderate solutions Several solutions to inefficient code require greater knowl-
edge to implement.

Using appropriate functions can greatly influence performance; it takes ex-
perience to know when an appropriate function exists. For instance, the lm

function could be used to assess differential expression of each gene on a mi-
croarray, but the limma package implements this operation in a way that takes
advantage of the experimental design that is common to each probe on the
microarray, and does so in a very efficient manner.

> ## not evaluated

> library(limma) # microarray linear models

> fit <- lmFit(eSet, design)

Using appropriate algorithms can have significant performance benefits, es-
pecially as data becomes larger. This solution requires moderate skills, because
one has to be able to think about the complexity (e.g., expected number of op-
erations) of an algorithm, and to identify algorithms that accomplish the same
goal in fewer steps. For example, a naive way of identifying which of 100 num-
bers are in a set of size 10 might look at all 100 × 10 combinations of numbers
(i.e., polynomial time), but a faster way is to create a ‘hash’ table of one of the
set of elements and probe that for each of the other elements (i.e., linear time).
The latter strategy is illustrated with

23

> x <- 1:100; s <- sample(x, 10)

> inS <- x %in% s

R is an interpreted language, and for very challenging computational prob-
lems it may be appropriate to write critical stages of an analysis in a compiled
language like C or Fortran, or to use an existing programming library (e.g., the
BOOST graph library) that efficiently implements advanced algorithms. R has
a well-developed interface to C or Fortran, so it is ‘easy’ to do this. This places a
significant burden on the person implementing the solution, requiring knowledge
of two or more computer languages and of the interface between them.

Measuring performance When trying to improve performance, one wants
to ensure (a) that the new code is actually faster than the previous code, and
(b) both solutions arrive at the same, correct, answer.

The system.time function is a straight-forward way to measure the length of
time a portion of code takes to evaluate. Here we see that the use of apply to
calculate row sums of a matrix is much less efficient than the specialized rowSums

function.

> m <- matrix(runif(200000), 20000)

> replicate(5, system.time(apply(m, 1, sum))[[1]])

[1] 0.176 0.168 0.168 0.164 0.168

> replicate(5, system.time(rowSums(m))[[1]])

[1] 0.000 0.004 0.000 0.000 0.000

Usually it is appropriate to replicate timings to average over vagaries of system
use, and to shuffle the order in which timings of alternative algorithms are
calculated to avoid artifacts such as initial memory allocation.

Speed is an important metric, but equivalent results are also needed. The
functions identical and all.equal provide different levels of assessing equiva-
lence, with all.equal providing ability to ignore some differences, e.g., in the
names of vector elements.

> res1 <- apply(m, 1, sum)

> res2 <- rowSums(m)

> identical(res1, res2)

[1] TRUE

> identical(c(1, -1), c(x=1, y=-1))

[1] FALSE

> all.equal(c(1, -1), c(x=1, y=-1),

+ check.attributes=FALSE)

[1] TRUE

24

http://www.boost.org/

Two additional functions for assessing performance are Rprof and tracemem;
these are mentioned only briefly here. The Rprof function profiles R code, pre-
senting a summary of the time spent in each part of several lines of R code. It
is useful for gaining insight into the location of performance bottlenecks when
these are not readily apparent from direct inspection. Memory management,
especially copying large objects, can frequently contribute to poor performance.
The tracemem function allows one to gain insight into how R manages memory;
insights from this kind of analysis can sometimes be useful in restructuring code
into a more efficient sequence.

2.6 Warnings, errors, and debugging

R signals unexpected results through warnings and errors. Warnings occur when
the calculation produces an unusual result that nonetheless does not preclude
further evaluation. For instance log(-1) results in a value NaN (‘not a number’)
that allows computation to continue, but at the same time signals an warning

> log(-1)

[1] NaN

Warning message:

In log(-1) : NaNs produced

Errors result when the inputs or outputs of a function are such that no further
action can be taken, e.g., trying to take the square root of a character vector

> sqrt("two")

Error in sqrt("two") : Non-numeric argument to mathematical function

Warnings and errors occurring at the command prompt are usually easy
to diagnose. They can be more enigmatic when occurring in a function, and
exacerbated by sometimes cryptic (when read out of context) error messages.

An initial step in coming to terms with errors is to simplify the problem
as much as possible, aiming for a ‘reproducible’ error. The reproducible error
might involve a very small (even trivial) data set that immediately provokes
the error. Often the process of creating a reproducible example helps to clarify
what the error is, and what possible solutions might be.

Invoking traceback() immediately after an error occurs provides a ‘stack’
of the function calls that were in effect when the error occurred. This can help
understand the context in which the error occurred. Knowing the context, one
might use debug to enter into a browser (see ?browser) that allows one to step
through the function in which the error occurred.

It can sometimes be useful to use global options (see ?options) to influence
what happens when an error occurs. Two common global options are error

and warn. Setting error=recover combines the functionality of traceback and
debug, allowing the user to enter the browser at any level of the call stack in
effect at the time the error occurred. Default error behavior can be restored
with options(error=NULL). Setting warn=2 causes warnings to be promoted to
errors. For instance, initial investigation of an error might show that the error
occurs when one of the arguments to a function has value NaN. The error might
be accompanied by a warning message that the NaN has been introduced, but
because warnings are by default not reported immediately it is not clear where

25

the NaN comes from. warn=2 means that the warning is treated as an error, and
hence can be debugged using traceback, debug, and so on.

Additional useful debugging functions include browser, trace, and setBreak-

point.
Fixme: tryCatch

26

Table 4: Selected Bioconductor packages for representing and manipulating
ranges, strings, and other data structures.

Package Description
IRanges Defines important classes (e.g., IRanges, Rle) and meth-

ods (e.g., findOverlaps, countOverlaps) for representing
and manipulating ranges of consecutive values. Also in-
troduces DataFrame, SimpleList and other classes tai-
lored to representing very large data.

GenomicRanges Range-based classes tailored to sequence representation
(e.g., GRanges, GRangesList), with information about
strand and sequence name.

GenomicFeatures Foundation for manipulating data bases of genomic
ranges, e.g., representing coordinates and organization
of exons and transcripts of known genes.

Biostrings Classes (e.g., DNAStringSet) and methods (e.g., alpha-
betFrequency, pairwiseAlignment) for representing and
manipulating DNA and other biological sequences.

BSgenome Representation and manipulation of large (e.g., whole-
genome) sequences.

3 Ranges and Strings

Many Bioconductor packages are available for analysis of high-throughput se-
quence data. This section introduces two essential ways in which sequence data
are manipulated. Ranges describe both aligned reads and features of interest
on the genome. Sets of DNA strings represent the reads themselves and the
nucleotide sequence of reference genomes. Key packages are summarized in
Table 4.

3.1 Genomic ranges

Next-generation sequencing data consists of a large number of short reads. These
are, typically, aligned to a reference genome. Basic operations are performed
on the alignment, asking e.g., how many reads are aligned in a genomic range
defined by nucleotide coordinates (e.g., in the exons of a gene), or how many
nucleotides from all the aligned reads cover a set of genomic coordinates. How is
this type of data, the aligned reads and the reference genome, to be represented
in R in a way that allows for effective computation?

The IRanges, GenomicRanges, and GenomicFeatures Bioconductor pack-
ages provide the essential infrastructure for these operations; we start with the
GRanges class, defined in GenomicRanges.

GRanges Instances of GRanges are used to specify genomic coordinates. Sup-
pose we wish to represent two D. melanogaster genes. The first is located on the
positive strand of chromosome 3R, from position 19967117 to 19973212. The
second is on the minus strand of the X chromosome, with ‘left-most’ base at
18962306, and right-most base at 18962925. The coordinates are 1-based (i.e.,
the first nucleotide on a chromosome is numbered 1, rather than 0), left-most

27

http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html

(i.e., reads on the minus strand are defined to ‘start’ at the left-most coordi-
nate, rather than the 5’ coordinate), and closed (the start and end coordinates
are included in the range; a range with identical start and end coordinates has
width 1, a 0-width range is represented by the special construct where the end
coordinate is one less than the start coordinate).

A complete definition of these genes as GRanges is:

> genes <- GRanges(seqnames=c("3R", "X"),

+ ranges=IRanges(

+ start=c(19967117, 18962306),

+ end=c(19973212, 18962925)),

+ strand=c("+", "-"),

+ seqlengths=c(`3R`=27905053L, `X`=22422827L))

The components of a GRanges object are defined as vectors, e.g., of seqnames,
much as one would define a data.frame. The start and end coordinates are
grouped into an IRanges instance. The optional seqlengths argument specifies
the maximum size of each sequence, in this case the lengths of chromosomes 3R
and X in the ‘dm2’ build of the D. melanogaster genome. This data is displayed
as

> genes

GRanges with 2 ranges and 0 elementMetadata cols:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] 3R [19967117, 19973212] +

[2] X [18962306, 18962925] -

seqlengths:

3R X

27905053 22422827

For the curious, the gene coordinates and sequence lengths are derived from
the org.Dm.eg.db package for genes with Flybase identifiers FBgn0039155 and
FBgn0085359, using the annotation facilities described in section 7.

The GRanges class has many useful methods defined on it. Consult the help
page

> ?GRanges

and package vignettes (especially ‘An Introduction to GenomicRanges’)

> vignette(package="GenomicRanges")

for a comprehensive introduction. A GRanges instance can be subset, with
accessors for getting and updating information.

> genes[2]

GRanges with 1 range and 0 elementMetadata cols:

seqnames ranges strand

<Rle> <IRanges> <Rle>

28

http://bioconductor.org/packages/release/data/annotation/html/org.Dm.eg.db.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html

[1] X [18962306, 18962925] -

seqlengths:

3R X

27905053 22422827

> strand(genes)

'factor' Rle of length 2 with 2 runs

Lengths: 1 1

Values : + -

Levels(3): + - *

> width(genes)

[1] 6096 620

> length(genes)

[1] 2

> names(genes) <- c("FBgn0039155", "FBgn0085359")

> genes # now with names

GRanges with 2 ranges and 0 elementMetadata cols:

seqnames ranges strand

<Rle> <IRanges> <Rle>

FBgn0039155 3R [19967117, 19973212] +

FBgn0085359 X [18962306, 18962925] -

seqlengths:

3R X

27905053 22422827

strand returns the strand information in a compact representation called a
run-length encoding, this is introduced in greater detail below. The ‘names’
could have been specified when the instance was constructed; once named, the
GRanges instance can be subset by name like a regular vector.

As the GRanges function suggests, the GRanges class extends the IRanges
class by adding information about seqname, strand, and other information par-
ticularly relevant to representing ranges that are on genomes. The IRanges class
and related data structures (e.g., RangedData) are meant as a more general de-
scription of ranges defined in an arbitrary space. Many methods implemented
on the GRanges class are ‘aware’ of the consequences of genomic location, for
instance treating ranges on the minus strand differently (reflecting the 5’ orien-
tation imposed by DNA) from ranges on the plus strand.

Operations on ranges The GRanges class has many useful methods from
the IRanges class; some of these methods are illustrated here. We use IRanges
to illustrate these operations to avoid complexities associated with strand and
seqname, but the operations are comparable on GRanges. We begin with a
simple set of ranges:

29

Figure 2: Ranges

> ir <- IRanges(start=c(7, 9, 12, 14, 22:24),

+ end=c(15, 11, 12, 18, 26, 27, 28))

These and some common operations are illustrated in the upper panel of Figure 2
and summarized in Table 5.

Methods on ranges can be grouped as follows:

Intra-range methods act on each range independently. These include flank,
narrow, reflect, resize, restrict, and shift, among others. An illustra-
tion is shift, which translates each range by the amount specified by the
shift argument. Positive values shift to the right, negative to the left;
shift can be a vector, with each element of the vector shifting the corre-
sponding element of the IRanges instance. Here we shift all ranges to the
right by 5, with the result illustrated in the middle panel of Figure 2.

> shift(ir, 5)

IRanges of length 7

start end width

[1] 12 20 9

[2] 14 16 3

[3] 17 17 1

[4] 19 23 5

[5] 27 31 5

[6] 28 32 5

[7] 29 33 5

Inter-range methods act on the collection of ranges as a whole. These include
disjoin, reduce, gaps, and range. An illustration is reduce, which reduces
overlapping ranges into a single range, as illustrated in the lower panel of
Figure 2.

> reduce(ir)

IRanges of length 2

start end width

[1] 7 18 12

[2] 22 28 7

30

coverage is an inter-range operation that calculates how many ranges over-
lap individual positions. Rather than returning ranges, coverage returns
a compressed representation (run-length encoding)

> coverage(ir)

'integer' Rle of length 28 with 12 runs

Lengths: 6 2 4 1 2 3 3 1 1 3 1 1

Values : 0 1 2 1 2 1 0 1 2 3 2 1

The run-length encoding can be interpreted as ‘a run of length 6 of nu-
cleotides covered by 0 ranges, followed by a run of length 2 of nucleotides
covered by 1 range. . . ’.

Between methods act on two (or sometimes more) IRanges instances. These
include intersect, setdiff, union, pintersect, psetdiff, and punion.

The countOverlaps and findOverlaps functions operate on two sets of
ranges. countOverlaps takes its first argument (the query) and determines
how many of the ranges in the second argument (the subject) each over-
laps. The result is an integer vector with one element for each member
of query. findOverlaps performs a similar operation but returns a more
general matrix-like structure that identifies each pair of query / subject
overlaps. Both arguments allow some flexibility in the definition of ‘over-
lap’.

Common operations on ranges are summarized in Table 5.

elementMetadata (values) and metadata The GRanges class (actually, most of
the data structures defined or extending those in the IRanges package) has two
additional very useful data components. The elementMetadata function (or its
synonym values) allows information on each range to be stored and manipu-
lated (e.g., subset) along with the GRanges instance. The element metadata
is represented as a DataFrame, defined in IRanges and acting like a standard
R data.frame but with the ability to hold more complicated data structures as
columns (and with element metadata of its own, providing an enhanced alter-
native to the Biobase class AnnotatedDataFrame).

> elementMetadata(genes) <-

+ DataFrame(EntrezId=c("42865", "2768869"),

+ Symbol=c("kal-1", "CG34330"))

metadata allows addition of information to the entire object. The information is
in the form of a list; any data can be provided.

> metadata(genes) <-

+ list(CreatedBy="A. User", Date=date())

GRangesList The GRanges class is extremely useful for representing simple
ranges. Some next-generation sequence data and genomic features are more
hierarchically structured. A gene may be represented by several exons within
it. An aligned read may be represented by discontinuous ranges of alignment to
a reference. The GRangesList class represents this type of information. It is a

31

http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/Biobase.html

Table 5: Common operations on IRanges, GRanges and GRangesList .

Category Function Description
Accessors start, end, width Get or s et the starts, ends and widths

names Get or set the names
elementMetadata, metadata Get or set metadata on elements or object
length Number of ranges in the vector
range Range formed from min start and max end

Ordering <, <=, >, >=, ==, != Compare ranges, ordering by start then width
sort, order, rank Sort by the ordering
duplicated Find ranges with multiple instances
unique Find unique instances, removing duplicates

Arithmetic r + x, r - x, r * x Shrink or expand ranges r by number x

shift Move the ranges by specified amount
resize Change width, anchoring on start, end or mid
distance Separation between ranges (closest endpoints)
restrict Clamp ranges to within some start and end
flank Generate adjacent regions on start or end

Set operations reduce Merge overlapping and adjacent ranges
intersect, union, setdiff Set operations on reduced ranges
pintersect, punion, psetdiff Parallel set operations, on each x[i], y[i]
gaps, pgap Find regions not covered by reduced ranges
disjoin Ranges formed from union of endpoints

Overlaps findOverlaps Find all overlaps for each x in y

countOverlaps Count overlaps of each x range in y

nearest Find nearest neighbors (closest endpoints)
precede, follow Find nearest y that x precedes or follows
x %in% y Find ranges in x that overlap range in y

Coverage coverage Count ranges covering each position
Extraction r[i] Get or set by logical or numeric index

r[[i]] Get integer sequence from start[i] to end[i]

subsetByOverlaps Subset x for those that overlap in y

head, tail, rev, rep Conventional R semantics
Split, combine split Split ranges by a factor into a RangesList

c Concatenate two or more range objects

32

list-like data structure, which each element of the list itself a GRanges instance.
The gene FBgn0039155 contains several exons, and can be represented as a list
of length 1, where the element of the list contains a GRanges object with 7
elements:

GRangesList of length 1:

$FBgn0039155

GRanges with 7 ranges and 2 elementMetadata cols:

seqnames ranges strand | exon_id exon_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr3R [19967117, 19967382] + | 64137 <NA>

[2] chr3R [19970915, 19971592] + | 64138 <NA>

[3] chr3R [19971652, 19971770] + | 64139 <NA>

[4] chr3R [19971831, 19972024] + | 64140 <NA>

[5] chr3R [19972088, 19972461] + | 64141 <NA>

[6] chr3R [19972523, 19972589] + | 64142 <NA>

[7] chr3R [19972918, 19973212] + | 64143 <NA>

seqlengths:

chr3R

27905053

The GRangesList object has methods one would expect for lists (e.g., length,
subsetting). Many of the methods introduced for working with IRanges are also
available, with the method applied element-wise.

The GenomicFeatures package Many public resources provide annotations
about genomic features. For instance, the UCSC genome browser maintains the
‘knownGene’ track of established exons, transcripts, and coding sequences of
many model organisms. The GenomicFeatures package provides a way to re-
trieve, save, and query these resources. The underlying representation is as
sqlite data bases, but the data are available in R as GRangesList objects. The
following exercise explores the GenomicFeatures package and some of the func-
tionality for the IRanges family introduced above.

Exercise 5
Load the TxDb.Dmelanogaster.UCSC.dm3.ensGene annotation package, and
create an alias txdb pointing to the TranscriptDb object this class defines.

Extract all exon coordinates, organized by gene, using exonsBy. What is the
class of this object? How many elements are in the object? What does each
element correspond to? And the elements of each element? Use elementLengths

and table to summarize the number of exons in each gene, for instance, how
many single-exon genes are there?

Select just those elements corresponding to flybase gene ids FBgn0002183,
FBgn0003360, FBgn0025111, and FBgn0036449. Use reduce to simplify gene
models, so that exons that overlap are considered ‘the same’.

Solution:

> library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)

> txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene # alias

33

http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/data/annotation/html/TxDb.Dmelanogaster.UCSC.dm3.ensGene.html

> ex0 <- exonsBy(txdb, "gene")

> head(table(elementLengths(ex0)))

1 2 3 4 5 6

3182 2608 2070 1628 1133 886

> ids <- c("FBgn0002183", "FBgn0003360", "FBgn0025111", "FBgn0036449")

> ex <- reduce(ex0[ids])

Exercise 6
(Independent) Create a TranscriptDb instance from UCSC, using makeTran-

scriptDbFromUCSC.

Solution:

> txdb <- makeTranscriptDbFromUCSC("dm3", "ensGene")

> saveDb(txdb, "my.dm3.ensGene.txdb.sqlite")

3.2 Working with strings

Underlying the ranges of alignments and features are DNA sequences. The
Biostrings package provides tools for working with this data. The essential
data structures are DNAString and DNAStringSet , for working with one or
multiple DNA sequences. The Biostrings package contains additional classes
for representing amino acid and general biological strings. The BSgenome and
related packages (e.g., BSgenome.Dmelanogaster.UCSC.dm3) are used to rep-
resent whole-genome sequences. The following exercise explores these packages.

Exercise 7
The objective of this exercise is to calculate the GC content of the exons of a
single gene, whose coordinates are specified by the ex object of the previous
exercise.

Load the BSgenome.Dmelanogaster.UCSC.dm3 data package, containing the
UCSC representation of D. melanogaster genome assembly dm3.

Extract the sequence name of the first gene of ex. Use this to load the
appropriate D. melanogaster chromosome.

Use Views to create views on to the chromosome that span the start and end
coordinates of all exons.

The SequenceAnalysis package defines a helper function gcFunction (devel-
oped in a later exercise) to calculate GC content. Use this to calculate the GC
content in each of the exons.

Look at the helper function, and describe what it does.

Solution: Here we load the D. melanogaster genome, select a single chromo-
some, and create Views that reflect the ranges of the FBgn0002183.

> library(BSgenome.Dmelanogaster.UCSC.dm3)

> nm <- as.character(unique(seqnames(ex[[1]])))

> chr <- Dmelanogaster[[nm]]

> v <- Views(chr, start=start(ex[[1]]), end=end(ex[[1]]))

34

http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/data/annotation/html/BSgenome.Dmelanogaster.UCSC.dm3.html
http://bioconductor.org/packages/release/data/annotation/html/BSgenome.Dmelanogaster.UCSC.dm3.html

Here is the helper function, available in the SequenceAnalysis package, to cal-
culate GC content:

> gcFunction

function (x)

{

alf <- alphabetFrequency(x, as.prob = TRUE)

rowSums(alf[, c("G", "C")])

}

<environment: namespace:SequenceAnalysis>

The gcFunction is really straight-forward: it invokes the function alphabetFre-

quency from the Biostrings package. This returns a simple matrix of exon ×
nuclotiede probabilities. The row sums of the G and C columns of this matrix
are the GC contents of each exon.

The subject GC content is

> subjectGC <- gcFunction(v)

3.3 Resources

There are extensive vignettes for Biostrings and GenomicRanges packages. A
useful online resource is from Thomas Grike’s group.

35

http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://manuals.bioinformatics.ucr.edu/home/ht-seq

Table 6: Selected Bioconductor packages for sequence reads and alignments.

Package Description
ShortRead Defines the ShortReadQ class and functions for ma-

nipulating fastq files; these classes rely heavily on
Biostrings.

GenomicRanges GappedAlignments and GappedAlignmentPairs store
single- and paired-end aligned reads.

Rsamtools Provides access to BAM alignment and other large
sequence-related files.

rtracklayer Input and output of bed, wig and similar files

4 Reads and Alignments

The following sections introduce core tools for working with high-throughput
sequence data; key packages for representing reads and alignments are summa-
rized in Table 6. This section focus on the reads and alignments that are the
raw material for analysis. Section 5 addresses statistical approaches to assessing
differential representation in RNA-seq experiments. Section 6 outlines ChIP-seq
analysis. Section 7 introduces resources for annotating sequences.

4.1 The pasilla data set

As a running example, we use the pasilla data set, derived from [2]. The authors
investigate conservation of RNA regulation between D. melanogaster and mam-
mals. Part of their study used RNAi and RNA-seq to identify exons regulated by
Pasilla (ps), the D. melanogaster ortholog of mammalian NOVA1 and NOVA2.
Briefly, their experiment compared gene expression as measured by RNAseq in
S2-DRSC cells cultured with, or without, a 444bp dsRNA fragment correspond-
ing to the ps mRNA sequence. Their assessment investigated differential exon
use, but our worked example will focus on gene-level differences.

In this section we look at a subset of the ps data, corresponding to reads
obtained from lanes of their RNA-seq experiment, and to the same reads aligned
to a D. melanogaster reference genome. Reads were obtained from GEO and the
Short Read Archive (SRA), and were aligned to the D. melanogaster reference
genome dm3 as described in the pasilla experiment data package.

4.2 Reads and the ShortRead package

Short read formats The Illumina GAII and HiSeq technologies generate
sequences by measuring incorporation of florescent nucleotides over successive
PCR cycles. These sequencers produce output in a variety of formats, but
FASTQ is ubiquitous. Each read is represented by a record of four components:

@SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

GTTTTGTCCAAGTTCTGGTAGCTGAATCCTGGGGCGC

+SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

The first and third lines (beginning with @ and + respectively) are unique iden-
tifiers. The identifier produced by the sequencer typically includes a machine id

36

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html

followed by colon-separated information on the lane, tile, x, and y coordinate
of the read. The example illustrated here also includes the SRA accession num-
ber, added when the data was submitted to the archive. The machine identifier
could potentially be used to extract information about batch effects. The spatial
coordinates (lane, tile, x, y) are often used to identify optical duplicates; spatial
coordinates can also be used during quality assessment to identify artifacts of
sequencing, e.g., uneven amplification across the flow cell, though these spatial
effects are rarely pursued.

The second and fourth lines of the FASTQ record are the nucleotides and
qualities of each cycle in the read. This information is given in 5’ to 3’ orientation
as seen by the sequencer. A letter N in the sequence is used to signify bases
that the sequencer was not able to call. The fourth line of the FASTQ record
encodes the quality (confidence) of the corresponding base call. The quality
score is encoded following one of several conventions, with the general notion
being that letters later in the visible ASCII alphabet

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNO

PQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

are of lower quality; this is developed further below. Both the sequence and
quality scores may span multiple lines.

Technologies other than Illumina use different formats to represent sequences.
Roche 454 sequence data is generated by ‘flowing’ labeled nucleotides over sam-
ples, with greater intensity corresponding to longer runs of A, C, G, or T. This
data is represented as a series of ‘flow grams’ (a kind of run-length encoding
of the read) in Standard Flowgram Format (SFF). The Bioconductor package
R453Plus1Toolbox has facilities for parsing SFF files, but after quality con-
trol steps the data are frequently represented (with some loss of information) as
FASTQ. SOLiD technologies produce sequence data using a ‘color space’ model.
This data is not easily read in to R, and much of the error-correcting benefit of
the color space model is lost when converted to FASTQ; SOLiD sequences are
not well-handled by Bioconductor packages.

Short reads in R FASTQ files can be read in to R using the readFastq

function from the ShortRead package. Use this function by providing the path to
a FASTQ file. There are sample data files available in the SequenceAnalysisData
package, each consisting of 1 million reads from a lane of the Pasilla data set.

> fastqDir <- file.path(bigdata(), "fastq")

> fastqFiles <- dir(fastqDir, full=TRUE)

> fq <- readFastq(fastqFiles[1])

> fq

class: ShortReadQ

length: 1000000 reads; width: 37 cycles

The data are represented as an object of class ShortReadQ .

> head(sread(fq), 3)

A DNAStringSet instance of length 3

width seq

37

http://bioconductor.org/packages/release/bioc/html/R453Plus1Toolbox.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html

[1] 37 GTTTTGTCCAAGTTCTGGTAGCTGAATCCTGGGGCGC

[2] 37 GTTGTCGCATTCCTTACTCTCATTCGGGAATTCTGTT

[3] 37 GAATTTTTTGAGAGCGAAATGATAGCCGATGCCCTGA

> head(quality(fq), 3)

class: FastqQuality

quality:

A BStringSet instance of length 3

width seq

[1] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

[2] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

[3] 37 IIIIIIIIIIIIIIIIIIIIII'IIIIIGBIIII2I+

> head(id(fq), 3)

A BStringSet instance of length 3

width seq

[1] 58 SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

[2] 57 SRR031724.2 HWI-EAS299_4_30M2BAAXX:5:1:937:1157 length=37

[3] 58 SRR031724.4 HWI-EAS299_4_30M2BAAXX:5:1:1443:1122 length=37

The ShortReadQ class illustrates class inheritance. It extends the ShortRead
class

> getClass("ShortReadQ")

Class "ShortReadQ" [package "ShortRead"]

Slots:

Name: quality sread id

Class: QualityScore DNAStringSet BStringSet

Extends:

Class "ShortRead", directly

Class ".ShortReadBase", by class "ShortRead", distance 2

Known Subclasses: "AlignedRead"

Methods defined on ShortRead are available for ShortReadQ .

> showMethods(class="ShortRead", where=getNamespace("ShortRead"))

For instance, the width can be used to demonstrate that all reads consist of 37
nucleotides.

> table(width(fq))

37

1000000

The alphabetByCycle function summarizes use of nucleotides at each cycle in a
(equal width) ShortReadQ or DNAStringSet instance.

38

> abc <- alphabetByCycle(sread(fq))

> abc[1:4, 1:8]

cycle

alphabet [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

A 78194 153156 200468 230120 283083 322913 162766 220205

C 439302 265338 362839 251434 203787 220855 253245 287010

G 397671 270342 258739 356003 301640 247090 227811 246684

T 84833 311164 177954 162443 211490 209142 356178 246101

FASTQ files are getting larger. A very common reason for looking at data
at this early stage in the processing pipeline is to explore sequence quality. In
these circumstances it is often not necessary to parse the entire FASTQ file.
Instead create a representative sample

> sampler <- FastqSampler(fastqFiles[1], 1000000)

> yield(sampler) # sample of 1000000 reads

class: ShortReadQ

length: 1000000 reads; width: 37 cycles

A second common scenario is to pre-process reads, e.g., trimming low-quality
tails, adapter sequences, or artifacts of sample preparation. The FastqStreamer
class can be used to ‘stream’ over the fastq files in chunks, processing each chunk
independently.

ShortRead contains facilities for quality assessment of FASTQ files. Here we
generate a report from a sample of 1 million reads from each of our files and
display it in a web browser

> qas0 <- Map(function(fl, nm) {

+ fq <- FastqSampler(fl)

+ qa(yield(fq), nm)

+ }, fastqFiles,

+ sub("_subset.fastq", "", basename(fastqFiles)))

> qas <- do.call(rbind, qas0)

> rpt <- report(qas, dest=tempfile())

> browseURL(rpt)

A report from a larger subset of the experiment is available

> rpt <- system.file("GSM461176_81_qa_report", "index.html",

+ package="SequenceAnalysis")

> browseURL(rpt)

Exercise 8
Use the helper function bigdata (defined in the SequenceAnalysis package) and
the file.path and dir functions to locate two fastq files from [2] (the files were
obtained as described in the appendix and pasilla experiment data package.

Input one of the fastq files using readFastq from the ShortRead package.
Use alphabetFrequency to summarize the GC content of all reads (hint: use

the sread accessor to extract the reads, and the collapse=TRUE argument to the

39

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html

alphabetFrequency function). Using the helper function gcFunction from the Se-
quenceAnalysis package, draw a histogram of the distribution of GC frequencies
across reads.

Use alphabetByCycle to summarize the frequency of each nucleotide, at each
cycle. Plot the results using matplot, from the graphics package.

As an advanced exercise, and if on Mac or Linux, use the parallel package
and mclapply to read and summarize the GC content of reads in two files in
parallel.

Solution: Discovery:

> dir(bigdata())

[1] "bam" "fastq"

> fls <- dir(file.path(bigdata(), "fastq"), full=TRUE)

Input:

> fq <- readFastq(fls[1])

GC content:

> alf0 <- alphabetFrequency(sread(fq), as.prob=TRUE, collapse=TRUE)

> sum(alf0[c("G", "C")])

[1] 0.5457237

A histogram of the GC content of individual reads is obtained with

> gc <- gcFunction(sread(fq))

> hist(gc)

Alphabet by cycle:

> abc <- alphabetByCycle(sread(fq))

> matplot(t(abc[c("A", "C", "G", "T"),]), type="l")

Advanced (Mac, Linux only): processing on multiple cores.

> library(parallel)

> gc0 <- mclapply(fls, function(fl) {

+ fq <- readFastq(fl)

+ gc <- gcFunction(sread(fq))

+ table(cut(gc, seq(0, 1, .05)))

+ })

> ## simplify list of length 2 to 2-D array

> gc <- simplify2array(gc0)

> matplot(gc, type="s")

40

Exercise 9
Use quality to extract the quality scores of the short reads. Interpret the
encoding qualitatively.

Convert the quality scores to a numeric matrix, using as. Inspect the numeric
matrix (e.g., using dim) and understand what it represents.

Use colMeans to summarize the average quality score by cycle. Use plot to
visualize this.

Solution:

> head(quality(fq))

class: FastqQuality

quality:

A BStringSet instance of length 6

width seq

[1] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

[2] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

[3] 37 IIIIIIIIIIIIIIIIIIIIII'IIIIIGBIIII2I+

[4] 37 IIIIIIIIIIIIIIIIIIIIIIII,II*E,&4HI++B

[5] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII&.$

[6] 37 III.IIIIIIIIIIIIIIIIIII%IIE(-EIH<IIII

> qual <- as(quality(fq), "matrix")

> dim(qual)

[1] 1000000 37

> plot(colMeans(qual), type="b")

4.3 Alignments and the Rsamtools package

Most down-stream analysis of short read sequences is based on reads aligned to
reference genomes. There are many aligners available, including BWA [14, 13],
Bowtie / Bowtie2 [12], and GSNAP; merits of these are discussed in the litera-
ture. There are also alignment algorithms implemented in Bioconductor (e.g.,
matchPDict in the Biostrings package, and the Rsubread package); matchPDict

is particularly useful for flexible alignment of moderately sized subsets of data.

Alignment formats Most main-stream aligners produce output in SAM (text-
based) or BAM format. A SAM file is a text file, with one line per aligned read,
and fields separated by tabs. Here is an example of a single SAM line, split into
fields.

> fl <- system.file("extdata", "ex1.sam", package="Rsamtools")

> strsplit(readLines(fl, 1), "\t")[[1]]

[1] "B7_591:4:96:693:509"

[2] "73"

[3] "seq1"

41

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bio-bwa.sourceforge.net/
http://bowtie-bio.sourceforge.net/
http://bowtie-bio.sourceforge.net/bowtie2/
http://research-pub.gene.com/gmap/
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/Rsubread.html

Table 7: Fields in a SAM record. From http://samtools.sourceforge.net/

samtools.shtml

Field Name Value
1 QNAME Query (read) NAME
2 FLAG Bitwise FLAG, e.g., strand of alignment
3 RNAME Reference sequence NAME
4 POS 1-based leftmost POSition of sequence
5 MAPQ MAPping Quality (Phred-scaled)
6 CIAGR Extended CIGAR string
7 MRNM Mate Reference sequence NaMe
8 MPOS 1-based Mate POSition
9 ISIZE Inferred insert SIZE
10 SEQ Query SEQuence on the reference strand
11 QUAL Query QUALity
12+ OPT OPTional fields, format TAG:VTYPE:VALUE

[4] "1"

[5] "99"

[6] "36M"

[7] "*"

[8] "0"

[9] "0"

[10] "CACTAGTGGCTCATTGTAAATGTGTGGTTTAACTCG"

[11] "<<<<<<<<<<<<<<<;<<<<<<<<<5<<<<<;:<;7"

[12] "MF:i:18"

[13] "Aq:i:73"

[14] "NM:i:0"

[15] "UQ:i:0"

[16] "H0:i:1"

[17] "H1:i:0"

Fields in a SAM file are summarized in Table 7. We recognize from the
FASTQ file the identifier string, read sequence and quality. The alignment is to
a chromosome ‘seq1’ starting at position 1. The strand of alignment is encoded
in the ‘flag’ field. The alignment record also includes a measure of mapping
quality, and a CIGAR string describing the nature of the alignment. In this
case, the CIGAR is 36M, indicating that the alignment consisted of 36 Matches
or mismatches, with no indels or gaps; indels are represented by I and D; gaps
(e.g., from alignments spanning introns) by N.

BAM files encode the same information as SAM files, but in a format that
is more efficiently parsed by software; BAM files are the primary way in which
aligned reads are imported in to R.

Aligned reads in R The readGappedAlignments function from the Genom-
icRanges package reads essential information from a BAM file in to R. The
result is an instance of the GappedAlignments class. The GappedAlignments
class has been designed to allow useful manipulation of many reads (e.g., 20
million) under moderate memory requirements (e.g., 4 GB).

42

http://samtools.sourceforge.net/samtools.shtml
http://samtools.sourceforge.net/samtools.shtml
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html

> alnFile <- system.file("extdata", "ex1.bam", package="Rsamtools")

> aln <- readGappedAlignments(alnFile)

> head(aln, 3)

GappedAlignments with 3 alignments and 0 elementMetadata cols:

seqnames strand cigar qwidth start end width

<Rle> <Rle> <character> <integer> <integer> <integer> <integer>

[1] seq1 + 36M 36 1 36 36

[2] seq1 + 35M 35 3 37 35

[3] seq1 + 35M 35 5 39 35

ngap

<integer>

[1] 0

[2] 0

[3] 0

seqlengths:

seq1 seq2

1575 1584

The readGappedAlignments function takes an additional argument, param, allow-
ing the user to specify regions of the BAM file (e.g., known gene coordinates)
from which to extract alignments.

A GappedAlignments instance is like a data frame, but with accessors as
suggested by the column names. It is easy to query, e.g., the distribution of
reads aligning to each strand, the width of reads, or the cigar strings

> table(strand(aln))

+ -

1647 1624

> table(width(aln))

30 31 32 33 34 35 36 38 40

2 21 1 8 37 2804 285 1 112

> head(sort(table(cigar(aln)), decreasing=TRUE))

35M 36M 40M 34M 33M 14M4I17M

2804 283 112 37 6 4

Exercise 10
Use bigdata, file.path and dir to obtain file paths to the BAM files. These are
a subset of the aligned reads, overlapping just four genes.

Input the aligned reads from one file using readGappedAlignments. Explore
the reads, e.g., using table or xtabs, to summarize which chromosome and
strand the subset of reads is from.

The object ex created earlier contains coordinates of four genes. Use coun-

tOverlaps to first determine the number of genes an individual read aligns to,
and then the number of uniquely aligning reads overlapping each gene. Since
the RNAseq protocol was not strand-sensitive, set the strand of aln to *.

43

Write the sequence of steps required to calculate counts as a simple function,
and calculate counts on each file. On Mac or Linux, can you easily parallelize
this operation?

Solution: We discover the location of files using standard R commands:

> fls <- dir(file.path(bigdata(), "bam"), ".bam$", full=TRUE)

> names(fls) <- sub("_.*", "", basename(fls))

Use readGappedAlignments to input data from one of the files, and standard R
commands to explore the data.

> ## input

> aln <- readGappedAlignments(fls[1])

> xtabs(~seqnames + strand, as.data.frame(aln))

strand

seqnames - +

chr3L 5974 5402

chrX 2283 2278

To count overlaps in regions defined in a previous exercise, load the regions.

> data(ex) # from an earlier exercise

Many RNA-seq protocols are not strand aware, i.e., reads align to the plus
or minus strand regardless of the strand on which the corresponding gene is
encoded. Adjust the strand of the aligned reads to indicate that the strand is
not known.

> strand(aln) <- "*" # protocol not strand-aware

For simplicity, we are interested in reads that align to only a single gene. Count
the number of genes a read aligns to. . .

> hits <- countOverlaps(aln, ex)

> table(hits)

hits

0 1 2

772 15026 139

and reverse the operation to count the number of times each region of interest
aligns to a uniquely overlapping alignment.

> cnt <- countOverlaps(ex, aln[hits==1])

A simple function for counting reads is

> counter <-

+ function(filePath, range)

+ {

+ aln <- readGappedAlignments(filePath)

+ strand(aln) <- "*"

+ hits <- countOverlaps(aln, range)

+ countOverlaps(range, aln[hits==1])

+ }

44

Figure 3: GC content in aligned reads

This can be applied to all files using sapply

> counts <- sapply(fls, counter, ex)

The counts in one BAM file are independent of counts in another BAM file.
This encourages us to count reads in each BAM file in parallel, decreasing the
length of time required to execute our program. On Linux and Mac OS, a
straight-forward way to parallelize this operation is:

> if (require(parallel))

+ simplify2array(mclapply(fls, counter, ex))

The GappedAlignments class inputs only some of the fields of a BAM file,
and may not be appropriate for all uses. In these cases the scanBam function in
Rsamtools provides greater flexibility. The idea is to view BAM files as a kind
of data base. Particular regions of interest can be selected, and the information
in the selection restricted to particular fields. These operations are determined
by the values of a ScanBamParam object, passed as the named param argument
to scanBam.

Exercise 11
Consult the help page for ScanBamParam, and construct an object that restricts
the information returned by a scanBam query to the aligned read DNA sequence.
Your solution will use the what parameter to the ScanBamParam function.

Use the ScanBamParam object to query a BAM file, and calculate the GC
content of all aligned reads. Summarize the GC content as a histogram (Figure
3).

Solution:

45

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

> param <- ScanBamParam(what="seq")

> seqs <- scanBam(fls[[1]], param=param)

> readGC <- gcFunction(seqs[[1]][["seq"]])

> hist(readGC)

46

5 RNA-seq

5.1 Varieties of RNA-seq

RNA-seq experiments typically ask about differences in trancription of genes
or other features across experimental groups. The analysis of designed experi-
ments is statistical, and hence an ideal task for R. The overall structure of the
analysis, with tens of thousands of features and tens of samples, is reminiscent
of microarray analysis; some insights from the microarray domain will apply, at
least conceptually, to the analysis of RNA-seq experiments.

The most straight-forward RNA-seq experiments quantify abundance for
known gene models. The known models are derived from reference databases,
reflecting the accumulated knowledge of the community responsible for the data.
The ‘knownGenes’ track of the UCSC genome browser represents one source of
such data. A track like this describes, for each gene, the transcripts and exons
that are expected based on current data. The GenomicFeatures package allows
ready access to this information by creating a local database out of the track
information. This data base of known genes is coupled with high throughput
sequence data by counting reads overlapping known genes and modeling the
relationship between treatment groups and counts.

A more ambitious approach to RNA-seq attempts to identify novel tran-
scripts. This requires that sequenced reads be assembled into contigs that,
presumably, correspond to expressed transcripts that are then located in the
genome. Regions identified in this way may correspond to known transcripts,
to novel arrangements of known exons (e.g., through alternative splicing), or to
completely novel constructs. We will not address the identification of completely
novel transcripts here, but will instead focus on the analysis of the designed ex-
periments: do the transcript abundances, novel or otherwise, differ between
experimental groups?

Bioconductor packages play a role in several stages of an RNA-seq analysis
(Table 8; a more comprehensive list is under the RNAseq and HighThroughput-
Sequencing BiocViews terms). The GenomicRanges infrastructure can be effec-
tively employed to quantify known exon or transcript abundances. Quantified
abundances are in essence a matrix of counts, with rows representing features
and columns samples. The edgeR [19] and DESeq [1] packages facilitate anal-
ysis of this data in the context of designed experiments, and are appropriate
when the questions of interest involve between-sample comparisons of relative
abundance. The DEXSeq package extends the approach in edgeR and DESeq
to ask about within-gene, between group differences in exon use, i.e., for a given
gene, do groups differ in their exon use?

5.2 Differential expression with the edgeR package

RNA-seq differential representation experiments, like classical microarray ex-
periments, consist of a single statistical design (e.g, comparing expression of
samples assigned to ‘Treatment’ versus ‘Control’ groups) applied to each fea-
ture for which there are aligned reads. While one could naively perform simple
tests (e.g., t-tests) on all features, it is much more informative to identify impor-
tant aspects of RNAseq experiments, and to take a flexible route through this
part of the work flow. Key steps involve formulation of a model matrix to cap-

47

http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/2.10/BiocViews.html#___RNAseq
http://bioconductor.org/packages/2.10/BiocViews.html#___HighThroughputSequencing
http://bioconductor.org/packages/2.10/BiocViews.html#___HighThroughputSequencing
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html

Table 8: Selected Bioconductor packages for RNA-seq analysis.

Package Description
EDASeq Exploratory analysis and QA; also qrqc, ShortRead.
edgeR, DESeq Generalized Linear Models using negative binomial er-

ror.
DEXSeq Exon-level differential representation.
goseq Gene set enrichment tailored to RNAseq count data;

also limma’s roast or camera after transformation with
voom.

easyRNASeq Workflow; also ArrayExpressHTS, rnaSeqMap,
oneChannelGUI .

Rsubread Alignment (Linux only); also Biostrings matchPDict for
special-purpose alignments.

ture the experimental design, estimation of a test static to describe differences
between groups, and calculation of a P value or other measure as a statement
of statistical significance.

Counting and filtering An essential step is to arrive at some measure of
gene representation amongst the aligned reads. A straight-forward and com-
monly used approach is to count the number of times a read overlaps exons.
Nuance arises when a read only partly overlaps an exon, when two exons over-
lap (and hence a read appears to be ‘double counted’), when reads are aligned
with gaps and the gaps are inconsistent with known exon boundaries, etc. The
summarizeOverlaps function in the GenomicRanges package provides facilities
for implementing different count strategies, using the argument mode to deter-
mine the counting strategy. The result of summarizeOverlaps can easily be used
in subsequent steps of an RNA-seq analysis.

Software other than R can also be used to summarize count data. An im-
portant point is that the desired input for downstream analysis is often raw
count data, rather than normalized (e.g., reads per kilobase of gene model per
million mapped reads) values. This is because counts allow information about
uncertainty of estimates to propagate to later stages in the analysis.

The following exercise illustrates key steps in counting and filtering reads
overlapping known genes.

Exercise 12
The SequenceAnalysisData package contains a data set counts with pre-computed
count data. Use the data command to load it. Create a variable grp to define
the groups associated with each column, using the column names as a proxy for
more authoritative metadata.

Create a DGEList object (defined in the edgeR package) from the count matrix
and group information. Calculate relative library sizes using the calcNormFac-

tors function.
A lesson from the microarray world is to discard genes that cannot be in-

formative (e.g., because of lack of variation), regardless of statistical hypothesis
under evaluation. Filter reads to remove those that are represented at less than
1 per million mapped reads, in fewer than 2 samples.

48

http://bioconductor.org/packages/release/bioc/html/EDASeq.html
http://bioconductor.org/packages/release/bioc/html/qrqc.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/goseq.html
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/bioc/html/ArrayExpressHTS.html
http://bioconductor.org/packages/release/bioc/html/rnaSeqMap.html
http://bioconductor.org/packages/release/bioc/html/oneChannelGUI.html
http://bioconductor.org/packages/release/bioc/html/Rsubread.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html

As a sanity check and to provide confidence that subsequent analysis is
worthwhile, use plotMDS on the filtered reads to perform multi-dimensional scal-
ing. Interpret the resulting plot.

Solution: Here we load the data (a matrix of counts) and create treatment
group names from the column names of the counts matrix.

> data(counts)

> dim(counts)

[1] 14470 7

> grps <- factor(sub("[1-4].*", "", colnames(counts)),

+ levels=c("untreated", "treated"))

> pairs <- factor(c("single", "paired", "paired",

+ "single", "single", "paired", "paired"))

> pData <- data.frame(Group=grps, PairType=pairs,

+ row.names=colnames(counts))

We use the edgeR package, creating a DGEList object from the count and
group data. The calcNormFactors function estimates relative library sizes for
use as offsets in the generalized linear model.

> library(edgeR)

> dge <- DGEList(counts, group=pData$Group)

> dge <- calcNormFactors(dge)

To filter reads, we scale the counts by the library sizes and express the results
on a per-million read scale. This is done using the sweep function, dividing each
column by it’s library size and multiplying by 1e6. We require that the gene be
represented at a frequency of at least 1 read per million mapped (m > 1, below)
in two or more samples (rowSums(m > 1) >= 2), and use this criterion to subset
the DGEList instance.

> m <- sweep(dge$counts, 2, 1e6 / dge$samples$lib.size, `*`)

> ridx <- rowSums(m > 1) >= 2

> table(ridx) # number filtered / retained

ridx

FALSE TRUE

6476 7994

> dge <- dge[ridx,]

Multi-dimensional scaling takes data in high dimensional space (in our case,
the dimension is equal to the number of genes in the filtered DGEList instance)
and reduces it to fewer (e.g., 2) dimensions, allowing easier visual assessment.
The plot is shown in Figure 4; that the samples separate into distinct groups
provides some reassurance that the data differ according to treatment. Nonethe-
less, there appears to be considerable heterogeneity within groups. Any guess,
perhaps from looking at the quality report generated earlier, what the within-
group differences are due to?

> plotMDS(dge)

49

http://bioconductor.org/packages/release/bioc/html/edgeR.html

Figure 4: MDS plot of lanes from the Pasilla data set.

Experimental design In R, an experimental design is specified with the
model.matrix function. The function takes as its first argument a formula

describing the independent variables and their relationship to the response
(counts), and as a second argument a data.frame containing the (phenotypic)
data that the formula describes. A simple formula might read ~ 1 + Group,
which says that the response is a linear function involving an intercept (1) plus
a term encoded in the variable Group. If (as in our case) Group is a factor, then
the first coefficient (column) of the model matrix corresponds to the first level
of Group, and subsequent terms correspond to deviations of each level from the
first. If Group were numeric rather than factor , the formula would represent
linear regressions with an intercept. Formulas are very flexible, allowing repre-
sentation of models with one, two, or more factors as main effects, models with
or without interaction, and with nested effects.

Exercise 13
To be more concrete, use the model.matrix function and a formula involving
Group to create the model matrix for our experiment.

Solution: Here is the experimental design; it is worth discussing with your
neighbor the interpretation of the design instance.

> (design <- model.matrix(~ Group, pData))

(Intercept) Grouptreated

treated1fb 1 1

treated2fb 1 1

treated3fb 1 1

untreated1fb 1 0

untreated2fb 1 0

untreated3fb 1 0

50

untreated4fb 1 0

attr(,"assign")

[1] 0 1

attr(,"contrasts")

attr(,"contrasts")$Group

[1] "contr.treatment"

The coefficient (column) labeled ‘Intercept’ corresponds to the first level of
Group, i.e., ‘untreated’. The coefficient ‘Grouptreated’ represents the deviation
of the treated group from untreated. Eventually, we will test whether the second
coefficient is significantly different from zero, i.e., whether samples with a ‘1’ in
the second column are, on average, different from samples with a ‘0’. On the
one hand, use of model.matrix to specify experimental design implies that the
user is comfortable with something more than elementary statistical concepts,
while on the other it provides great flexibility in the experimental design that
can be analyzed.

Negative binomial error RNA-seq count data are often described by a neg-
ative binomial error model. This model includes a ‘dispersion’ parameter that
describes biological variation beyond the expectation under a Poisson model.
The simplest approach estimates a dispersion parameter from all the data. The
estimate needs to be conducted in the context of the experimental design, so
that variability between experimental factors is not mistaken for variability in
counts. The square root of the estimated dispersion represents the coefficient of
variation between biological samples. The following edgeR commands estimate
dispersion.

> dge <- estimateTagwiseDisp(dge)

> mean(sqrt(dge$tagwise.dispersion))

[1] 0.18

This approach estimates a dispersion parameter that is specific to each tag.
As another alternative, Anders and Huber [1] note that dispersion increases as
the mean number of reads per gene decreases. One can estimate the relationship
between dispersion and mean using estimateGLMTrendedDisp in edgeR, using a
fitted relationship across all genes to estimate the dispersion of individual genes.
Because in our case sample sizes (biological replicates) are small, gene-wise
estimates of dispersion are likely imprecise. One approach is to moderate these
estimates by calculating a weighted average of the gene-specific and common
dispersion; estimateGLMTagwiseDisp performs this calculation, requiring that the
user provides an a priori estimate of the weight between tag-wise and common
dispersion.

Differential representation The final steps in estimating differential repre-
sentation are to fit the full model; to perform the likelihood ratio test comparing
the full model to a model in which one of the coefficients has been removed; and
to summarize, from the likelihood ratio calculation, genes that are most differ-
entially represented. The result is a ‘top table’ whose row names are the Flybase
gene ids used to label the elements of the ex GRangesList .

51

http://bioconductor.org/packages/release/bioc/html/edgeR.html

Exercise 14
Use glmFit to fit the general linear model. This function requires the input data
dge, the experimental design design, and the estimate of dispersion.

Use glmLRT to form the likelihood ratio test. This requires the original data
dge and the fitted model from the previous part of this question. Which coeffi-
cient of the design matrix do you wish to test?

Create a ‘top table’ of differentially represented genes using topTags.

Solution: Here we fit a generalized linear model to our data and experimental
design, using the tagwise dispersion estimate.

> fit <- glmFit(dge, design)

The fit can be used to calculate a likelihood ratio test, comparing the full
model to a reduced version with the second coefficient removed. The second
coefficient captures the difference between treated and untreated groups, and
the likelihood ratio test asks whether this term contributes meaningfully to the
overall fit.

> lrTest <- glmLRT(dge, fit, coef=2)

Here the topTags function summarizes results across the experiment.

> tt <- topTags(lrTest, n=10)

> tt[1:3,]

Coefficient: Grouptreated

logFC logCPM LR PValue FDR

FBgn0039155 -4.7 6.0 542 5.9e-120 4.7e-116

FBgn0039827 -4.3 4.6 247 1.0e-55 4.0e-52

FBgn0029167 -2.2 8.2 211 6.6e-48 1.8e-44

As a ’sanity check’, summarize the original data for the first several probes,
confirming that the average counts of the treatment and control groups are
substantially different.

> sapply(rownames(tt$table)[1:4],

+ function(x) tapply(counts[x,], pData$Group, mean))

FBgn0039155 FBgn0039827 FBgn0029167 FBgn0034736

untreated 1576 554 6447 382

treated 64 31 1483 36

5.3 Additional steps in RNA-seq work flows

Annotation It is very easy to add annotations (mapping Entrez identifiers to
gene names, KEGG or GO pathways, etc) to top tables; see Section 7.

52

Gene set enrichment Gene set enrichment approaches ask whether sets of
genes are associated with a treatment group. Sets are typically defined to repre-
sent genes in particular biochemical or other pathways (e.g., from the KEGG or
GO ontologies). Sets might be more generally defined, e.g., to represent chro-
mosomal regions; the MSigDB (Molecular Signals data base) is one collection
of diverse gene sets. Motivation for gene set analysis might be that pathways
offer greater biological relevance or are more interpretabe than individual genes,
or that the cumulative effect of several genes in a pathway may be statistically
meaningful even though individual gene contributions are not.

Gene set enrichment was first developed for microarray data, where a vari-
ety of statistical approaches have been adopted; some of these are implemented
in Bioconductor, e.g., under the ‘Pathways’ and ‘GO’ BiocViews terms, or in
the limma package. One approach (implemented in the GOstats package) di-
chotomizes genes as ‘significant’ or not, and then uses a hypergeometric test
(perhaps correcting for the hierarchical nature of some gene sets, e.g., in the
GO classification) to assess whether significant genes are over-represented in
each set. Another approach, developed in the Category package vignette, cal-
culates the average of t-statistics of genes within a gene set and compares this
with an appropriate null distribution.

Application of gene set enrichment approaches to studies of RNA-seq differ-
ential representation is conceptually similar to gene set enrichment in microarray
analysis, but there are several important considerations [22]. Perhaps the most
important is that long or highly expressed genes receive many hits, and hence
are associated with greater statistical power. The goseq package uses a data
base of known gene lengths to address this problem, as explored in the following
exercise.

Exercise 15
Explore gene set analysis in the context of RNA-seq data through the goseq
vignette. Can you think of alternative ways to address differences in statistical
power associated with gene length or expression? Are there other nuances of
RNA-seq data sets that should be taken into consideration?

In discussing gene set tests, Goeman and Buhlmann [6] distinguish between
‘competitive’ and ‘self-contained’ null hypotheses, and between ‘gene’ and ‘sub-
ject’ sampling to calculate P values.

A competitive test compares differential expression of a gene set by compar-
ison to the complement of that gene set (e.g., hypergeommetric tests on 2x2
tables of ‘differentially expressed’ versus ‘not differentially expressed‘ genes and
‘in gene set’ versus ‘not in gene set’). A self-contained test compares differential
expression to a fixed standard independent of genes outside the gene set (e.g.,
sum of t statistics for genes in a set). Goeman and Buhlmann argue that self-
contained tests have greater biological relevance and provide a natural extension
of single-gene tests in a way that competitive tests do not.

Gene sampling assesses significance by permuting labels attached to genes
(as in the hypergeommetric test), whereas subject sampling permutes subject
labels and is much more consistent with standard statistical practice.

The goseq test is an example of a competitive test using gene sampling
to assess significance. Alternative approaches for RNA-seq data are not well-

53

http://www.genome.jp/kegg/
http://www.geneontology.org/
http://www.broadinstitute.org/gsea/msigdb/index.jsp
http://bioconductor.org/packages/release/BiocViews.html#___Pathways
http://bioconductor.org/packages/release/BiocViews.html#___GO
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/GOstats.html
http://bioconductor.org/packages/release/bioc/html/Category.html
http://bioconductor.org/packages/release/bioc/html/goseq.html
http://bioconductor.org/packages/release/bioc/html/goseq.html
http://bioconductor.org/packages/release/bioc/html/goseq.html

developed. One possibility suggested by Smyth1 is to use limma’s voom function
to transform data to an approximate continuous scale, and use results in more
familiar gene set analysis.

Exercise 16
As an advanced exercise, explore use of limma’s voom transformation and the
roast and camera gene set test.

Clustering and classification An obstacle to applying clustering and classi-
fication to sequence data is the choice of a distance metric appropriate for count
data. The edgeR illustrates one approach. In the plotMDS method for objects
of class DGEList uses tagwise dispersion estimates as a measure of biological
variation. Tagwise dispersion across all samples is used to identify the most
differentially expressed genes. The square root of the tagwise common disper-
sion of pairs of samples is then used to identify the most differentially expressed
genes. The method is described on ?plotMDS.DGEList; a similar distance metric
could be used in other clustering and classification algorithms.

Specific applications may suggest more refined solutions. For instance, Holmes
et al. [8] study microbial communities, where the raw data are read counts of
taxonomic groups × biological samples. A useful approach is to fit a mixture
model to the count data, where the mixture is of a finite number of Dirichlet
probability vectors. This is illustrated in the DirichletMultinomial package.

Differential exon usage The RNA-seq analysis outlined here has focused
on perhaps the most straight-forward research question – assessment of gene-
level differential expression. Sequence data can deliver higher-resolution insight
into gene expression. For instance, one might hope to gain understanding of
transcript-level differential representation, or identify differential representation
of novel transcripts. Novel transcript identification has received a great deal
of attention, but poses significant challenges beyond the scope of this work-
shop. Approaches to transcript differential representation have often tried to
combine estimation of transcript abundance with assessment of differential rep-
resentation. The approach explored here is different and, in some ways, more
straight-forward; it is based on the DEXSeq package.

DEXSeq starts with known gene models, rather than trying to quantify
abundance of unknown transcripts. The gene models consist of exons grouped
into transcripts, and transcripts grouped into genes; they can be retrieved from,
e.g., the UCSC genome browser or ENSEMBL (via biomaRt). The gene mod-
els are simplified to represent disjoint (non-overlapping) exonic regions. Such
regions may belong to one or several transcripts. Reads aligning to each region
are counted, and the counts used in an analysis that is similar to the gene-level
analysis of edgeR or DESeq. The analysis is modified, though, to incorporate
the gene model. Specifically, one asks whether there is a significant interac-
tion between treatment and exon use – do treatments differ in how exons are
represented? An affirmative answer provides indirect evidence that, since a par-
ticular exon is also represented differently between treatments, the transcript to
which the exon belongs is represented differently. The approach uses the same

1https://stat.ethz.ch/pipermail/bioconductor/2012-April/044899.html

54

http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DirichletMultinomial.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://genome.ucsc.edu/
http://www.biomart.org/
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
https://stat.ethz.ch/pipermail/bioconductor/2012-April/044899.html

statistical machinery as the edgeR or DESeq packages, so makes efficient use of
available data with appropriate assumptions about the error model.

Exercise 17
Explore exon usage through the DEXSeq vignette. Compare the merits and
challenges of this approach with, e.g., direct estimation of transcript abundance
and differential representation. How straight-forward is it to interpret results of
a DEXSeq analysis, in terms of differential transcript use? Under what exper-
imental circumstances might this approach be most profitably employed? Are
there any avenues for simplifying the analysis, e.g., in simplifying known gene
models to capture just the splicing events differentiating transcripts (a tough
question; see [21]).

The forthcoming SpliceGraph package takes this a step further by summa-
rizing gene models into graphs, with ‘bubbles’ representing alternative splicing
events; this reduces the number of statistical tests (increasing count per edge
and statistical power) while providing meaningful insight into the types of events
(e.g., ‘exon skip’, ‘alternative acceptor’) occurring.

5.4 Resources

The edgeR, DESeq, and DEXSeq package vignettes provide excellent, exten-
sive discussion of issues and illustration of methods for RNA-seq differential
expression analysis.

55

http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/SpliceGraph.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html

Table 9: Selected Bioconductor packages for RNA-seq analysis.

Package Description
qrqc Quality assessment; also ShortRead, chipseq.
PICS Peak calling, also mosaics, chipseq, ChIPseqR,

BayesPeak, nucleR (nucleosome positioning).
ChIPpeakAnno Peak annotation.
DiffBind Multiple-experiment analysis.
MotIV Motif identification and validation; also rGADEM .

6 ChIP-seq

6.1 Varieties of ChIP-seq

ChIP-seq and similar experiments combine chromosome immuno-precipitation
(ChIP) with sequence analysis. The idea is that the ChIP protocol enriches
genomic DNA for regions of interest, e.g., sites to which transcription factors are
bound. The regions of interest are then subject to high throughput sequencing,
the reads aligned to a reference genome, and the location of mapped reads
(‘peaks’) interpreted as indicators of the ChIP’ed regions. Reviews include those
by Park and colleagues [17, 7]; there is a large collection of peak-calling software,
some features of which are summarized in Pepke et al. [18].

Initial stages in a ChIP-seq analysis differ from RNA-seq in several impor-
tant ways. The ChIP protocol is more complicated and idiosyncratic than RNA-
seq protocols, and the targets of ChIP more variable in terms of sequence and
other characteristics. While RNA- and ChIP-seq use reads aligned to a refer-
ence genome, ChIP-seq protocols require that the aligned reads be processed to
identify peaks, rather than simply counted in known gene regions.

Many early ChIP-seq studies focused on characterizing one or a suite of
transcription factor binding sites across a small number of samples from one or
two groups. The main challenge was to develop efficient peak-calling software,
often tailored to the characteristics of the peaks of interest (e.g., narrow and
well-defined CTCF binding sites, vs. broad histone marks). More comprehensive
studies draw from multiple samples, e.g., in the ENCODE project [10, 16].
Decreasing sequence costs and better experimental and data analytic protocols
mean that these larger-scale studies are increasingly accessible to individual
investigators. Peak-calling in this kind of study represents an initial step, but
interpretting analyses derived from multiple samples present significant analytic
challenges. Bioconductor packages play a role in several stages of a ChIP-
seq analysis. (Table 9; a more comprehensive list is under the ChIPseq and
HighThroughputSequencing BiocViews terms). The ShortRead package can
provide a quality assessment report of reads. Following alignment, the chipseq
package can be used, in conjunction with ShortRead and GenomicRanges, to
identify enriched regions in a statistically informed and flexible way. DiffBind
provides facilities for comprehensive analysis of experiments with multiple ChIP-
seq samples. The ChIPpeakAnno package assists in annotating peaks in terms
of known genes and other genomic features. Pattern matching in Biostrings and
specialized packages such as MotIV can assist in motif identification.

Our attention is on analyzing multiple samples from a single experiment, and

56

http://bioconductor.org/packages/release/bioc/html/qrqc.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/chipseq.html
http://bioconductor.org/packages/release/bioc/html/PICS.html
http://bioconductor.org/packages/release/bioc/html/mosaics.html
http://bioconductor.org/packages/release/bioc/html/chipseq.html
http://bioconductor.org/packages/release/bioc/html/ChIPseqR.html
http://bioconductor.org/packages/release/bioc/html/BayesPeak.html
http://bioconductor.org/packages/release/bioc/html/nucleR.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/MotIV.html
http://bioconductor.org/packages/release/bioc/html/rGADEM.html
http://bioconductor.org/packages/2.10/BiocViews.html#___ChIPseq
http://bioconductor.org/packages/2.10/BiocViews.html#___HighThroughputSequencing
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/chipseq.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/MotIV.html

identifying and annotating peaks. We start with a typical work flow re-iterating
key components in an exploration of data from the ENCODE project. An
‘advanced’ section then illustrates how exploratory or novel ChIP-seq algorithms
can be implemented in Bioconductor. The chapter concludes with more down-
stream analysis, including motif discovery and annotation.

6.2 Initial Work Flow

We use data from GEO accession GSE30263, representing ENCODE CTCF
binding sites. CTCF is a zinc finger transcription factor. It is a sequence
specific DNA binding protein that functions as an insulator, blocking enhancer
activity, and possibly the spread of chromatin structure. The original analysis
involved Illumina ChIP-seq and matching ‘input’ lanes of 1 or 2 replicates from
many cell lines. The GEO accession includes BAM files of aligned reads, in
addition to tertiary files summarizing identified peaks. We focus on 15 cell lines
aligned to hg19.

Quality assessment

Exercise 18
As a precursor to analysis, it is prudent to perform an overall quality assessment
of the data; The SequenceAnalysisData package contains a quality assessment
report generated from the BAM files. View this report. Are there indications
of batch or other systematic effects in the data?

Solution: Here we visit the QA report.

> rpt <- system.file("GSE30263_qa_report", "index.html",

+ package="SequenceAnalysis")

> if (interactive())

+ browseURL(rpt)

Samples 1-15 correspond to replicate 1, 16-26 to replicate 2, and 27 through
41 the ‘input’ samples. Notice that overall nucleotide frequencies fall into three
distinct groups, and that samples 1-11 differ from the other input samples. The
‘Depth of Coverage’ portion of the report is particularly relevant for an early
assessment of ChIP-seq experiments.

Alignment and peak calling (3rd party) The main computational stages
in the original work flow involved alignment using Bowtie, followed by peak iden-
tification using an algorithm (‘HotSpots’, [20]) originally developed for lower-
throughput methodologies. We collated the output files from the original analy-
sis with a goal of enumerating all peaks from all files, but collapsing the coordi-
nates of sufficiently similar peaks to a common location. The DiffBind package
provides a formalism with which to do these operations. Here we load the data
as an R object stam (an abbreviation for the lab generating the data).

> stamFile <-

+ system.file("data", "stam.Rda", package="SequenceAnalysisData")

> load(stamFile)

> stam

57

http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE30263
http://bioconductor.org/packages/release/bioc/html/DiffBind.html

class: SummarizedExperiment

dim: 369674 96

exptData(0):

assays(2): Tags PVals

rownames: NULL

rowData values names(0):

colnames(96): A549_1 A549_2 ... Wi38_1 Wi38_2

colData names(10): CellLine Replicate ... PeaksDate PeaksFile

Data exploration

Exercise 19
Explore stam. Tabulate the number of peaks represented 1, 2, . . . , 96 times. We
expect replicates to have similar patterns of peak representation; do they?

Solution: Load the data and display the SummarizedExperiment instance. The
colData summarizes information about each sample, the rowData about each
peak. Use xtabs to summarize Replicate and CellLine representation within
colData(stam).

> head(colData(stam), 3)

DataFrame with 3 rows and 10 columns

CellLine Replicate TotTags TotPeaks Tags Peaks

<character> <factor> <integer> <integer> <numeric> <numeric>

A549_1 A549 1 1857934 50144 1569215 43119

A549_2 A549 2 2994916 77355 2881475 73062

Ag04449_1 Ag04449 1 5041026 81855 4730232 75677

FastqDate FastqSize PeaksDate

<Date> <numeric> <Date>

A549_1 2011-06-25 463 2011-06-25

A549_2 2011-06-25 703 2011-06-25

Ag04449_1 2010-10-22 368 2010-10-22

PeaksFile

<character>

A549_1 wgEncodeUwTfbsA549CtcfStdPkRep1.narrowPeak.gz

A549_2 wgEncodeUwTfbsA549CtcfStdPkRep2.narrowPeak.gz

Ag04449_1 wgEncodeUwTfbsAg04449CtcfStdPkRep1.narrowPeak.gz

> head(rowData(stam), 3)

GRanges with 3 ranges and 0 elementMetadata cols:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [10100, 10370] *

[2] chr1 [15640, 15790] *

[3] chr1 [16100, 16490] *

seqlengths:

chr1 chr2 chr3 chr4 ... chr22 chrX chrY

249250621 243199373 198022430 191154276 ... 51304566 155270560 59373566

58

> xtabs(~Replicate + CellLine, colData(stam))[,1:5]

CellLine

Replicate A549 Ag04449 Ag04450 Ag09309 Ag09319

1 1 1 1 1 1

2 1 1 1 1 1

Extract the Tags matrix from the assays. This is a standard R matrix . Test
which matrix elements are non-zero, tally these by row, and summarize the
tallies. This is the number of times a peak is detected, across each of the
samples

> m <- assays(stam)[["Tags"]] > 0 # peaks detected...

> peaksPerSample <- table(rowSums(m))

> head(peaksPerSample)

1 2 3 4 5 6

174574 35965 18939 12669 9143 7178

> tail(peaksPerSample)

91 92 93 94 95 96

1226 1285 1542 2082 2749 14695

To explore similarity between replicates, extract the matrix of counts. Trans-
form the counts using the asinh function (a log-like transform, except near 0;
are there other methods for transformation?), and use the ‘correlation’ distance
(cor.dist, from bioDist) to measure similarity. Cluster these using a hierarchi-
cal algorithm, via the hclust function.

> library(bioDist) # for cor.dist

> m <- asinh(assays(stam)[["Tags"]]) # transformed tag counts

> d <- cor.dist(t(m)) # correlation distance

> h <- hclust(d) # hierarchical clustering

Plot the result, as in Figure 5.

> plot(h, cex=.8, ann=FALSE)

6.2.1 Peak calling with R / Bioconductor (advanced)

The following illustrates basic ChIP-seq in R. It is likely that these would be used
either in an exploratory way, or as foundations for developing work flows tailored
to particular ChIP experiments. We work through this section by developing
functions for different parts of the work flow. Functions are applied to examples
in an exercise at the end of this section.

59

http://bioconductor.org/packages/release/bioc/html/bioDist.html

Figure 5: Hierarchical clustering of ENCODE samples.

Data input and pre-processing Here we develop our own function, named
chipPreprocess, to pre-process a single sample lane. The work flow starts
with data input. We suppose an available bamFile, with a ScanBamParam
object param defined to select regions we are interested in; thee bamFile and
param objects are defined later.

> aln <- readGappedAlignments(bamFile, param=param)

> seqlevels(aln) <- names(bamWhich(param))

> aln <- as(aln, "GRanges")

We use readGappedAlignments followed by coercion to a GRanges object as a
convenient way to retrieve a minimal amount of data from the BAM file, and
to manage reads whose alignments include indels; Rsamtools::scanBam is a more
flexible alternative. The seqlevels are adjusted to contain just the levels we
are interested in, rather than all levels in the BAM file (the default returned by
readGappedAlignments).

Sequence work flows typically filter reads to remove those that are optical
duplicates or otherwise flagged as invalid by the manufacturer. Many work
flows do not handle reads aligning to multiple locations in the genome. ChIP-
seq experiments often eliminate reads that are duplicated in the sense that more
than one read aligns to the same chromosome, strand, and start position; this
acknowledges artifacts of sample preparation. These filters are handled by dif-
ferent stages in a typical work flow – flagging optical duplicates and otherwise
suspect reads by the manufacturer or upstream software (illustrated in an exer-
cise, below); discarding multiply aligning reads by the aligner (in our case, using
the -m and -n options in Bowtie); and discarding duplicates as a pre-processing
step. Simple alignment de-duplication is

> aln <- aln[!duplicated(aln)]

It is common to estimate fragment length (e.g., via the ‘correlation’ method
[11], implemented in the chipseq package) and extend the 5’ tags by the esti-
mated length.

> fraglen <- estimate.mean.fraglen(aln, method="correlation")

> aln <- resize(aln, width=fraglen)

60

http://bioconductor.org/packages/release/bioc/html/chipseq.html

The end result can be summarized as a ‘coverage vector’ describing the number
of (extended) reads at each location in the genome; a run length encoding is an
efficient representation of this.

> coverage(aln)

These pre-processing steps can be summarized as a simple work-flow.

> chipPreprocess <- function(bamFile, param) {

+ aln <- readGappedAlignments(bamFile, param = param)

+ seqlevels(aln) <- names(bamWhich(param))

+ aln <- as(aln, "GRanges")

+ aln <- aln[!duplicated(aln)]

+ fraglen <- estimate.mean.fraglen(aln, method = "correlation")

+ aln <- resize(aln, width = fraglen)

+ coverage(aln)

+ }

Peak identification We now develop a function, findPeaks, to identify peaks.
The coverage vector is a very useful representation of the data, and numerous
peak discovery algorithms can be implemented on top of it. The chipseq package
implements a straight-forward approach. The first step uses the distribution of
singleton and doubleton islands to estimate a background Poisson noise distri-
bution, and hence to identify a threshold island elevation above which peaks
can be called at a specified false discovery rate.

> cutoff <- round(peakCutoff(cvg, fdr.cutoff=0.001))

Peaks are easily identified using slice

> slice(cvg, lower = cutoff)

resulting in a peak-finding work flow

> findPeaks <- function(cvg) {

+ cutoff <- round(peakCutoff(cvg, fdr.cutoff = 0.001))

+ slice(cvg, lower = cutoff)

+ }

Exercise 20
Walk through the work flow, from BAM file to called peaks, using the provided
BAM files. These are from the Ag09319 cell line, CTCF replicate 1 and input
lanes, filtered to include only reads from chromosome 6. Compare peaks found
in the ChIP and Input lanes, and in the MACS analysis. It is possible to pick
up the analysis after pre-processing by loading the cvgs object. It can be very
helpful to explore the data along the way; see the chipseq vignette for ideas.

Solution: Specify the location of the BAM files, and the location where the
coverage vectors will be saved.

> bamDir <- character() # TODO: read BAM file from...

> cvgsSaveFile <- character() # TODO: save coverage file to...

Storing the coverage vectors represents a check-pointing strategy, making it easy
to resume an analysis if interrupted.

61

http://bioconductor.org/packages/release/bioc/html/chipseq.html
http://bioconductor.org/packages/release/bioc/html/chipseq.html

> library(GenomicRanges)

> bamFiles <- c(ChIP=file.path(bamDir,

+ "wgEncodeUwTfbsAg09319CtcfStdAlnRep1.bam"),

+ Input=file.path(bamDir,

+ "wgEncodeUwTfbsAg09319InputStdAlnRep1.bam"))

> stopifnot(all(file.exists(bamFiles)))

Create a ScanBamParam object specifying the regions of interest and other restric-
tions on reads to be input.

> chr6len <- scanBamHeader(bamFiles)[[1]][["targets"]][["chr6"]]

> param <- ScanBamParam(which=GRanges("chr6", IRanges(1, chr6len)),

+ what=character(),

+ flag=scanBamFlag(isDuplicate=FALSE,

+ isValidVendorRead=TRUE))

Process each BAM file using lapply, and save the result.

> cvgs <- lapply(bamFiles, chipPreprocess, param)

> save(cvgs, cvgsSaveFile)

Load the saved coverage file, and find peaks using the simple approach out-
lined above.

> library(chipseq)

> cvgsFile <- system.file("data", "chipseq_chr6_cvgs.Rda",

+ package="SequenceAnalysisData")

> stopifnot(file.exists(cvgsFile))

> load(cvgsFile) # previously saved

> peaks <- lapply(cvgs, findPeaks)

Compare the peaks using GRanges commands (e.g. convert the peaks to
IRanges instances and use countOverlaps to identify peaks in common between
the ChIP and Input lanes), and the diffPeakSummary function from the chipseq
package. Compare the peaks to those found in the stam object.

> chip <- as(peaks[["ChIP"]][["chr6"]], "IRanges")

> inpt <- as(peaks[["Input"]][["chr6"]], "IRanges")

> table(countOverlaps(inpt, chip))

0 1 2

635 19 3

> table(countOverlaps(chip, inpt))

0 1 2

5534 23 1

> stamFile <- system.file("data", "stam.Rda",

+ package="SequenceAnalysisData")

> load(stamFile)

> stam0 <- stam[,"Ag09319_1"]

> idx <- seqnames(rowData(stam0)) == "chr6" &

+ assays(stam0)[["Tags"]] != 0

> rng <- ranges(rowData(stam0))[as.logical(idx)]

> table(countOverlaps(chip, rng))

62

http://bioconductor.org/packages/release/bioc/html/chipseq.html

0 1 2 3

811 4689 56 2

Our naive analysis finds many of the peaks identified by a more comprehensive
algorithm.

6.3 Comparison of multiple experiments: DiffBind

Exercise 21
Explore a ChIP-seq work flow through the DiffBind vignette.

6.4 Working with called peaks

Motifs Transcription factors and other common regulatory elements often tar-
get specific DNA sequences (‘motifs’). These are often well-characterized, and
can be used to help identify, a priori, regions in which binding is expected.
Known binding motifs may also be used to identify promising peaks identified
using de novo peak discovery methods like MACS. This section explores use of
known binding motifs to characterize peaks; packages such as MotIV can assist
in motif discovery.

The JASPAR data base curates known binding motifs obtained from the
literature. A binding motif is summarized as a position weight matrix PWM
or position frequency matrix PFM. Rows of a PWM correspond to nucleotides,
columns to positions, and entries to the probability of the nucleotide at that
position. Each start position in a reference sequence can be compared and
scored for similarity to the PWM, and high-scoring positions retained. A PFM
is a similar representation, but with entries corresponding to a count of the
times a nucleotide is observed.

Exercise 22
The objective of this exercise is to identify occurrences of the CTCF motif on
chromosome 1 of H. sapiens.

Load needed packages. Biostrings can represent a PWM and score a reference
sequence. The BSgenome.Hsapiens.UCSC.hg19 package contains the hg19 build
of H. sapiens, retrieved from the UCSC genome browser. seqLogo and lattice
are used for visualization.

Retrieve the PWM for CTCF, with JASPAR id MA0139.1.pfm, using the
helper function getJASPAR defined in the SequenceAnalysis package. Visualize
the PWM using seqLogo.

Solution: Load the packages:

> library(Biostrings)

> library(BSgenome.Hsapiens.UCSC.hg19)

> library(seqLogo)

> library(lattice)

Retrieve the position weight matrix for CTCF, and display the PWM:

> pwm <- getJASPAR("MA0139.1.pfm") # SequenceAnalysis::getJASPAR

> seqLogo(scale(pwm, FALSE, colSums(pwm)))

63

http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/MotIV.html
http://jaspar.genereg.net
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.Hsapiens.UCSC.hg19.html
http://bioconductor.org/packages/release/bioc/html/seqLogo.html

Figure 6: CTCF position weight matrix from JASPAR (left) and on the plus
strand of chr1 (hits within 80% of maximum score, right).

Exercise 23
Use matchPWM to score the plus strand of chr1 for the CTCF PWM. Visualize the
distribution of scores using, e.g., densityplot, and summarize the high-scoring
matches (using consensusMatrix) as a seqLogo.

As an additional exercise, work up a short code segment to apply the PWM
to both strands (see ?PWM for some hints) and to all chromosomes.

Solution: Chromosome 1 can be loaded with Hsapiens[["chr1"]]; matchPWM
returns a ‘view’ of the high-scoring locations matching the PWM. Scores are
retrieved from the PWM and hits using PWMscoreStartingAt.

> chrid <- "chr1"

> hits <-matchPWM(pwm, Hsapiens[[chrid]]) # '+' strand

> scores <- PWMscoreStartingAt(pwm, subject(hits), start(hits))

The distribution of scores can be visualized with, e.g., densityplot from the
lattice package.

> densityplot(scores, xlim=range(scores), pch="|")

consensusMatrix applied to the views in hits returns a position frequency ma-
trix; this can be plotted as a logo, with the result in Figure 6. Reassuringly, the
found sequences have a logo very similar to the expected.

> cm <- consensusMatrix(hits)[1:4,]

> seqLogo(makePWM(scale(cm, FALSE, colSums(cm))))

Exercise 24
We might expect that peaks found using de novo techniques like MACS would
be enriched for motifs identified for the known PWM. What fraction of our
high-scoring positions are in the peaks in the stam object? What technical and
biological issues might cloud this result?

64

Solution:

> roi <- GRanges(chrid, ranges(hits), "+")

> seqinfo(roi) <- seqinfo(Hsapiens)

> sum(roi %in% rowData(stam)) / length(roi)

[1] 0.55

Annotation For an introduction to annotation resources in Bioconductor, see
Section 7; the ChIPpeakAnno contributed package provides convenient ways to
annotate ChIP-seq experiments.

Exercise 25
Annotating ChIP peaks is straight-forward. Load the ENCODE summary data,
select the peaks found in all samples, and use the center of these peaks as a
proxy for the true ChIP binding site. Use the transcript data base for the
UCSC Known Genes track of hg19 as a source for transcripts and transcription
start sites (TSS). Use nearest to identify the TSS that is nearest each peak,
and calculate the distance between the peak and TSS; measure distance taking
account of the strand of the transcript, so that peaks 5’ of the TSS have negative
distance. Summarize the locations of the peaks relative to the TSS.

Solution: Read in the ENCODE ChIP peaks for all cell lines.

> stamFile <-

+ system.file("data", "stam.Rda", package="SequenceAnalysisData")

> load(stamFile)

Identify the rows of stam that have non-zero counts for all cell lines, and extract
the corresponding ranges:

> ridx <- rowSums(assays(stam)[["Tags"]] > 0) == ncol(stam)

> peak <- rowData(stam)[ridx]

Select the center of the ranges of these peaks, as a proxy for the ChIP binding
site:

> peak <- resize(peak, width=1, fix="center")

Obtain the TSS from the TxDb.Hsapiens.UCSC.hg19.knownGene using the
transcripts function to extract coordinates of each transcript, and resize to a
width of 1 for the TSS; does this do the right thing for transcripts on the plus
and on the minus strand?

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> tx <- transcripts(TxDb.Hsapiens.UCSC.hg19.knownGene)

> tss <- resize(tx, width=1)

The nearest function returns the index of the nearest subject to each query

element; the distance between peak and nearest TSS is thus

65

http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html

Figure 7: Distance to nearest TSS amongst conserved peaks

> idx <- nearest(peak, tss)

> sgn <- as.integer(ifelse(strand(tss)[idx] == "+", 1, -1))

> dist <- (start(peak) - start(tss)[idx]) * sgn

Here we summarize the distances as a simple table and density plot, focusing
on binding sites within 1000 bases of a transcription start site; the density plot
is in Figure 7.

> bound <- 1000

> ok <- abs(dist) < bound

> dist <- dist[ok]

> table(sign(dist))

-1 1

669 417

> print(densityplot(dist[ok], type="g", xlab="Distance to Nearest TSS"))

The distance to transcript start site is a useful set of operations, so let’s make
it a re-usable function

> distToTss <-

+ function(peak, tx)

+ {

+ peak <- resize(peak, width=1, fix="center")

+ tss <- resize(tx, width=1)

+ idx <- nearest(peak, tss)

+ sgn <- as.numeric(ifelse(strand(tss)[idx] == "+", 1, -1))

+ (start(peak) - start(tss)[idx]) * sgn

+ }

66

Exercise 26
As an additional exercise, extract the sequences of all conserved peaks on ‘chr6’.
Do this using the BSgenome.Hsapiens.UCSC.hg19 package and getSeq function.
Use matchPWM to find sequences with a strong match to the JASPAR CTCF
PWM motif, and plot the density of distances to nearest transcription start site
for those with and without a match. What strategies are available for motif
discovery?

Solution: Here we select peaks on chromosome 6, and extract the DNA se-
quences corresponding to these peaks.

> library(BSgenome.Hsapiens.UCSC.hg19)

> ridx <- rowSums(assays(stam)[["Tags"]] > 0) == ncol(stam)

> ridx <- ridx & (seqnames(rowData(stam)) == "chr6")

> pk6 <- rowData(stam)[ridx]

> seqs <- getSeq(Hsapiens, pk6, as.character=FALSE)

> head(seqs, 3)

A DNAStringSet instance of length 3

width seq

[1] 311 CAGGGAGACTTGGGAAGGCTTCACGAAGGAGGGT...ACCCAACTCCTAAGCGTCACACATATAATCCTG

[2] 331 GCTAATAATTTACCATGAAGTAACAACTTTTCAC...TTTCCTAGGCAGCGAATTTAAGGGTAATGATCA

[3] 751 GTAAAGAATGGACTGACTTAAAGGCAGATGGAAT...AATCAAACAAGACAAAGAATCTTCGTGGCCACA

matchPWM operates on one DNA sequence at a time, so we arrange to search for
the PWM on each sequence using lapply. We identify sequences with a match
by testing the length of the returned object, and use this to create a density
plot.

> hits <- lapply(seqs, matchPWM, pwm=pwm)

> hasPwmMatch <- sapply(hits, length) > 0

> dist <- distToTss(pk6, tx)

> ok <- abs(dist) < bound

> df <- data.frame(Distance = dist[ok], HasPwmMatch = hasPwmMatch[ok])

> print(densityplot(~Distance, group=HasPwmMatch, df,

+ plot.points=FALSE, type="g",

+ auto.key=list(

+ columns=2,

+ title="Has Position Weight Matrix?",

+ cex.title=1),

+ xlab="Distance to Nearest Tss"))

67

http://bioconductor.org/packages/release/data/annotation/html/BSgenome.Hsapiens.UCSC.hg19.html

GENE ID

PLATFORM
PKGS

GENE ID

ONTO ID’S

ORG
PKGS

GENE ID

ONTO ID

TRANSCRIPT
PKGS

SYSTEM
BIOLOGY

(GO, KEGG)

GENE ID

HOMOLOGY
PKGS

Figure 8: Annotation Packages: the big picture

7 Annotation

Bioconductor provides extensive annotation resources, summarized in Figure 8.
These can be gene-, or genome-centric. Annotations can be provided in packages
curated by Bioconductor, or obtained from web-based resources. Gene-centric
AnnotationDbi packages include:

� Organism level: e.g. org.Mm.eg.db.

� Platform level: e.g. hgu133plus2.db, hgu133plus2.probes, hgu133plus2.cdf .

� Homology level: e.g. hom.Dm.inp.db.

� System biology level: GO.db, KEGG.db, Reactome.db.

Examples of genome-centric packages include:

� GenomicFeatures, to represent genomic features, including constructing
reproducible feature or transcript data bases from file or web resources.

� Pre-built transcriptome packages, e.g. TxDb.Hsapiens.UCSC.hg19.knownGene
based on the H. sapiens UCSC hg19 knownGenes track.

� BSgenome for whole genome sequence representation and manipulation.

� Pre-built genomes, e.g., BSgenome.Hsapiens.UCSC.hg19 based on the H.
sapiens UCSC hg19 build.

Web-based resources include

� biomaRt to query biomart resource for genes, sequence, SNPs, and etc.

� rtracklayer for interfacing with browser tracks, especially the UCSC genome
browser.

7.1 Gene-centric annotations with AnnotationDbi

Organism-level (‘org’) packages contain mappings between a central identifier
(e.g., Enterz gene ids) and other identifiers (e.g. GenBank or Uniprot acces-
sion number, RefSeq id, etc.). The name of an org package is always of the

68

http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/release/data/annotation/html/org.Mm.eg.db.html
http://bioconductor.org/packages/release/data/annotation/html/hgu133plus2.db.html
http://bioconductor.org/packages/release/data/annotation/html/hgu133plus2.probes.html
http://bioconductor.org/packages/release/data/annotation/html/hgu133plus2.cdf.html
http://bioconductor.org/packages/release/data/annotation/html/hom.Dm.inp.db.html
http://bioconductor.org/packages/release/bioc/html/GO.db.html
http://bioconductor.org/packages/release/bioc/html/KEGG.db.html
http://bioconductor.org/packages/release/bioc/html/Reactome.db.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/data/annotation/html/BSgenome.Hsapiens.UCSC.hg19.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://www.biomart.org/
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http:://genome.ucsc.edu
http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html

form org.<Sp>.<id>.db (e.g. org.Sc.sgd.db) where <Sp> is a 2-letter abbre-
viation of the organism (e.g. Sc for Saccharomyces cerevisiae) and <id> is an
abbreviation (in lower-case) describing the type of central identifier (e.g. sgd

for gene identifiers assigned by the Saccharomyces Genome Database, or eg for
Entrez gene ids). The “How to use the ‘.db’ annotation packages” vignette in
the AnnotationDbi package (org packages are only one type of “.db” annotation
packages) is a key reference. The ‘.db’ and most other Bioconductor annotation
packages are updated every 6 months.

Annotation packages contain an object named after the package itself. These
objects are collectively called AnnotationDb objects, with more specific classes
named OrgDb, ChipDb or TranscriptDb objects. Methods that can be applied
to these objects include cols, keys, keytypes and select.

Exercise 27
What is the name of the org package for Drosophila? Load it. Display the
OrgDb object for the org.Dm.eg.db package. Use the cols method to discover
which sorts of annotations can be extracted from it.

Use the keys method to extract UNIPROT identifiers and then pass those
keys in to the select method in such a way that you extract the SYMBOL (gene
symbol) and KEGG pathway information for each.

Use select to retrieve the ENTREZ and SYMBOL identifiers of all genes in
the KEGG pathway 00310.

Solution: The OrgDb object is named org.Dm.eg.db.

> cols(org.Dm.eg.db)

[1] "ENTREZID" "ACCNUM" "ALIAS" "CHR" "CHRLOC"

[6] "CHRLOCEND" "ENZYME" "MAP" "PATH" "PMID"

[11] "REFSEQ" "SYMBOL" "UNIGENE" "ENSEMBL" "ENSEMBLPROT"

[16] "ENSEMBLTRANS" "GENENAME" "UNIPROT" "GO" "EVIDENCE"

[21] "ONTOLOGY" "FLYBASE" "FLYBASECG" "FLYBASEPROT"

> keytypes(org.Dm.eg.db)

[1] "ENTREZID" "ACCNUM" "ALIAS" "CHR" "CHRLOC"

[6] "CHRLOCEND" "ENZYME" "MAP" "PATH" "PMID"

[11] "REFSEQ" "SYMBOL" "UNIGENE" "ENSEMBL" "ENSEMBLPROT"

[16] "ENSEMBLTRANS" "GENENAME" "UNIPROT" "GO" "EVIDENCE"

[21] "ONTOLOGY" "FLYBASE" "FLYBASECG" "FLYBASEPROT"

> uniprotKeys <- head(keys(org.Dm.eg.db, keytype="UNIPROT"))

> cols <- c("SYMBOL", "PATH")

> select(org.Dm.eg.db, keys=uniprotKeys, cols=cols, keytype="UNIPROT")

UNIPROT SYMBOL PATH

1 Q8IRZ0 CG3038 <NA>

2 Q95RP8 CG3038 <NA>

3 Q95RU8 G9a 00310

4 Q9W5H1 CG13377 <NA>

5 P39205 cin <NA>

6 Q24312 ewg <NA>

69

http://bioconductor.org/packages/release/data/annotation/html/org.Sc.sgd.db.html
http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/release/bioc/html/org.Dm.eg.db.html

Selecting UNIPROT and SYMBOL ids of KEGG pathway 00310 is very similar:

> kegg <- select(org.Dm.eg.db, "00310", c("UNIPROT", "SYMBOL"), "PATH")

> nrow(kegg)

[1] 32

> head(kegg, 3)

PATH UNIPROT SYMBOL

1 00310 Q95RU8 G9a

2 00310 Q9W5E0 Suv4-20

3 00310 Q9W3N9 CG10932

Exercise 28
For convenience, lrTest, a DGEGLM object from the RNA-seq chapter, is in-
cluded in the SequenceAnalysisData package. The following code loads this data
and create a ‘top table’ of the ten most differentially represented genes. This
top table is then cast as a data.frame.

> library(org.Dm.eg.db)

> data(lrTest)

> tt <- as.data.frame(topTags(lrTest))

Extract the Flybase gene identifiers (FLYBASE) from the row names of this
table and map them to their corresponding Entrez gene (ENTREZID) and symbol
ids (SYMBOL) using select. Use merge to add the results of select to the top
table.

Solution:

> fbids <- rownames(tt)

> cols <- c("ENTREZID", "SYMBOL")

> anno <- select(org.Dm.eg.db, fbids, cols, "FLYBASE")

> ttanno <- merge(tt, anno, by.x=0, by.y="FLYBASE")

> dim(ttanno)

[1] 10 8

> head(ttanno, 3)

Row.names logConc logFC LR.statistic PValue FDR ENTREZID SYMBOL

1 FBgn0000071 -11 2.8 183 1.1e-41 1.1e-38 40831 Ama

2 FBgn0024288 -12 -4.7 179 7.1e-41 6.3e-38 45039 Sox100B

3 FBgn0033764 -12 3.5 188 6.8e-43 7.8e-40 <NA> <NA>

70

7.2 Genome-centric annotations with GenomicFeatures

Genome-centric packages are very useful for annotations involving genomic co-
ordinates. It is straight-forward, for instance, to discover the coordinates of
coding sequences in regions of interest, and from these retrieve corresponding
DNA or protein coding sequences. Other examples of the types of operations
that are easy to perform with genome-centric annotations include defining re-
gions of interest for counting aligned reads in RNA-seq experiments (Section 5)
and retrieving DNA sequences underlying regions of interest in ChIP-seq anal-
ysis (Section 6), e.g., for motif characterization.

Exercise 29
Load the ‘transcript.db’ package relevant to the dm3 build of D. melanogaster.
Use select and friends to select the Flybase gene ids of the top table tt and the
Flybase transcript names (TXNAME) and Entrez gene identifiers (GENEID).

Use cdsBy to extract all coding sequences, grouped by transcript. Subset
the coding sequences to contain just the transcripts relevant to the top table.
How many transcripts are there? What is the structure of the first transcript’s
coding sequence?

Load the ‘BSgenome’ package for the dm3 build of D. melanogaster. Use
the coding sequences ranges of the previous part of this exercise to extract the
underlying DNA sequence, using the extractTranscriptsFromGenome function.
Use Biostrings’ translate to convert DNA to amino acid sequences.

Solution: The following loads the relevant Transcript.db package, and creates
a more convenient alias to the TranscriptDb instance defined in the package.

> library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)

> txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene

We can discover available keys (using keys) and columns (cols) in txdb, and
then use select to retrieve the transcripts associated with each differentially
expressed gene. The mapping between gene and transcript is not one-to-one –
some genes have more than one transcript.

> txnm <- select(txdb, fbids, "TXNAME", "GENEID")

> nrow(txnm)

[1] 19

> head(txnm, 3)

GENEID TXNAME

1 FBgn0039155 FBtr0084549

2 FBgn0039827 FBtr0085755

3 FBgn0039827 FBtr0085756

The TranscriptDb instances can be queried for data that is more structured than
simple data frames, and in particular return GRanges or GRangesList instances
to represent genomic coordinates. These queries are performed using cdsBy

(coding sequence), transcriptsBy (transcripts), etc., where a function argument
by specifies how coding sequences or transcripts are grouped. Here we extract
the coding sequences grouped by transcript, returning the transcript names, and
subset the resulting GRangesList to contain just the transcripts of interest to
us. The first transcript is composed of 6 distinct coding sequence regions.

71

http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html

> cds <- cdsBy(txdb, "tx", use.names=TRUE)[txnm$TXNAME]

> length(cds)

[1] 19

> cds[1]

GRangesList of length 1:

$FBtr0084549

GRanges with 6 ranges and 3 elementMetadata cols:

seqnames ranges strand | cds_id cds_name exon_rank

<Rle> <IRanges> <Rle> | <integer> <character> <integer>

[1] chr3R [19970946, 19971592] + | 55167 <NA> 2

[2] chr3R [19971652, 19971770] + | 55168 <NA> 3

[3] chr3R [19971831, 19972024] + | 55169 <NA> 4

[4] chr3R [19972088, 19972461] + | 55170 <NA> 5

[5] chr3R [19972523, 19972589] + | 55171 <NA> 6

[6] chr3R [19972918, 19973094] + | 55172 <NA> 7

seqlengths:

chr2L chr2LHet chr2R chr2RHet ... chrXHet chrYHet chrM

23011544 368872 21146708 3288761 ... 204112 347038 19517

The following code loads the appropriate BSgenome package; the Dmelanogaster

object refers to the whole genome sequence represented in this package. The
remaining steps extract the DNA sequence of each transcript, and translates
these to amino acid sequences. Issues of strand are handled correctly.

> library(BSgenome.Dmelanogaster.UCSC.dm3)

> txx <- extractTranscriptsFromGenome(Dmelanogaster, cds)

> length(txx)

[1] 19

> head(txx, 3)

A DNAStringSet instance of length 3

width seq names

[1] 1578 ATGGGCAGCATGCAAGTGGCGCT...TGCAGATCAAGTGCAGCGACTAG FBtr0084549

[2] 2760 ATGCTGCGTTATCTGGCGCTTTC...TTGCTGCCCCATTCGAACTTTAG FBtr0085755

[3] 2217 ATGGCACTCAAGTTTCCCACAGT...TTGCTGCCCCATTCGAACTTTAG FBtr0085756

> head(translate(txx), 3)

A AAStringSet instance of length 3

width seq

[1] 526 MGSMQVALLALLVLGQLFPSAVANGSSSYSSTST...VLDDSRNVFTFTTPKCENFRKRFPKLQIKCSD*

[2] 920 MLRYLALSEAGIAKLPRPQSRCYHSEKGVWGYKP...YCGRCEAPTPATGIGKVHKREVDEIVAAPFEL*

[3] 739 MALKFPTVKRYGGEGAESMLAFFWQLLRDSVQAN...YCGRCEAPTPATGIGKVHKREVDEIVAAPFEL*

72

7.3 Using biomaRt

The biomaRt package offers access to the online biomart resource. this consists
of several data base resources, referred to as ‘marts’. Each mart allows access
to multiple data sets; the biomaRt package provides methods for mart and data
set discovery, and a standard method getBM to retrieve data.

Exercise 30
Load the biomaRt package and list the available marts. Choose the ensembl
mart and list the datasets for that mart. Set up a mart to use the ensembl mart
and the hsapiens gene ensembl dataset.

A biomaRt dataset can be accessed via getBM. In addition to the mart to be
accessed, this function takes filters and attributes as arguments. Use filterOp-

tions and listAttributes to discover values for these arguments. Call getBM

using filters and attributes of your choosing.

Solution:

> library(biomaRt)

> head(listMarts(), 3) ## list the marts

> head(listDatasets(useMart("ensembl")), 3) ## mart datasets

> ensembl <- ## fully specified mart

+ useMart("ensembl", dataset = "hsapiens_gene_ensembl")

> head(listFilters(ensembl), 3) ## filters

> myFilter <- "chromosome_name"

> head(filterOptions(myFilter, ensembl), 3) ## return values

> myValues <- c("21", "22")

> head(listAttributes(ensembl), 3) ## attributes

> myAttributes <- c("ensembl_gene_id","chromosome_name")

> ## assemble and query the mart

> res <- getBM(attributes = myAttributes, filters = myFilter,

+ values = myValues, mart = ensembl)

Use head(res) to see the results.

73

http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://www.biomart.org
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html

8 Annotation of Variants

A major product of DNASeq experiments are catalogs of called variants (e.g.,
SNPs, indels). We will use the VariantAnnotation package to explore this type
of data. Sample data included in the package are a subset of chromosome 22
from the 1000 Genomes project. Variant Call Format (VCF; full description)
text files contain meta-information lines, a header line with column names, data
lines with information about a position in the genome, and optional genotype
information on samples for each position.

8.1 Variant call format (VCF) files

Data are read from a VCF file and variants identified according to region such
as coding, intron, intergenic, spliceSite etc. Amino acid coding changes are
computed for the non-synonymous variants. SIFT and PolyPhen databases
provide predictions of how severely the coding changes affect protein function.

Data exploration

Exercise 31
The objective of this exercise is to compare the quality of called SNPs that are
located in dbSNP, versus those that are novel.

Locate the sample data in the file system. Explore the metadata (information
about the content of the file) using scanVcfHeader. Discover the ‘info’ fields VT

(variant type), and RSQ (genotype imputation quality).
Input sample data in using readVcf. You’ll need to specify the genome build

(genome="hg19") on which the variants are annotated. Take a peak at the rowData

to see the genomic locations of each variant.
dbSNP uses abbreviations such as ch22 to represent chromosome 22, whereas

the VCF file uses 22. Use rowData and renameSeqlevels to extract the row data
of the variants, and rename the chromosomes.

The SNPlocs.Hsapiens.dbSNP.20101109 contains information about SNPs in
a particular build of dbSNP. Load the package, use the dbSNPFilter function to
create a filter, and query the row data of the VCF file for membership.

Create a data frame containing the dbSNP membership status and imputa-
tion quality of each SNP. Create a density plot to illustrate the results.

Solution: Explore the header:

> library(VariantAnnotation)

> fl <- system.file("extdata", "chr22.vcf.gz",

+ package="VariantAnnotation")

> (hdr <- scanVcfHeader(fl))

class: VCFHeader

samples(5): HG00096 HG00097 HG00099 HG00100 HG00101

meta(1): fileformat

fixed(1): ALT

info(22): LDAF AVGPOST ... VT SNPSOURCE

geno(3): GT DS GL

74

http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41
http://bioconductor.org/packages/release/data/annotation/html/SNPlocs.Hsapiens.dbSNP.20101109.html

> info(hdr)[c("VT", "RSQ"),]

DataFrame with 2 rows and 3 columns

Number Type Description

<character> <character> <character>

VT 1 String indicates what type of variant the line represents

RSQ 1 Float Genotype imputation quality from MaCH/Thunder

Input the data and peak at their locations:

> (vcf <- readVcf(fl, "hg19"))

class: VCF

dim: 10376 5

genome: hg19

exptData(1): header

fixed(4): REF ALT QUAL FILTER

info(22): LDAF AVGPOST ... VT SNPSOURCE

geno(3): GT DS GL

rownames(10376): rs7410291 rs147922003 ... rs144055359 rs114526001

rowData values names(1): paramRangeID

colnames(5): HG00096 HG00097 HG00099 HG00100 HG00101

colData names(1): Samples

> head(rowData(vcf), 3)

GRanges with 3 ranges and 1 elementMetadata col:

seqnames ranges strand | paramRangeID

<Rle> <IRanges> <Rle> | <factor>

rs7410291 22 [50300078, 50300078] * | <NA>

rs147922003 22 [50300086, 50300086] * | <NA>

rs114143073 22 [50300101, 50300101] * | <NA>

seqlengths:

22

NA

Rename chromosome levels:

> rowData(vcf) <- renameSeqlevels(rowData(vcf), c("22"="ch22"))

Discover whether SNPs are located in dbSNP:

> library(SNPlocs.Hsapiens.dbSNP.20101109)

> snpFilt <- dbSNPFilter("SNPlocs.Hsapiens.dbSNP.20101109")

> inDbSNP <- snpFilt(rowData(vcf), subset=FALSE)

> table(inDbSNP)

inDbSNP

FALSE TRUE

6126 4250

Create a data frame summarizing SNP quality and dbSNP membership:

75

0

5

10

15

0.0 0.2 0.4 0.6 0.8 1.0
MaCH / Thunder Imputation Quality

D
en

si
ty

inDbSNP FALSE TRUE

Figure 9: Quality scores of variants in dbSNP, compared to those not in dbSNP.

> metrics <-

+ data.frame(inDbSNP=inDbSNP, RSQ=values(info(vcf))$RSQ)

Finally, visualize the data, e.g., using ggplot2 (Figure 9).

> library(ggplot2)

> ggplot(metrics, aes(RSQ, fill=inDbSNP)) +

+ geom_density(alpha=0.5) +

+ scale_x_continuous(name="MaCH / Thunder Imputation Quality") +

+ scale_y_continuous(name="Density") +

+ opts(legend.position="top")

8.2 Coding consequences

Locating variants in and around genes Variant location with respect to
genes can be identified with the locateVariants function. Regions are specified
in the region argument and can be one of the following constructors: Coding-

Variants(), IntronVariants(), FiveUTRVariants(), ThreeUTRVariants(), Inter-

genicVariants(), SpliceSiteVariants(), or AllVariants(). Location definitions
are shown in Table 10.

Exercise 32
Load the TxDb.Hsapiens.UCSC.hg19.knownGene annotation package, and read
in the chr22.vcf.gz example file from the VariantAnnotation package.

76

http://bioconductor.org/packages/release/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html

Table 10: Variant locations

Location Details
coding Within a coding region
fiveUTR Within a 5’ untranslated region
threeUTR Within a 3’ untranslated region
intron Within an intron region
intergenic Not within a transcript associated with a gene
spliceSite Overlaps any of the first or last 2 nucleotides of an intron

Remembering to re-name sequence levels, use the locateVariants function
to identify coding variants.

Summarize aspects of your data, e.g., did any coding variants match more
than one gene? How many coding variants are there per gene ID?

Solution: Here we open the known genes data base, and read in the VCF file.

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

> fl <- system.file("extdata", "chr22.vcf.gz",

+ package="VariantAnnotation")

> vcf <- readVcf(fl, "hg19")

> vcf <- renameSeqlevels(vcf, c("22"="chr22"))

The next lines locate coding variants.

> rd <- rowData(vcf)

> loc <- locateVariants(rd, txdb, CodingVariants())

> head(loc, 3)

GRanges with 3 ranges and 5 elementMetadata cols:

seqnames ranges strand | LOCATION QUERYID TXID

<Rle> <IRanges> <Rle> | <factor> <integer> <integer>

[1] chr22 [50301422, 50301422] * | coding 24 76833

[2] chr22 [50301476, 50301476] * | coding 25 76833

[3] chr22 [50301488, 50301488] * | coding 26 76833

CDSID GENEID

<integer> <character>

[1] 225251 79087

[2] 225251 79087

[3] 225251 79087

seqlengths:

chr22

NA

To answer gene-centric questions data can be summarized by gene regardless of
transcript.

> ## Did any coding variants match more than one gene?

> splt <- split(values(loc)$GENEID, values(loc)$QUERYID)

> table(sapply(splt, function(x) length(unique(x)) > 1))

77

FALSE TRUE

956 15

> ## Summarize the number of coding variants by gene ID

> splt <- split(values(loc)$QUERYID, values(loc)$GENEID)

> head(sapply(splt, function(x) length(unique(x))), 3)

113730 1890 23209

22 15 30

Amino acid coding changes predictCoding computes amino acid coding
changes for non-synonymous variants. Only ranges in query that overlap with
a coding region in subject are considered. Reference sequences are retrieved
from either a BSgenome or fasta file specified in seqSource. Variant sequences
are constructed by substituting, inserting or deleting values in the varAllele

column into the reference sequence. Amino acid codes are computed for the
variant codon sequence when the length is a multiple of 3.

The query argument to predictCoding can be a GRanges or VCF. When a
GRanges is supplied the varAllele argument must be specified. In the case
of a VCF, the alternate alleles are taken from values(alt(<VCF>))$ALT and the
varAllele argument is not specified.

The result is a modified query containing only variants that fall within coding
regions. Each row represents a variant-transcript match so more than one row
per original variant is possible.

> library(BSgenome.Hsapiens.UCSC.hg19)

> coding <- predictCoding(vcf, txdb, seqSource=Hsapiens)

> coding[5:9]

GRanges with 5 ranges and 13 elementMetadata cols:

seqnames ranges strand | paramRangeID

<Rle> <IRanges> <Rle> | <factor>

22:50301584 chr22 [50301584, 50301584] - | <NA>

varAllele CDSLOC PROTEINLOC QUERYID

<DNAStringSet> <IRanges> <CompressedIntegerList> <integer>

22:50301584 A [777, 777] 259 28

TXID CDSID GENEID CONSEQUENCE REFCODON

<character> <integer> <character> <factor> <DNAStringSet>

22:50301584 76833 225251 79087 synonymous CCG

VARCODON REFAA VARAA

<DNAStringSet> <AAStringSet> <AAStringSet>

22:50301584 CCA P P

[reached getOption("max.print") -- omitted 4 rows]

seqlengths:

chr22

NA

78

Using variant rs114264124 as an example, we see varAllele A has been sub-
stituted into the refCodon CGG to produce varCodon CAG. The refCodon is the
sequence of codons necessary to make the variant allele substitution and there-
fore often includes more nucleotides than indicated in the range (i.e. the range
is 50302962, 50302962, width of 1). Notice it is the second position in the re-

fCodon that has been substituted. This position in the codon, the position of
substitution, corresponds to genomic position 50302962. This genomic position
maps to position 698 in coding region-based coordinates and to triplet 233 in
the protein. This is a non-synonymous coding variant where the amino acid has
changed from R (Arg) to Q (Gln).

When the resulting varCodon is not a multiple of 3 it cannot be translated.
The consequence is considered a frameshift and varAA will be missing.

> coding[values(coding)$CONSEQUENCE == "frameshift"]

GRanges with 1 range and 13 elementMetadata cols:

seqnames ranges strand | paramRangeID

<Rle> <IRanges> <Rle> | <factor>

22:50317001 chr22 [50317001, 50317001] + | <NA>

varAllele CDSLOC PROTEINLOC QUERYID

<DNAStringSet> <IRanges> <CompressedIntegerList> <integer>

22:50317001 GCACT [808, 808] 270 359

TXID CDSID GENEID CONSEQUENCE REFCODON

<character> <integer> <character> <factor> <DNAStringSet>

22:50317001 76834 225263 79174 frameshift GCC

VARCODON REFAA VARAA

<DNAStringSet> <AAStringSet> <AAStringSet>

22:50317001 ACC A

seqlengths:

chr22

NA

SIFT and PolyPhen databases From predictCoding we identified the amino
acid coding changes for the non-synonymous variants. For this subset we can
retrieve predictions of how damaging these coding changes may be. SIFT (Sort-
ing Intolerant From Tolerant) and PolyPhen (Polymorphism Phenotyping) are
methods that predict the impact of amino acid substitution on a human protein.
The SIFT method uses sequence homology and the physical properties of amino
acids to make predictions about protein function. PolyPhen uses sequence-based
features and structural information characterizing the substitution to make pre-
dictions about the structure and function of the protein.

Collated predictions for specific dbSNP builds are available as downloads
from the SIFT and PolyPhen web sites. These results have been packaged
into SIFT.Hsapiens.dbSNP132.db and PolyPhen.Hapiens.dbSNP131.db and are
designed to be searched by rsid. Variants that are in dbSNP can be searched
with these database packages. When working with novel variants, SIFT and
PolyPhen must be called directly. See references for home pages.

Identify the non-synonymous variants and obtain the rsids.

79

> nms <- names(coding)

> idx <- values(coding)$CONSEQUENCE == "nonsynonymous"

> nonsyn <- coding[idx]

> names(nonsyn) <- nms[idx]

> rsids <- unique(names(nonsyn)[grep("rs", names(nonsyn), fixed=TRUE)])

Detailed descriptions of the database columns can be found with ?SIFTDbColumns

and ?PolyPhenDbColumns. Variants in these databases often contain more than
one row per variant. The variant may have been reported by multiple sources
and therefore the source will differ as well as some of the other variables.

> library(SIFT.Hsapiens.dbSNP132)

> ## rsids in the package

> head(keys(SIFT.Hsapiens.dbSNP132), 3)

[1] "rs10000692" "rs10001580" "rs10002700"

> ## list available columns

> cols(SIFT.Hsapiens.dbSNP132)

[1] "RSID" "PROTEINID" "AACHANGE" "METHOD" "AA"

[6] "PREDICTION" "SCORE" "MEDIAN" "POSTIONSEQS" "TOTALSEQS"

> ## select a subset of columns

> ## a warning is thrown when a key is not found in the database

> subst <- c("RSID", "PREDICTION", "SCORE", "AACHANGE", "PROTEINID")

> sift <- select(SIFT.Hsapiens.dbSNP132, keys=rsids, cols=subst)

> head(sift, 3)

RSID PROTEINID AACHANGE PREDICTION SCORE

1 rs114264124 NP_077010 R233Q TOLERATED 0.59

2 rs114264124 NP_077010 R233Q TOLERATED 1.00

3 rs114264124 NP_077010 R233Q TOLERATED 0.20

PolyPhen provides predictions using two different training datasets and has
considerable information about 3D protein structure. See ?PolyPhenDbColumns

or the PolyPhen web site listed in the references for more details.

80

A Appendix: data retrieval

A.1 RNA-seq data retrieval

The following script was used to retrieve a portion of the Pasilla data set from
the short read archive. The data is very large; extraction relies on installation
of the SRA SDK, available from the Short Read Archive.

> library(RCurl)

> srasdk <- "/home/mtmorgan/bin/sra_sdk-2.0.1" # local installation

> sra <- "ftp://ftp-trace.ncbi.nih.gov/sra/sra-instant/reads/ByExp/sra"

> expt <- "SRX/SRX014/SRX014458/"

> url <- sprintf("%s/%s", sra, expt)

> acc <- strsplit(getURL(url, ftplistonly=TRUE), "\n")[[1]]

> urls <- sprintf("%s%s/%s.sra", url, acc, acc)

> for (fl in urls)

+ system(sprintf("wget %s", fl), wait=FALSE, ignore.stdout=TRUE)

> app <- sprintf("%s/bin64/fastq-dump", srasdk)

> for (fl in file.path(wd, basename(urls)))

+ system(sprintf("%s %s", app, fl), wait=FALSE)

A.2 ChIP-seq data retrieval and MACS analysis

BAM and called peak files were obtained from http://hgdownload.cse.ucsc.

edu/goldenPath/hg19/encodeDCC/wgEncodeUwTfbs. The script used to pro-
cess called peak data into the stam object is at

> file.path("script", "chipseq-stam-called-peaks.R",

+ package="SequenceAnalysisData")

[1] "script/chipseq-stam-called-peaks.R/SequenceAnalysisData"

81

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwTfbs
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwTfbs

References

[1] S. Anders and W. Huber. Differential expression analysis for sequence count
data. Genome Biology, 11:R106, 2010.

[2] A. N. Brooks, L. Yang, M. O. Duff, K. D. Hansen, J. W. Park, S. Dudoit,
S. E. Brenner, and B. R. Graveley. Conservation of an RNA regulatory
map between Drosophila and mammals. Genome Research, pages 193–202,
2011.

[3] J. M. Chambers. Software for Data Analysis: Programming with R.
Springer, New York, 2008.

[4] P. Dalgaard. Introductory Statistics with R. Springer, 2nd edition, 2008.

[5] R. Gentleman. R Programming for Bioinformatics. Computer Science &
Data Analysis. Chapman & Hall/CRC, Boca Raton, FL, 2008.

[6] J. J. Goeman and P. Buhlmann. Analyzing gene expression data in terms
of gene sets: methodological issues. Bioinformatics, 23(8):980–987, Apr
2007.

[7] J. W. Ho, E. Bishop, P. V. Karchenko, N. Negre, K. P. White, and P. J.
Park. ChIP-chip versus ChIP-seq: lessons for experimental design and data
analysis. BMC Genomics, 12:134, 2011. [PubMed Central:PMC3053263]
[DOI:10.1186/1471-2164-12-134] [PubMed:21356108].

[8] I. Holmes, K. Harris, and C. Quince. Dirichlet multinomial mixtures: Gen-
erative models for microbial metagenomics. PLoS ONE, 7(2):e30126, 02
2012.

[9] R. Kabacoff. R in Action. Manning, 2010.

[10] P. V. Kharchenko, A. A. Alekseyenko, Y. B. Schwartz, A. Minoda, N. C.
Riddle, J. Ernst, P. J. Sabo, E. Larschan, A. A. Gorchakov, T. Gu,
D. Linder-Basso, A. Plachetka, G. Shanower, M. Y. Tolstorukov, L. J.
Luquette, R. Xi, Y. L. Jung, R. W. Park, E. P. Bishop, T. K. Canfield,
R. Sandstrom, R. E. Thurman, D. M. MacAlpine, J. A. Stamatoyannopou-
los, M. Kellis, S. C. Elgin, M. I. Kuroda, V. Pirrotta, G. H. Karpen,
and P. J. Park. Comprehensive analysis of the chromatin landscape in
Drosophila melanogaster. Nature, 471:480–485, Mar 2011. [PubMed Cen-
tral:PMC3109908] [DOI:10.1038/nature09725] [PubMed:21179089].

[11] P. V. Kharchenko, M. Y. Tolstorukov, and P. J. Park. Design and
analysis of ChIP-seq experiments for DNA-binding proteins. Nat.
Biotechnol., 26:1351–1359, Dec 2008. [PubMed Central:PMC2597701]
[DOI:10.1038/nbt.1508] [PubMed:19029915].

[12] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome.
Genome Biol., 10:R25, 2009.

[13] H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics, 25:1754–1760, Jul 2009.

82

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3053263
http://dx.doi.org/10.1186/1471-2164-12-134
http://www.ncbi.nlm.nih.gov/pubmed/21356108
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3109908
http://dx.doi.org/10.1038/nature09725
http://www.ncbi.nlm.nih.gov/pubmed/21179089
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597701
http://dx.doi.org/10.1038/nbt.1508
http://www.ncbi.nlm.nih.gov/pubmed/19029915

[14] H. Li and R. Durbin. Fast and accurate long-read alignment with Burrows-
Wheeler transform. Bioinformatics, 26:589–595, Mar 2010.

[15] N. Matloff. The Art of R Programming. No Starch Pess, 2011.

[16] R. M. Myers, J. Stamatoyannopoulos, M. Snyder,, and P. J.
Good. A user’s guide to the encyclopedia of DNA elements (ENCODE).
PLoS Biol., 9:e1001046, Apr 2011. [PubMed Central:PMC3079585]
[DOI:10.1371/journal.pbio.1001046] [PubMed:21526222].

[17] P. J. Park. ChIP-seq: advantages and challenges of a maturing technology.
Nat. Rev. Genet., 10:669–680, Oct 2009. [PubMed Central:PMC3191340]
[DOI:10.1038/nrg2641] [PubMed:19736561].

[18] S. Pepke, B. Wold, and A. Mortazavi. Computation for ChIP-seq and RNA-
seq studies. Nat. Methods, 6:22–32, Nov 2009. [DOI:10.1038/nmeth.1371]
[PubMed:19844228].

[19] M. D. Robinson, D. J. McCarthy, and G. K. Smyth. edgeR: a Bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics, 26:139–140, Jan 2010.

[20] P. J. Sabo, M. Hawrylycz, J. C. Wallace, R. Humbert, M. Yu, A. Shafer,
J. Kawamoto, R. Hall, J. Mack, M. O. Dorschner, M. McArthur, and J. A.
Stamatoyannopoulos. Discovery of functional noncoding elements by digital
analysis of chromatin structure. Proc. Natl. Acad. Sci. U.S.A., 101:16837–
16842, Nov 2004.

[21] M. Sammeth. Complete alternative splicing events are bubbles in splicing
graphs. J. Comput. Biol., 16:1117–1140, Aug 2009.

[22] M. D. Young, M. J. Wakefield, G. K. Smyth, and A. Oshlack. Gene ontology
analysis for rna-seq: accounting for selection bias. Genome Biology, 11:R14,
2010.

83

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079585
http://dx.doi.org/10.1371/journal.pbio.1001046
http://www.ncbi.nlm.nih.gov/pubmed/21526222
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3191340
http://dx.doi.org/10.1038/nrg2641
http://www.ncbi.nlm.nih.gov/pubmed/19736561
http://dx.doi.org/10.1038/nmeth.1371
http://www.ncbi.nlm.nih.gov/pubmed/19844228

● 1

C H A P T E R 1 : I N T R O D U C T I O N T O M I C R O A R R AY A N A LY S I S

Chapter 1
I N T R O D U C T I O N T O M I C R O A R R AY A N A LY S I S

1.0 Introduction
Microarray analysis has emerged in the last few years as a flexible
method for analyzing large numbers of nucleic acid fragments in parallel.
Its origins can be traced to several different disciplines and techniques.
Microarrays can be seen as a continued development of molecular
biology hybridization methods, as an extension of the use of fluorescence
microscopy in cell biology, as well as a diagnostic assay using capture to
solid surface as a way to reduce the amount of analytes needed. The
convergence of ideas and principles utilized in these fields, together with
technological advancements in preparing miniaturized collections of
nucleic acids on solid supports, have all contributed to the emergence
of microarray and microchip technologies.

In molecular biology, analysis of nucleic acids by hybridization is a
universally adopted key method for analysis. Filter-based dot blot
analysis has been used for a long time as a convenient method for
analyzing multiple samples by hybridization. Classical gene expression
analysis methods such as Northern blotting, reverse transcriptase
polymerase chain reaction (RT-PCR) and nuclease protection assays,
are best suited for analyzing a limited number of genes and samples at
a time. By reversing the Northern blotting principle so that the labelled
moiety is derived from the mRNA sample and the immobilized fractions
are the known sequences traditionally used as probes, filter-based gene
expression analysis has enabled simultaneous determination of
expression levels of thousands of genes in one experiment. Because of
the ease of use of these filter-based methods and their compatibility with
general lab equipment, these macroarrays have been widely adopted for
gene expression studies (1). One disadvantage to using this method has
been the relatively large size and the autofluorescence of the membrane,
which prevents efficient use of multiplexed fluorescent probes and
subsequently limits the number of samples that can be analyzed in
each experiment (Fig 1).

Fig 1. Comparison of a macroarray and
microarray. A close-up of a filter macroarray (a)
hybridized with 32P-labelled cDNA probe and a
microarray (b) hybridized with two different
cDNA probes, one labelled with Cy™3 and the
other with Cy5. The array images are shown
approximately to the same scale.

a)

b)

M I C R O A R R AY

63-0048-49 ● 2hb

Utilizing microscope slides to immobilize cells and chromosomes
precedes filter-based gene expression analysis, as well as proven methods
such as immunohistochemistry, immunocytochemistry and in situ
hybridization. By combining fluorescence analysis of multiplexed probes
with microscopy, fluorescent in situ hybridization (FISH) has enabled
detection of nucleic acids within cells and chromosomes, and has been
found useful in gene expression and genomic analysis.

These two methods of analysis were brought together by advancements
made in attaching nucleic acid sequences to a glass support. Borrowing a
technique from semiconductor manufacturing, photolithography was
used to synthesize oligonucleotides directly onto a glass support.
Separately, a procedure called contact printing was used to deposit
purified nucleic acid onto a slide surface (2). These methods have since
made it possible to miniaturize the macroarray experiment, so to speak,
by using microscope slides instead of membrane filters. In 1995 and
1996, the first papers in which the term ‘microarray’ was used in its
current meaning were published by the laboratory of Pat Brown at
Stanford University (3). The rapid adoption of this technique is
illustrated by the publication in 2001 of over 900 papers on the use of
microarray technique.

1.1 Principles of microarray analysis
Despite the variety of technical solutions that have been developed for
performing microarray analysis, all are miniaturized hybridization assays
for studying thousands of nucleic acid fragments simultaneously. All
microarray systems (Fig 2) share the following key components:

■ the array, which contains immobilized nucleic acid sequences,
or ‘targets’

■ one or more labelled samples or ‘probes’, that are hybridized with
the microarray

■ a detection system that quantitates the hybridization signal

● 3

C H A P T E R 1 : I N T R O D U C T I O N T O M I C R O A R R AY A N A LY S I S

Array
spotter

Target preparation
and deposition

Scanning and
data analysis

Hybridization

Probe preparationmRNA

Labelled
probe

Array scanner

9
3

4

2
6

7
1

2

Fig 2. Principles of microarrays.

M I C R O A R R AY

63-0048-49 ● 4hb

1.1.1 Nomenclature for microarrays
The terms ‘probe’ and ‘target’ are sometimes used interchangeably to
describe either the labelled sample or the immobilized nucleic acids. In
this handbook the immobilized nucleic acid is referred to as the target
and the labelled sample as the probe (Fig 3).

1.1.2 Microarrays
Microarrays consist of a collection of nucleic acid sequences immobilized
onto a solid support so that each unique sequence forms a tiny feature,
called a ‘spot’ or ‘target’. These nucleic acids are obtained in numerous
ways, and there are different methods for depositing them onto microarray
slides (refer to chapter 3). The size of these spots varies from one system to
another, but it is usually less than two hundred micrometers in diameter. A
glass slide or glass wafer acts as the solid support onto which up to tens
of thousands of spots can be arrayed in a total area of a few square
centimeters (Fig 4).

1.1.3 Probe labelling
The microarray sample that is being analyzed, whether it is mRNA for
a gene expression study or DNA derived from genomic analysis, is
converted to a labelled population of nucleic acids, the probe. These
probes frequently consist of several thousands of different labelled
nucleic acid fragments. The complexity of microarray hybridization—
over 10 000 different labelled fragments interrogating up to 100 000
different immobilized sequences—is greater than that encountered in
other routine molecular biology experiments. Therefore, this
hybridization should be carried out under conditions that do not
promote annealing of non-complementary fragments.

Fluorescent dyes, and especially the cyanine dyes Cy3 and Cy5, have
been adopted as the predominant label in microarray analysis.
Fluorescence has the advantage of permitting the detection of two or
more different signals in one experiment. This has allowed investigators
to perform comparative analysis of two or more samples on one
microarray. It has also increased the accuracy and throughput of
microarray analysis over filter-based macroarrays, in which only one
radioactively labelled sample can be conveniently analyzed at a time.

Fig 3. Target and probe. Targets are the
immobilized nucleic acids on the slide
surface. A probe consisting of two identical
populations of nucleic acids labelled with
different fluorescent dyes is shown.

Probe mixture

Immobilized targets
on slide surface

Fig 4. A glass microarray. A standard and
mirrored glass microscope slide that contains
several thousands of immobilized cDNA
fragments. Because of the small amounts of
nucleic acid present and their tiny size, the
target spots are not visible with the naked eye.

● 5

C H A P T E R 1 : I N T R O D U C T I O N T O M I C R O A R R AY A N A LY S I S

1.1.4 Microarray hybridization
In a microarray hybridization, the labelled fragments in the probe are
expected to form duplexes with their immobilized complementary
targets. This requires that the nucleic acids are single-stranded and
accessible to each other. The number of duplexes formed reflects the
relative number of each specific fragment in the probe, as long as the
amount of immobilized target nucleic acid is in excess and not limiting
the kinetics of hybridization. Two or more samples labelled with
different fluorescent dyes can be hybridized simultaneously, resulting in
simultaneous hybridization taking place at each target spot. By measuring
the different fluorescent signals associated with each spot, the relative
abundance of specific sequences in each of the samples can be determined.

1.1.5 Scanning and data analysis
Microarray scanners typically contain two different lasers that emit light
at wavelengths that are suitable for exciting the fluorescent dyes used as
labels. A confocal microscope attached to a detector system records the
emitted light from each of the microarray spots, allowing high-resolution
detection of the hybridization signals.

Despite their small size, microarrays generate large quantities of data
even from a single experiment. As a typical experiment will involve
the use of several analyzed samples on replicate arrays, the use of
computerized data processing is necessary in order to handle the
amount of data generated and to gain maximum information from the
experiment. This can be achieved by specialized software that extracts
primary data from scanned microarray slide images, normalizes this
data to remove the influence of experimental variation, and finally
manipulates the data so that biologically meaningful conclusions can
be made.

M I C R O A R R AY

63-0048-49 ● 6hb

1.2 Applications of microarray analysis
The versatility of microarray analysis is confirmed by its rapid emergence
as a general molecular biology analytical technique. Increasing numbers
of researchers within academic institutions and industrial laboratories
are now exploiting this technology in diverse biomedical disciplines.
Microarrays have not become a replacement to established techniques,
but more a novel, high-power approach to perform analyses that were
previously time consuming.

By using information derived from the several complete or near complete
genome sequences, including the human genome, it is now possible to
perform genome-wide experiments using microarray technology. This has
already been demonstrated for S. cerevisiae where all the expressed genes
are known. As microarrays can contain thousands of targets, both
characterized and uncharacterized, experiments can be conducted without
prior hypotheses. This combined with the millions of data points that are
possible to analyze in one experiment, microarray analysis has enabled
global analysis of biological processes. Gene expression analysis, genome
analysis, and drug discovery have been three of the main areas in which
microarray analysis has been applied so far.

1.3 Gene expression analysis
Gene expression analysis examines the composition of cellular messenger
RNA populations. The identity of transcripts that make up these
populations and their expression levels are informative of cell state and
activity of genes and, as the precursors of translated proteins, changes in
mRNA levels are related to changes in the proteome.

1.3.1 Traditional techniques
Traditional gene expression analysis has used techniques such as
Northern blotting, RT-PCR and nuclease protection assays. More
advanced methods—some of these include differential display, subtractive
hybridization, representational difference analysis, expressed sequence
tags, cDNA fragment fingerprinting, and serial analysis of gene
expression—have enabled the discovery of novel differentially expressed
genes (4). However, the technical challenges of these methods still limit
their use to the analysis of just a few samples at a time. Microarray
analysis, in contrast, allows the analysis of thousands of genes in
multiple samples with relative ease.

● 7

C H A P T E R 1 : I N T R O D U C T I O N T O M I C R O A R R AY A N A LY S I S

1.3.2 Gene expression analysis with microarrays
A typical microarray gene expression analysis experiment compares
the relative expression levels of specific transcripts in two samples.
One of these samples is a control and the other is derived from cells
whose response or status is being investigated. Each of these samples is
labelled with a different fluorescent dye, and equal amounts of the
labelled samples are combined and hybridized with the microarray.
The fluorescent signals corresponding to the two dyes are measured
independently from each spot after hybridization. After normalization,
the intensity of the two hybridization signals can be compared. Equal
signal from both samples suggests equal expression in both samples (Fig 5).

Microarray analysis does not give information about absolute gene
expression levels in the samples. This is because the intensity of the
fluorescent signals is not only proportional to the number of hybridized
fragments but also to the length of these fragments and the number of
fluorescent labels each fragment carries, i.e. labelling density. As these
are determined by the unique nucleotide sequence of each gene and
transcript, they will vary from gene to gene. If two samples have been
labelled under similar conditions, the length and labelling density of
specific transcripts will be similar in the two samples, making it possible
to compare the relative abundance of the transcripts in the two samples.
A strong hybridization signal from microarray analysis does not
necessarily correspond to a highly expressed gene; it could be derived, for
example, from a gene that is expressed at a relatively low level but yields
long, highly-labelled probe fragments.

Gene expression analysis with microarrays has been applied to
numerous mammalian tissues, plants, yeast, and bacteria alike (1, 5,
6, 7, 8). These studies have examined the effects of treating cells with
chemicals, the consequences of over-expression of regulatory factors in
transfected cells, and compared mutant strains with parental strains to
delineate functional pathways. In cancer research microarrays have been
used to find gene expression changes in transformed cells and metastases,
to identify diagnostic markers, and to classify tumors based on their gene
expression profiles (9, 10, 11).

Fig 5. Dual color differential microarray
analysis. Dual color microarray hybridization
signals are typically represented as false color
images in which signals from one dye are
presented in red (Cy5 in this case) and
signals from the other dye in green (Cy3). If
equal signal is obtained from a spot, it will
appear yellow. Shades of green and red
denote differences in relative abundance in
favor of one or the other sample. As the
screen appearance of microarray images can
be easily manipulated, information gained
from such images can be misleading.

Signal from
differentially
expressed genes

Genes expressed
at low levels

Equally expressed
genes

M I C R O A R R AY

63-0048-49 ● 8hb

1.4 Genomic analysis
Microarrays are proving to be useful tools for genomic analysis.
Identification of new genes by examining nucleic acid sequences
derived from open reading frames has proved to be an efficient way
of annotating the human genome and facilitating the use of genomic
information for experimental purposes (12). Understanding of gene
regulation is advanced by elucidation of transcription factor gene
interactions. For example, by combining immunoprecipitation of
transcription factor-DNA complexes to microarray identification of
DNA fragments on a genomic microarray, it was possible to identify
functional regulatory elements in the yeast genome (13). Furthermore,
microarrays can be used for predicting splice variants of transcripts
and analyzing genomic fragments derived from genetic analysis methods,
such as genomic mismatch scanning and representational difference
analysis (14, 15). Oligonucleotide microarrays have been applied to
analysis of known single nucleotide polymorphisms (SNPs) and
mutations (16, 17). Samples can be sequenced using microarray
hybridization (18), thus providing convenient means for identifying
new genetic variants.

1.5 Drug discovery
As a typical drug discovery process takes several years and incurs high
costs, and only a few drug candidates result in approved drugs, methods
that increase the efficiency of the process and improve the chances of
developing effective drugs have been welcomed.

Microarrays have been found to provide useful information in the
different stages of the drug discovery process (8, 15, 19). Identification of
potential drug targets can be aided by elucidating metabolic pathways
by looking for co-expressed genes. The protein targets of drug treatments
can be identified by finding a protein that causes the same changes as a
drug when removed from cells. Once drug candidates have been
identified and selected, microarrays can be used to define their toxic
properties by examining expression profiles induced by drug treatments
(20). On the other hand, different function modes of drugs were
identified based on the gene expression changes they elicited (21).

C H A P T E R 2 : G E N E T I C C O N T E N T O F M I C R O A R R AY S

● 9

Chapter 2
G E N E T I C C O N T E N T O F M I C R O A R R AY S

2.0 Introduction
The genetic content of microarrays resides in the immobilized nucleic
acid sequences on the microarray. The identity of these sequences
determines what information can be obtained from array experiments
and how reliable this information is. As microarrays enable simultaneous
interrogation of up to tens or hundreds of thousands of targets with one
or more labelled probes, generation of accurate data demands that only
specific interactions result in detectable signals. Several strategies for
preparing the immobilized target nucleic acids for microarrays exist
(Fig 6). These nucleic acids can be synthesized directly on the microarray
or they can be purified cDNA clones, other DNA fragments or
oligonucleotides, which are deposited onto the array by a printing
process. This flexibility of using either partially characterized sequences
or defined oligonucleotides as targets has improved the application of
microarray analysis to different biological problems in a number of
species.

Fig 6. Sources of microarray target
sequences. Some of the common strategies
for obtaining targets for microarray analysis
are illustrated.

Cloned cDNA library

PCR with
vector-specific
primers

Genomic DNA

PCR with
gene-specific
primers

Gene database

Oligonucleotide
synthesis

T C G A C G C A T G T G C A
A G T T C G A G A T T C C A

hb

M I C R O A R R AY

63-0048-49 ● 10

2.1 Oligonucleotides as genetic content

2.1.1 Printed oligonucleotide arrays
Oligonucletides can be attached onto microarrays by depositing modified
oligos onto a specially treated glass surface. The deposition can be
achieved with a variety of contact and non-contact printing methods.
See chapter 3, section 3.1.2 on common deposition methods for a
detailed overview of this process.

Depending on the source of oligonucleotide content, the length of these
oligonucleotides typically varies between 50–70 nucleotides (22, 23).
Different microarrays can be easily prepared with the deposition method
by choosing different sets of oligonucleotides for array printing. This
method is increasingly advantageous because customized microarrays
can be prepared in a researcher’s own laboratory using microarray
spotter equipment.

Regardless of the array fabrication method, the use of oligonucleotides
requires that the nucleotide sequences of the intended targets are known.
The publication of the human genome sequence as well as partial or
complete sequences of several other organisms has facilitated this task.
However, the accuracy of the information in the databases has a critical
impact on the quality of the arrays. Errors in sequence entries can result
in oligonucleotides that do not function in hybridization, because
nucleotide mismatches can prevent efficient hybridization from taking
place or non-complementary target strands are used by mistake. As more
and more genes are identified and their sequences elucidated, the power
of oligonucleotide arrays will increase.

2.1.2 Benefits of oligonucleotide arrays
Oligonucleotide targets have several benefits over cDNA targets.

■ Different parts of the same gene can be represented on the array. This
enables a more robust design of microarray experiments as the same
gene can be probed independently for the same information in the
same experiment.

■ Oligonucleotides can be designed to distinguish between alternative
splicing variants as well as different alleles. Oligonucleotides offer
precise control over the genetic composition on the arrays. With a
judicious choice of oligos, it is possible to discriminate between
related gene sequences and study different members of gene families
simultaneously.

C H A P T E R 2 : G E N E T I C C O N T E N T O F M I C R O A R R AY S

● 11

■ Oligonucleotide targets are readily available from commercial
manufacturers or synthesized by researchers.

■ The time and effort required to prepare oligonucleotides for array
printing is less than that required for preparing cloned targets by
molecular biology methods.

2.1.3 Design of oligonucleotides
The design of oligonucleotide targets should take into account factors
that influence the specificity and strength of hybridization with labelled
probes. The specificity can be estimated by comparing the oligonucleotide
sequence with known gene sequences. Predicting the strength of
hybridization is more difficult, however. Computer algorithms have been
developed for selecting target oligonucleotides. Some general rules for
oligonucleotide selection have been established:

■ Repeat sequences should be avoided, including polynucleotide
stretches, repetitive genomic elements, and palindromic sequences.

■ The chosen sequences should not be homologous to other genes, but
one short homologous stretch may still produce enough specificity in
hybridization (22, 24, 25).

■ The length of the oligonucleotide, its nucleotide sequence, as well as
the positions of mismatches in the oligo, all influence the behavior of
the oligo in hybridization.

■ It is important to choose a fairly even distribution of all four
nucleotides in the sequence.

■ Testing of oligonucleotide targets before including them on arrays can
help to eliminate sequences that will not perform well.

■ The use of computer algorithms may also facilitate the selection of
target oligonucleotides (23).

Target sequences may not be accessible to probe molecules near the
attachment site on the solid support. mSpacer sequences can be used to
increase hybridization efficiency. These are additional sequences added to
the oligo sequence to move it further away from the solid support (2).
40-atom long spacers were found to result in up to 150-fold increase in
hybridization signal on oligonucleotide arrays (26).

hb

M I C R O A R R AY

63-0048-49 ● 12

2.2 DNA fragments as genetic content
Development of mechanical microspotting methods and instruments,
which can be used to deposit nucleic acid solutions onto glass surface,
has enabled the use of cDNA clones and other DNA fragments as
microarray targets (27). These methods allow quick and adaptable
construction of microarrays that can be customized according to
different experimental needs.

2.2.1 Sources of DNA targets

The nucleic acid fragments used for microarray construction can be
derived from a number of sources. For gene expression microarrays the
fragments are typically derived from either cDNA clones or amplified
from exon sequences. Libraries of cDNA clones, expressed sequence tags,
clones isolated from subtraction libraries in which the number of highly
expressed sequences has been minimized, or PCR-amplified fragments
corresponding to open reading frames in genomic DNA have been used
as targets (28, 29). It is not always necessary to fully sequence the cDNA
clones before using them on microarrays, nor have prior information
about their expression in tissues. On the other hand, if the cDNA
sequence is known, it is possible to select areas of cDNAs that hybridize
with higher specificity to sequences derived from one gene only and
which do not hybridize with other related sequences. Many 3' untranslated
sequences can also contain repetitive genomic elements that will
compromise hybridization specificity and should not be present in
microarray targets.

As microarray analysis will usually involve the examination of thousands
of fragments in one experiment, acquiring and maintaining large
collections of nucleic acid fragments is labor-intensive and expensive.
While access to genetic content has previously limited, to some extent,
the adoption of microarray technology, the availability of ready-printed
microarray slides from both commercial companies and academic
consortiums has helped alleviate this problem.

2.2.2 Preparation of DNA targets
Before using for microarray spotting, DNA targets need to be amplified
and purified. Typically, PCR amplification is used, and universal primers
complementary for vector sequences simplify the process (30). It is
possible to amplify the target sequences starting from bacterial cultures,
purified plasmids, or RNA, if reverse transcription is performed before
amplification. With PCR, it is possible to amplify only part of the DNA
target or clone. This allows for the removal of sequences that might
compromise hybridization specificity. The amplified DNA needs to be
purified to remove enzymes, nucleotides, and buffer components, all

C H A P T E R 2 : G E N E T I C C O N T E N T O F M I C R O A R R AY S

● 13

of which can interfere with the microarray analysis if present in target
solution. Column purification methods, such as GFXTM PCR DNA
and Gel Band Purification Kit, can be used for this purpose. Whatever
methods are used for amplification and purification, it is most important
to verify that the amplified fragments are the right size, do not contain
other contaminating sequences and that they are present in known
quantities. Agarose gel electrophoresis is a convenient way of
performing this analysis. The Ready-to-Run Electrophoresis System,
which is capable of separating up to 96 samples in 5 min, is well suited
for this task (Fig 7).

Special care is needed when large collections of nucleic acid fragments
are handled simultaneously. It has been estimated that as much as
5–30% of clones in some collections are wrongly labelled or
contaminated with other sequences (31, 32). It is important that the
genes identified with microarray analysis are verified with other
techniques.

2.2.3 Desired properties of DNA targets

An optimal length for DNA targets is between 300–800 nucleotides.
Fragments of this length can be efficiently attached to the microarray
slide surface, where they form specific and stable hybrids. Figure 8 shows
that the retention of UV-immobilized double-stranded DNA targets
on aminosilane-treated microarray slides increases slightly with
increasing length of the molecules. With increasing length, however,
the concentration of DNA required to guarantee the deposition of a
sufficiently high number of target molecules within a spot increases.
This creates practical problems for using long DNA sequences as targets,
as it can become difficult to ensure that the targets are not limiting the
hybridization reaction. In order to obtain accurate results from
competitive microarray hybridization, the target molecules must be in
excess of the corresponding labelled probe molecules. Otherwise,
hybridization signals will be saturated.

Fig 7. Separation of PCR* fragments with
Ready-to-Run Electrophoresis System.

Fig 8. Retention of microarray targets of
different lengths on aminosilane-treated
microarray slide.

200
0

10

20

30

40

50

60

70

80

90

100

300 400 500

Size of PCR insert

600 700 800

% retention

a)

a)

hb

M I C R O A R R AY

63-0048-49 ● 14

As was a requirement for oligonucleotide targets, DNA targets should
not contain repetitive sequences, and they should contain sequences that
are unique to one particular gene. Examination of potential cross
hybridization between related sequences, such as those derived from a
gene family, has revealed that more than 80% homology between targets
results in hybridization signals that are not specific for one gene.
However, even a lower degree of similarity was found to result in cross
hybridization, suggesting that interpretation of microarray data must
take the nature of the target sequences into account.

DNA targets do not need to be single-stranded. Spotting from denaturing
solutions is enough to render even double-stranded targets available for
hybridization. However, single-stranded DNA, which can be generated
by asymmetric PCR or by exonuclease digestion of partially protected
fragments (2), can also be used as targets in microarray analysis.

2.3 Control targets
Because microarray analysis is a complex process, there is a need for the
use of effective controls during the whole process. For gene expression
microarrays, the hybridization signal is influenced by a number of
variable factors, including the number of specific transcripts in the
labelled samples, the labelling method, the properties of microarray
printer pens, hybridization conditions, and slide surface chemistry.
Furthermore, variation in microarray signal is observed not only between
different slides but also between different replica targets spotted onto
different locations of the microarray slide. In this context, it is important
to be able to draw conclusions from the validity of microarray results
and to identify experiments that did not proceed optimally. Control
sequences included on microarrays are the key factor to aid in these
functions.

Different strategies have been devised for microarray control purposes.
These include the use of spiked exogenous sequences of known quantities
(25, 33) and housekeeping genes (34), i.e. genes whose expression is not
expected to change under experimental conditions.

A control system that consists of both control targets and RNA spikes
can monitor most aspects of the microarray process. A control strategy
adopted in the Lucidea™ Universal ScoreCard™ combines the use of
different types of control targets for spotting onto microarray slides and
spikes added to samples before labelling. Together these elements cover
aspects of slide printing, sample labelling, slide pretreatment, and
hybridization. In a typical experiment, up to 24 replicas of the ScoreCard

C H A P T E R 2 : G E N E T I C C O N T E N T O F M I C R O A R R AY S

● 15

sequences would be included on a slide printed with 12 pens. This
number of replicas allows calculation of quality indicators that report on
variation between different pens and spot sets as well as the overall
dynamic range and precision of signals.

In order to gain maximum information from the quality of microarrays,
positive, negative, ratio, dynamic range controls, and normalization
controls are typically used. Table 1 lists the properties and main utilities
of these control types. As a microarray hybridization involves thousands
of different nucleic acid fragments, it is important that sequences used as
controls are selected and functionally tested to avoid unspecific or cross
species hybridization. Negative controls, on the other hand, need to
represent different nucleic acid sequences to be able to capture the
occurrence of random hybridization events. Blank spots that contain
no DNA are useful as negative controls too, but are not sufficient on
their own.

The use of oligonucleotides as targets allows the use of mismatched
sequences as controls. By comparing the signal from the correct sequence
to that from the mismatched sequence, the reliability of each signal can
be assessed individually (24).

Control type Composition Purpose

Positive control ■ Pooled genomic DNA ■ Control for labelling and
hybridization success

Negative control ■ DNA fragments derived from ■ Specificity of hybridization
unrelated species ■ Detection limit

Ratio control ■ Two different sequences spiked ■ Success of labelling and
into each sample before labelling hybridization
at different amounts ■ Color discrimination

Dynamic range control ■ Different sequences spiked into ■ Success of labelling and
samples before labelling at hybridization
different molar amounts ■ Color balance

■ Dynamic range of detection
■ Detection limit and saturation

of signal

Table 1. Control target types.

M I C R O A R R AY

63-0048-49 ● 16hb

C H A P T E R 3 : M A N U FA C T U R I N G O F M I C R O A R R AY S L I D E S

● 17

Chapter 3
M A N U FA C T U R I N G O F M I C R O A R R AY S L I D E S

3.0 Introduction
Microarray analysis is invariably performed on a glass slide, which
enables the performance of high-throughput miniaturized hybridization
assays with fluorescently labelled samples—a significant improvement
over the use of membrane support.

Microarray manufacture requires three distinct components:

■ production method

■ microarray slide

■ target genetic content

In this chapter the properties of deposition methods, instruments, and
microarray slides are discussed.

3.1 Production methods

3.1.1 Oligo synthesis
Two parallel approaches have been developed for the production of
microarray slides. Nucleic acid targets can either be synthesized directly
onto the microarray slide, or purified targets can be deposited onto a
solid surface that is capable of binding nucleic acids.

Adopting a photolithographic masking method used in the semiconductor
industry, oligo synthesis is begun by attaching chemically modified linker
groups, which contain photochemically removable protective groups,
onto the glass surface (39). By masking different predefined positions of
the glass at different steps, it is possible to synthesize different
oligonucleotides at different locations. Target synthesis proceeds in a
step-wise fashion using a different light-impermeable mask for each
round. In each step, the unprotected areas are first activated with light
which removes the light sensitive protective groups. Exposure of the
activated areas to a nucleoside solution results in chemical attachment of
the nucleoside to the activated positions. This process is then repeated by
using a different mask and a new nucleotide until all nucleotides have
been added to the oligo (35).

M I C R O A R R AY

hb 63-0048-49 ● 18

This method (Fig 9) produces arrays of small features that are anchored
at their 3' ends to the array surface. Each feature is made up of
oligonucleotides that all have the same nucleotide sequence. These
arrays have a high density: an area of 1.6 cm can contain up to 400 000
features. Additionally, multiple arrays can be synthesized simultaneously
onto a large glass wafer, further automating the manufacturing process.
The wafers are then cut into individual arrays in preparation for use.

3.1.2 Deposition
Using common deposition methods, purified nucleic acids are attached to
a modified glass slide. Typically, small volumes of nucleic acid solution—
nanoliters or picoliters—are transferred onto the glass slide. Deposition
methods are equally suitable for preparing microarrays containing
oligonucleotides, cDNA sequences, as well as genomic DNA. Deposition
methods are commonly used for preparing customized microarray slides.

The deposition chemistry involves a chemical reation between molecular
groups on the glass surface and the oligo, resulting in the formation of
covalent bonds that bind the ologonucleotide onto the array. There are
many different suitable attachment chemistries. One is the coupling of
amine-modified oligonucleotides to aldehyde slides. Another is the
derivatization of 5' phosphate groups with imidazole, followed by
reaction with the amine slide surface. A third is the use of bifunctional
cross-linkers to couple aminated oligos to aminated glass (2).

Many different techniques have been developed for the deposition
process, some of which are reviewed in this chapter. Regardless of the
technique used, however, the manufacturing process should meet several
criteria. Variation in the quantity of targets deposited, the shape of spots,
the regularity of the array pattern, and the carryover of targets could all
detrimentally affect the accuracy of microarray data.

Fig 9. Microarray manufacturing using
photolithography.

O

Substrate

Mask

Light deprotection

Substrate Substrate Substrate

Mask

Light deprotection

Substrate Substrate

O O O O HOHO O O O T

Chemical
coupling

T O O O T T O O O T T C C O T
Repeat

T C C G

A G C T G

C A T A T

T – C –

C H A P T E R 3 : M A N U FA C T U R I N G O F M I C R O A R R AY S L I D E S

● 19

3.1.3 Requirements of microarray spotting methods and
instruments

Spot size and density

The microarray spots should be small and discernible from each other.
The spots should be deposited in grid-like fashion, at equal distances
from each other. It is important to immobilize the slides during printing,
as even the slightest movement can distort the microarray pattern.

Spot reproducibility

The spots should be of uniform size and shape, and they should contain
equal amounts of the target nucleic acids. This requires careful
calibration and matching of individual printing pens.

Environmental control

Environmental conditions can have a significant effect on the quality
of the spotted slides. Clean environment is important because dust
particles can become fixed onto slides, causing background signals
in microarray hybridization and spot finding problems during data
analysis. Controlling the humidity helps to avoid changes in sample
concentrations due to evaporation during printing and when spots are
drying. High humidity levels may cause spots to smear whereas low
humidity levels may cause evaporation from the sample plate. Under
high temperature conditions targets will dry rapidly at the outer edges
of the spot, thereby causing poor spot uniformity. This effect can cause a
donut-shaped spot morphology. A humidity between 10–70% has been
found to be most suitable for a microarray application.

Sample carryover

There must not be any carryover of previous target during the printing
process.

Throughput

The printing process should be fast to allow timely printing of slides. The
total time need for sample retrieval, printing, and washing of the printer
pens needs to be considered.

hb

M I C R O A R R AY

63-0048-49 ● 20

3.1.4 Non-contact deposition
Non-contact deposition has been adapted for microarray manufacture
from the modern ink jet printing industry. As the name implies, the
printing heads do not touch the surface of the microarray. Piezoelectric
printing and syringe-solenoid methods are the two common variations of
this method.

■ In piezoelectric printing (Fig 10) the target solution is drawn into a
capillary that is in contact with a piezoelectric crystal. Application
of voltage to the crystal results in a slight conformational change,
squeezing the capillary. A small volume of sample is deposited onto
the glass surface. This method allows for very rapid spotting times.
Very small volumes can be delivered, as the distortion of the crystal
shape can be accurately controlled. However, this deposition method
is prone to problems caused by air bubbles, which can cause poor
spot morphology.

■ Syringe-solenoid deposition (Fig 11) uses a syringe pump positive
displacement method to deposit nanoliter volumes onto a slide.
A syringe that provides the pressure source is connected to a
micro-solenoid valve. The sample is drawn up the dispensing tip
via the syringe. The system is pressurized and the opening of the
micro-solenoid valve allows small volumes of sample to be deposited
onto the surface. This system is not as rapid as that of piezoelectric
printing, and it is not able to deposit sub-nanoliter volumes; however,
deposition volumes are very precise and reproducible.

Fig 10. Diagram of a piezoelectric
microarray printing system.

Reservoir

Piezoelectric crystal

Glass capillary

Syringe

Solenoid valve

Pressure

Fig 11. Diagram of a syringe-solenoid
microarray printing system.

C H A P T E R 3 : M A N U FA C T U R I N G O F M I C R O A R R AY S L I D E S

● 21

3.1.5 Contact deposition
In contact deposition, solid, hollow, or split-open pen designs are used to
transfer target nucleic acid onto the slide surface. These pens are dipped
into the target solution, a small volume of which adheres to the pen.
When the pen comes into contact with the slide surface, a fraction of the
nucleic acid solution on the pen is deposited onto the glass surface. One
sample uptake of the pen allows for several spots to be printed. For
achieving high throughput, several pens are used simultaneously, each of
which typically deposits a different nucleic acid solution. Successful spot
deposition is achieved by using pens that are quantitatively tested to
ensure performance, such as those made by Amersham Biosciences.

Contact deposition requires less target nucleic acid solution than the
non-contact methods and also results in smaller spots that can be packed
more densely on the microarray surface.

Contact Piezoelectric Syringe-Solenoid
pen printing printing printing

Microtiter plate
well volume
(microliters) 10–30 20–50 20–50

Uptake volume
(microliters) 0.2–1.0 5–10 5–10

Spot volume
(nanoliters) 0.5–2.5 5–100 0.1–10

Spot size
(nanometers) 75–250 250–500 125–175

Table 2. Comparison of characteristics of different
microarray printing methods.

hb

M I C R O A R R AY

63-0048-49 ● 22

32P-CDNA
before wash

32P-CDNA
after wash

Fig 15. Wash system in Lucidea Array Spotter
removes previous target solution efficiently,
resulting in virtually no detectable carryover of
sample during printing. The above experiment
was performed with radiolabelled 32P-cDNA
spotted on a nylon membrane. The image on
the right shows results after the pens have
been washed, dipped into a sample blank,
and then spotted.

3.2 Lucidea Array Spotter
Lucidea Array Spotter (Fig 12) is a new contact deposition microarray
spotter from Amersham Biosciences. The Lucidea Array Spotter is part of
the Lucidea platform of products offered by Amersham Biosciences for
microarray analysis. These products include Lucidea Array Spotter,
Lucidea SlidePro Hybridizer (see chapter 9), and Lucidea Universal
ScoreCard (see chapter 11). The key features of Lucidea Array Spotter are:

■ Patent pending, stainless steel capillary pens that conserve sample and
uniformly deposit picoliter volumes of target (Fig 13). From a single
sample uptake of less than 200 nl, up to 150 spots can be spotted in
duplicate, across each of 75 slides. The design of the pens (Fig 14)
minimizes clogging with target solution and simplifies washing after
each sample, resulting in no detectable carryover or mixing of samples
during printing. To achieve good spot uniformity, the pens in each pen
set are quantitatively tested during manufacturing to ensure performance.

■ A newly designed five-step wash system eliminates the possibility of
sample carryover as shown with dye-labelled DNA testing (Fig 15).

■ Lucidea Array Spotter allows for monitoring and control of humidity
and temperature monitoring during spotting (Fig 16).

■ The target plates are kept in an area with minimized airflow to
reduce evaporation while the printing is in progress.

■ The spotting chamber is encased inside the enclosure of the instrument,
thus limiting the access of particulates during slide printing.

■ Several user-defined spotting modes are available to print arrays in
up to four replicates per slide. Lucidea Spotting Pens can handle
spotting fluids with significantly different viscosity.

■ Control software integrates all aspects of spotter operation.

Fig 12. Lucidea Array Spotter.

Fig 14. Side view of the tip of Lucidea
Spotting Pen. Target solution is drawn
by capillary action to the narrow
opening in the tip of the pen.

Fig 13. Lucidea Spotting Pen Set.

C H A P T E R 3 : M A N U FA C T U R I N G O F M I C R O A R R AY S L I D E S

● 23

3.3 Microarray slides
At present the most commonly used support for microarrays are
standard glass microscope slides that offer flat and rigid support with
low intrinsic background fluorescence. However, there are quality
differences between different manufacturer’s glass slides. Careful analysis
of slides before they are used for microarray printing is recommended.
Furthermore, it is very important to ensure that microarray slides are
absolutely clean.

3.3.1 Slide surface chemistries
Nucleic acids will not attach efficiently to an untreated glass slide.
Therefore, different surface chemistries have been developed to facilitate
the attachment of targets to the slide. These treatments not only enable
the binding of targets, but also determine the density of molecules that
can be attached per surface unit.

The uniformity and thickness of the surface coating on the slide is critical
for good quality microarray results, as this will influence spot uniformity
and morphology, DNA binding, as well as background signals from
microarray hybridization. Variation in slide coating can contribute to the
variation in microarray signals and decrease the resolution of a
microarray experiment. Uneven slide coating can also lead to poor
attachment of deposited nucleic acid, which may come loose during
microarray hybridization.

Commonly used slide surface modifications include the introduction of
aldehyde, amino, or poly-lysine groups onto the slide surface.
Aminosilane slides give highly consistent and reproducible data with high
signal to noise values, and they are most favorable for use in microarray
experiments.

Fig 16. Controlled temperature and humidity
result in relatively even spot intensities and
morphology.

Uniform signals

Scanned Spots

hb

M I C R O A R R AY

63-0048-49 ● 24

3.3.2 Common slide types

Aldehyde slides

Amino-modified DNA can be attached to microarray slides that have
been modified with aldehyde groups (Fig 17). The amino group can
be introduced into DNA in a PCR amplification reaction using amino-
modified oligonucleotides. The aliphatic amine on the amino-modified
DNA acts as a nucleophile, attacking the carbon atom on reactive
aldehydes covalently attached to the surface of the slide. An unstable
intermediate is converted to a Schiff base through a dehydration reaction
(-H2O), and the DNA is bound to the surface. To minimize fluorescent
background, the unreacted aldehyde groups are reduced to non-reactive
primary alcohols by treatment with sodium borohydride (NaBH4).
Aromatic amines on the G, C, and A bases of naturally occurring DNA
can also react with aldehyde groups. The efficiency of this side reaction is
~0.01% for short oligonucleotides and ~10% for double-stranded PCR
products (36).

H-C=OH-C=O

DNA

NH2

H-C=OHH-C=O

DNA

NH

H-C=OHH-C=OH

DNA

NHH

sodium
borohydride

Fig 17. Attachment of amine-modified
DNA to aldehyde slide.

C H A P T E R 3 : M A N U FA C T U R I N G O F M I C R O A R R AY S L I D E S

● 25

Amine slides

Amine groups can be introduced onto microarray slides by treating
cleaned glass with aminosilane, such as 3-aminopropyltrimethoxysilane
(Fig 18). Vapor treatment of slides gives generally better results than
deposition by a dipping method (37). Unmodified DNA can be attached
to amine-modified slides, via interactions between negatively charged
phosphate groups on the DNA and the positively charged slide surface.
This interaction helps ensure denaturation of the DNA as well as increase
its binding affinity to the slide surface. UV treatment can be used to
further immobilize the DNA onto the slide surface. Attachment via
electrostatic interactions is suitable for binding DNA fragments that are
longer than 60–70 nucleotides. For attaching oligonucleotides to amine-
modified glass, chemical coupling methods must be used (2).

Poly-lysine slides

Treatment of the slide with poly-lysine creates a positively charged
surface to which unmodified DNA can bind via ionic interactions (38).

NH3NH3NH3

DNA

Solid support

P=O

O-

OO

P=O

O-

OO

P=O

O-

OO

+ + +

Fig 18. Attachment of unmodified DNA to an
amine-modified slide surface. The DNA binds
to the surface of the slide via an electrostatic
interaction. The positive amines in the silane
coating will attract the negative phosphate
backbone of the DNA.

hb

M I C R O A R R AY

63-0048-49 ● 26

3.3.3 Reflective slides
A large proportion of the fluorescent light emitted from the hybridized
probe is scattered in all directions when using regular glass arrays. The
introduction of a reflective surface below the spotting surface enables a
significant amount of this scattered output to be directed towards the
detector, hence increasing the amount of signal detected by the system.
These reflective slides are constructed by adding a layer of aluminium
above the glass surface. Figure 19 shows a diagram of a reflective slide.

Signal enhancement is further achieved if an optimal thickness of silicon
dioxide is used as a spacer on top of the reflective layer (Fig 20). It has
been found that a thickness corresponding to 1/4 of the excitation
wavelength results in optimal signal enhancement for a particular dye. In
a typical microarray experiment two different dyes, such as Cy3 and
Cy5, are used. As these dyes have different excitation maxima, it is not
possible to enhance the excitation of both dyes simultaneously. Since the
fluorescence from Cy3 is already enhanced when the dye is bound to
molecules, it is more critical to increase the fluorescent signal from Cy5-
labelled molecules. Hence, Lucidea Reflective Slides have been designed
to specifically enhance Cy5 signals from microarray experiments,
resulting in better balanced signals from both dyes.

Silicon dioxide layer
Silane layer
Sample layer

Aluminium layer
Glass slide

Fig 19. Diagram of the structure of a
reflective microarray slide.

Fig 20. The enhancement of signal by a
reflective slide.

1/4 Wavelength

Incident light Fluorescence

Silicon dioxide layer

Aluminium layer
Glass slide

sample

C H A P T E R 3 : M A N U FA C T U R I N G O F M I C R O A R R AY S L I D E S

● 27

3.4 Target nucleic acids
The third critical component in microarray manufacturing is the target
nucleic acid. Factors influencing the choice of target sequences are
described in Chapter 2.

Microarray targets must be available in high enough concentration
to allow a sufficient number of molecules to be deposited onto the slide.
The purity of target solutions is important for both the efficient
attachment of nucleic acids to the slide surface and the availability of
the immobilized targets for hybridization. PCR-amplified targets must
be purified to remove dNTPs, primers, DNA polymerase, buffer salts,
and detergents. Column chromatography methods are suitable for this
purpose. As shown in Figure 21, the presence of these compounds is
detrimental to the success of microarray hybridization.

The targets, once attached to the microarray surface, are only available
for hybridization when they are present in a denatured, single-stranded
form. This can be achieved by spotting the targets under denaturing
conditions. Typically, targets are dissolved in high salt solutions such
as 3 × SSC, or in denaturing solvents such as DMSO.

3.5 Critical success factors for microarray
preparation
■ Always handle microarray slides in a clean environment.

■ Never use gloves that contain powder as the powder will invariably
get onto the slides and cause background signals.

■ Never touch the array surface, only handle slides from sides.

■ Only use low fluorescence microscope slides for microarray
manufacturing.

■ Clean microarray slides efficiently before applying slide surface
treatment to them.

■ Verify the purity and concentration of targets before using them
for slide printing.

■ Handle target plates with care to avoid drying out or mixing of
targets.

■ Follow the instructions provided with the microarray spotter carefully.

■ Make sure that spotting is carried out under known and controlled
temperature and humidity.

■ Microarray slides have a limited shelf life, so prepare and use
microarray slides in a timely fashion.

■ Always store slides dessicated and protected from light.

Purified

Unpurified

Purified + Taq

Purified + dNTPs

Purified + buffer

Purified + primers

Fig 21. Purification of PCR-amplified
targets. cDNA targets were amplified
with PCR, then purified with column
chromatography. The indicated reagents
were added to the purified target DNA
before spotting. Significantly decreased
hybridization signals were observed from
all targets containing impurities as
compared with purified targets.

M I C R O A R R AY

hb 63-0048-49 ● 28

C H A P T E R 4 : F L U O R E S C E N T L A B E L S I N M I C R O A R R AY A N A LY S I S

● 29

Chapter 4
F L U O R E S C E N T L A B E L S I N M I C R O A R R AY A N A LY S I S

4.0 Introduction
Most researchers performing microarray analysis prefer to use
fluorescent dyes as labels in these experiments as their use offers high
sensitivity of detection and enables detection of different dyes
simultaneously. Furthermore, fluorescent dyes do not carry the hazards
associated with radioactive markers. In this chapter, the general
properties of fluorescence and CyDyeTM fluorophores are discussed.

4.1 Definition of fluorescence
Fluorescence can be defined as the molecular absorption of light energy
(photon) at one wavelength and its re-emission at another wavelength.
Molecules that absorb light are known as chromophores. Molecules that
both absorb and emit light are known as fluorochromes, or fluorophores.

Light is a high frequency electromagnetic wave, and the energy of the
photon is inversely proportional to its wavelength (λ). Thus photons
towards the blue end of the spectrum, i.e. light photons with shorter
wavelengths, have a higher energy than those towards the red end of
light spectrum (Fig 22).

The process of fluorescence is a three-phase one, consisting of excitation,
the excited state, and emission.

Wavelength (nm)

300 400 500 600 700 800

Near ultraviolet Near infraredVisible

Fig 22. Light spectrum.

M I C R O A R R AY

hb 63-0048-49 ● 30

4.1.1 Excitation

Extinction coefficient (ε) is a measure for a fluorophore’s ability to
absorb light energy. When a photon of light energy (hvEX) of the
appropriate wavelength is absorbed by a fluorophore, an electron is
boosted to a higher, unstable excited energy state. The difference between
the ground state (S0) and the higher energy state (Sn) is a property of the
fluorophore; it is equivalent to the energy of the photon absorbed.
Because photons with shorter wavelengths have higher energy, the
shorter the wavelength of the absorbed photon, the higher the excited
energy state reached by the fluorophore. The wavelength at which the
fluorophore has maximum excitation is determined by the structural
properties of that fluorophore.

4.1.2 The excited state
The excited state typically lasts a fraction of a second. During this state
some of the energy absorbed may be dissipated in the form of vibrational
and rotational energy, often resulting in localized heating. The
fluorophore thus loses some of the energy it has absorbed from
excitation, prior to any fluorescent emission taking place. It is for this
reason that the quantum yield (φ) of a particular fluorophore (ratio of
the number of photons emitted to the number of photons absorbed) is
between 0 and 1.0. The quantum yield of a fluorophore can be greatly
influenced by the medium in which it resides. For example, unconjugated
Cy3 in phosphate buffered saline solution (PBS) has a quantum yield of
0.04; thus a large proportion of the energy absorbed by each dye
molecule is lost to its surrounding solution. However, in glycerol the
quantum yield increases more than ten-fold to 0.52.

4.1.3 Emission
Once the fluorophore has reached the lowest vibrational energy level
within the electronic excited state (S1), the electron falls from the excited
state to the ground state (S0). It is at this point in the decay process that
light is emitted at a specific wavelength (hvEM). Because some energy
between excitation and emission has already been lost, the emitted
photon has less energy than the original photon absorbed by the
fluorophore (Fig 23). Therefore, the emitted light has a longer
wavelength. The difference between the maximum excitation wavelength
and the maximum emission wavelength is known as the Stokes shift
(hvEX – hvEM).Fig 23. Diagram illustrating the energy

levels of the fluorescence process.

Sn

S1

S0

Absorption

Vibration decay

Emission

C H A P T E R 4 : F L U O R E S C E N T L A B E L S I N M I C R O A R R AY A N A LY S I S

● 31

4.1.4 Photobleaching
The fluorescent process is rapid (10-8 seconds) and cyclical, enabling the
fluorophore molecule to be excited repeatedly. It must be considered,
however, that the excited state of a fluorophore is generally more
chemically reactive than the ground state. In conditions of intense light,
the fluor may gradually lose its fluorescent properties, a phenomenon
known as "photobleaching". This results in lower fluorescent output
from the fluorophore after prolonged exposure to light or repeated
excitation. For more photosensitive dyes, such as fluorescein,
photobleaching may be a significant factor when using instrumentation
with high laser power. In contrast, as seen in Figure 24, CyDye fluors are
more resistant to photobleaching, which makes them more suitable for
multiple applications.

An excellent approach to reduce photobleaching is to maximize detection
sensitivity so that the excitation intensity can be reduced.

The brightness (intensity of output) of a fluorophore is proportional to
both the extinction coefficient (ε, the molecule’s ability to absorb light
energy) and the quantum yield (φ, the molecule’s efficiency to re-emit
light). Both of these are constants under specific static environmental
conditions. Consequently, fluorophores with very different characteristics
may give a comparable signal brightness. Fluorescein, for example, has a
molar extinction coefficient of ~70 000 and a quantum yield of ~0.9,
whereas Cy5 has values of ~200 000 and 0.3 respectively. However both
are of similar brightness.

Fig 24. Photostability of fluorophores
under "natural" light conditions.

0
0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60

Normalized
fluorescence

Fluorescein

Cy5

Cy3B

Cy3.5

Cy3

M I C R O A R R AY

hb 63-0048-49 ● 32

4.2 Applications of fluorescence
The fluorescent process, combined with appropriate imaging
instrumentation, enables a sensitive and quantitative detection method
for microarray expression analysis.

4.2.1 Benefits of fluorescent labelling
The particular Stokes shift properties of individual fluorophores make it
possible to separate excitation light from emission light with the use of
optical filters. Good spectral separation enables high sensitivity of
detection and yields low background.

By choosing fluorophores that have different pairs of excitation and
detection wavelengths, it is possible to excite and detect multiple dyes in
the same sample. This method enables multiplexing with dyes—labelling
two or more samples with different dyes that have different absorption
and emission spectra—and makes it possible to analyze several samples
simultaneously. Figure 25 shows the absorbance and emission spectra
of Cy3 and Cy5, the most widely used pair of fluorescent dyes in
microarray analysis. The minimal overlap between the Cy3 and Cy5
spectra demonstrates how it is possible to detect both dyes with minimal
cross talk (overlap) between their respective signals.

Another advantage of using fluorescent dyes as labels is that they are less
hazardous than radioactive compounds and offer significantly increased
stability, or longer shelf life. The availability of fluorophores conjugated
to many different chemical groups enables the labelling of nucleic acids,
proteins, lipids, and carbohydrate molecules. Furthermore, fluorescent
dyes can also be used as reporters to detect changes in pH, ion
concentrations, or dye environment.

0

10

20

30

40

50

60

70

80

90

100

Fluorescence

Cy5 emission

Cy5 excitation

Cy3 emission

Cy3 excitation

Wavelength (nm)

400 450 500 550 600 650 700 750 800

Fig 25. Excitation and emission spectra of
Cy3 and Cy5 dyes.

C H A P T E R 4 : F L U O R E S C E N T L A B E L S I N M I C R O A R R AY A N A LY S I S

● 33

4.2.2 Fluorescent quenching
Fluorescent quenching (Fig 26) causes decreased fluorescent signals. It
occurs when two or more fluorophores are in close proximity to each
other and the excitation energy is dissipated in interactions between the
adjacent dye molecules, rather than emitted as fluorescent light. Chemical
structures as well as photochemical properties of dyes determine the
distance at which two fluors will quench.

Quenching can occur when samples have been labelled too densely or
when too much labelled sample is used in hybridization. Over-labelling
not only results in the loss of linearity between fluorescent signal emitted
and the number of fluors present, but will, in extreme cases, reduce the
signal to levels that cannot be observed. In microarray analysis, quenching
may also occur when two probe strands come into close proximity of
each other. This is likely to be most apparent in the presence of highly
expressed transcripts, where a very large number of labelled molecules
are bound densely at a precise location. See chapter 6, section 6.2.4 for
further overview of this process.

Fig 26. A schematic representation of the effect of quenching
under varying labelling conditions. Fluorescent signal from the
same nucleic acid fragment labelled with high and low densities
is depicted. Green shows fluorescent emission, whereas purple
denotes dissipation of energy between closely spaced fluors
(pink circles).

Lower density labelling

A C C C T A G G A T G C G T G C G C T A A G A A C A T G G G G A T T

High density labelling

A C C C T A G G A T G C G T G C G C T A A G A A C A T G G G G A T T

CyDye

Fluorescence

Interaction & absorption

M I C R O A R R AY

hb 63-0048-49 ● 34

4.3 CyDye fluorophores

4.3.1 Chemical structure of cyanine dyes
The cyanine, or CyDye, family of fluorescent dyes were first used in the
photographic industry as film sensitizers. They were subsequently
discovered for use in molecular biology applications when a CyDye was
coupled to a N-succinimide ester, to form the first dUTP (40, 41).

This family of fluors consists of a chemically related group of dyes whose
emission spectra span the spectrum of visible light (Fig 27). CyDye fluors
share a core structure consisting of two heterocyclic indocyanine ring
structures joined by a polymethine bridge (Fig 28). Each dye differs in
the structure of this bridge. Adding pairs of conjugated C atoms to the
polymethine chain results in a wavelength shift of ~100 nm, for example
Cy3 (550 nm) and Cy5 (650 nm). An important modification of Cyanine
dyes is sulfonation of the indocyanine rings, as shown in Figure 29. The
sulfonate acid groups increase the solubility of the dyes. In addition they
reduce aggregation of dye molecules, as the introduction of negative
charge makes the dye molecules repel each other. This results in a
decrease of fluorescence quenching.

The multiplexing properties of CyDye fluors were further increased by
synthesizing Cy3.5 and Cy5.5 (Fig 30). The addition of benzene rings
shifts their absorbance and emission spectra up by approximately 30 nm
to the red. Two additional sulfonate groups are needed to increase
solubility in order to overcome aggregation due to benzene rings.

Fig 28. Core structure of the cyanine dyes.

X = O, NR, C(CH3)2, S, Se

R and R′ = alkyl or aryl

n = 0, 1, 2, 3, 4 or 5

X

N+

R

X

N

R′

[]n

Fig 27. The emission spectra of some
CyDye fluors.

0

10

20

30

40

50

60

70

80

90

100

Fluorescence

Wavelength (nm)

450 500 550 600 650 700 750 800 8500

Cy7

Cy5.5

Cy5

Cy3.5

Cy3

FluorX

Cy2

C H A P T E R 4 : F L U O R E S C E N T L A B E L S I N M I C R O A R R AY A N A LY S I S

● 35

Cy3 NHS ester

Excitation max = 548 nm

Emission max = 562 nm

HO3S SO3H

N+ N

O

O

O

NO

Cy3.5 NHS ester

Excitation max = 581 nm

Emission max = 596 nm

HO3S SO3H

SO3HSO3H

N+ N

O

O

O

NO

Fig 30. Structures of Cy3 and
Cy3.5 NHS esters.

Fig 29. Structure of Cy3 NHS ester
(3 carbon bridge) and Cy5 NHS ester
(5 carbon bridge).

Cy3 NHS ester

Excitation max = 548 nm

Emission max = 562 nm

HO3S SO3H

N+ N

O

O

O

NO

Cy5 NHS ester

Excitation max = 646 nm

Emission max = 664 nm

HO3S SO3H

N+ N

O

O

O

NO

hb

M I C R O A R R AY

63-0048-49 ● 36

4.3.2 Fluorescent and chemical properties of CyDyes
Cy3 and Cy5 have become the most commonly used pair of CyDyes.
This can be attributed to the following factors:

■ The photostability of Cy3 and Cy5 is higher than that of other widely
used dyes (Fig 24), making the use of CyDye fluors more practical.

■ Cy3 and Cy5 are bright dyes that give strong fluorescent signals.

■ The good spectral separation of Cy3 and Cy5 means that each can be
excited at a different wavelength and their emissions can be detected
separately. This requires the use of two different lasers, typically a
532 nm and 633 nm laser for Cy3 and Cy5, respectively. By choosing
optical filters that only collect emitted light from part of the spectra,
Cy3 and Cy5 signals can be measured with minimal overlap.

■ The fluorescence of Cy3 and Cy5 is minimally affected by factors
such as pH and the presence of DMSO. Additionally, these dyes can
withstand temperatures and conditions normally encountered in
molecular biology applications.

4.3.3 Handling of CyDye fluors
Correct handling of CyDye and CyDye compounds helps to conserve
their fluorescent properties. When handling these substances, observe the
following precautions:

■ Minimize the exposure of CyDye compounds to all light sources.

■ Store CyDye in amber tubes, in light-safe containers, or wrapped in
aluminium foil to protect them from light during storage.

■ Take CyDye out of their protective container only when ready to
use and return to dark immediately after use.

■ If using CyDye nucleotides, prepare single use aliquots to avoid
freeze thaw.

■ Protect CyDye NHS esters and other CyDye labelling conjugates
such as CyDye Direct™ from moisture by storing dessicated.

■ Do not store CyDye in solutions containing concentrated
amines. Phosphate buffer or water is preferred over Tris-buffers.

C H A P T E R 4 : F L U O R E S C E N T L A B E L S I N M I C R O A R R AY A N A LY S I S

● 37

CyDye Abs. Max. Em. Max. Molar extinction coefficient
(nm) (nm) (M-1cm-1)

Cy2 489 506 ~150 000

Cy3 550 570 150 000

Cy3.5 581 596 150 000

Cy5 649 670 250 000

Cy5.5 675 694 250 000

Cy7 743 767 ~250 000

Table 3. Photochemical properties of selected CyDye fluors.

M I C R O A R R AY

63-0048-49 ● 38hb

4.4 Use of fluorescent dyes in microarray analysis
Multiple labelling strategies have been developed for incorporating
fluorescent labels into microarray probes. These techniques are discussed
in chapter 6. The photochemical properties of fluorescent dyes, especially
the positions of their excitation and emission peaks, determine the
specification of scanning instruments, the laser type, and the choice of
emission filters that are required to separate and detect fluorescent
signals from particular dyes. The popularity of pairing Cy3 and Cy5 as
labels has led to the development of microarray scanning instruments
that are optimally suited for detection of these dyes.

General requirements for detecting fluorescent signals in microarray
analysis are:

■ High enough resolution to image a large area (2 × 6 cm) in a short
period of time.

■ At least two fluorescent spectra must be distinguished to
accommodate differential gene expression experiments using two
fluorescent dyes.

■ The wide range of message abundance levels requires an instrument
with a low fluorescent detection threshold to allow detection of rare
messages and wide linear dynamic range to measure the more
abundant messages.

■ The entire area of the microarray must be scanned uniformly to
ensure reproducibility.

4.4.1 Characteristics of fluorescent detection
The energy of the emitted fluorescent light is a statistical function of the
available energy levels in the fluorochrome, but it is independent of the
intensity of the light used to excite the fluorophore. In contrast, the
intensity of the emitted fluorescent light varies with the intensity and
wavelength of incident light and the brightness and concentration of the
fluorochrome. When more intense light is used to illuminate a sample,
more fluorochrome molecules are excited, and the number of photons
emitted, i.e. the number of electrons falling to the ground state, increases.
If the illumination is very intense, all the fluorochrome molecules are in
the excited state most of the time—this is called saturation.

● 39

C H A P T E R 4 : F L U O R E S C E N T L A B E L S I N M I C R O A R R AY A N A LY S I S

When the illumination wavelength and intensity are held constant, as
with the use of a controlled laser light source, the number of photons
emitted is a linear function of the number of fluorochrome molecules
present. At very high fluorochrome concentrations, the signal becomes
non-linear because the fluorochrome molecules are so dense that
excitation occurs only at or near the surface of the sample. Additionally,
some of the emitted light is reabsorbed by other fluorochrome molecules
(self-absorption).

The amount of light emitted by a given number of fluorochrome
molecules can be increased by repeated cycles of excitation. In practice,
however, if the excitation light intensity and fluorochrome concentration
are held constant, the total emitted light becomes a function of how long
the excitation beam continues to illuminate those fluorochrome
molecules (dwell time). If the dwell time is long relative to the lifetime of
the excited state, each fluorochrome molecule can undergo many
excitation and emission cycles.

Measuring fluorescent light intensity (emitted photons) can be
accomplished with any photosensitive device. For example, for detection
of low-intensity light, a photomultiplier tube (PMT) can be used. This is
simply a photoelectric cell with a built-in amplifier. When light of
sufficient energy hits the photocathode in the PMT, electrons are emitted,
and the resulting current is amplified. The strength of the current is
proportional to the intensity of the light detected. The light intensity is
usually reported in arbitrary units, such as relative fluorescence units (RFU).

If fluorescent samples are detected with a system that uses an intense
light source to excite the dyes, photobleaching can occur. This irreversible
destruction of an excited fluorophore will result in a loss of brightness,
or emission light intensity. As photobleaching is a consequence of
excitation, altering the characteristics of detection, such as increasing the
voltage of PMT to allow more sensitive detection, will not cause it.
Microarray slides hybridized with Cy3- or Cy5-labelled probes can be
scanned several times with commercial microarray scanners without
considerable loss of fluorescent emission.

M I C R O A R R AY

hb 63-0048-49 ● 40

C H A P T E R 5 : P R E PA R AT I O N O F R N A S A M P L E S F O R M I C R O A R R AY A N A LY S I S

● 41

Chapter 5
P R E PA R AT I O N O F R N A S A M P L E S F O R M I C R O A R R AY

A N A LY S I S

5.0 Introduction
There are multiple steps involved in isolating and preparing RNA
samples to be used for microarray analysis. Discussed in this chapter
are factors affecting the quality of analyzed RNA, protecting RNA
samples from contamination and degradation, purifying RNA, and
finally, characterizing the purified RNA.

5.1 Factors affecting RNA quality
The quality of information obtained from microarray experiments
is primarily dependent upon the quality of RNA analyzed. Ideally, the
RNA should be devoid of DNA, protein, carbohydrates, lipids, and
other compounds. The presence of these substances will not only make it
difficult to correctly estimate the amount of RNA present in the sample,
but can contribute to fluorescent background signals in the array
hybridization. Degradation of RNA, whether by enzymatic or chemical
means, results in the loss of gene expression information from the
labelled samples. Furthermore, if the quantity or quality of the two
samples being compared differ, misleading conclusions can be made.

Compared with DNA, RNA is relatively unstable and can be degraded
either enzymatically, chemically or physically. Ribonuclease enzymes
(RNAses) degrade RNA into short oligonucleotides in a rapid reaction.
They are present in all cells and can be derived from a variety of
environmental sources, such as the hands, skin, and hair; bacterial or
viral contamination of solutions; or remnants of previous reagents in lab
glassware. Inactivation of these enzymes is difficult; therefore it is
essential that precautions are taken to ensure that RNA degradation is
minimized during isolation, purification, and storage.

M I C R O A R R AY

hb 63-0048-49 ● 42

5.2 Protecting RNA from degradation
RNA can be degraded if it comes into contact with any source of RNAse.
Discussed in this section are the many ways in which RNA samples can
become contaminated and how to protect them from subsequent
degradation if contamination occurs.

5.2.1 Protecting RNA from contamination by environment
An easy way of accidentally contaminating RNA preparations is by
transferring nucleases from the investigator’s hands, skin, or hair to the
sample. The transfer of RNAses can also take place via equipment, bench
surfaces, and door handles. Common molecular biology protocols, such
as plasmid preparation, involve the use of high amounts of RNAses and
can lead to RNAse contamination if handled in the same location. In
order to protect RNA samples from contamination, the following
precautions are recommended:

■ Wear disposable gloves while handling RNA samples and while
preparing other solutions for RNA work. Use a clean pair of gloves if
potential contamination of any kind occurs.

■ Perform RNA work in a separate area of the laboratory where no
RNAses are allowed. Before RNA handling, clean the bench surface
with a detergent, such as RNAse ZAPTM (Ambion).

■ Lab equipment, such as tissue homogenizers, non-disposable
centrifuge tubes, gel tanks, and trays that can come into contact with
RNA, should be reserved for RNA work. If this is not possible, large
equipment or those items made from materials that do not withstand
autoclaving temperatures should be cleaned with RNAse inactivating
detergents.

5.2.2 Protecting RNA during preparation of reagents
In order to obtain good quality RNA and to maintain its integrity during
subsequent analysis, all reagents should be prepared so that they do not
contain any traces of RNAses.

■ Use only disposable plastic tubes and pipette tips for RNA work.
Clean plastic-ware should be baked at 120 °C for at least 20 min to
reduce RNAse (and other nuclease) contamination. Before baking,
pack centrifuge tubes into glass beakers and cover them with
aluminium foil. Additionally, wrap tip racks in foil to keep the
baked items free of contamination after treatment.

■ Set aside reagents for use in RNA work only. Always use baked or
disposable spatulas and weighing trays for measuring out reagents.

C H A P T E R 5 : P R E PA R AT I O N O F R N A S A M P L E S F O R M I C R O A R R AY A N A LY S I S

● 43

■ Treatment with diethyl pyrocarbonate (DEPC) renders RNAses
inactive and can be used to clean solutions and labware before use
in protocols involving RNA. As DEPC is toxic it should be handled
with appropriate care. Prepare 0.2% (v/v) solution of DEPC in water
and soak clean equipment and glassware in the solution for at least
1 h. Rinse the treated equipment with sterile water and let dry in a
clean place where no further contamination is encountered. Finally,
autoclave the equipment/labware in sealed autoclave bags. This is
necessary as autoclaves become contaminated by RNAses from
other autoclaved materials or from the water used in the autoclaving
process.

■ Reagent solutions can be treated by adding 0.2% (v/v) DEPC into
the solution. After the solution has been left to stand for a couple of
hours, it can be autoclaved to remove DEPC by heat degradation.
Solutions containing Tris-buffers cannot be prepared in this way.
However, water that has been treated with DEPC and then autoclaved,
can be used to make up any Tris-buffers.

■ Use DEPC-treated water in all RNA protocols.

■ Store sterilized equipment and solutions unopened in a clean
environment, away from any potential sources of contamination.

5.2.3 Protecting RNA during isolation process
Isolation of RNA requires disruption of cellular structures, which leads
to the release of RNAses. Rapid degradation of RNA follows if these
RNAses come in contact with RNA during cell homogenization. The
following protocols are recommended:

■ Use strong denaturing agents such as guanidium isothiocyanate
(GITC) or guanidium hydrochloride in RNA extraction protocols as
they will denature RNAses (and other enzymes) efficiently and
quickly.

■ RNAse inhibitor, which is a placental protein that inactivates
RNAses by binding to them, can also be used during RNA isolation.
However, the effectiveness of the RNAse inhibitor can be affected by
the composition of extraction solutions, and denaturation of the
inhibitor can release active RNAses.

■ The longer the time elapsed between collecting cells or tissue and
preparing a denatured homogenate, the more chance there is for RNA
degradation to take place. Furthermore, during this time, changes in
gene expression can also take place as cells react to the change in their
environment. Therefore it is good practice to work as quickly as
possible when preparing biological samples for RNA extraction.

M I C R O A R R AY

hb 63-0048-49 ● 44

■ Harvest cultured cells directly into a solution that contains GITC to
ensure minimal degradation. Pipette cell lysis solution directly onto a
washed cell monolayer. This will lead to immediate cell lysis. Scrape
the cells off and transfer into a centrifuge tube. The lysate can be
homogenized by drawing it several times through a needle with a
syringe or by vigorous mixing until the lysate becomes clear and
homogeneous. Cell lysates prepared in this way can be stored frozen,
preferably at -70 °C, until RNA isolation protocol is completed.

■ Freeze tissue samples rapidly in liquid nitrogen, as this helps to
minimize RNA degradation. It is advisable to cut large samples into
small pieces before freezing them as this will greatly facilitate their
subsequent use for RNA extraction. These samples must be stored
frozen, preferably in liquid nitrogen. Thawing of the samples, at any
stage, will result in RNA degradation as the freezing process causes
some cellular damage. For best results, mechanically pulverize frozen
tissue samples while they are kept cold with liquid nitrogen. This can
be done with a pestle and mortar. The cold powder should then be
dissolved in lysis buffer containing GITC to prepare a clear
homogenate.

5.2.4 Protecting RNA during storage and handling
RNA should be protected during storage and handling. The following
protocols are recommended:

■ RNA is not stable at alkaline pH. This property can be exploited
to degrade RNA selectively from DNA. However, if the aim is to
maintain RNA intact, all solutions that come into contact with RNA
should be neutral or mildly acidic. As the pH of laboratory water can
vary, using dilute buffers, such as TE pH 7.6, is recommended.

■ RNA degradation is more rapid at high temperatures. For long term
storage, storing RNA solutions at -70 °C is recommended. All RNA
solutions should be stored on ice while working with them and kept
thawed for the minimum time needed. As with other nucleic acids,
avoiding freeze-thaw cycles is important. If large amounts of RNA are
prepared at one time, it is recommended that the purified nucleic acid
is aliquoted for storage and only the required number of aliquots are
thawed at any time.

C H A P T E R 5 : P R E PA R AT I O N O F R N A S A M P L E S F O R M I C R O A R R AY A N A LY S I S

● 45

5.3 Choosing an RNA isolation method

5.3.1 Methods for purifying total RNA
Numerous RNA isolation methods have been published and a variety of
RNA isolation kits are available (42, 43). The key criteria in choosing a
method should be to achieve a high yield of intact and pure RNA.
Obtaining long RNA molecules can be problematic, and the choice of
purification method will influence results (44).

5.3.2 Critical factors in RNA isolation
The main factors in isolating good RNA are the composition of the cell
lysis buffer, the method of cell disruption, and the method used for
separating RNA from protein, DNA, and other compounds. The nature
of the biological sample is also relevant as some RNA isolation methods
may be more suitable for certain tissues. Whereas soft tissues or cultured
cells disrupt quickly and efficiently, and methods using mild cell lysis
buffers can give good results, harder tissues containing large amounts of
connective tissue, such as muscle, will require the use of strong chaotropic
agents such as GITC. Amersham Biosciences RNA extraction kits, such
as QuickPrepTM Total RNA Extraction Kit, RNA Extraction Kit, and
QuickPrep Micro mRNA Purification Kit, all contain either guanidium
hydrochloride or guanidium isothiocyanate in the lysis buffer, and are
suitable for use with a wide variety of cells and tissues. In general, RNA
preparations that use chaotropic agents in the lysis buffer tend to give the
best results. However, the protocols are more laborious, involve the use
of toxic chemicals, and take longer.

Choosing an efficient cell/tissue disruption method for RNA extraction
is important. If cell lysis is not complete, the yield of RNA will be
compromised. Mechanical disruption using tissue homogenizers,
vigorous vortexing, needle and syringe, sonication, pestle and mortar,
and bead milling are among commonly used methods. The main
considerations in choosing a disruption method are the amount of each
sample and the time that is needed for preparation of a cell lysate.

A variety of techniques can be used to differentially separate RNA from
other cellular compounds. Precipitation with lithium chloride, acid
extraction phenol/chloroform, binding to an absorbent matrix or cesium
chloride gradient centrifugation can be used successfully to purify RNA.
However, the quality and quantity of RNA obtained with these methods
can vary.

M I C R O A R R AY

hb 63-0048-49 ● 46

The presence of contaminating DNA in total RNA samples can cause
problems in microarray analysis. Most labelling methods will label both
RNA and DNA with equal efficiency. Labelled DNA can hybridize with
microarray targets and can lead to high level hybridization signals that
are not derived from transcripts. RNA cannot be quantitated separately
from DNA, so an accurate estimation of the amount of RNA in
contaminated RNA preparations is impossible. Therefore, it is advisable
to treat total RNA preparations to remove DNA contaminants before
using the RNA for labelling. This can be achieved with DNase I
treatment or by using CsCl gradient centrifugation to separate RNA
from DNA.

5.3.3 Isolating RNA from difficult samples
The nature of some biological samples may necessitate the use of
modified RNA extraction strategies to avoid contamination of RNA
samples with other compounds. For example, plant tissues can contain
polyphenols and polysaccharides. Precipitation with polyvinyl
pyrrolidone can be used to remove these substances from RNA
preparations. The hardness of cell walls and outer protective structures
can also pose a problem. Freezing the samples followed by mechanical
grinding may be necessary to efficiently disrupt cell walls and to release
cellular RNA. In some cases, as with yeast that has cell walls that can
form capsules, disruption of cellular structures increases access to RNA.
Digestion with enzymes, such as zymolase, can be used to weaken the
cell walls before mechanical disruption with bead milling to lyse the cells.
Similarly, isolation of bacterial RNA benefits from the use of enzymes
that digest and weaken outer supportive structures. Lysozyme treatment
followed by mechanical bead milling is a suitable approach for disrupting
bacterial cells for RNA extraction.

5.3.4 Purification of eukaryotic mRNA
Most eukaryotic transcripts contain a poly-A tail, and this property
can be exploited to separate transcripts from other RNA molecules.
Incubation of total RNA with oligonucleotides containing a poly-T
sequence, otherwise called oligo(dT), will result in the hybridization
between the poly-A tail of transcripts and the oligonucleotides. By
attaching the oligo(dT) to a solid support, it is possible to specifically
separate transcripts away from other RNA molecules. QuickPrep Micro
mRNA Purification Kit uses oligo(dT) cellulose for extraction of mRNA.

C H A P T E R 5 : P R E PA R AT I O N O F R N A S A M P L E S F O R M I C R O A R R AY A N A LY S I S

● 47

Although purification of mRNA lengthens the sample preparation
protocols, it provides several benefits for microarray analysis:

■ Probes prepared from mRNA usually give higher signal to noise values
on arrays than probes prepared from similar amounts of
total RNA.

■ Total RNA preparations are more likely to contain compounds other
than RNA, which can interfere with the labelling or hybridization
steps.

■ The yield of labelled cDNA is higher from mRNA than from total
RNA, because alternative priming strategies that use oligo(dT) can be
used.

■ It is easier to prepare labelled probes corresponding to the 5' ends
of transcripts from mRNA populations than from total RNA.

5.3.5 Purification of prokaryotic mRNA
Purification of mRNA from prokaryotes is difficult as most
transcripts lack poly-A tails. However, strategies have been developed to
polyadenylate 3' ends of bacterial transcripts in crude extracts.

Enrichment for bacterial mRNA can also be achieved by selective
degradation of ribosomal RNA. By synthesizing first-strand cDNA
selectively from ribosomal RNA with the use of specific primers,
RNAse H can be used to degrade the RNA strand in the resulting
double-stranded hybrid. DNAse I digestion can then remove the DNA
strand, resulting in the enrichment of transcripts. Up to 80% enrichment
can be achieved with this method (45).

M I C R O A R R AY

hb 63-0048-49 ● 48

5.4 Characterization of purified RNA
Microarray gene expression data is derived from a comparison of
hybridization signals obtained from two samples. Accurate results are
only obtained when the two samples are of the same quality. Comparison
of a partially degraded RNA sample to an intact sample can artificially
show some genes as being more highly expressed in the better quality
sample. Likewise, differences in the amount of RNA in different samples
can also give biased data. Therefore, it is highly advisable to verify both
the quantity and quality of the RNA or mRNA sample before their use in
microarray analysis.

5.4.1 Measuring the amount of RNA
The amount of RNA can be quantified by measuring the absorbance of
RNA solution at 260 nm. Pure RNA solution that contains 40 µg of
RNA per mL will give absorbance of 1 AU. This method works well with
clean RNA samples that are devoid of other contaminating substances.
Unfortunately, this is rarely the case with total RNA samples purified
with simple methods. Proteins and DNA or other compounds, such as
those released from some affinity chromatography columns, will absorb
at 260 nm. This absorbance is indistinguishable from that of RNA and
will give an artificially high estimate for the amount of RNA in the
sample. By measuring absorption spectra from 200 to 350 nm, some
conclusions on the purity of RNA can be made. However, the presence of
DNA in the sample can still go undetected. Therefore, it is important to
use an RNA isolation method that specifically removes DNA from the
purified sample.

5.4.2 Verifying the quality of RNA
Agarose gel electrophoresis performed under denaturing conditions can
be used to analyze the quality of RNA. Gels containing formaldehyde
have been traditionally used for this purpose, but denaturation of RNA
hairpins by glyoxal has gained popularity, as this method does not
involve the use of large quantities of harmful chemicals (42, 43, 46).
Both methods, followed by staining of the gels with nucleic acid
binding stains, such as ethidium bromide or Vistra Green™, are useful
for observing overall differences in RNA quality. It is relatively easy
to see if a sample is badly degraded as the ribosomal bands appear as
smears. However, it may be difficult to detect more subtle degradation of
transcripts unless large amounts of sample are used. Figure 31 shows a
schematic illustration of typical results from RNA gel electrophoresis.
Transferring the gel onto a membrane for Northern blotting analysis
can give more precise information, as the status of specific transcripts
in different samples can be analyzed.

Fig 31. Schematic illustration of typical
results obtained from analyzing the
quality of RNA with a denaturing
agarose gel. Denatured RNA samples
were electrophoretically separated in
an agarose gel and visualized with UV
light after ethidium bromide staining.
Lane 1. Intact total RNA with both
ribosomal RNA bands present as sharp
and bright bands. High abundance
transcripts can be discerned as distinct
bands. Lane 2. Partially degraded total
RNA. Although ribosomal bands are
still visible, the average size of RNA is
smaller, and no distinct transcript
bands are visible. Lane 3. Badly
degraded total RNA. Most of the RNA
is shorter than 1 kb, and ribosomal
RNA bands appear as smears. Lane 4.
Intact mRNA. Fragments longer than 4
kb should be visible and abundant
transcripts should appear as distinct
bands. Lane 5. Degraded mRNA. The
transcripts appear as a fast migrating
smear.

1 2 3 4 5

Kb

4.0

2.0

0.5

C H A P T E R 5 : P R E PA R AT I O N O F R N A S A M P L E S F O R M I C R O A R R AY A N A LY S I S

● 49

Reverse transcriptase PCR (RT-PCR) offers a convenient, fast, and
versatile method for obtaining information regarding the quality of RNA
preparations from small sample amounts. First-strand cDNA synthesized
with oligo(dT) priming can be used as PCR template.

By choosing specific primer pairs, it is possible to determine whether
different transcripts are intact in the samples. Performing PCR
amplification for a limited number of cycles, or with real time detection,
makes it possible to estimate the relative amount of specific transcripts in
different samples. By amplifying transcripts derived from genes whose
expression is not expected to vary under experimental conditions, it is
also possible to compare the amount of mRNA in the different samples.
By choosing several pairs of primers from one preferably long transcript,
and targeting its 5' central and 3' regions, it may be possible to observe
partial degradation of samples. Performing PCR with primers that are
derived from gene introns can reveal the presence of genomic DNA.

5.5 General recommendations for preparing
RNA samples for microarray analysis
In conclusion, the following general recommendations for preparing
RNA for microarray analysis are given:

■ Minimize the degradation of RNA at all handling stages.

■ Choose an RNA purification method that gives good yields of
pure and intact RNA from your samples, even if this means using
a complicated protocol.

■ Measure the amount of RNA before using it for microarray
labelling.

■ Verify the quality of the RNA before using it for microarray
labelling.

■ If possible, purify mRNA for use in microarray analysis.

■ Prepare all the samples for microarray analysis with the same
protocol.

hb

M I C R O A R R AY

63-0048-49 ● 50

C H A P T E R 6 : S A M P L E L A B E L L I N G F O R G E N E E X P R E S S I O N A N A LY S I S

● 51

Chapter 6
S A M P L E L A B E L L I N G F O R G E N E E X P R E S S I O N A N A LY S I S

6.0 Introduction
In differential gene expression analysis two or more RNA samples are
compared to identify differences in the abundance and identity of the
transcripts they contain. In order to convert the information contained in
the transcript populations into a form that can be hybridized with
microarrays and subsequently detected, the transcript populations need
to be labelled. This can be achieved using different methods; an ideal
method retains both the information carried by the identity of the
transcripts as well as their relative abundance in the sample.

6.1 The diversity of transcript populations
Messenger RNA molecules, otherwise called transcripts, carry the
genetic information encoded in genes. In most cells these transcripts
constitute only a small proportion of the total RNA, whereas
ribosomal and transfer RNA account for more than 98%. In any
cell type, the transcript population typically consists of thousands of
distinct transcripts, most of which are transcribed from different genes
(although splice variants of genes exist too). These transcripts can be
present in widely varying amounts ranging from just a few copies per
cell to thousands of copies. Furthermore, the relative levels of transcripts
are constantly changing as the cell responds to different environmental
signals. The amount of transcripts is estimated to follow a normal
distribution in which a small number of genes are expressed at high or
very low levels. The majority of the genes are expressed at intermediate
levels.

Genes come in different sizes, with different numbers and sizes of exons.
The size of transcripts reflects this by varying from a few hundred
nucleotides to up to about 20 000 nucleotides. Average length of
transcripts is estimated to be between 1.5–1.7 kb.

hb

M I C R O A R R AY

63-0048-49 ● 52

6.2 Requirements of labelling methods

6.2.1 Retaining gene expression information
The labelling methods used in microarray analysis must cope with the
inherent diversity of transcript sequences and create representations that
contain all the information present in the original transcript population.
Thus an ideal labelling system is neither biased towards any nucleotide
sequences, nor does it label differently transcripts of different sizes or
sequences that are expressed at different levels.

In reality, existing labelling methods do not convert all information into
labelled form. Enzymatic methods are limited to copying certain nucleic
acid sequences, whereas the instability of some transcripts is a general
problem for all methods.

6.2.2 Length of labelled fragments
Accurate information about gene expression can only be deduced from
microarray experiments if the labelled nucleic acids can hybridize
efficiently and with specificity to their complementary targets. The
length of the labelled fragment is an important factor in determining
these parameters. Fragments longer than 100 nucleotides can hybridize
strongly enough with their target sequences to withstand stringent
hybridization and wash conditions. The hybridization kinetics of
shorter fragments is faster. For optimal hybridization, probes consisting
of fragments of 200–500 nucleotides long are recommended. Longer
fragments may not find their targets as efficiently as shorter fragments,
but will produce a higher signal when hybridized as they carry more
labelled molecules.

6.2.3 Yield of labelled probe
The amount of labelled probe prepared by the labelling method is
important to the sensitivity of microarray experiments. This is because
the efficiency of the labelling process is critical in determining the lowest
amount of mRNA that can be used to generate detectable signals from
microarrays. With higher amounts of mRNA available, differences in
probe yield from different labelling methods can make the difference
between being able to hybridize one or several slides with one probe.
Ideally, the labelling method should transform each transcript into a
labelled fragment, without any bias towards more highly expressed
sequences. If the labelling method results in net amplification of nucleic
acid in the labelling process, the amplification process should be linear,
i.e. the original ratios of expression levels within the sample should not
be changed in the amplification process.

C H A P T E R 6 : S A M P L E L A B E L L I N G F O R G E N E E X P R E S S I O N A N A LY S I S

● 53

6.2.4 Optimum labelling density
The fluorescent labels used in microarray analysis bring their own
restrictions to labelling protocols. If two or more fluorescent molecules
are in close proximity of each other, a significant portion of the absorbed
light energy can be spent on interactions between different molecules and
dissipated as heat. This will result in less than the expected amount of
fluorescence being emitted from the sample, and moreover, the amount
of fluorescence is no longer directly proportional to the number of fluors
in the sample. This phenomenon is called “quenching”, and it is an
inherent property of fluorescent molecules. Each fluorophore has slightly
different quenching properties that are determined by its chemical
structure. In practical terms this means that for each fluor there is an
optimal labelling density, or distance between attached labels, which will
produce maximum fluorescence from a labelled nucleic acid fragment.
Exceeding this optimum labelling density results in decreased fluorescent
signal (Fig 32). Therefore, in order to achieve highest sensitivity of
detection, the labelling method used in microarray experiments should be
optimized to yield fragments that are labelled at the maximum density as
determined by the labelling fluors. See chapter 4, section 4.2.2 for
additional information.

Fig 32. Quenching and labelling density. Fluorescent output
from two identical nucleic acid strands labelled to different
labelling densities is depicted. Green denotes fluorescent
emission whereas purple shows energy being lost in
intermolecular interactions between adjacent fluorophores.
Lower labelling density results in higher fluorescent signal.

Lower density labelling

A C C C T A G G A T G C G T G C G C T A A G A A C A T G G G G A T T

High density labelling

A C C C T A G G A T G C G T G C G C T A A G A A C A T G G G G A T T

CyDye

Fluorescence

Interaction & absorption

hb

M I C R O A R R AY

63-0048-49 ● 54

6.2.5 Equal labelling with different fluors
The purpose of differential gene expression analysis is to detect relative
differences in the number of specific transcripts between two or more
samples. This requires that the two samples hybridize competitively
with the immobilized targets and differences in relative signals primarily
reflect changes in the number of the transcripts. From a technical point
of view, this is best achieved when equal numbers of equally labelled
nucleic acid fragments are compared. As two different fluors are used
in two-color analysis, no imbalance due to the properties of the fluors
should be present in the labelled populations. In extreme cases such
imbalances can lead to false positive signals from gene expression
microarrays. The labelling method should produce the same labelling
density and size distribution of labelled fragments, regardless of the
fluorescent dye label used.

6.2.6 Nucleotide sequence preferences
As all labelling methods attach the fluorescent label in a specific manner,
usually via certain nucleotides, the nucleotide sequence of the molecules
being labelled can have a significant effect on labelling density and also
on the length of labelled fragments (Fig 33). For example, incorporation
of CyDye dUTP instead of CyDye dCTP into cDNA that is C-rich is less
likely to result in quenching because the likelihood of incorporating
two CyDye dCTP into close proximity will be lower. Conversely, highly
A-rich sequences are best labelled using CyDye dCTP as label.

Fig 33. The effect of sequence on labelling density and
fluorescent signal. The same nucleotide fragment has been
labelled with Cy-dCTP and Cy-dUTP, using a similar ratio of
label to cold nucleotide. As the fragment is GC-rich, the use of
Cy-dCTP results in much higher labelling density on this
fragment than the use of Cy-dUTP, which can only be
incorporated in a few positions. However, the fluorescent signal
from the Cy-dUTP labelled fragment is greater than from the
more densely labelled fragment, because quenching becomes
a significant factor in the situation of high labelling density.

Labelling with Cy-dUTP

U G C C A C C C U A C G C C C C C G C U C C C T C U A C C C C U A

Labelling with Cy-dCTP

T G C C A C C C T A C G C C C C C G C T C C C T C T A C C C C T A A

CyDye

Fluorescence

Interaction & absorptionCy-dCTP

Cy-dUTP

C H A P T E R 6 : S A M P L E L A B E L L I N G F O R G E N E E X P R E S S I O N A N A LY S I S

● 55

As probes used in microarray analysis are complex mixtures of nucleic
acid sequences, careful optimization of labelling methods is needed to
ensure that quenching is not a practical problem for the majority of
transcripts. However, it may not be possible to create labelling conditions
that would be perfect for all sequences. Performing a ‘yellow experiment’,
in which the same sample is labelled with both fluors and then used in
microarray hybridization, can help to identify the targets that do not give
balanced signals, as well as to optimize the microarray system in general.
By choosing target sequences that do not show high nucleotide sequence
bias, it is also possible to control this aspect of labelling.

Increasing labelling density is not the best solution for increasing signal
from microarrays. Using a lower labelling density is more likely to result
in higher signal. As fluorescent molecules tend to be fairly large, high
labelling densities can lead to changes in the hybridization kinetics of
labelled molecules (47). The melting temperature (Tm) of highly
substituted nucleic acids are lower than those of unlabelled nucleic acids
and can result in lower hybridization signal.

6.3 Labelling strategies

6.3.1 mRNA vs total RNA
Only a small proportion, about 1.5–2.5%, of cellular RNA is mRNA.
Prior to hybridization, mRNA must be purified and labelled. Since most
of the cellular RNA is ribosomal RNA, specific protocols are used to
separate mRNA from ribosomal RNA.

Eukaryotic transcripts usually have a poly-dA tail at their 3' ends. This
property can be exploited by using a complementary poly-dT sequence
to capture polyadenylated transcripts away from other RNA species,
as well as from other molecules and impurities. Because of the additional
purification steps involved in the preparation of mRNA, mRNA samples
tend to give higher signal to noise values on microarrays than total
RNA samples.

hb

M I C R O A R R AY

63-0048-49 ● 56

6.3.2 Priming with oligo(dT)
In the labelling reaction, mRNA can be selected from total RNA for use
as the labelling template by using oligo(dT) primers that will hybridize
with the poly-A tail in transcripts. Addition of an anchoring base to the
3' end of these primers directs cDNA synthesis to the beginning of the
poly-A stretch. This has the advantage of producing labelled fragments
that are devoid of most of the repetitive sequence. This priming method
will result in only one copy of cDNA that contains primarily 3' sequences
synthesized from each transcript. If the targets on the microarray are
derived from 5' ends of long cDNAs, probes labelled directly in cDNA
synthesis using oligo(dT) priming may not produce complementary
fragments to these targets, resulting in absence of signal in hybridization.

6.3.3 Random priming
Random priming, in which a mixture of oligonucleotides comprised of
all sequence variants of a short sequence of defined length are used as
primers, can be used to produce probes that contain sequences derived
from all parts of transcripts. Typically, each transcript is copied into
several non-overlapping probe fragments. Because of their longer length
and ability to form more stable duplexes, nonamers are preferred over
hexamers and give higher yields of cDNA. Random priming is only
compatible with mRNA templates, as random primers can anneal to all
RNA molecules. cDNA synthesis from total RNA with random priming
will produce a large quantity of short fragments that lack specificity in
hybridization and usually give rise to high background signals. As the
proportion of label incorporated into cDNA derived from mRNA is
going to be very small under these conditions, the specific signals from
microarray spots will be low. Conversely, as most of the fluorescent label
is incorporated into sequences derived from ribosomal RNA, unspecific
hybridization can become a problem.

6.3.4 Other priming strategies
Highest yield of cDNA from mRNA (without probe amplification) is
achieved with the use of both oligo(dT) and random primers together
(Fig 34). This strategy has the highest likelihood of copying all parts of
transcripts into probe, and therefore, is suitable for use with target
sequences that are derived from varying parts of genes.

It is also possible to use specific primers to copy transcripts into probe.
As each sequence requires the synthesis of a specific primer, this
approach can be costly and require a new set of primers to be prepared
for each different microarray. The advantage of this approach is that
only those sequences that are analyzed on the microarray are labelled. It
is also possible to use total RNA as a sample.

C H A P T E R 6 : S A M P L E L A B E L L I N G F O R G E N E E X P R E S S I O N A N A LY S I S

● 57

6.3.5 Amount of primer
Regardless of the type of primer used, its concentration should be in
excess of the number of possible binding sites on transcripts so that its
availability is not limiting cDNA synthesis. cDNA synthesis with general
priming strategies (oligo[dT] and random nonamers) may be biased
towards highly expressed transcripts if too much mRNA is used. The
specific priming strategies may be biased against high-expressing
transcripts if the amount of each primer is not sufficient to cover the
whole expression range.

6.3.6 Labelling bacterial RNA
Bacterial mRNA lacks poly-A tails and selecting transcripts for labelling
from total RNA is not as easy as with eukaryotic RNA. It is possible to
remove ribosomal RNA sequences by converting them into cDNA:
RNA hybrids, followed by digestion with RNAse H and DNAse I to
selectively remove the double-stranded sequences. Random priming
strategies can be used successfully with bacterial RNA, if the stringency
of hybridization is controlled carefully to counteract the high proportion
of label associated with ribosomal RNA sequences. Alternatively, priming
strategies that utilize gene specific primers or short primers that are able
to prime from several genes have been used (48, 49). As gene specific
primers prime cDNA synthesis only from those genes that are being
studied on the array, they can help to increase specificity of hybridization
and signal to noise values.

Fig 34. The use of different primers in cDNA synthesis.
cDNA strand synthesized with anchored oligo(dT) priming is
shown in yellow and those primed with nonamers in green.
The combined use of both primers results in the probe being
prepared from all parts of the transcript.

cDNA strand primed

with anchored oligo(dT)

cDNA strand primed

with random nonamers

cDNA strand primed

with anchored oligo(dT)

and random nonamers

C T T T T T T T T T T T
G A A A A A A A A A A A A A A

G A A A A A A A A A A A A A A

C T T T T T T T T T T T
G A A A A A A A A A A A A A A

hb

M I C R O A R R AY

63-0048-49 ● 58

6.4 Enzymatic labelling methods

6.4.1 Labelling strategies
Several strategies based on molecular biology or chemical reactions have
been developed for labelling samples for gene expression microarray
analysis. The availability of fluorescent labels in different reactive forms
has contributed to the diversity of labelling methods. All these strategies
have in common that they start with an RNA population (Fig 35).
Molecular biology strategies rely on the use of enzymes to convert
mRNA into new populations of nucleic acids, either DNA or RNA.
Combining two or more enzymatic reactions into one protocol widens
the choice further. Using more than one enzyme for labelling, however,
has the disadvantage that the information carried by the original
population is likely to change more than by using a single enzyme. This
is because some information is lost in each enzymatic conversion step,
and as the lost information is dependent on the sequence of the
transcripts and the properties of the enzyme, the representations
synthesized by each enzyme will be different. Chemical methods have the
advantage that no copying of nucleic acid to another form takes place;
instead the labelling moiety reacts with the nucleic acids to form
covalently modified, labelled probe population.

Fig 35. Labelling strategies for gene expression microarrays.

mRNA or RNA

cDNA probe RNA probe

Incorporation
of radioactive

label

Incorporation
of AA-dUTP

Post labelling
with CyDye
NHS esters

Labelling
with chemical

reagents

Labelling
with chemical

reagents

Incorporation
of CyDye

ribonucleotides

Incorporation
of fluorescent
nucleotides

with RT

cDNAcDNA

C H A P T E R 6 : S A M P L E L A B E L L I N G F O R G E N E E X P R E S S I O N A N A LY S I S

● 59

6.4.2 Fluorescent labels
Fluorescent dyes, especially the cyanine dyes Cy3 and Cy5, are the most
popular choice for dual color microarray analysis. The main benefit of
using CyDye fluors in particular is that two dyes can be excited and
detected from the same slide. CyDye fluors also produce bright signals
and have a wide dynamic range of detection, so both weak and strong
signals can be detected in the same experiment. Fluorescent dyes can be
directly incorporated into nucleic acid by either enzymatic or chemical
methods.

hb

M I C R O A R R AY

63-0048-49 ● 60

6.5 Labelling in first-strand synthesis

6.5.1 Principle
One of the simplest and most popular labelling strategies is to convert
mRNA population into a labelled first-strand cDNA population. This is
achieved by copying the transcripts into cDNA molecules with a reverse
transcriptase while incorporating a modified CyDye nucleotide. The
cDNA synthesis can be primed with a choice of primers including
random primers, anchored oligo(dT) as well as gene specific primers.
This allows the use of both mRNA and total RNA as sample.

mRNA or total RNA

Primer added

Annealing

cDNA synthesis

RNA degradation

cDNA purification

NaOH/Hepes added

NaOH/Hepes added

Purification columns

Nucleotide,

CyDye nucleotide

and enzyme added

Fig 36. Principle of labelling in first-strand
cDNA synthesis. Fluorescent nucleotide
(pink circles) is incorporated into first-strand
cDNA by a reverse transcriptase. After
degradation of the mRNA template strand,
labelled single-stranded cDNA probe
can be purified.

C H A P T E R 6 : S A M P L E L A B E L L I N G F O R G E N E E X P R E S S I O N A N A LY S I S

● 61

6.5.2 Optimization
The incorporation of fluorescently labelled nucleotides is the rate-
limiting step of this labelling method. This is because all polymerase
enzymes, both DNA and RNA dependent polymerases, incorporate
unlabelled nucleotides more efficiently than larger fluorescent dye
nucleotides. The incorporation kinetics are very much dependent on
the identity of the enzyme, and even homologous enzymes can have
very different properties. The ratio between the fluorescently labelled
nucleotide and the corresponding unlabelled nucleotide in the labelling
reaction determines the incorporation of fluors into cDNA. As different
fluorescent dyes and nucleotides have different structures, it is necessary
to optimize this ratio separately for each combination of dye and
nucleotide. Furthermore, optimized ratios determined for one enzyme
will not necessarily give optimal results with other enzymes.

Labelling in first-strand synthesis does not produce long cDNA molecules.
This is because elongation of the nucleotide chain is dependent on the
previous nucleotides having been incorporated. The incorporation of
more than one fluorescent label consecutively into cDNA is not favored
by polymerases. If the ratio of fluorescent nucleotide to unlabelled
nucleotide is high, a highly labelled cDNA can be transcribed, but cDNA
synthesis will stall if the mRNA sequence requires several labelled
nucleotides to be incorporated in a row. Only short fragments will be
made, resulting in low yield of cDNA. Lowering the nucleotide ratio can
increase the yield of cDNA, but this will compromise labelling density
and the brightness of the probe. A balance between these two factors and
the consequences of quenching at high labelling densities must be attained
for optimal results. In practice this requires evaluation of fluorescent
signals on microarrays from probes labelled at different nucleotide ratios,
and this demands considerable effort.

hb

M I C R O A R R AY

63-0048-49 ● 62

6.6 cDNA Post Labelling

6.6.1 Principle
The shortcomings of the first-strand cDNA labelling method and the
availability of CyDye as reactive N-hydroxyl succinimidal dyes (NHS-dyes)
have led to the development of cDNA post-labelling method.

Fig 37. The principle of post-labelling is illustrated. mRNA is
converted into first-strand cDNA that contains aminoallyl-dUTP. After
elimination of mRNA template, the amine groups on cDNA are
reacted with CyDye-NHS ester, resulting in the generation of
fluorescently labelled cDNA. Excess of NHS-ester can be neutralized
with hydroxylamine, and labelled cDNA is purified for use.

Annealing

cDNA synthesis

RNA degradation

cDNA purification

mRNA or total RNA

NaOH/Hepes added

NaOH/Hepes added

Purification columns

Nucleotide,

CyDye nucleotide

and enzyme added

Primer added

Aminoallyl labelled cDNA

CyDye NHS ester added

Coupling of CyDye

to modified cDNA

Hydroxylamine

quencher added

Purification columns

Elimination of

free reactive dye

Purification of

CyDye labeled cDNA

C H A P T E R 6 : S A M P L E L A B E L L I N G F O R G E N E E X P R E S S I O N A N A LY S I S

● 63

Amersham Biosciences has developed CyScribe™ Post-Labelling Kit
(see section 6.14) for this method. In this method, amine-modified cDNA
is first synthesized by incorporating aminoallyl-modified nucleotide in
first-strand cDNA by a reverse transcriptase. After removal of RNA
template and purification of the amine-modified cDNA, chemical
labelling with N-hydroxyl succinimidyl-ester derivative of CyDye is
performed. NHS-esters react with amine groups to form a covalent
bond between CyDye and the amine group while the NHS-ester group
is released (Fig 38). A high excess of CyDye NHS-ester is required for
efficient reaction, and any non-reacted label is neutralized with an
excess of small amine such as hydroxylamine. The cDNA needs to be
re-purified after labelling to remove CyDye that is not incorporated
into labelled cDNA.

O

O

OHN+

Conjugate

Amide bond coupling

CyDye to cDNA

NHS leaving group

O

N
H

R
R′

+

R′ = CyDye

Amide group on cDNA NHS ester dye

NH2R

O

O
R′

O

O

N

Fig 38. The use of CyDye NHS-ester in
labelling amine-modified cDNA

M I C R O A R R AY

63-0048-49 ● 64hb

Fig 39. Scatterplots of gene expression
microarray analyses comparing skeletal
muscle and placental mRNA samples.
Identical mRNA samples were labelled
with the post-labelling method or with
first-strand cDNA labelling. Identical slides
were hybridized with equal amounts of
all probes.

6.6.2 Benefits
The main benefits of this method over the first-strand cDNA labelling
method are derived from the more efficient incorporation of the smaller
aminoallyl nucleotide compared with the bulkier CyDye nucleotides. As
a consequence, the yield of cDNA is considerably higher than with the
first-strand labelling method. The cDNA fragments synthesized in the
post-labelling method are also longer. Further benefits of the post-labelling
method stem from the chemical labelling step itself. The number of
amine groups on cDNA is the main factor influencing labelling density.
The sequences of the cDNAs being labelled do not have a major impact
on labelling outcome. Because of this, more random attachment of labels
is achieved than with the first-strand cDNA labelling method. Furthermore,
as the labelling process is not dependent on the structure of different
fluorescent dyes, it is easier to achieve equal labelling with both Cy3 and
Cy5, and the labelling method introduces less variation into microarray
analysis. This is illustrated in tighter scatter plots derived from microarray
hybridizations in which the mRNA samples were labelled with the post-
labelling method (Fig 39). As the extent of experimental variation is
reduced, the detection of smaller changes in gene expression between two
samples is improved.

100

1000

10000

100000

Cy3 volume

Cy5 volume

1000000

100 1000 10000 100000 1000000

CyScribe Post-Labelling Kit
scatter plot

100

1000

10000

100000

Cy3 volume

Cy5 volume

1000000

100 1000 10000 100000 1000000

CyScribe First-Strand cDNA
Labelling Kit scatter plot

● 65

6.6.3 Chemical considerations
Coupling of CyDye NHS-ester to amine-modified cDNA requires mildly
alkaline pH, which is provided by the coupling buffer. However, if they
are not carefully removed, buffer components or acidic residues from
preceding steps can alter the pH of this buffer. Furthermore, any
amine groups present on other compounds will compete with the
amine-modified cDNA for CyDye incorporation. Hence the free
aminoallyl-dUTP, Tris-buffer, and reverse transcriptase enzyme must
be removed from the cDNA preparation before labelling. This can be
best achieved with affinity column chromatography methods, such as
GFX columns, in which amine-modified cDNA is bound to the matrix,
other compounds are washed away, and cDNA is finally eluted with
water. Alternatively, standard ethanol precipitation also works well
and provides the added benefit of concentrating the cDNA ready for
CyDye coupling.

NHS-esters are readily hydrolyzed with water, even with the small
amount of moisture present in laboratory air. Because of this, aliquots
of CyDye NHS-esters must always be stored desiccated and protected
from light. Storing CyDye NHS-esters in solution can lead to rapid
loss of reactivity. As these reactive dyes were originally developed for
protein labelling, the quantities provided commercially were adjusted
for this application. This necessitated aliquoting of reactive dyes before
their use for microarray sample labelling and frequently resulted in
decreased activity as a consequence of handling and storage. The
availability of individually foil-packed, pre-dispensed, and freeze-dried
aliquots of Cy3 and Cy5 NHS-esters for microarray analysis has
removed this problem. Furthermore, the quality of the CyDye NHS-ester
in CyDye Post-Labelling Reactive Dye Packs is higher than available
otherwise.

hb

M I C R O A R R AY

63-0048-49 ● 66

6.7 RNA amplification and labelling in RNA synthesis

6.7.1 RNA amplification
The amount of RNA sample can be a limiting factor for microarray
analysis, and it may be necessary to amplify RNA before analysis. In the
most commonly used protocol, the mRNA population is first converted
into a double-stranded cDNA that contains a promoter sequence for viral
RNA polymerase, such as T7, T3, or SP6 polymerase (Fig 40).
This can be achieved by using a modified oligo(dT) primer containing
a 5' extension coding for the viral promoter. Each resulting cDNA
molecule will contain one RNA polymerase promoter sequence. By
including the corresponding RNA polymerase and ribonucleotides in
the reaction, several RNA copies can be synthesized from each template.

Fig 40. Principle of RNA amplification with
RNA polymerases.

A A A A A A A A A

A A A A A A A A A

A A A A A A A A A

mRNA or total RNA

Reverse transcriptase dNTPs

Double-stranded

T7 IVT templates

(T7 RNA polymerase + NTPs)

Single-stranded

amplified RNA

(T7 RNA polymerase + NTPs)

T T T T T T T T T T T T - T 7

NTPs

C H A P T E R 6 : S A M P L E L A B E L L I N G F O R G E N E E X P R E S S I O N A N A LY S I S

● 67

Fig 41. Principle of preparation of
fluorescently labelled RNA probe with RNA
polymerase amplification.

A A A A A A A A A

A A A A A A A A A

A A A A A A A A A

mRNA or total RNA

Reverse transcriptase dNTPs

Double-stranded

T7 IVT templates

(T7 RNA polymerase + NTPs)

Single-stranded

amplified RNA

(T7 RNA polymerase + Cy-dUTP

+ unlabelled NTPs)

T T T T T T T T T T T T - T 7

NTPs

CyFye-NTPs

This results in a linear amplification of the cDNA pool into RNA
without altering the relative abundance of sequences in the mixture
significantly. However, the length of synthesized fragments will be
shorter than the original templates. 2000-fold amplification of starting
RNA can be achieved with this method, in one round of amplification
(50, 51). This RNA amplification strategy can be used on its own, and
the amplified RNA population can be labelled separately using other
methods. Alternatively, labelling and amplification can be performed
together by including a CyDye ribonucleotide in the reaction (Fig 41).
In some cases when only a few cells are available for the preparation of
RNA sample, such as when laser capture micro (LCM) dissected samples
are analyzed, several rounds of RNA amplification can be performed to
acquire enough RNA for labelling (52).

hb

M I C R O A R R AY

63-0048-49 ● 68

6.7.2 Other amplification methods
Amplification of RNA can also be achieved by other means, including
using limited numbers of PCR cycles to amplify double-stranded cDNA
(53). However, PCR-based methods have not gained wide popularity in
microarray analysis, because of the problems associated in logarithmic
amplification of complex nucleic acid mixtures. Sequence and size
differences in nucleic acid fragments can influence their amplification
rate and result in selection of sub-populations of sequences (50).
Regardless of the RNA amplification strategy, the method should neither
alter the relative abundance of different transcripts in the sample nor
result in the creation of sequence chimeras in which sequences from two
or more transcripts are joined together. Linear amplification strategies
avoid these pitfalls and are favored in microarray analysis.

6.7.3 Labelling with RNA amplification
Synthetic RNA can be labelled in synthesis reactions by incorporating
a CyDye ribonucleotide. The main factor determining both labelling
density and yield of labelled RNA in this method is the ratio of CyDye
ribonucleotide to the corresponding unlabelled ribonucleotide. As is the
case for DNA polymerases, RNA polymerases incorporate the unlabelled
nucleotide more efficiently, and a compromise between labelling density
and yield of RNA is necessary. This requires careful optimization of the
labelling conditions, combined with the analysis of fluorescent signal
derived from the probes.

RNA labelling can also be performed by using hapten-labelled
ribonucleotide, such as biotinylated ribonucleotides. This strategy has the
advantage of giving higher yields of cDNA, as the incorporation of large
dye nucleotide is not a rate-limiting factor. However, the need to perform
additional detection steps adds to the length of the protocol and makes
the use of more than one color at a time more difficult.

6.7.4 Fragmentation of RNA probes
The secondary structure of RNA can interfere with hybridization to
targets. Fragmentation of RNA probe into smaller fragments of 50–200
nucleotides can be performed to overcome this. This can be achieved in
controlled fashion by exposure of RNA to potassium and magnesium
ions (24). Careful handling of RNA is necessary at all stages to minimize
uncontrolled degradation of RNA to nucleotides and short fragments. If
RNA probes are used in hybridization, precautions must be taken
throughout the whole microarray procedure.

C H A P T E R 6 : S A M P L E L A B E L L I N G F O R G E N E E X P R E S S I O N A N A LY S I S

● 69

6.8 Expression patterns
The intensity of hybridization signals from microarrays is determined not
only by the number of hybridized probe fragments but also by their
length and the number of fluorescent labels that are associated with
them, or the labelling density. Similar labelling densities can be achieved
with different labelling methods. However, with different methods, the
average length of the labelled fragments varies. In practice, the intensity
of signals derived from two identical samples labelled with different
methods will be different. Hence, gene expression microarrays do not
give quantitative information about gene expression. However, if two
samples are labelled by the same method using two different fluorescent
labels, the relative intensity of the signals will reflect the relative
abundance of the specific transcripts in those two samples. Information
about differential gene expression can therefore be gained (Fig 42).
Labelling the two samples to be compared under identical conditions is
therefore extremely important for guaranteeing that experimental
artifacts do no lead to wrong conclusions from microarray results.

6.9 Random prime labelling of DNA
A modified random prime labelling method can be used to label
DNA with CyDye. In this method, Klenow polymerase incorporates
fluorescently labelled nucleotides in a DNA synthesis reaction, which
is primed with random nonamer or hexamer primers. This method is
a practical solution for genomic microarrays, although direct chemical
labelling methods can also be used. Random prime labelling methods
are not recommended because two different enzymes are needed to
convert mRNA into labelled form.

6.10 Direct chemical labelling of mRNA
When an enzyme is used to convert a mRNA population into another
nucleic acid population, some information is lost because the ability of
different enzymes to copy through different nucleic acid sequences varies.
By using a chemical labelling method, it is possible to label mRNA
directly by using a chemical reaction, coupling modified CyDye reagent
to RNA molecules. These methods are simple to perform, as no
modification of RNA is required before labelling. Furthermore, these
methods are less prone to discrimination against certain nucleotide
sequences that are difficult templates for polymerase-based labelling
systems. It is important to note that any chemical that avidly reacts with
nucleic acid molecules is potentially toxic and will require careful
handling and adequate safety measures to be taken.

Fig 42. Expression patterns obtained from
gene expression microarrays comparing
skeletal muscle and placental mRNA
samples. Identical mRNA samples were
labelled with the post-labelling method
and first-strand cDNA labelling methods
using CyScribe Labelling Kits. Equal
amounts of all probes were hybridized with
identical microarrays. Although the overall
hybridization patterns are very similar, some
significant differences in signal intensities
of individual spots can be seen. These
reflect the size differences of labelled
fragments obtained with the two labelling
methods. Despite the different appearance
of the two microarrays, both gave similar
information on differential gene expression.

CyScribe First-Strand
cDNA Labelling Kit

CyScribe
Post-Labelling Kit

hb

M I C R O A R R AY

63-0048-49 ● 70

6.11 Purification of labelled probes
Regardless of the labelling strategy, it is necessary to purify the labelled
nucleic acid after labelling, as the amount of incorporated fluorescent
dye is typically only a small fraction of all the dye present in the sample.
The recovery of labelled nucleic acid from purification is a major limiting
factor for most labelling methods. Products such as AutoSeq™ G-50,
GFX, and QIAquick™ spin columns have been developed for the
purification of double-stranded cDNA. They can also be used to remove
unincorporated CyDye nucleotides away from fluorescently labelled
single-stranded cDNA, but their use does not result in optimal recovery
of labelled material. Typically, less than 40% of the labelled probe is
recovered, and the recovery can vary considerably between different
samples. This variation not only reduces the amount of data that can be
generated with microarray analysis, but also significantly contributes to
poor quality of results if the amount of probes are not adjusted before
hybridization. When small amounts of template are labelled, the loss of
labelled cDNA tends to be higher, and as little as 5% of probe may be
recovered.

All of these methods, however, are relatively successful in removing the
free dye nucleotide. Ethanol precipitation is not an option for use with
most labelling methods, as it can result in the formation of dye
aggregates that will produce intense speckled background in array
hybridization.

Appreciation of these problems has lead to the development of a novel
GFX purification system, CyScribe GFX Purification Kit, which has been
specifically tailored for purification of single-stranded CyDye labelled
cDNA. As this purification system is based on binding of the labelled
nucleic acid to a customized GFX matrix, it is also suitable for use with
the post-labelling method. These CyScribe GFX columns give excellent
yield of purified cDNA from different synthesis scales, including small-
scale samples. Therefore, the use of this purification system downstream
of optimized labelling kits can improve the sensitivity of microarray
analysis, enable the use of smaller amounts of RNA samples, or increase
the number of replica slides that can be hybridized with one sample.

6.12 The CyScribe family of labelling kits
The CyScribe family of labelling kits from Amersham Biosciences has
been developed to offer a range of optimized labelling products for
producing CyDye labelled microarray probes. These kits enable flexible
choice of different labelling methods to suit the different needs of
researchers.

C H A P T E R 6 : S A M P L E L A B E L L I N G F O R G E N E E X P R E S S I O N A N A LY S I S

● 71

6.13 CyScribe First-Strand cDNA Labelling Kit

6.13.1 Features of the kit
CyScribe First-Strand cDNA Labelling Kit has been developed for preparing
highly fluorescent CyDye labelled probes for microarray analysis using
first-strand cDNA labelling. The kit has been optimized for the use of either
CyDye dCTP or CyDye dUTP nucleotides as labels. Two nucleotide
mixes are provided in the kit to provide optimal nucleotide ratios for
each type of nucleotide when 1 nmol of CyDye nucleotide is used per
reaction. The compositions of these solutions have been optimized so
that labelled cDNA will contain an attached CyDye fluor to every 12–25
nucleotides synthesized, regardless of the nucleotide used.

CyScribe First-Strand cDNA Labelling Kit contains both anchored
oligo(dT) primers and random nonamer primers, allowing flexible choice
of templates. As little as 50 ng of mRNA and 2.5 µg of total RNA can be
labelled per reaction with the kit and used successfully in microarray
hybridization on one slide (Fig 43). Recommended highest amounts of

250 ng

100 ng

 50 ng
a) 0

80

60

40

20

120

100

Total signal from
spot set

500 ng mRNA 250 ng mRNA 100 ng mRNA 50 ng mRNA

Probe reaction template

Signal from microarrays

Cy5

Cy3

b)

10 µg of total RNA

5 µg of total RNA
0

100

50

150

Relative signal

10 µg 5 µg 2.5 µg

Amount of total RNA

Cy5

Cy3

d)

Fig 43. The use of CyScribe First-Strand cDNA Labelling Kit with small
template amounts. The indicated amounts of mRNA and total RNA
templates were labelled with Cy3 and Cy5 in duplicate reactions, purified,
and all of the recovered probe was used in a microarray hybridization with
duplicate slides. Panels A and C show part of microarray images obtained
with mRNA probes and total RNA probes, respectively. Panels B and D
show quantified Cy3 and Cy5 signals from these arrays. As the amounts of
probes were not adjusted before hybridization, a high amount of variation
in signal intensities was observed in this experiment.

c)

hb

M I C R O A R R AY

63-0048-49 ● 72

template are 500 ng of mRNA and 25 µg of total RNA per reaction.
These amounts of template will generate enough probe for several
microarray hybridizations. Highest yield of labelled probe is obtained
with dual priming, when both oligo(dT) and random primers are used
together. This priming strategy is only compatible with the use of mRNA
templates. The choice or amount of RNA template does not affect the
labelling density achieved with the kit.

6.13.2 Degradation of RNA template
Degradation of the RNA template after cDNA synthesis is necessary to
prevent the labelled probe from hybridizing with the original template in
solution instead of the microarray targets during microarray hybridization.
The removal of RNA can be performed enzymatically, by using RNAse H
enzyme to digest the RNA component of RNA DNA heterohybrid
molecules. A simpler option is to degrade the RNA strands by raising
the pH of the probe solution. The CyScribe Kits contain an efficient
RNA degradation protocol which has been developed to minimize pH
fluctuation observed in earlier protocols in which small volumes of
concentrated alkali and acids were used. In this improved protocol, RNA
is degraded by the addition of 2 µl of 2.5 M sodium hydroxide, and after
incubation the solution is neutralized with 10 µl of 2 M Hepes free acid.

The CyScribe First-Strand cDNA Labelling Kit also contains a mixture of
synthetic mRNA molecules, as control RNA template, that can be used
to gain familiarity of the labelling technique, or to troubleshoot problems.
Because of its synthetic nature this control RNA is not suitable for
microarray hybridization.

6.13.3 Critical success factors for CyScribe First-Strand cDNA
Labelling Kit
■ Only label RNA that is intact, clean, and in known quantity.

■ If possible, purify mRNA for best labelling results and highest
yield of labelled probe.

■ Do not exceed the recommendations for template amount.

■ Do not alter the amount of CyDye in reaction.

■ Pipette all volumes exactly.

■ Protect CyDye from light during all handling and storage.

■ Do not alter the RNA degradation protocol.

■ Monitor the success of purification.

■ Measure the amount of purified probe before performing
microarray hybridization.

C H A P T E R 6 : S A M P L E L A B E L L I N G F O R G E N E E X P R E S S I O N A N A LY S I S

● 73

6.14 CyScribe Post-Labelling Kit

6.14.1 Features of the kit
CyScribe Post-Labelling Kit has been developed to offer an optimal and
convenient solution for using post-labelling methods in microarray
analysis. Each kit provides reagents for performing 12 cDNA synthesis
and labelling reactions with both Cy3 and Cy5 fluors. CyScript reverse
transcriptase, which is a highly efficient enzyme and gives high yields of
cDNA, is used to synthesize amine-modified cDNA by incorporation of
aminoallyl-dUTP into first-strand cDNA. The amount of this modified
nucleotide in the cDNA synthesis reaction has been adjusted to give an
optimal labelling density with CyDye fluors.

The kit includes a protocol for an improved RNA degradation method
and two alternative methods for removing amine-containing impurities
from amine-modified cDNA. Purified cDNA is reacted with an amount
of reactive CyDye NHS-ester that has been chosen to give high and
reproducible labelling density, similar to that achieved with the CyScribe
First-Strand cDNA Labelling Kit. Protocols for reacting excess
NHS-esters with hydroxylamine and subsequent purification of labelled
cDNA with column chromatography are also provided.

A practical difficulty in performing CyDye post-labelling of microarray
samples has been the necessity for aliquoting and storing CyDye
NHS-esters when traditional reagents developed originally for protein
labelling have been used. Because of the instability of NHS-esters in
moist conditions, their storage in standard laboratory conditions can
result in significant loss of reactivity in just a few weeks. CyScribe Post-
Labelling Kit solves this problem by providing ready-to-use CyDye NHS-
esters in individually dispensed aliquots. These dyes have been sealed in
foil to protect them from light and contain desiccant for extra protection.
The reactive dyes in these aliquots are also guaranteed to contain over
75% reactive dye content, thus providing the highest quality reagents for
microarray labelling.

CyScribe Post-Labelling Kit includes both oligo(dT) and random
nonamer primers, offering flexible use of both total and messenger
RNA as template. Because this kit yields high amounts of cDNA, it is
recommended that 500 ng or less of mRNA and 25 µg or less of total
RNA are used per reaction. Highest yield of cDNA is obtained from
mRNA using both types of primers together.

hb

M I C R O A R R AY

63-0048-49 ● 74

6.14.2 Comparison of performance with CyScribe First-Strand
cDNA Labelling Kit

Properties of labelled probe:

■ The CyScribe Post-Labelling Kit synthesizes about three times
as much cDNA than CyScribe First-Strand cDNA Labelling Kit
from an equal amount of template. However, because this kit involves
two purification steps in which some of the cDNA is lost,
approximately two-fold increase in final probe yield is achieved.

■ Both kits have been optimized to give similar labelling densities: on
average a CyDye fluor is attached at every 12–25 nucleotides.

■ As the average length of cDNAs synthesized with the post-labelling kit
is longer, higher signals can be obtained from some targets (ones with
long transcripts) with this kit.

■ The post-labelling method is not influenced by individual nucleotide
sequences to the same extent as the first-strand cDNA labelling
method is. Therefore, this method can cope better with sequences that
contain repeated nucleotide stretches, which can lead to chain
termination in first-strand labelling.

■ Because of the chemical nature of the labelling process, more random
distribution of CyDye fluors over labelled cDNAs is obtained than
with the first-strand labelling method in which labelling is modified by
sequence-specific events.

6.14.3 Identification of differential gene expression with
CyScribe kits
The performance of the two CyScribe labelling kits in identifying
differential gene expression was investigated in a model experiment
in which human skeletal muscle and placental mRNA populations
were compared. Replicate labelling reactions were performed with
both systems, purified probes were pooled, and replica slides were
hybridized with 25 pmol of each probe. Examples of the expression
patterns produced by the two CyScribe Labelling Kits from these

Fig 44. Identification of muscle-specific
gene expression with CyScribe Labelling
Kits. Data is shown from two replica slides
hybridized with skeletal muscle and
placental cDNA probes labelled with
CyScribe First-Strand cDNA Labelling Kit
and CyScribe-Post Labelling Kit.

0.25

1.75

2.25

1.25

0.75

2.75

Normalized
log ratio

Gene number

23 25191715131197531 21

C2

C1

P2

P1

C H A P T E R 6 : S A M P L E L A B E L L I N G F O R G E N E E X P R E S S I O N A N A LY S I S

● 75

experiments, as shown in Figure 44, highlight the different intensity
of several gene-specific signals. However, when muscle-specific gene
expression was examined, essentially the same genes were identified
with both methods as being more highly expressed in muscle tissue.

In order to compare the performance of the CyScribe Labelling Kits in
analyzing gene expression over a wide range of expression values, 31
random gene sequences were selected for analysis. In skeletal muscle
mRNA, the expression levels of these genes cover the whole dynamic
range of values (data not shown).

Figure 45 depicts normalized gene expression log ratios for the 31
selected gene sequences. Despite the differences in the intensity of the
observed Cy3 and Cy5 signals generated by the two labelling systems
(data not shown), the extent of differential gene expression revealed by
the two methods is concordant for most of the genes. On the whole,
variation between replica slides is greater than variation between the two
labelling methods. Some genes show slightly different (within 0.5 log
units) values for differential gene expression and may indicate the
presence of gene sequence-specific labelling events. However, this data
does not support the conclusion that either of the methods is labelling
with a systematic bias towards one of the fluors. Rather, a particular
labelling method may be more suitable for extracting information from
certain gene sequences, and combining data from experiments using
different labelling principles could enhance chances of identifying
significant difference in gene expression between two samples.

Fig 45. Differential gene expression determined
with CyScribe First-Strand cDNA Labelling Kit
and CyScribe Post-Labelling Kit for 31 randomly
chosen genes in skeletal muscle and placental
mRNA samples. Data from two replica slides,
each of which contained two identical spot sets
for each of the labelling methods, is shown.

-2.0

1.5
2.0

0.5

-0.5

1.0

-1.0
-1.5

0

2.5

Average
normalized

log ratio

Gene number

23 25 27 29 31191715131197531 21

CyScribe First-Strand
cDNA Labelling Kit

CyScribe Post-Labelling Kit

hb

M I C R O A R R AY

63-0048-49 ● 76

6.14.4 Critical success factors for CyScribe Post-Labelling Kit
■ Only label RNA that is intact, clean, and in known quantity.

■ If possible, purify mRNA for best labelling results and highest yield
of labelled probe.

■ Do not exceed the recommendations for template amount.

■ Do not use random nonamers with total RNA.

■ Purification of amine-modified cDNA is critical for labelling
success: other amines and acidic ions should be removed.

■ Do not alter the RNA degradation protocol.

■ Only dissolve CyDye-NHS esters immediately before use.

■ Do not reuse CyDye-NHS ester solutions.

■ Pipette all volumes exactly.

■ Protect CyDye from light during all handling and storage.

■ Monitor the success of purification.

Fig 46. Principle of mRNA labelling with CyScribe Direct
mRNA Labelling Kit.

G A U T C G C C A A U C A G G A G C U C A G A U G C A A A A A A

CyDye

Reagent

G A U T C G C C A A U C A G G A G C U C A G A U G C A A A A A A

C H A P T E R 6 : S A M P L E L A B E L L I N G F O R G E N E E X P R E S S I O N A N A LY S I S

● 77

6.15 CyScribe Direct mRNA Labelling Kit

6.15.1 Principle
CyScribe Direct™ mRNA Labelling Kit utilizes Cy3 Direct and Cy5 Direct
labelling reagents to generate highly labelled mRNA probes for use in
microarray applications. These labelling reagents contain a CyDye fluor
attached to a chemical group which can react efficiently with guanine
residues, resulting in covalent attachment of CyDye to mRNA (Fig 46).
Because of this high reactivity with nucleic acids, Cy Direct™ reagent is
hazardous and requires careful handling. When in contact with water, the
reagent hydrolyzes and loses its reactivity. As seen in Figure 47, the whole
labelling process, including removal of excess dyes, can be performed in
less than 2 h.

Because of the chemical nature of the labelling, attachment of both Cy3
and Cy5 is equally efficient and even. Furthermore, the reaction does
not require any enzymatic modification of the mRNA prior to labelling.
The attachment of CyDye to mRNA does not interfere with subsequent
hybridization with DNA targets; thus mRNA labelled with CyScribe Direct
mRNA Labelling Kit is suitable for use as microarray probe. Because
mRNA can be used directly as the probe, no loss of information because of
incomplete or biased transcription process occurs.

Fig 47. The method for labelling mRNA
with CyScribe Direct mRNA Labelling Kit.

Reconstitute active
labelling reagent

Add labelling reagent to
mRNA and mix reaction

Incubate at 37 °C
for 1 o 1.5 h

Spin down
reaction

Purify labelled mRNA
from active reagent

(Column purification or
ethanol precipitation)

Quantify pmoles of
CyDye per labelling

Hybridize
Hybridize

M I C R O A R R AY

63-0048-49 ● 78hb

Fig 48. Hybridization of microarrays with
varying amounts of mRNA labelled with Cy3
using CyScribe Direct mRNA Labelling Kit.
Results from a DNA probe generated with
CyScribe First-Strand cDNA Labelling Kit
are shown for comparison.

CyScribe
15 pmol dye/slide

CyScribe Direct
1 µg mRNA/slide

CyScribe Direct
10.5 µg mRNA/slide

CyScribe Direct
0.25 µg mRNA/slide

6.15.2 Application
Labelling reactions performed with CyScribe Direct mRNA Labelling
Kit can be scaled up or down to accommodate different amounts of
template: as little as 250 ng or as much as 5 µg of mRNA can be labelled
in a single reaction. The ratio of the CyDye Direct Labelling Reagent to
mRNA determines the labelling density achieved with the kit. Extending
the labelling time beyond 1 h can result in higher labelling efficiency
than shorter times. The length of transcripts is an important factor in
determining the intensity of hybridization signals from mRNA probes
labelled with the CyScribe Direct mRNA Labelling Kit. As seen in
Figure 48, the expression patterns obtained with the direct labelling
method differ considerably from those generated with the first-strand
labelling method. This evidence suggests that the direct labelling method
may be advantageous for analyzing gene expression from transcripts
that are difficult templates for reverse transcription.

The CyScribe Direct mRNA Labelling Kit has been developed for use
with purified mRNA that is free from contaminating DNA, proteins,
or nucleotides. The kit requires the use of purified mRNA as template
because the chemical labelling reaction cannot discriminate between
transcripts and other species of RNA. Labelling of total RNA will
result in low signal to noise values from microarray experiment.

● 79

C H A P T E R 6 : S A M P L E L A B E L L I N G F O R G E N E E X P R E S S I O N A N A LY S I S

6.16 Critical success factors for sample labelling
■ Observe safety precautions while performing the labelling

reaction.

■ It is imperative that the mRNA is free from contaminating
ribosomal RNA, DNA, and proteins.

■ Handle RNA so that degradation is avoided. See Chapter 5
for advice. Protect the CyDye Direct labelling reagent from
water or any moisture, as it can be inactivated on contact.

■ Store the reagent vial and reaction tubes sealed from the
environment.

■ Protect all reactions and labelling reagents from light when
storing and handling.

■ Minimize RNAse contamination of mRNA probes during
microarray hybridization.

Table 4. Choosing the right CyScribe Kit.

Brightness of signals

Even incorporation of Cy3 and Cy5

Starting material mRNA mRNA or total RNA mRNA or total RNA

Quantity of starting material using total RNA – 2.5 – 25µg 2.5 – 25µg

Quantity of starting material using mRNA 250ng – 1µg 50ng – 1µg 100 – 500ng

Possible to prepare a batch of unlabelled cDNA and store no no yes

Simplicity of protocol

Time from RNA to probe 2 h 3 h 5.5 h

Suitable for less experienced users

Labelling density 20 – 35 nuc 12 – 25 nuc 12 – 25 nuc

Feature
CyScribe Direct CyScribe First Strand CyScribe Post

mRNA Labelling Kit cDNA Labelling Kit Labelling Kit

= Highly recommended = Recommended = Suitable – = Not suitable

hb

M I C R O A R R AY

63-0048-49 ● 80

● 81

C H A P T E R 7 : C H A R A C T E R I Z AT I O N O F L A B E L L E D M I C R O A R R AY P R O B E S

Chapter 7
C H A R A C T E R I Z AT I O N O F L A B E L L I N G M I C R O A R R AY P R O B E S

7.0 Introduction
When performing gene expression microarrays, it is important to
characterize the labelled probes in order to avoid experimental error
derived from variation between the probes. Even under carefully
controlled conditions, some differences in the amounts of nucleic acid
samples, labelling success, and recovery of material from the purification
system will occur. In order to account for these artifacts and to ensure
that these variations are not carried through to hybridization, it is highly
recommended that the properties of the labelled probes are determined
before microarray hybridization.

Several methods can be used for characterizing the properties of the
labelled probes. As a minimum we recommend routinely measuring the
amount of CyDye in the labelled and purified sample. If problems do
occur in microarray hybridizations, the other methods described below
can be used for troubleshooting purposes.

■ The quantity of CyDye and nucleic acid in the labelled probe can be
determined using spectrophotometry.

■ Radioactive spiking can be used to derive information about the
amount of nucleic acid in the sample and the success of purification.

■ Gel electrophoresis and fluorescence scanning can be used to analyze the
molecular distribution of the probe, its purity, and relative fluorescence.

7.1 Determination of the amount of CyDye in a
labelled sample with spectrophotometry
Spectrophotometry can be used to determine the amount of CyDye
incorporated into labelled nucleic acid. This can be achieved by
measuring the absorbance of the solution containing the nucleic acid
at the absorption maximum for Cy3 and Cy5. These wavelengths are
550 nm for Cy3 and 650 nm for Cy5. From the known extinction
coefficients corresponding to these wavelengths, the concentration and
amount of CyDye in the sample can be calculated. The amount of CyDye
in the purified sample can be used as a guide to optimize the amount of
probe in the hybridization. Best results are achieved when the amounts
of Cy3 and Cy5 in dual color hybridization are equal.

It is necessary to purify the labelled nucleic acid before performing the
spectrophotometry analysis, as any residual, unincorporated CyDye
labelled nucleotides will interfere with the detection of CyDye labelled cDNA.

M I C R O A R R AY

hb 63-0048-49 ● 82

Fig 49. Quantification of the amount
of CyDye in a labelled probe with
spectrophotometry: examples of
absorption spectra from Cy3-labelled
samples. The presence of two
absorption peaks of near identical
intensity (gray line) is a sign of
intermolecular interactions and
aggregation, which can reduce
fluorescent signal from the probe.
The red line shows a typical
profile of Cy3 absorption spectrum.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Normalized
Absorbance

Wavelength (nm)

550

Aggregation
quenching

7.1.1 Measuring the amount of CyDye in the probe with
spectrophotometry
Follow the steps below to measure the amount of incorporated CyDye:

❶
Sample preparation

■ Dilute an aliquot of purified probe with water. The required volume
depends on the size of available measuring cells. It is recommended
to use the smallest cells possible. Small volume disposable measuring
cells are available, and they offer the added advantage that a separate
cell can be used for each sample, thus minimizing cross contamination
from one sample to another. However, it is also possible to use regular
100 µl glass cells, but these need to be cleaned thoroughly by rinsing
with sterile water between samples.

❷
Measurement

■ Measure the absorbance spectrum of the sample from 200 to
700 nm against a blank. Although only the absorbance values at
the absorbance peaks are needed to calculate the amount of CyDye
in the sample, the shape of the absorption spectra can give additional
information about the quality of the labelled sample. The absorption
spectrum of CyDye contains two peaks, of which the second should be
of higher intensity (Fig 49). The first peak indicates the presence
of intermolecular interactions between different dye molecules. If both
peaks are of nearly similar intensity, this is a sign of quenching, i.e.
loss of fluorescent signal because absorbed light energy is spent
on intermolecular interactions. This is usually associated with over-
labelling of the sample.

● 83

C H A P T E R 7 : C H A R A C T E R I Z AT I O N O F L A B E L L E D M I C R O A R R AY P R O B E S

■ Measure absorbance at 550 nm for Cy3 and at 650 nm for Cy5
using cuvettes with 1 cm path length to determine the amount of
CyDye in the sample. The observed absorbance values depend on how
much the sample was diluted before measurement, how much RNA
was used in the labelling, the labelling method used, and the efficiency
of labelling. Typically, values around 0.050 would be expected from
first-strand cDNA labelling reactions in which 1 µg of mRNA is used
as a template, when the sample is diluted to 100 µl before measurement.
Choose a dilution that will give a measurement that is clearly discernible
from background values. Sometimes it is necessary to use all of the
labelled sample for analysis.

■ Recover the measured sample for future use. It may be necessary
to concentrate the sample before using for microarray hybridization.
This can be performed by drying down the sample in a vacuum
concentrator or by letting sample that has been heated to 60 °C
evaporate to dryness. It is important to protect the sample from
light during all handling.

❸
Calculation

■ The amounts of Cy3 and Cy5 incorporated into probes can be
calculated from their respective extinction coefficients and using
the following equations:

Extinction coefficients

150 000 M–1 cm –1 at 550 nm for Cy3 and
250 000 M–1 cm –1 at 650 nm for Cy5

Calculation equations

pmol Cy3 in purified sample =
(A550 / 150 000) × dilution factor × (z µl) × (w cm) × 1012
where
A550 = absorbance at 550 nm
z µl = the volume of sample after purification
w cm = optical path in cuvette

pmol Cy5 in measured sample =
(A650 / 250 000) × dilution factor × (z µl) × (w cm) × 1012

where
A650 = absorbance at 650 nm
z µl = the volume of sample after purification
w cm = optical path in cuvette

M I C R O A R R AY

hb 63-0048-49 ● 84

7.2 Determination of the amount of labelled nucleic
acid in the sample

7.2.1 UV spectrophotometry
Two methods can be used to determine the amount of labelled nucleic
acid in the sample: spectrophotometry and radioactive spiking. Nucleic
acids absorb at 260 nm, and absorption measurement at this wavelength
can be used for quantitative purposes. However, several purification
systems release other materials absorbing near or at this wavelength and,
depending on the amounts of these compounds, most of the absorbance
at 260 nm will be derived from something other than nucleic acid.
Therefore absorption spectra from 200 to 400 nm should be measured,
and only if the peak at 260 nm is clearly distinguishable from absorption
at near wavelengths, should estimation of nucleic acid amount be made
(Fig 50).

The following approximations can be used to calculate the amount of
nucleic acid in the probe:

1 A260 unit of double-stranded DNA corresponds to 50 µg/ml

1 A260 unit of single-stranded DNA corresponds to 37 µg/ml

1 A260 unit of single-stranded RNA corresponds to 40 µg/ml

7.2.2 Spiking with radioactive nucleotide
If more accurate quantification of the labelled nucleic acid is needed, the
labelling reactions can be spiked with a small amount of a radioactive
nucleotide. This enables the determination of the amount of nucleic acid
synthesized as well as the amount of sample recovered from purification.
This approach can be used with all labelling methods in which new
nucleic acid is synthesized. For labelling in cDNA synthesis, a

Fig 50. Quantification of the amount of nucleic
acid in probe with UV spectrophotometry. The
sample, from which the black spectrum was
generated, contains impurities absorbing near
260 nm and does not give reliable information
about the amount of nucleic acid in the sample.
The sample from which the red spectrum was
measured is cleaner and the A260 can be used
for quantification. In both cases, the absorbance
spectra for Cy3 at 550 nm gives usable
information.

Absorbance

Wavelength (nm)

260 550

Unreliable
information
about the
amount of
cDNA

Reliable
information
about the
amount of
CyDye

● 85

C H A P T E R 7 : C H A R A C T E R I Z AT I O N O F L A B E L L E D M I C R O A R R AY P R O B E S

deoxynucleotide must be used, and for labelling of synthetic RNA, a
ribonucleotide is needed. In order to minimize interference with the
labelling process, the nucleotides used as spike and label should be
different. For example, dATP is suitable for use as a spike with both
CyDye-dCTPs and CyDye-dUTPs. Only small amounts of the radioactive
nucleotide are needed—2 µCi per sample or less is adequate—and
isotopes of lower energy, such as 33P, can be used. Note that the absolute
amount of the radioactive spike is not critical, as long as the radioactivity
can be measured accurately. The low concentration of radioactive
nucleotide solutions means that the spiked nucleotide will not contribute
significantly to the total amount of that nucleotide in the reaction. The
amount of the radioactive isotope incorporated into labelled sample is
relatively small and does not interfere with the detection of fluorescence.

The information derived from the radioactive spike can be used to
estimate the amount of nucleic acid synthesized. It is reasonable to
assume that the radioactive nucleotide and unlabelled nucleotide are
incorporated by enzymes at a similar rate. Therefore, if the percentage
of the radioactive nucleotide incorporated into the synthesized product is
known, it can be concluded that the same percentage of the unlabelled
nucleotide is incorporated as well. If the total amount of this nucleotide
in the labelling mix is known, and it is assumed that all four nucleotides
are incorporated with equal efficiency (this is probably not absolutely
true), it is possible to calculate the amount of nucleic acid synthesized.
This method only estimates the amount of nucleic acid synthesized, but
in most cases gives more accurate data than UV spectrophotometry.

In order to quantify the amount of nucleic acid synthesized by spiking, a
small amount of radioactive nucleotide is added to the labelling reaction.
In order to keep the total reaction volume unchanged, the amount of water
pipetted into the reaction must be adjusted. The radioactive nucleotide
should not contain any colored marker or stabilization agents, as these
compounds are fluorescent in the same regions of visible spectrum as
CyDye and can interfere with determination of CyDye amount.

Note: Because of the radioactivity present in the spike, necessary
precautions for working with radioactive materials must be followed.

No other special modifications are needed for the labelling reactions.
After the labelling reaction has been completed and before the sample
is purified, the incorporation of the radioactive nucleotide into the
synthesized nucleic acid needs to be determined. The incorporated
radioactive nucleotide can be easily separated from free nucleotides
by thin layer chromatography on PEI cellulose chromatography plates
(Fig 51).

Fig 51. Thin layer chromatography analysis
of the incorporation of radioactive spike into
labelled cDNA sample. The labelled nucleic
acid does not migrate far from the sample
application line, whereas the unincorporated
radioactive nucleotide moves up toward the
top of the plate.

Bottom
of plate

Top
of plate

Direction of separation

cDNA Unincorporated
spiked nucleotide

M I C R O A R R AY

hb 63-0048-49 ● 86

7.2.3 Thin layer chromatography analysis of spike
incorporation
To perform thin layer chromatography, follow the steps outlined below:

❶
Preparation

■ Prepare a 20 × 20 cm glass-backed PEI cellulose chromatography
plate (available from Merck) for use by cutting a thin linear groove
into the PEI cellulose layer at 1 cm distance from the top edge of
the plate. Mark sample positions along a line that is 3 cm from the
bottom edge of the plate.

❷
Titration

■ Pipet 0.5 µl samples of labelling reactions in duplicate along the
marked line. The sample spots should be about 1 cm apart. Do
not damage the PEI cellulose layer with the tip.

❸
Separation

■ Place the plate in a rectangular chromatography tank so that the
bottom of the plate is immersed 2 cm deep in 1 M K2HPO4. Make
sure that the level of the buffer is below the level of the marked
sample line. Cover the tank and let sample separation take place.
Newly synthesized nucleic acid will not move far from the sample
line whereas free nucleotides will move progressively towards the
top of the plate.

■ When the buffer has reached the top groove, i.e. when the
samples have migrated the full available length of the 20 cm
plate, remove the plate from the tank and let it air dry.

❹
Imaging

■ Wrap the plate in cling-film and expose it to a phosphor screen for
1–6 h. Take care not to overexpose the phosphor screen as it will
saturate the signal. Some trial and error may be needed to determine
correct exposure time.

■ Scan the phosphor screen on a Typhoon ™ Variable Mode Imager,
using the recommended settings. As an alternative to using phosphor
screens, any instrument that can accommodate chromatography plates
and measure radioactivity quantitatively can be used.

● 87

C H A P T E R 7 : C H A R A C T E R I Z AT I O N O F L A B E L L E D M I C R O A R R AY P R O B E S

➎
Analysis

■ Calculate the proportion of the radioactive nucleotide that is
associated with the synthesized nucleic acid. This is the incorporation
percentage. For example, the ImageQuantTM software can be used for
this purpose.

■ Calculate the yield of nucleic acid as follows:

Yield of nucleic acid =

(mol of cold nucleotide in labelling mix) ×
(incorporation percentage) × 4 × 330 g/mol

This formula assumes that all four nucleotides are incorporated
in equal proportions (hence, times 4) and that the molecular weight
of average nucleotide is 330 g/mol.

For example first-strand cDNA labelling was performed with 2 nmol
of dATP in the reaction. 20% of [α-33P]dATP was incorporated into
cDNA.

Yield of cDNA =
2 × 10-9 mol × 20% × 4 × 330 g/mol = 528 ng

M I C R O A R R AY

hb 63-0048-49 ● 88

recovery % = (cpm after) × (volume recovered) × 100%

(cpm before) × (incorporation %/100) × (volume purified)

7.3 Calculation of labelling density
Labelling density can be defined as the amount of CyDye incorporated
into a known amount of nucleic acid. It can be expressed as pmol of
CyDye incorporated into µg of nucleic acid, or can be converted to the
number of CyDye molecules per 100 nucleotides. Labelling density is a
measure of the average distance between CyDye fluors on the labelled
nucleic acid. Samples labelled successfully, with an optimized protocol,
will usually have similar labelling densities, but problems with the
labelling reagents or in performing the protocol can result in variation
in the incorporation of CyDye into cDNA. For example, in the cDNA
post-labelling method, exposure of the CyDye-NHS esters to moisture
during storage would result in low labelling density without affecting
the amount of cDNA synthesized.

Once the amount of CyDye incorporated into nucleic acid and the
amount of the nucleic acid are known, labelling density can be
calculated.

Labelling density = pmol CyDye in labelled sample

µg nucleic acid in labelled sample

1 µg of cDNA contains approximately 1 × 10-6 /330 = 3030 pmol of
nucleotides.

Hence labelling density of 100 pmol/µg equals 100 pmol/3030 pmol of
nucleotides = 3.3 CyDye nucleotides per 100 nucleotides = 3030 pmol of
nucleotides.

7.4 Recovering labelled nucleic acid after purification
The recovery of CyDye labelled nucleic acids from purification systems
can be variable. In order to draw conclusions about the performance
of the purification process, two aspects need to be considered. First,
the recovery of the labelled material needs to be determined. Poor
recovery can limit the amount of slides that can be hybridized with
the sample, and the true benefits of labelling methods may not be
realized. Second, the presence of free CyDye needs to be assessed.
Free CyDye in the purified probe will affect the determination of
CyDye amount in the labelled nucleic acid and can result in too little
probe being used in hybridization. Free CyDye, especially free CyDye-

● 89

C H A P T E R 7 : C H A R A C T E R I Z AT I O N O F L A B E L L E D M I C R O A R R AY P R O B E S

nucleotide, can also contribute to hybridization background and give rise
to speckled images that are difficult to quantify. Gel electrophoresis is a
convenient method for determining whether the purified probes are free
of unincorporated dye.

Radioactive spiking, as explained above, can be used to obtain information
about the purification process. Scintillation counting of a small aliquot
(0.5–1 µl) of labelling reaction sampled before and after purification
can be used to calculate the proportion of cDNA (or other nucleic acid)
recovered. For this calculation it is necessary to know what proportion
of the radioactive nucleotide was incorporated into the nucleic acid.
This can be determined from the unpurified labelling reaction with thin
layer chromatography analysis as explained above.

7.5 Analysis of the composition and fluorescence of
labelled sample
Gel electrophoresis can be used to investigate the quality of the labelled
sample. Separation of unincorporated CyDye from labelled nucleic acids
can be achieved with denaturing polyacrylamide gel electrophoresis (PAGE)
or agarose gel electrophoresis. After electrophoretic separation, the gel
can be scanned to detect Cy3 and/or Cy5 fluorescence using a multipurpose
scanner, such as Typhoon 9410 Variable Mode Imager. From the scanned
image it is possible to detect how much free CyDye there is present in the
sample. If PAGE gels are used, the size range of the labelled nucleic acid
population can be examined. This can give an indication of the quality of
the starting population of RNA and success of the labelling reactions. If
unpurified sample is separated alongside purified samples, it is possible
to estimate the recovery of probe from purification. By comparing the
relative fluorescence of different labelled samples, the relative amount of
CyDye in each sample can be estimated (Fig 52).

Fig 52. PAGE analysis of Cy3-labelled cDNA
probes. 1 µl samples of Cy3-labelled and
purified cDNA probes prepared with cDNA
post-labelling method were separated in
6% sequencing gel. The gel was scanned
for Cy3 and Cy5 fluorescence with Typhoon
scanner to detect ALFexpress™ Sizer and the
labelled probes The cDNA probe consists of
fragments longer than 150 nucleotides and
some unincorporated Cy3-reactive dye is
present, as indicated. All four samples show
similar relative fluorescence and quality.

20 x 20 cm slab gel
6% RapidGel™ mix

1 µl of Cy3-labelled cDNA

Free CyDye
Bromphenol blue

ALFexpress
Cy5 sizing ladder

50-500 nt

M I C R O A R R AY

63-0048-49 ● 90hb

7.5.1 Analyzing CyDye labelled probes with PAGE
In order to analyze CyDye labelled probes using PAGE, follow the
procedures detailed below:

❶
Preparation

■ PAGE gels suitable for analysis of CyDye labelled samples can be
prepared from standard 6% or 8% (w/v) sequencing gel mix such
as RapidGel-XL-6%. The gel can be cast using equipment designed
for sequencing, but since single base pair resolution is not required,
slab gel instruments can be used. These provide the added benefit of
thicker and deeper wells that simplify sample loading.

■ 0.1–1 µl of purified labelling reaction is enough for detection of
CyDye labelled nucleic acid by fluorescence scanning. Add 2 µl of
formamide and 8 µl of water to each sample. Do not use normal
loading/denaturation buffers which contain dyes such as bromophenol
blue or xylene cyanol, as these will interfere with the detection of
CyDye fluorescence.

■ Dilute 4 µl of fluorescent markers such as ALFexpress Sizer 50-500
with 4 µl of water and 2 µl of formamide. This sizer contains a
Cy5-labelled DNA marker ladder.

❷
Denature

■ Denature all samples by boiling for 2 min at 95 °C. Snap cool
on ice before loading on to the gel.

❸
Electrophoresis

■ Load samples to a gel that has been pre-electrophoresed for
15–30 min. Perform electrophoresis according to the instructions
provided with your equipment. Use 1× TBE as buffer. Protect the
samples from light during the electrophoresis.

■ In order to help monitor the progress of electrophoresis, you
can load a small aliquot of loading buffer (1 µl) containing
bromphenol blue into a side well of the gel that is well separated
from the wells containing labelled cDNAs. Stop the electrophoresis
when the bromphenol dye is still well within the gel. Unincorporated
CyDye will migrate faster than bromphenol blue.

■ Remove one of the gel plates before scanning and make sure that
the back of the remaining plate is clean. Do not let the gel dry
before scanning.

● 91

C H A P T E R 7 : C H A R A C T E R I Z AT I O N O F L A B E L L E D M I C R O A R R AY P R O B E S

❹
Imaging

■ Scan the gel on a Typhoon Variable Mode Imager. Detect Cy3 by
excitation with 532 nm laser and using emission filter 555 BP 20.
Detect Cy5 by excitation with 633 nm laser and using emission filter
670 BP 30. Set PMT to 800 V, focal plane to +3 mm, and use normal
sensitivity. The PMT values may need to be adjusted to account for
different amounts of sample in the gel.

Agarose gel electrophoresis can be used instead of PAGE. Single-stranded
CyDye labelled nucleic acid fragments will not migrate true to their size
in standard agarose gels, but valid information about the purity and
fluorescence of labelled sample can be obtained. 0.1–1 µl of labelling
reaction can be diluted by adding 2 µl of 50% (v/v) glycerol and water to
10 µl. No loading dyes should be used. Denaturation of samples is not
necessary before gel loading. Run the gel in 1× TBE or 1× TAE.

M I C R O A R R AY

63-0048-49 ● 92hb

● 93

C H A P T E R 8 : M I C R O A R R AY H Y B R I D I Z AT I O N

Chapter 8
M I C R O A R R AY H Y B R I D I Z AT I O N

8.0 Introduction
The process of hybridization is typically performed in order to identify
and quantitate nucleic acids within a larger sample. Generally, it involves
annealing a single-stranded nucleic acid to a target complementary
strand. Southern blotting is one well-established hybridization method.
In this technique, samples of genomic DNA—the target—are attached
to a membrane and incubated within a solution of fluorescently labelled
DNA—the probe (54). Binding of probe molecules to the sample on the
membrane highlights complementary sequences, and the intensity of
signal is proportional to the amount of immobilized sample.

The microarray hybridization technique works in a very similar way to
that of Southern blotting, except that it is carried out in reverse, and the
target is first attached to a slide instead of a membrane.

There are several critical factors to performing a successful microarray
hybridization. The following are discussed in detail in this chapter:

■ Pre-hybridization

■ Hybridization conditions

■ Hybridization buffer

■ Stringency washes

M I C R O A R R AY

63-0048-49 ● 94hb

8.1 Overview of the microarray hybridization
process

❶
Attachment

Genes of interest are spotted onto a solid surface by the array spotter.
These are known as the targets. Attachment chemistry will often be
required to ensure that the DNA remains attached to the slide surface
throughout the hybridization process.

❷
Hybridization

Hybridization buffer containing a known amount of labelled sample
DNA—often referred to as probe— is then placed on the slide surface.
A coverslip can then be carefully placed on top of the slide.

The slide is then incubated in a humid environment for up to 16 h.
During this time the labelled probe is in contact with the targets on
the slide. If the sequence homology is good then the probe will adhere
to the target.

❸
Washing

Once the hybridization is complete, the slides are washed, and buffer and
probe of little or no homology to the target will be washed away, leaving
the labelled probe of high homology attached to the target and available
for detection.

● 95

C H A P T E R 8 : M I C R O A R R AY H Y B R I D I Z AT I O N

8.2 Pre-hybridization
Pre-hybridization consists of incubating the spotted slide in a buffer
in the absence of probe. Different slide chemistries require slightly
different pre-hybridization protocols that vary in the type of buffer
used. Consult manufacturers’ recommendations to find out what is the
best procedure for each slide. Pre-hybridization prepares the microarray
for hybridization in the following two ways:

■ Badly adhered target is washed away during pre-treatment. If this step
is omitted, this target will often wash off the slide surface during the
hybridization and will hybridize to the probe in solution, thus competing
with the immobilized targets. This can decrease hybridization signal.

■ Pre-treatment ensures that the target is available for hybridization.
The target is normally double-stranded DNA and, although targets
are frequently spotted in a denaturing solution such as DMSO, most
microarray protocols do not contain a specific denaturization step.
Pre-hybridization may also act to block any sites on the slide surface
that are capable of binding the probe nonspecifically, thus improving
the backgrounds.

8.3 Hybridization
There are several widely used methods for carrying out the hybridization,
either using automated instruments or performing the procedure manually.
In this chapter we describe the manual hybridization method, which is
the most widely used. General properties of manual hybridization will be
discussed, followed by advice for choosing a suitable hybridization method
for different microarray slide types.

8.3.1 Coverslip method
In the coverslip method, hybridization buffer containing the probe is
incubated on the microarray under a coverslip. This way only a small
volume, typically about 30 µl, of buffer is needed. The coverslip method
is a very convenient one in that it requires no special equipment. However,
a microarray slide under coverslip is prone to drying out, especially
around the edges, causing most of the array to become unusable.
Originally, coverslips were sealed on the slide. This prevented drying
but made the coverslip difficult to remove prior to detection. A more
practical approach is to carry out the hybridization in a humid
environment, thus preventing evaporation of the hybridization buffer
from beneath the coverslip. This can be achieved with anything from a

M I C R O A R R AY

63-0048-49 ● 96hb

humid chamber with slide trays and a reservoir, to a plastic box lined
with wet tissues at the base (Fig 53). In either case, the atmosphere
within the chamber must remain at >95% humidity throughout the
16-h hybridization. Equally important is not to allow the slide to come in
contact with the water, which may dilute the probe or cause water marks
on the slide surface.

8.3.2 Hybridization buffer
The hybridization buffer and conditions used are vital for successful
results. Hybridization buffers vary considerably but will normally
contain the following components:

■ a buffering component that acts to stabilize variations in pH

■ a detergent that acts to lower the surface tension and allow
the buffer to flow easily under a coverslip

■ compounds that act as rate enhancers, volume excluders, or
to speed up the hybridization and lower the Tm

Melting temperature (Tm) is the temperature at which 50% of the probe
is denatured. This temperature will be affected by both the size and
G-C content of the probe fragments, but the effect is minimized by
optimizing the salt content and formulation of commercial hybridization
buffers, thus making them suitable for use with most probes without
optimization. Formamide is a denaturing reagent that is often used to
lower the Tm of the probe and hence the temperature of hybridization.
The optimum hybridization temperature for microarrays, in aqueous
buffers, will be high (65–75 °C). At these high temperatures drying out
of the slide becomes more of a problem; the probe is also more likely
to degrade. The addition of formamide to a buffer decreases the Tm

by 0.65 °C for every 1% concentration; therefore, the addition of 50%
formamide to the hybridization lowers the optimum temperature to a
more reasonable 42 °C (55). However, hybridizations carried out in
formamide should be left for 16 h, unless the probe concentration
is increased.

Fig 53. Practical solutions for ensuring
that a humid environment is maintained
during manual microarray hybridization. A
plastic box (a) containing a platform raised
above moistened tissues is sufficient for
hybridizing a few slides. Commercially
available humid chamber (b) holds up to
40 slides on removable trays and fits into
most lab ovens.

a)

b)

● 97

C H A P T E R 8 : M I C R O A R R AY H Y B R I D I Z AT I O N

8.3.3 Probe blocking
Most manufacturers recommend some type of probe blocking either
prior to or during the hybridization to prevent nonspecific hybridization
of probe to common genetic elements. One common blocking agent
is poly-dA oligo, which hybridizes to poly-dT tails (formed during the
cDNA probe synthesis by the poly-dA oligo, and prevents probe from
hybridizing with poly-A sequences often present in targets. Other types
provide more general forms of blocking, such as salmon sperm and yeast
tRNA to block non-specific binding and the inclusion of Cot1 DNA™

mop up repetitive sequences. The blocking agents are normally added
to the labelled probe/hybridization buffer solution prior to applying to
the slide surface. The solution can then be heated to denature any
double-stranded DNA and to allow the blocking to take place, before
setting up the hybridization reaction.

8.3.4 Probe concentration
The amount of probe to add to a hybridization will vary, depending
on the samples used, the slide type, and what information is expected
to be gained. Slide manufacturers will recommend optimum probe
concentrations to use in hybridizations with their slides. If two or more
colors are being used, it is important that exactly the same amount of
probe labelled with each dye is added so as not to skew the results in
favor of one of the probes. For glass slides 30 pmol of each labelled dye
is sufficient for most systems, but this should be reduced by as much as
half when using mirrored slides, which contain a reflective layer capable
of enhancing signal intensities. Increasing the amount of probe used will
increase the result obtained but only up to a certain point (Fig 54),
beyond which the increase in background levels will actually decrease
the amount of background-corrected signal (Fig 55).

Fig 54. Cy3- and Cy5-labelled probes are
hybridized on Amersham Biosciences
reflective slides at 75, 25, 8 and 3 pmol of
each dye per slide. Although hybridization
signals can be detected using as little as
3 pmol of each probe, the intensity of signals
is greatly increased by using 25 pmol of each
probe, thus allowing the rarer messages to
be visualized.

75 pmol probe

25 pmol probe

 8 pmol probe

 3 pmol probe

0

100000

300000

200000

500000

700000

600000

400000

Effect of probe concentration on signal intensity

Cy5

Cy3

RFU

3 pM 8 pM 25 pM 75 pM

Probe concentration

Fig 55. When increased amounts of
labelled probe are used, there is an
increase in background levels. This
decreases the amount of background-
corrected signal detected from the
microarray slide.

M I C R O A R R AY

63-0048-49 ● 98hb

8.3.5 Probe depletion and target saturation
As in most manual hybridizations the reaction is carried out under a
coverslip, which means that there is sufficient solution under the coverslip
for complete coverage of the array but no room for any movement or
flow of the buffer under the coverslip during the hybridization. Whether
a labelled probe fragment finds its complementary target on the microarray
is therefore simply relying on diffusion of the probe. Research has shown
that a 20 bp oligo diffuses a distance of 3.6 mm in an 18 h period,
therefore a labelled cDNA sample is hardly going to move during an
overnight hybridization. This means that if there were several replicate
target spots concentrated in a small area on an array, these spots would
be competing for a limited amount of complementary sequences within
diffusion distance. This is called probe depletion, and it can limit the
signal obtained from microarray. This will be most relevant for those
transcripts that are present in low numbers in the labelled samples, as
the signal from these spots may fall below detection sensitivity of the
microarray system.

The sensitivity of the microarray system is determined by several factors
including the amount of label attached to the probe molecules, the level
of background signal, and the sensitivity of the scanner. Furthermore,
the rate at which the probe molecules find their targets is a more critical
determinant of sensitivity than the amount of spotted target. For most
low- to medium-abundance genes, the amount of spotted target is in a
huge excess over the probe molecules. For a high abundance gene, the
amount of probe in solution starts to approach the amount of target
present, which can lead to target saturation. Target saturation will be
determined by factors such as the amount of target initially spotted on
the slide and the amount retained on that slide after pre-treatment, as
well as the percentage of that target available for hybridization and the
efficiency of hybridization. Together, the sensitivity of detection and
target saturation determine the dynamic range of the microarray
experiment.

● 99

C H A P T E R 8 : M I C R O A R R AY H Y B R I D I Z AT I O N

8.3.6 Use of hybridization chambers
Hybridization chambers are used in order to overcome any problem
arising from the amount of buffer used under coverslips and possible
probe depletion. These are plastic chambers that hold an individual
slide and a larger volume of hybridization buffer. The amount of
labelled probe added remains the same. These are then incubated
overnight in a water bath or oven. In order to introduce a significant
amount of mixing, using an automated hybridizer is recommended.

8.3.7 Practical tips for setting up coverslip hybridization
This protocol gives instructions how to set up a microarray hybridization
using coverslips. It should be performed with clean slides and coverslips,
preferably in a clean room or under a hood. It is recommended to use
plastic coverslips that have been packed in plastic film. Do not use gloves
that contain powder, as this can easily get onto microarray slides and
cause background problems.

❶
Pre-hybridization

■ Store spotted slides in a desiccator until use.

■ Read through the pre-treatment and hybridization protocols thoroughly
before use, as buffers often need preparing and preheating before use.

■ Pretreat the number of slides required for the experiment. Some
manufacturers say that pre-treated slides can be stored before use,
but not all, so it is worth checking before doing a large batch.

■ During the pre-treatment stage, prepare the probes. This will often
involve drying down equivalent amounts of the two probes of interest
together and reconstituting them in the manufacturer’s recommended
buffer. Some protocols require heating the probe before use; the probe
prepared by reverse transcription will be single-stranded and therefore
should not require denaturing before use.

Fig 56. Lowering the coverslip.

M I C R O A R R AY

63-0048-49 ● 100hb

❷
Hybridization

■ Once the probe is prepared, lay the spotted slide, DNA side up, on a
clean surface. Absorbent tissue that does not release any fibers is a
good choice of surface. This is important, as most slides are glass, and
dirt on the rear of the slide will affect the result on the front of the
slide (this is obviously not an issue with opaque or mirrored slides).

■ Using a pipette, transfer the required amount of hybridization
buffer/probe mixture onto the slide. Avoid touching the slide surface
with the pipette tip. Try to deposit the mixture along the short side of
the slide, away from the spotted area.

■ Take a clean coverslip and place it on the slide near the probe
mixture, and allow surface tension to speed the buffer along the
coverslip. Then gently lower the coverslip, avoiding trapping air
bubbles underneath. There are several ways of lowering the coverslip,
two of which are illustrated in Figure 56.

■ If air bubbles become trapped beneath a coverslip (Fig 57), do not
move the coverslip to try and remove them. Movement of the
coverslip will result in damage to the targets themselves. Most small
air bubbles will disperse once the slide is transferred to hybridization
temperature. Larger bubbles can be ‘encouraged’ to move by gently
pressing on the surface of the coverslip with a pipette tip.

■ The probe mixture is light sensitive, so once the coverslip is on, place
the slide in the humid chamber and incubate overnight in the dark.

Note: If using RNA probes, it is important to take appropriate
precautions to protect all reagents from nucleases (see Chapter 5 on
RNA handling).

8.4 Stringency washes
The purpose of the post-hybridization washes is to remove all unattached
and loosely bound probe molecules. This prevents false positive signals
and removes all components of the hybridization buffer, preventing
background noise in the form of smearing and speckles. Again, as the
slides are light sensitive at this stage, the washing steps should be carried
out in the dark so as to minimize signal loss due to bleaching of the
fluorescent dyes. Once the slides have been washed, they should
immediately be dried by centrifugation or nitrogen steam to prevent
smearing while drying. The slides should then be stored in the dark in a
desiccator and scanned as soon as possible. If, once scanned, it is found
that the slides have high background or low stringency, it is worth re-
washing the slide and re-scanning.

Fig 57. Typical problems encountered in
microarray hybridization. Trapping of air
bubbles (a) beneath the coverslip will lead
to areas on the array that fail to hybridize
at all. Allowing the slide to dry out during
the hybridization will lead to high patchy
backgrounds (b) that may cause difficulty
at the analysis stage.

a) b)

● 101

C H A P T E R 8 : M I C R O A R R AY H Y B R I D I Z AT I O N

The stringency washes will affect the amount of labelled probe retained
on the slide for the final analysis. While it is obviously important to
remove all the loosely bound probe, it is important to not strip the
bound probe. Generally, stringency washes are carried out in a SSC/SDS
solutions of different concentrations, with the primary washes often
being carried out at the same temperature as the hybridization. Primary
wash solutions have a high salt content (typically 1–2× SSC/0.1% SDS
buffer), and they remove most of the hybridization buffer components.
The secondary washes are performed with low salt buffer (typically
0.1× SSC/0.1% SDS), and they will remove the loosely bound probe from
the blot. It also serves to remove any remaining salt from the primary
washes. Failing to warm solutions thoroughly before use will lower their
effectiveness and may lead to increases in background noise. Conversely,
warming solutions too much (as often happens if a microwave oven is
used) or using too low a salt concentration in the buffers, will strip
precious signal from the blot. Check the manufacturer’s protocols for
exact wash dilution volumes. Manufacturers often suggest a water dip
prior to drying the slides to prevent smearing. Check the protocols
provided with the buffer components for instructions on performing the
water dip.

8.5 Microarray slides

8.5.1 Choosing the right hybridization protocol for different
slide types
Most manufacturers of microarray slides will provide a hybridization
protocol that they have optimized for their system. The following table
lists some of the more commonly used slides and a brief summary of
tested hybridization protocols for them. This in not an exhaustive list
and the protocols are only for reference. Please refer to the
manufacturer’s own protocols prior to use.

M I C R O A R R AY

63-0048-49 ● 102hb

Slide type Manufacturer Spotting Hybridization Pretreatment Hybridization
chemistry buffer protocol

Lucidea Reflective Amersham 50% DMSO Version 2 (4×)- None required 42 °C overnight
Slides Biosciences formamide based

CMT-GAPS Corning 50% DMSO 25% formamide, 25% formamide, 42 °C overnight
or 3× SSC 5× SSC, 0.1% SDS 5× SSC, 0.1%

SDS for 45
min at 42 °C

SigmaScreen™ Sigma-Aldrich 3× SSC ArrayHyb 1% SDS for 2 min, 50 °C 6 h
water rinse. Boiling overnight
water for 2 min,
ethanol dip

Type I Clontech 150 mM Na GlassHyb Optional: 50 °C overnight
phosphate 70 mM succinic

anhydride in 315 ml
1-methyl-2-pyrrolidinone
and 35 ml Na borate pH
8–15 min at RT. Boiling
water for 2 min. Ethanol dip.

Type II Clontech 150 mM Na GlassHyb 70 mM succinic 50 °C overnight
phosphate anhydride in 315 ml

1-methyl-2-pyrrolidinone
and 35 ml Na borate
pH 8–15 min at RT.
Boiling water for for 2 min.
Ethanol dip.

Super Amine Telechem Int. 5× SSC UniHyb 0.1% SDS twice 42–65 °C
(1.25×) for 2 min at overnight

RT followed by
a water rinse.
Incubate in
bolling water for
3 min before
drying.

Table 5. Microarray slide types and their characteristics.

● 103

C H A P T E R 9 : L U C I D E A S L I D E P R O H Y B R I D I Z E R

Chapter 9
L U C I D E A S L I D E P R O H Y B R I D I Z E R

9.0 Introduction
A complex system, microarray analysis is affected by a number of
experimental factors, including target preparation, physical deposition of
the targets, slide chemistry, probe chemistry, hybridization, and detection
of the fluorescent signal (37). In order to improve the efficiency of
microarray analysis, each source of variation must be eliminated or
minimized. Control of environmental conditions during hybridization in
particular, is critical in producing and maintaining a consistent fluorescent
signal. Lucidea SlidePro was designed to overcome the problems associated
with hybridization variability.

9.1 Features of Lucidea SlidePro Hybridizer
Lucidea SlidePro Hybridizer (Fig 58) has a modular format that consists
of a base control unit, up to four additional modules, and control
software on a laptop computer. Each unit contains six individually
temperature-controlled chambers, each of which holds a standard
microscope slide. With all five modules a total of 30 slides can be
processed. The multi-module protocol software allows each module to
be started at different times and different experiments can be conducted
on each module, thereby increasing user flexibility. Also, each module
has its own pump, which allows a faster processing time.

Lucidea SlidePro is capable of automating a variety of chemical
and biochemical techniques in which incubation and wash steps are
performed at varying temperatures. It is primarily used in microarray
analysis to automate the pre-hybridization, hybridization, and washing
of microarray slides. It has been designed to be used in conjunction with
the Lucidea range of microarray instruments and reagents.

In Lucidea SlidePro, each slide is held in a chamber sealed with a patented
O-ring. Pre-treatment and wash solutions are drawn into the chamber,
from up to five reservoirs, and deposited into a waste bottle. Each
module can run off one set of wash botttles, or multiple modules can run
off the same set of wash bottles. Hybridization samples are injected
through a septum port at the lower end of the chamber (Fig 59).

Fig 58. Lucidea SlidePro Hybridizer.

Fig 59. Schematic of individual slide chamber.

Heating block
Slide
O-ring seal O-ring seal

Port

Outlet port

Inlet port

Septum
injection port

Side view Bottom view
of chamber

Hinged clamp

PEEK chamber
(100 µm recess)

M I C R O A R R AY

63-0048-49 ● 104hb

9.2 Benefits of Lucidea SlidePro Hybridizer
The key benefits of Lucidea SlidePro include:

■ Improved uniformity of signals and Cy3/Cy5 ratios within and
between slides.

■ Temperature and mixing controls for each chamber. Small volumes
are drawn in and out of the chamber to provide continuous mixing.
The volume, speed, and length of mixing can also be individually
controlled, making optimization easier.

■ Temperature and wash solution controls for each chamber. This
improves the reproducibility of signals both within and between
slides and from user to user. Greater reproducibility can increase
the accuracy of results with fewer numbers of replicates.

■ Enhanced detection of rare messages. The mixing of probe during
hybridization results in enhanced signals, without the need to use
increased amounts of probe as compared with manual hybridization.
Increased signal strength compared to background enables detection
of low signals from rare messages.

■ Rapid start-up time and ease of use. Experiments to determine optimal
hybridization parameters, such as temperature and washing, are
performed with ease. Standard protocols are provided to decrease time
to optimize experimental procedures. Different conditions can be tested
within a single run, using up to 30 slides with five modules. The
software has a help feature for fast start-up and troubleshooting.

■ Facilitates reuse of probe. Probe can be removed from the hybridization
chamber via the injection port, allowing samples to be reused multiple
times. The instrument is paused after hybridization and the probe
removed with a syringe. The instrument continues with washing and
drying of slides. While overall signals decrease with probe reuse, the
Cy3/Cy5 ratios are not significantly altered.

■ Reduced demands on user time. The user needs only to load slides and
inject the probe. Following automated hybridization, washing, and
drying, the slides are removed from the instrument ready to scan.

● 105

C H A P T E R 9 : L U C I D E A S L I D E P R O H Y B R I D I Z E R

9.3 Validation in microarray hybridization
We describe here how a number of hybridization factors—including time,
probe reuse and probe concentration—affect the signal-to-noise values
detected from microarray experiments. Despite the effects of these factors
on overall signal strength, the Cy3/Cy5 ratio remains constant, suggesting
that differential expression may be determined under conditions which
do not provide an optimal signal. Three experimental applications were
used to demonstrate the utility of Lucidea SlidePro.

9.3.1 Comparison of automated and manual hybridization
Twenty-four standard silanized glass slides were spotted with p53
cDNA. Twelve slides were hybridized manually (approximately 30 µl of
hybridization sample was placed on a microarray slide, under a coverslip
and incubated in a humidified container in a hybridization oven) and
twelve were hybridized in Lucidea SlidePro. All were hybridized using
Cy3-labelled human skeletal muscle and Cy5-labelled human skeletal
muscle.

Hybridization in Lucidea SlidePro produced increased signal intensity
and more consistent Cy3/Cy5 ratios with very low variability compared
to the manual method. Analysis of variance (ANOVA) comparison of the
Cy3/Cy5 ratios showed significantly less variation in the Lucidea SlidePro
processed slides compared to manually processed slides (Fig 60).

Fig 60. Lucidea SlidePro vs manual ANOVA
coefficient of variation values for glass slides
hybridized in Lucidea SlidePro or manually.

Coefficient of variation

Type 5 Lucidea Manual
SlidePro

Within slide 8.6% 35.9%
Between slides 4.1% 10.7%

Total 12.7% 46.6%

M I C R O A R R AY

63-0048-49 ● 106hb

Results suggest that hybridization efficiency and data reproducibility
could be improved using Lucidea SlidePro as compared to the manual
methodology (Fig 61-62).

9.3.2 The effect of probe mixing
Since diffusion rates on solid surfaces are much lower than those in
solution, compensation for localized depletion of probe may not occur
within the time frame of a hybridization (37, 56). Lucidea SlidePro
provides mixing during hybridization, which ensures a constant probe
concentration and thereby eliminates depletion effects.

Initial experiments were designed to determine whether mixing could
enhance hybridization efficiency. The relative signals of a serial dilution
of target hybridized under static or mixing conditions were assessed
(Fig 63). Despite greater than 300-fold dilution of probe, mixing during
hybridization enhanced the signal detected around 5-fold at the highest
concentration of target. This result suggests that localized probe
depletion effects could be reduced by mixing the sample.

0

200000

800000

600000

400000

Cy3 Lucidea SlidePro

Cy3 manual

Cy5 Lucidea SlidePro

Cy5 manual

RFU

1 2 3 4 5 6 7 8 9 10 11 12

Slide

Fig 61. Lucidea SlidePro vs manual mean signal intensities.

0

0.4

0.2

1

0.8

0.6

Lucidea SlidePro ratio average

Manual ratio average

Ratio

1 2 3 4 5 6 7 8 9 10 11 12

Slide

Lucidea SlidePro vs manual mean ratios

Fig 62. Lucidea SlidePro vs manual mean Cy3/Cy5 ratios.

● 107

C H A P T E R 9 : L U C I D E A S L I D E P R O H Y B R I D I Z E R

9.3.3 Reuse of probe
Since probe is often generated from mRNA samples that are in short
supply, it may be desirable to use a labelled probe for multiple rounds
of hybridization. This is possible using Lucidea SlidePro, since probe can
be removed directly through the injection port following hybridization.
The effect of probe reuse on overall signal strength and Cy3/Cy5 ratios
was assessed. Duplicate reflective slides were hybridized in Lucidea
SlidePro with 200 µl of Cy3-labelled skeletal muscle and Cy5-labelled
placenta cDNA (40 pmol total) per chamber. Following hybridization
and immediately prior to washing the slides, probe was recovered from
all chambers using a syringe/needle through the injection port.
Approximately 60% of the injection volume (120 µl) was recovered
from each chamber. Each probe was then reconstituted to the original
volume of 200 µl in 1× version 2 hybridization buffer and reinjected
into chambers containing fresh slides. This constituted the first reuse of
probe. The procedure was repeated for the second reuse.

Although the signal strength decreased over multiple hybridizations
(Fig 64), the Cy3/Cy5 ratios were relatively unaffected (Fig 65). This
suggests that the individual Cy3/Cy5 ratios for each gene should remain
constant, provided the signal is strong enough to be detected above
background. Furthermore, overall background was reduced with
multiple rounds of hybridization, providing an additional benefit.

Fig 63. The effect of mixing on
hybridization signal.

0.E+00

3.E+06

2.E+06

1.E+06

4.E+06

6.E+06

5.E+06

RFU

Pg/spot PCR product deposited

2 50 200150100

no mixing

with mixing

Constant probe concentration

Fig 64. Reuse of probe. Scanned
images showing arrays following
overnight hybridization in Lucidea
SlidePro with fresh probe, first r
euse, and second reuse.

Fresh probe (day 1) Reuse 1 (day 2) Diluted reuse (day 3)

Fig 66. Effect of hybridization time.
Total mean Cy3 and Cy5 signals
following 3-h, 6-h, and 15-h
hybridization in Lucidea SlidePro.

0

100000

300000

200000

400000

500000

Total Cy3 signal intensity with
hybridization time

3 h 6 h 15 h
0

500000

500000

500000

500000

500000

Total Cy5 signal intensity with
hybridization time

3 h 6 h 15 h

M I C R O A R R AY

63-0048-49 ● 108hb

Fig 65. Reuse of probe. Cy3/Cy5 ratios of
selected genes following hybridization
with fresh probe, reuse 1, and reuse 2.

-2

-1

0

1

Scatter plot Cy3/Cy5 log ratio

Fresh Reuse 1

Probe

Reuse 2

Normalized log ratio

9.3.4 Length of hybridization
Standard microarray protocols call for overnight hybridization
(12–18 h). Time course studies suggest that effective hybridization can
take much longer than this (data not shown). In order to assess whether
Lucidea SlidePro enhances the kinetics of hybridization, the relative
signal strength following different hybridization times was investigated.
Arrayed reflective slides were hybridized with 20 pmol each of Cy3
skeletal muscle and Cy5 placenta probe per slide. Total mean signal
intensities (Fig 66) increased with time up to 16 h hybridization, but
Cy3/Cy5 ratios (Fig 67) remained consistent between the 3-h, 6-h, and
15-h timepoints.

Another set of microarray slides were spotted with Lucidea Universal
ScoreCard dynamic range controls (control elements that are used to
evaluate the dynamic range and sensitivity of the system), and the
amount of probe was increased to 60 pmol labelled probe per slide.
Slides were hybridized for 3, 6, 9, 12, and 15 h in Lucidea SlidePro.
Mean signal intensities were similar (Fig 68) for all hybridization times
with dynamic ranges representing 2000 copies (DR 2), 200 copies
(DR 3), and 20 copies (DR 5). These results suggest that shorter
hybridization times may be used for higher throughput, provided that
sufficient signal is obtained to detect low expressing genes of interest.
Furthermore, increased probe concentrations may be used to decrease
the hybridization time required for signal detection provided that the
mean signal above background is not compromised.

● 109

C H A P T E R 9 : L U C I D E A S L I D E P R O H Y B R I D I Z E R

Fig 67. Effect of hybridization time. Cy3/Cy5
ratios of selected genes following 3-h, 6-h,
and 15-h hybridization in Lucidea SlidePro.

-2

-1

0

2

Scatter plot Cy3/Cy5 log ratio

3 h 6 h

Hybridization

15 h

1

Normalized log ratio

Fig 68. Effect of hybridization time. Total mean Cy3 and Cy5
signals of dynamic range controls.

1000

10000

100000

1000000

Menu RFU

Hybridization time (hr)

10000000

3 6 9 12 15

Cy5 mean

Cy3 mean

DR2

3 6 9 12 15

DR3

3 6 9 12 15 15

DR5
Control

(20 pmol)

d)a)

b) e)

Fig 69. Lucidea SlidePro hybridization
with various commercially available
slides.

M I C R O A R R AY

63-0048-49 ● 110hb

9.4 Using different types of microarray slides
The dimensions of the slide chamber are specific and only standard
microscope slides—25–25.5 mm × 75.5–76.0 mm, and 0.95–1.15 mm
thick—may be used with Lucidea SlidePro. The hybridization chamber
will fit arrays of up to 20 × 59 mm, allowing for a barcode on one end of
the slide. The array should be spotted at least 2.5 mm from the edge. It is
important that the bar code does not exceed 10 mm in width, or it will
lie under the O-ring seal and cause leakage.

Lucidea SlidePro has been optimized for use with Amersham Biosciences
version 2 hybridization buffer and microarray slides. Lucidea SlidePro
can also be used to hybridize other manufacturer’s slides (Fig 69).
These protocols can be found on the Amersham Biosciences web site
(www.amershambiosciences.com).

T28 direct labeled
Cy3 heart / Cy5 muscle

c)

● 111

C H A P T E R 1 0 : F L U O R E S C E N C E I M A G I N G S Y S T E M S I N M I C R O A R R AY A N A LY S I S

Chapter 10
F L U O R E S C E N C E I M A G I N G S Y S T E M S I N M I C R O A R R AY

A N A LY S I S

10.0 Introduction
All fluorescence imaging systems require the following key elements
(Fig 70):

■ Excitation source

■ Light delivery optics

■ Light collection optics

■ Filtration of the emitted light

■ Detection, amplification and digitization of the emitted light

In this chapter, various types of scanner systems are discussed. Their
light delivery and light collection mechanisms, signal detection and
amplification, and overall performance are detailed, as well as criteria for
selecting appropriate fluorochromes and filters for use with the scanner.

Fig 70. Components of a general
fluorescence imaging system.

Excitation source

Light delivery optics Light collection optics

Emission filter

Detection and
amplification

Sample

M I C R O A R R AY

63-0048-49 ● 112hb

10.1 Requirements of a fluorescence imaging system

10.1.1 Excitation sources and light delivery optics
Light energy is essential to fluorescence. Light sources fall into two broad
categories—wide-area, broad-wavelength sources, such as UV and xenon
arc lamps, and line sources with discrete wavelengths, such as lasers
(Fig 71). Broad-wavelength excitation sources are used in fluorescence
spectrometers and camera imaging systems. Although the spectral output
of a lamp is broad, it can be tuned to a narrow band of excitation light
with the use of gratings or filters. In contrast, lasers deliver a narrow
beam of collimated light that is predominantly monochromatic. In most
camera systems, excitation light is delivered to the sample by direct
illumination of the imaging field, with the excitation source positioned
either above, below, or to the side of the sample.

Laser-based imaging systems, on the other hand, use more sophisticated
optical paths, comprising mirrors and lenses, to direct the excitation
beam to the sample. Some filtering of the laser light may also be required
before the excitation beam is directed to the sample. For microarray
applications, laser-based instruments are substantially favored, therefore
CCD scanners will not be discussed.

10.1.2 Light collection optics
High-quality optical elements, such as lenses, mirrors, and filters, are
integral components of any efficient imaging system. Optical filters are
typically made from laminates of multiple glass elements. Filters can be
coated to selectively absorb or reflect different wavelengths of light,
thus creating the best combination of wavelength selection, linearity,
and transmission properties.

10.1.3 Filtration of the emitted light
Although emitted fluorescent light radiates from a fluorochrome in all
directions, it is typically collected from only a relatively small cone angle
on one side of the sample. For this reason, light collection optics must be
as efficient as possible. Any laser light that is reflected or scattered by
the sample must be rejected from the collection pathway by a series of
optical filters. Emitted light can also be filtered to select only the range
or band of wavelengths that is of interest to the user. Systems that
employ more than one detector require additional beam splitter filters
to separate and direct the emitted light along separate paths to the
individual detectors.

Fig 71. Spectral output of light from a xenon
lamp and Nd:YAG laser. The “relative output”
axis is scaled arbitrarily for the two light sources.
The 532-nm line of the Nd:YAG laser is shown
in green.

Wavelength (nm)

R
el

at
iv

e
ou

tp
ut

 (
a.

u.
)

500 700 900 1100300

532

● 113

C H A P T E R 1 0 : F L U O R E S C E N C E I M A G I N G S Y S T E M S I N M I C R O A R R AY A N A LY S I S

10.1.4 Detection, amplification, and digitization
For detection and quantification of emitted light, either a photomultiplier
tube (PMT) or a charge-coupled device (CCD) can be used. In both cases,
photon energy from emitted fluorescent light is converted into electrical
energy, thereby producing a measurable signal that is proportional to
the number of photons detected. After the emitted light is detected and
amplified, the analog signal from a PMT or CCD detector is converted to
a digital signal. The process of digitization turns a measured continuous
analog signal into discrete numbers representing intensity levels. The
number of intensity levels available is based on the digital resolution of
the instrument, which is usually given as a number of bits, which increases
exponentially by two. 8-bit, 12-bit, and 16-bit digital files correspond to
the number of intensity levels allocated within that image file (256, 4096
and 65 536, respectively).

Digital resolution defines the ability to resolve two signals with similar
intensities. Since only a limited number of intensity levels are available, it
is unavoidable that this conversion process introduces a certain amount
of error. To allow ample discrimination between similar signals and to
keep the error as low as possible, the distribution of the available
intensity levels should correspond well to the linear dynamic range of a
detector. There are two methods of distributing intensity levels. A linear
(even) distribution has the same spacing for all the intensity levels,
allowing measurement across the dynamic range with the same absolute
accuracy. However, relative digitization error increases as signals become
smaller. A non-linear distribution (e.g. logarithmic or square root
functions) divides the lower end of the signal range into more levels
while combining the high end signals into fewer intensity levels. Thus,
the absolute accuracy decreases with higher signals, but the relative
digitization error remains more constant across the dynamic range.

M I C R O A R R AY

63-0048-49 ● 114hb

10.2 Scanner systems

10.2.1 Excitation sources
Most fluorescence scanner devices used in life science research employ
laser light for excitation. A laser source produces a narrow beam of
highly monochromatic, coherent, and collimated light. The combination
of focused energy and narrow beam-width contributes to the excellent
sensitivity and resolution possible with a laser scanner. The active
medium of a laser—the material that is made to emit light—is commonly
a solid state (glass, crystal), liquid, or gas (57). Gas lasers and solid-state
lasers both provide a wide range of specific wavelength choices for
different imaging needs. Other light sources used in imaging systems
include light emitting diodes (LEDs), which are more compact and less
expensive than lasers, but produce a wide-band, low-power output.

Lasers

There are several commonly used types of lasers.

■ Argon ion lasers produce a variety of wavelengths including
457 nm, 488 nm and 514 nm that are useful for excitation of
many common fluorochromes, such as fluorescein and Cy2.

■ Helium neon or HeNe lasers, which generate a single wavelength
of light (633 nm), are popular in many laser scanners, and
can be used to excite Cy5.

■ Neodymium:Yttrium Aluminum Garnet (Nd:YAG) solid-state
lasers, when frequency-doubled, generate a strong line at
532 nm which can be used to excite Cy3.

■ Diode lasers (or semiconductor diode lasers) are compact lasers.
Because of their small size and light weight, these light sources
can be integrated directly into the scanning mechanism of a
fluorescence imager. Diode lasers are inexpensive and are generally
limited to wavelengths above 635 nm.

Light Emitting Diodes (LEDs)

As an alternative to lasers, the LED produces an output with a much
wider bandwidth (over 60 nm) and a wide range of power from low to
moderate output. Because LED light emissions are doughnut-shaped, and
not collimated, the source must be mounted very close to the sample
using lenses to tightly focus the light. LEDs are considerably smaller,
lighter, and less expensive than lasers. They are available in the visible
wavelength range above 430 nm.

● 115

C H A P T E R 1 0 : F L U O R E S C E N C E I M A G I N G S Y S T E M S I N M I C R O A R R AY A N A LY S I S

10.3 Excitation light delivery
Because light from a laser is well-collimated and of sufficient power,
delivery of excitation light to the sample is relatively straightforward,
with only negligible losses incurred during the process. For lasers that
produce multiple wavelengths of light, the desired line(s) can be selected
by using filters that exclude unwanted wavelengths, while allowing the
selected line to pass at a very high transmission percentage. Excitation
filters are also necessary with single-line lasers, as their output is not
100% pure. Optical lenses are used to align the laser beam, and mirrors
can be used to redirect the beam within the instrument. One of the main
considerations in delivering light using a laser scanning system is that the
light source is a point, while the sample typically occupies a relatively
large two-dimensional space. Effective sample coverage can be achieved
by rapidly moving the excitation beam across the sample in two
dimensions. There are two ways to move and spread the point source
across the sample, which are discussed below.

10.3.1 Galvanometer-based systems
Galvanometer-based systems use a small, rapidly oscillating mirror to
deflect the laser beam, effectively creating a line source (Fig 72). By using
relatively simple optics, the beam can be deflected very quickly, resulting
in a short scan time. Compared to confocal systems, galvanometer-based
scanners are useful for imaging thick samples due to the ability to collect
more fluorescent signal in the vertical dimension. However, since the

Fig 72. Galvanometer-controlled scanning
mechanism. Light is emitted from the laser
in a single, straight line. The galvanometer
mirror moves rapidly back and forth
redirecting the laser beam and illuminating
the sample across its entire width (X-axis).
The f-theta lens reduces the angle of the
excitation beam delivered to the sample.
The entire sample is illuminated either by the
galvanometer mechanism moving along the
length of the sample (Y-axis) or the sample
moving relative to the scanning mechanism.

Laser

Galvo mirror

f-theta lens

Sample tray

Sample

M I C R O A R R AY

63-0048-49 ● 116hb

excitation beam does not illuminate the sample from the same angle in
every position, a parallax effect can result. The term parallax here refers
to the shift in apparent position of targets, predominately at the outer
boundaries of the scan area. Additionally, the arc of excitation light
created by the galvanometer mirror produces some variations in the
effective excitation energy reaching the sample at different points across
the arc. These effects can be minimized with an f-theta lens, but when the
angle of incident excitation light varies over the imaging field, some
spatial distortion can still occur in the resulting image.

10.3.2 Moving-head scanners
Moving-head scanners use an optical mechanism that is equidistant
from the sample. This means that the angle and path length of the
excitation beam is identical at any point on the sample (Fig 73). This
eliminates variations in power density and spatial distortion common
with galvanometer-based systems. Although scan times are longer with
a moving-head design, the benefits of uniformity in both light delivery
and collection of fluorescence are indispensable for accurate signal
quantification. For microarray scanners an alternative method is to move
the stage that contains the microarray slide. In some scanners the stage is
moved in one direction while the galvanometer moves the laser beam
across in the second dimension.

10.4 Light collection
The light collection optics in a scanner system must be designed to
efficiently collect as much of the emitted fluorescent light as possible.
Laser light that is reflected or scattered by the sample is generally

Fig 73. Moving-head scanning mechanism.
The light beam from the laser is folded by a
series of mirrors and ultimately reflected onto
the sample. The sample is illuminated across
its width as the scan head moves along the
scan head rail (X-axis). The entire sample is
illuminated by the scan head, laser, and
mirrors tracking along the length of the
sample (Y-axis).

Scan head

Laser

Scan head rail

Glass platen

Lens

Mirror

Mirror

Sample

● 117

C H A P T E R 1 0 : F L U O R E S C E N C E I M A G I N G S Y S T E M S I N M I C R O A R R AY A N A LY S I S

rejected from the collection pathway by a laser-blocking filter, the design
of which is to exclude the light produced by the laser source, while
passing all other emitted light. Light collection schemes vary depending
on the nature of the excitation system. With galvanometer systems, the
emitted fluorescence must be gathered in a wide line across the sample.
This is usually achieved with a linear lens (fiber bundle or light bar),
positioned beneath the sample, that tracks with the excitation line,
collecting fluorescence independently at each pixel. Although this system
is effective, it can produce image artifacts. At the edges of the scan area
where the angle of the excitation beam, relative to the sample, is farthest
from perpendicular, some spatial distortion may occur. Where very high
signal levels are present, stimulation of fluorescence from sample areas
that are adjacent to the pixel under investigation can result in an
inaccurate signal measurement from that pixel, an artifact known as
flaring or blooming.

With moving-head systems, emitted light is collected directly below the
point of sample excitation. Again, it is important to collect as much of
the emitted light as possible to maintain high sensitivity. This can be
achieved by using large collection lenses, or lenses with large numerical
apertures (NA). Since the NA is directly related to the full angle of the
cone of light rays that a lens can collect, the higher the NA, the greater
the signal resolution and brightness (58). Moving-head designs can also
include confocal optical elements that detect light from only a narrow
vertical plane in the sample. This improves sensitivity by focusing and
collecting emission light from the point of interest while reducing the
background signal and noise from out-of-focus regions in the sample
(Fig 74). Additionally, the parallel motion of moving head designs
removes other artifacts associated with galvanometer-based systems,
such as spatial distortion and the flaring or blooming associated with
high activity samples.

Fig 74. Illustration of confocal optics.
Fluorescence from the sample is collected
by an objective lens and directed toward a
pinhole aperture. The pinhole allows the
emitted light from a narrow focal plane
(red solid lines) to pass to the detector,
while blocking most of the out-of-focus
light (black dashed lines).

Glass platen

Objective lens

Pinhole

Detector

Sample

M I C R O A R R AY

63-0048-49 ● 118hb

10.5 Signal detection and amplification
The first stage in fluorescent signal detection is selection of only the
desired emission wavelengths from the label or dye. In single-channel
or single-label experiments, emission filters are designed to allow only
a well-defined spectrum of emitted light to reach the detector. Any
remaining stray excitation or scattered light is rejected. Because the
intensity of the laser light is many orders of magnitude greater than the
emitted light, even a small fraction of laser light reaching the detector
will significantly increase background. Filtration is also used to reduce
background fluorescence or inherent autofluorescence originating
from either the sample itself or the sample matrix gel, membrane, or
microplate. In multichannel or multi-label experiments using
instrumentation with dual detectors, additional filtering is required
upstream of the previously described emission filter. During the initial
stage of collection in these experiments, fluorescence from two different
labels within the same sample is collected simultaneously as a mixed
signal. A dichroic beam splitter must be included to spectrally resolve
the contribution from each label and then direct the light to appropriate
emission filters (Fig 75). At a specified wavelength, the beam splitter
partitions the incident fluorescent light beam into two beams, passing
one and reflecting the other. The reflected light creates a second channel
that is filtered independently and detected by a separate detector. In this
way, the fluorescent signal from each label is determined accurately in
both spatial and quantitative terms.

Fig 75. Use of a beam splitter or dichroic
filter with two separate PMTs. Light from a
dual color sample enters the emission optics
as a combination of wavelengths. A dichroic
beam splitter distinguishes light on the basis
of wavelength. Wavelengths above the beam
splitter range pass through, those below are
reflected. In this way two channels are
created. These two channels can then be
filtered and detected independently.

Emitted light

Beamsplitter

Mirror

Emission filter

Emission filter

Short wavelength

Long wavelength

PMT

PMT

● 119

C H A P T E R 1 0 : F L U O R E S C E N C E I M A G I N G S Y S T E M S I N M I C R O A R R AY A N A LY S I S

After the fluorescent emission has been filtered and only the desired
wavelengths remain, the light is detected and quantified. Because the
intensity of light at this stage is very small, a PMT must be used to detect
it. In the PMT, photons of light hit a photocathode and are converted
into electrons which are then accelerated in a voltage gradient and
multiplied from 106 to 107 times. This produces a measurable electrical
signal that is proportional to the number of photons detected. The
response of a PMT is typically useful over a wavelength range of
300–800 nm (Fig 76). High-performance PMTs extend this range to
200–900 nm.

10.6 System performance
The performance of a laser scanner system is described in terms of system
resolution, linearity, uniformity, and sensitivity.

Resolution can be defined in terms of both spatial and amplitude
resolution. Spatial resolution of an instrument refers to its ability to
distinguish between two very closely positioned objects. It is a function
of the diameter of the light beam when it reaches the sample and the
distance between adjacent measurements. Spatial resolution is dependent
on, but not equivalent to, the pixel size of the image. Spatial resolution
improves as pixel size is reduced. Systems with higher spatial resolution
can not only detect smaller objects, but can also discriminate more
accurately between closely spaced targets. However, an image with a
100-µm pixel size will not have a spatial resolution of 100 µm. The
pixel size refers to the collection sampling interval of the image.
According to a fundamental sampling principle, the Nyquist Criterion,
the smallest resolvable object in an image is no better than twice the
sampling interval (59). Thus, to resolve a 100-µm sample, the sampling
interval must be at most 50 µm. Amplitude resolution, or gray-level
quantification, describes the minimum difference that is distinguishable
between levels of light intensity (or fluorescence) detected from the
sample (60). For example, an imaging system with 16-bit digitization can
resolve and accurately quantify 65 536 different values of light intensity
from a fluorescent sample.

Fig 76. An example of the response of a
PMT versus wavelength.

300200 400

C
at

ho
de

 r
ad

ia
nt

 s
en

si
ti

vi
ty

 (
m

A
/W

)

100

100

10

1

0.1

0.01
500 600 700 800 900 1000

Wavelength (nm)

M I C R O A R R AY

63-0048-49 ● 120hb

Linearity of a laser scanner is the signal range over which the instrument
yields a linear response to fluorochrome concentration and is therefore
useful for accurate quantification. The linear dynamic range can be
defined in at least 3 ways:

1) the electronic dynamic range of the scanner

2) the chemical dynamic range of the fluorescent dyes used

3) the biological dynamic range of the system under study

A scanning system with a wide dynamic range can detect and accurately
quantify signals from both very low- and very high-intensity targets in
the same scan. The linear dynamic range of most laser scanner
instruments is between 104 and 105.

Uniformity across the entire scan area is critical for reliable quantitation.
A given fluorescent signal should yield the same measurement at any
position within the imaging field. Moving-head scanners, in particular,
deliver flat-field illumination and uniform collection of fluorescent
emissions across the entire scan area.

Detection limit is the minimum amount of sample that can be detected
by an instrument at a known confidence level. From an economical
standpoint, instruments with better detection limits are more cost-
effective because they require less fluorescent sample for analysis.

10.7 Fluorochrome and Filter Selection
To generate fluorescence, excitation light delivered to the sample must
be within the absorption spectrum of the fluorochrome. Generally, the
closer the excitation wavelength is to the peak absorption wavelength
of the fluorochrome, the greater the excitation efficiency. Appropriate
filters are usually built into scanner instruments for laser line selection
and elimination of unwanted background light. Fixed or interchangeable
optical filters that are suitable for the emission profile of the
fluorochromes are then used to refine the emitted fluorescence, such
that only the desired wavelengths are passed to the detector. Matching
a fluorochrome label with a suitable excitation source and emission
filter is the key to optimal detection efficiency.

10.7.1 Types of emission filters
The composition of emission filters used in fluorescence scanners and
cameras ranges from simple colored glass to glass laminates coated with
thin interference films. Coated interference filters generally deliver
excellent performance through their selective reflection and transmission
effects. Three types of optical emission filters are commonly used.

● 121

C H A P T E R 1 0 : F L U O R E S C E N C E I M A G I N G S Y S T E M S I N M I C R O A R R AY A N A LY S I S

Long-pass (LP) filters pass light that is longer than a specified wavelength
and reject all shorter wavelengths. A good quality long-pass filter is
characterized by a steep transition between rejected and transmitted
wavelengths (Fig 77a). Long-pass filters are named for the wavelength
at the midpoint of the transition between the rejected and transmitted
light (cutoff point). For example, the cutoff point in the transmission
spectrum of a 560 LP filter is 560 nm, where 50% of the maximum
transmittance is rejected. The name of a long-pass filter may also
include other designations, such as OG (orange glass), RG (red glass),

E (emission), LP (long-pass), or EFLP (edge filter long-pass). OG and RG
are colored glass absorption filters, whereas E, LP, and EFLP filters are
coated interference filters. Colored glass filters are less expensive and
have more gradual transition slopes than coated interference filters.

Short-pass (SP) filters reject wavelengths that are longer than a specified
value and pass shorter wavelengths. Like long-pass filters, short-pass
filters are named according to their cutoff point. For example, a 526 SP
filter rejects 50% of the maximum transmittance at 526 nm (Fig 77b).

Band-pass (BP) filters allow a band of selected wavelengths to pass
through, while rejecting all shorter and longer wavelengths. Band-pass
filters provides very sharp cutoffs with very little transmission of the
rejected wavelengths. High-performance band-pass filters are also
referred to as Discriminating Filters (DF). The name of a band-pass filter
is typically made up of two parts:

■ the wavelength of the band center (the 670 BP 30 filter passes a
band of light centered at 670 nm [Fig 78]);

■ the full-width at half-maximum transmission (FWHM) (the
670 BP 30 filter passes light over a wavelength range of 30 nm
[655–685 nm] with an efficiency equal to or greater than half
the maximum transmittance of the filter).

Band-pass filters with an FWHM of 20–30 nm are optimal for most
fluorescence applications, including multi-label experiments. Filters
with FWHMs greater than 30 nm allow collection of light at more
wavelengths and give a higher total signal; however, they are less able
to discriminate between closely spaced, overlapping emission spectra
in multichannel experiments. Filters with FWHMs narrower than
20 nm transmit less signal and are most useful with fluorochromes
with very narrow emission spectra.

Fig 78. Transmission profile for a band-pass
(670 BP 30) filter. The full-width at half-
maximum (FWHM) transmission of 30 nm
is indicated by the arrows.

Wavelength (nm)

Tr
an

sm
is

si
on

 (
%

)

80

100

60

40

20

0

FWHM

670 680 690 700650 660

Fig 77. Transmission profiles for a (a) 560-nm
long-pass and a (b) 526-nm short-pass filter.
The cutoff points are noted.

550 560 570 580 590 600

a) Wavelength (nm)

cutoff point

Tr
an

sm
is

si
on

 (
%

)

80

100

60

40

20

0

500 510 520 530 540 550

b) Wavelength (nm)

cutoff point

Tr
an

sm
is

si
on

 (
%

)

80

100

60

40

20

0

M I C R O A R R AY

63-0048-49 ● 122hb

10.8 Using emission filters to improve sensitivity and
linearity range
When selectable emission filters are available in an imaging system,
filter choice will influence the sensitivity and dynamic range of an assay.
In general, if image background signal is high, adding an interchangeable
filter may improve the sensitivity and dynamic range of the assay. The
background signal from some matrices (gels and membranes) has a broad,
relatively flat spectrum. In such cases, a band-pass filter can remove the
portion of the background signal comprising wavelengths that are longer
or shorter than the fluorochrome emissions. By selecting a filter that
transmits a band at or near the emission peak of the fluorochrome of
interest, the background signal is typically reduced with only slight
attenuation of the signal from the fluorochrome. Therefore, the use of an
appropriate band-pass filter should improve the overall signal-to-noise
ratio (S/N).

To determine if a filter is needed, scans should be performed with and
without the filter while other conditions remain constant. The resulting
S/N values should then be compared to determine the more efficient
configuration. Interchangeable filters can also be used in fluorescence
scanners to attenuate the sample signal itself so that it falls within the
linear range of the system. Although scanning the sample at a reduced
PMT voltage can attenuate the signal, the response of the PMT may not
be linear if the voltage is set below the instrument manufacturer’s
recommendation. If further attenuation is necessary to prevent saturation
of the PMT, the addition of an appropriate emission filter can decrease
the signal reaching the detector.

● 123

C H A P T E R 1 0 : F L U O R E S C E N C E I M A G I N G S Y S T E M S I N M I C R O A R R AY A N A LY S I S

10.9 General guidelines for selecting fluorochromes
and filters

10.9.1 Single-color imaging
Excitation efficiency is usually highest when the fluorochrome’s absorption
maximum correlates closely with the excitation wavelength of the imaging
system. However, the absorption profiles of most fluorochromes are
rather broad, and some fluorochromes have a second (or additional)
absorption peak or a long “tail” in their spectra. It is not mandatory that
the fluorochrome’s major absorption peak matches exactly the available
excitation wavelength for efficient excitation. For example, the absorption
maxima of the fluorescein and Cy3 fluorochromes are 490 nm and 552
nm respectively (Fig 79). Excitation of either dye using the 532-nm
wavelength line of the Nd:YAG laser may seem to be inefficient, since
the laser produces light that is 40 nm above the absorption peak of
fluorescein and 20 nm below that of Cy3. In practice, however, delivery
of a high level of excitation energy at 532 nm does efficiently excite both
fluorochromes. For emission, selecting a filter that transmits a band at or
near the emission peak of the fluorochrome generally improves the
sensitivity and linear range of the measurement. Figure 80 shows
collection of Cy3 fluorescence using either a 580 BP 30 or a 560 LP
emission filter.

10.9.2 Multicolor imaging
Multicolor imaging allows detection and resolution of multiple targets
using fluorescent labels with different spectral properties. The ability to
multiplex or detect multiple labels in the same experiment is both time
and cost-effective and improves accuracy for some assays. Analysis using
a single label can require a set of experiments or many repetitions of the
same experiment to generate one set of data. For example, single-label
analysis of gene expression from two different tissues requires two
separate hybridization to different gene arrays, or consecutive
hybridization to the same array with stripping and re-probing. With a
dual-label approach, however, the DNA probes from the two tissue types
are labelled with different fluorochromes and used simultaneously with
the same gene array. In this way, experimental error is reduced because
only one array is used, and hybridization conditions for the two probes
are identical. Additionally, by using a two-channel scan, expression data
is rapidly collected from both tissues, thus streamlining analysis.

Fig 80. Filtering of Cy3 fluorescence using
either a 580 BP 30 (dark gray area) or a
560 LP filter (light and dark gray areas).

500

560 LP

550 600 650 700

Wavelength (nm)

E
m

is
si

on

580 BP 30

Fig 79. Excitation of fluorescein (green) and
Cy3 (orange) using 532-nm laser light. The
absorption spectra of Cy3 and fluorescein are
overlaid with the 532-nm wavelength line of
the Nd:YAG laser.

Wavelength (nm)

E
xc

it
at

io
n

552490

532

•

•
300 350 400 450 500 600550

M I C R O A R R AY

63-0048-49 ● 124hb

The process for multicolor image acquisition varies depending on the
imaging system. An imager with a single detector acquires consecutive
images using different emission filters and, in some cases, different
excitation light. When two detectors are available, the combined or
mixed fluorescence from two different labels is collected at the same
time and then resolved by filtering before the signal reaches the detectors.
Implementation of dual detection requires a beam splitter filter to
spectrally split the mixed fluorescent signal, directing the resulting two
emission beams to separate emission filters (optimal for each
fluorochrome), and finally to the detectors. A beam splitter, or dichroic
reflector, is specified to function as either a short-pass or long-pass filter
relative to the desired transition wavelength. For example, a beam splitter
that reflects light shorter than the transition wavelength and passes
longer wavelengths is effectively acting as a long-pass filter (Fig 75).

10.9.3 Fluorochrome selection in multicolor experiments
When designing multicolor experiments, two key elements must be
considered: the fluorochromes used and the emission filters available.
As with any fluorescence experiment, the excitation wavelength of the
scanner must fall within the absorption spectrum of the fluorochromes
used. Additionally, the emission spectra of different fluorochromes
selected for an experiment should be relatively well resolved from each
other. However, some spectral overlap between emission profiles is
almost unavoidable. To minimize cross-contamination, fluorochromes
with well-separated emission peaks should be chosen along with emission
filters that allow reasonable spectral discrimination between the
fluorochrome emission profiles. Figure 86 shows the emission overlap
between two common fluorochromes and the use of band-pass filters to
discriminate the spectra. For best results, fluorochromes with emission
peaks at least 30 nm apart should be chosen. A fluorescence scanner is
most useful for multicolor experiments when it provides selectable
emission filters suitable for a variety of labels. A range of narrow band-
pass filters that match the peak emission wavelengths of commonly used
fluorochrome labels will address most multicolor imaging needs.

● 125

C H A P T E R 1 0 : F L U O R E S C E N C E I M A G I N G S Y S T E M S I N M I C R O A R R AY A N A LY S I S

10.10 Amersham Biosciences imaging systems
Amersham Biosciences offers a variety of imaging instruments that are
well suited for use in microarray analysis. For more information, please
consult Amersham Biosciences web site at www.amershambiosciences.com.

10.10.1 Typhoon 9210: High performance laser scanning
system
Excitation sources: 532-nm Nd:YAG and 633-nm HeNe lasers

Filters: 6 emission filters and 3 beamsplitters (up to 13 emission
filter positions)

Detection: 2 high sensitivity PMTs

Imaging modes: 4 modes. 2 modes for fluorescence detection,
chemiluminescence, storage phosphor

Scanning area: 35 × 43 cm

Maximum resolution: 10 µm

Sample types: microarrays, gel sandwiches, agarose and polyacrylamide
gels, blots, microplates, TLC plates, and macroarrays

10.10.2 Typhoon 9410: High performance laser scanning
system
Excitation sources: 532-nm Nd:YAG, 633-nm HeNe,
and 457-nm and 488-nm Argon lasers

Filters: 7 emission filters and 3 beamsplitters (up to 13
emission filter positions)

Detection: 2 high sensitivity PMTs

Imaging modes: 5 modes. 3 modes for fluorescence detection,
chemiluminescence, storage phosphor, chemifluorescence

Scanning area: 35 × 43 cm

Maximum resolution: 10 µm

Sample types: microarrays, gel sandwiches, agarose and
polyacrylamide gels, blots, microplates, TLC plates, and
macroarrays

Notes: Versatile fluorescence and radioactive imager that can scan
microarrays but also contains an extra blue laser

Fig 81. Typhoon Variable Mode Imager.

M I C R O A R R AY

63-0048-49 ● 126hb

● 127

C H A P T E R 1 1 : D E S I G N , C O N T R O L S A N D D ATA A N A LY S I S O F M I C R O A R R AY E X P E R I M E N T S

Chapter 11
D E S I G N , C O N T R O L S A N D D ATA A N A LY S I S O F

M I C R O A R R AY E X P E R I M E N T S

11.0 Introduction
Methods for the analysis of microarray data are still evolving, and
there is no standard experimental design or method of data analysis for
microarray experiments at the present time. However, some efforts are
being made to set a common annotation and standards for microarray
data in order to create public databases for microarray results (61, 62,
63). Meanwhile, in this chapter some important considerations for
analyzing microarray data are discussed.

11.1 Experimental design
Data analysis begins with experimental design. When planning a
microarray experiment it is important to consider sources of variation
within the experiment. These can arise from the samples reflecting
differences in gene expression between individual animals or different
tissue culture plates. Furthermore, time-dependent variation in gene
expression levels resulting from circadian rhythms can also be a factor.
Experimental variations may also occur due to variation within the
experiment itself. In order to ensure that these experimental errors
can be identified, slides should contain replicate spots of each target
and replicate slides should be analyzed with pooled or multiple mRNA
samples. This replication enables the use of statistical tools such as
averages and standard deviations to monitor the extent of experimental
variation (64).

Lucidea Universal ScoreCard has been developed by Amersham
Biosciences to address the need for controls. It is a set of controls used
to validate and normalize microarray experimental data. It is further
described in section 6 of this chapter.

Another prudent measure is to perform reverse color or ‘flip-flop’
experiments. In these experiments the two mRNA samples being
compared in a microarray experiment are labelled separately with both
Cy3 and Cy5. Replica slides are hybridized with both combinations of
probes. By comparing the signal ratios from the reversed slides, it is
possible to identify data that is affected more by the labelling process
or quality of mRNA than by changes in gene expression levels.

M I C R O A R R AY

63-0048-49 ● 128hb

Once the mRNA extraction, labelling, hybridization, and scanning are
complete, the final stage in the microarray experiment is data analysis.
This is a complex multi-step process and is illustrated in Figure 82. The
steps of data analysis are described in further detail in this chapter.

Fig 82. Stages of microarray data analysis.

Glass slide with sample

Replicate slides

Image analysis

Discard spots with
poor quality values

Calculate ratios and
examine controls

Discard slides or areas
of slides where controls
indicate a problem

Average data and
examine variation of
ratios between replicates

Visualize data

Cluster data

Store data in database
9

3
4

2
6

7
1

2

● 129

C H A P T E R 1 1 : D E S I G N , C O N T R O L S A N D D ATA A N A LY S I S O F M I C R O A R R AY E X P E R I M E N T S

11.2 Overview of microarray data analysis
Microarray data analysis consists of four main steps:

■ Image analysis

■ Examination of controls

■ Data normalization

■ Visualization and clustering

Image analysis uses a dedicated software to quantitate the fluorescent
intensity at each spot. Normally, this involves a process called
spotfinding. The second step is to examine the controls on the arrays.
Normalization is performed next, followed by calculation of mean
ratios. The data can then be visualized in a graphical form, and
clustered, such that meaningful trends can be found among data
from multiple slides and experiments.

The amount of data obtained from microarray experiments is vast and
can be generated very rapidly. However, it is important to know the
quality of the data. There are three types of quality values that can be
used. It is recommended that all three are used within a microarray
experiment. The types of values are:

■ A series of metrics reported by the image analysis software to ensure
that the spots that have been quantitated appear to be good spots,
for example, regularly shaped.

■ A series of controls on your microarray to ensure the hybridization
has occurred correctly. These will indicate how specific and efficient
the hybridization has been.

■ Analysis of the data from replicate targets. Replicates are critical
for indicating how good the overall data is and whether the results
obtained are statistically meaningful (64).

M I C R O A R R AY

63-0048-49 ● 130hb

11.3 Image analysis
A scanned microarray image records the fluorescent intensities of all
pixels in the image area, including pixels from within (signal) and outside
(background) the DNA spots. The first step in the microarray workflow
is to locate the spots. Consider the following objectives:

■ accurately define the positions of every DNA spot in the image

■ provide appropriate measurement of fluorescence intensity for each
spot by quantifying the intensities of pixels within and outside the
DNA spots

■ provide quality metrics that give estimation of the accuracy of the
intensity measurement

The first step, alternately called “gridding”, can usually be performed
using dedicated software, such as ArrayVision or Lucidea Automated
Spotfinder.

The process of spotfinding begins by defining a grid, or an array of
circles, that indicates the expected size of each spot, how far away they
are spaced, and how they are arranged in an array, all regardless of the
intensities of individual spots. This information can be measured in pixel
or micron units. Once a grid is defined, it is overlaid onto the scanned
image such that the circles are nearly exactly aligned with the spots on
the microarray image. This spotfinding process can be automated using
spotfinding software, which serves to eliminate the tedious task of
manual alignment. In addition to the following descriptions, see the
spotfinding software help guide for instructions how to most effectively
use this tool.

■ Manual: This method involves first dividing the grid into several
subgrids, and then visually aligning each smaller subgrid with the
corresponding area of the image by adjusting the position of circles.

■ Semi-automated: This is where the software algorithm finds the spots,
but some user intervention is required.

■ Automated: This is where minimal user intervention is required. These
software packages can automatically analyze multiple images while
eliminating the need for supervision.

● 131

C H A P T E R 1 1 : D E S I G N , C O N T R O L S A N D D ATA A N A LY S I S O F M I C R O A R R AY E X P E R I M E N T S

The next step in image analysis is to determine the signal present inside
and outside the spot. The background signal is then subtracted from the
spot signal to give background-corrected signal. Whereas spot signal is
calculated from within the positioned grid, the background signal is
determined by calculating the average pixel intensity in a user-defined
region. Although mean or median background signal can be used,
median values are more resistant to variation in background caused, for
example, by fluorescent speckles. Some of the various regions in which
the background can be calculated are illustrated in Figure 83. It is
important to use a background correction method such that any pixels
from the spot do not get included in the background. This can easily
occur if the spots are close together.

Fig 83. Some of the background region options available to the user
in the ArrayVision™ Image Analysis Software. The green represents the
spots enclosed by the grid while the blue encloses the background
region. Image analysis quality metrics calculated by analysis software
are increasingly used to highlight data that may be unreliable and
should be omitted from further analysis. Typical causes of suspect
data include dust speckles over spots, poor spot morphology, very low
or very high signal.

Around spot groups Corner between spots User defined areas Around individual spots User defined spots

M I C R O A R R AY

63-0048-49 ● 132hb

11.4 Spotfinding software offered by Amersham
Biosciences

11.4.1 Lucidea Automated Spotfinder
Lucidea Automated Spotfinder processes microarray images by performing
spotfinding and data extraction in an automated fashion with virtually
no manual intervention (Fig 84). The output from Lucidea Automated
Spotfinder includes the signal intensity for each spot, plus quality metrics
to assess individual spots as well as the overall image. The software is
compatible with images produced by commercially available scanners.
Several images can be analyzed at once in a batch mode, without manual
inspection or image manipulation. Lucidea Automated Spotfinder
features include:

■ fully automated spot finding and data extraction

■ multiple reporting options and data export

■ user-defined templates for analyzing single or multiple images

■ metrics for assessing data quality

■ background subtraction

11.4.2 ArrayVision
ArrayVision software is a semi-automated software used for performing
image analysis (Fig 85). Some of its features include:

■ automated alignment of quantification grid over array

■ choice of methods for background signal removal

■ quality metrics

■ reporting tools and data export

■ visualization tools for viewing array images

Fig 84. Lucidea Automated Spotfinder has
a simple, intuitive user interface to initiate
the automatic processing of microarray
images. In this example, four images are
loaded for analysis.

Fig 85. ArrayVision software provides
automated analysis of radioisotopic or
fluorescent macro- and microarrays.

● 133

C H A P T E R 1 1 : D E S I G N , C O N T R O L S A N D D ATA A N A LY S I S O F M I C R O A R R AY E X P E R I M E N T S

11.5 Use of controls in microarray experiments
As with all experiments, microarrays should contain a series of controls
to ensure that the data obtained from the arrays is accurate. Therefore,
included on microarrays should be some cDNA or oligos which are
expected to give a negative result, and some which should give a positive
result. The types of controls that should be included are discussed below.

11.5.1 Negative controls
Negative controls are spotted DNA sequences that should not hybridize
with any labelled probe. The negative controls used should ideally come
from organisms that are only distantly related to the organism being
studied in the experiment. For example with human microarrays, sequences
from bacterial genes, intergenic regions, plant genes, or double-stranded
poly-dA are often used for this purpose (25, 65, 66). Under optimal
analysis conditions negative control spots should not give any signal at
all. However, if the stringency of the hybridization is not high enough,
non-specific hybridization between labelled cDNA molecules in the probe
and unrelated target sequences on the array may take place, resulting in
detectable signals from negative control spots. The higher the signal from
negative controls, the less reliable is the data from the whole slide. These
negative controls are particularly important to include if the spotted
array consists of oligonucleotides because in these types of arrays, a
lower hybridization stringency may be used. Negative controls can also
be used to detect contamination between targets during spotting. Placing
negative control targets after positive control targets that are always
expected to give signal can do this.

11.5.2 Poly-adenylated DNA and CotI DNA
When using oligo(dT) to prime first-strand cDNA synthesis, it is possible
that the oligo(dT) will prime within the poly-A tail of the mRNA. If this
occurs there will be a string of dT bases within the probe. It is possible
that the targets spotted may also contain a similar string of poly-A
sequences, particularly if the targets were derived originally from an EST
library which had been made by the use of oligo(dT) primer. In order to
prevent cross reactivity of the poly-dT sequences within the probe with
potential poly-dA sequences in the targets, a poly-dA oligo of 80 bases
can be included in the hybridization to block the poly-dT (65). In order
to ensure that this process has occurred correctly, it is good to include as
a negative control, a poly-dA sequence spotted on the microarray. If
these spots are negative this suggests that the blocking has occurred
effectively.

M I C R O A R R AY

63-0048-49 ● 134hb

Another sequence that may cause problems within the probe is
derived from repetitive sequences such as Alu-repeat sequences. These
sequences can be blocked by the inclusion of Cot-1 DNA in the
hybridization. To ensure that this blocking has occurred correctly, the
spotting of Cot-1 DNA as a negative control is recommended.

11.5.3 Positive controls

Labelled DNA

DNA can be labelled with CyDye fluors using polymerase chain reaction
(PCR), or in the case of oligos, during the synthesis of the oligos (many
oligo manufacturers offer this service). When the labelled DNA is spotted
onto the array, the DNA will be fluorescent and serve as a useful positive
control for verifying that the target DNA is binding effectively to the
slide surface during the hybridization and washes. Total genomic DNA
can also be used as a positive target. Positive controls placed on different
locations of the slide can help in the spotfinding process by providing
clearly detectable signals in known positions, regardless of the type of
probe used.

Fig 86. To validate, normalize, and filter microarray data, four
different types of controls are supplied:

1. Calibration controls: the signal intensities of ten individual controls
span 4.5 orders of magnitude for both Cy3 and Cy5 channels. These
controls can be used to generate a calibration curve.

2. Ratio controls: eight ratio controls are provided at both low and high
expression levels and are used to evaluate precision of ratios.

3. Negative controls: two controls are used to estimate non-specific
hybridization and potential carryover with the microarray system.

4. Utility controls: three individual controls can be used to troubleshoot
and examine sample preparations, or they can be used as additional
ratio or calibration controls.

1 2 3 4 1

● 135

C H A P T E R 1 1 : D E S I G N , C O N T R O L S A N D D ATA A N A LY S I S O F M I C R O A R R AY E X P E R I M E N T S

Spikes for determining sensitivity and dynamic range

Using some of the negative control genes discussed above can be used
to make a different set of positive controls. RNA can be synthesized by
in vitro transcription from plasmids carrying these negative control
sequences. This synthetic mRNA can then be included in the Cy3 and
Cy5 labelling reactions at known concentrations. This process is known
as spiking, and the synthetic mRNA are the spikes. Several different
mRNA spikes can be used and spiked in at different concentrations,
resulting in a set of controls that can give the researcher a value for the
linear dynamic range and sensitivity of the assay. These controls are known
as dynamic range controls. In addition, different spikes can be spiked
into the Cy3 and Cy5 labelling reactions at different concentrations.
These types of controls are known as ratio controls. After hybridization
of the probe to the slide, washing, and scanning, the Cy3 and Cy5 signals
obtained from the ratio controls can be compared with the known
amount of mRNA spiked into the labelling reactions and the theoretical
known ratios. Therefore a series of spikes can determine how sensitive
the hybridization has been and how accurate the data obtained is.

11.5.4 Housekeeping gene controls
Some genes are expressed relatively consistently within many different
cell types. These are called housekeeping genes. Examples of such genes
are actin, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and
tubulin. These housekeeping genes can be included in microarray
experiments as controls to ensure that the hybridization has occurred,
and they can also act as a normalization factor. However, the expression
of these genes can vary under experimental conditions, and relying on the
use of one or few housekeeping genes can result in skewed data.

11.5.5 Controls for measuring pen-to-pen variation
Housekeeping gene, spikes, or positive controls can be spotted in replicate
across the slide. If a different pen on the microarray spotter spots each of
these replicates, this may provide some information on the pen-to-pen
variation of the spotter. It should be considered that the variation of
each of these controls will be dependent not only on pen-to-pen variation
but also on the variation in the slide surface and any variation in the
hybridization. Therefore, if a high pen-to-pen variation is seen, a pen
test on the spotter should be performed.

M I C R O A R R AY

63-0048-49 ● 136hb

11.6 Control products offered by Amersham
Biosciences

11.6.1 Lucidea Universal Scorecard
Lucidea Universal ScoreCard contains a set of 23 artificial genes that
serve as analytical controls to validate and normalize microarray data.
The controls are composed of DNA sequences from yeast intergenic
regions, and their performance has been shown to be independent of a
wide variety of species. This system can be used as a universal reference
for validating and normalizing microarray data as well as for creating a
calibration curve for determining limit of detection, linear range, and
saturation of microarray experiment (Fig 86).

Fig 87. Applying non-linear normalization to microarray data.
Panel A shows distribution of log(Cy3/Cy5) values plotted against
Cy5 signal values (blue crosses) from a typical microarray experiment.
The orange line denotes the average relationship between these log
ratios as a function of Cy5 signals. As can be seen from the shape of
the curve, this relationship is non-linear over the distribution of Cy5
signals. The blue line shows distribution of Cy5 signal intensities.
Panel B shows the same data after it has been normalized using
the non-linear normalization algorithm.

-2.5

-1.5

-1

-2

-0.5

1.5

1

0

0.5

Log (Cy5 sDxA)

2 3 4 5 6 7 8

Log
(Cy3/Cy5)

0

200

300

100

400

800

700

500

600

Number of spots
per bin

a)
-2

-1

-0.5

-1.5

0

2

1.5

0.5

1

Log (Cy5 sDxA)

2 3 4 5 6 7 8

Normalized
log ratio

b)

● 137

C H A P T E R 1 1 : D E S I G N , C O N T R O L S A N D D ATA A N A LY S I S O F M I C R O A R R AY E X P E R I M E N T S

11.7 Normalization
In order to compare ratio data from one microarray slide to another
microarray slide, the ratio data needs to be normalized to correct for
experimental variation. The reason for this is that from one slide to
another there will be differences between the relative Cy3 and Cy5
signals due to one or more of the following:

■ the amounts of mRNA used in the Cy3 and Cy5 labelling reaction

■ efficiency of detection of the Cy3 and Cy5 by the detection system
within the scanner

■ relative incorporation differences of the Cy3 and Cy5 reverse
transcriptases

11.7.1 Linear normalization
Linear normalization assumes that there is a single normalization factor
required over the whole signal range. There are three methods to obtain
this factor:

■ use signal ratios from housekeeping genes

■ use signal ratios from spikes which have been added to the labelling
reaction in equal amounts

■ use total signal, which is the summation of all the Cy3 signals and all
the Cy5 signals

In the housekeeping gene or spike gene methods, it is assumed that the
spots corresponding to these targets give a ratio of 1. The total signal
method assumes that addition of all the signals in the Cy3 and the Cy5
channel should give a Cy3/Cy5 ratio of 1. The normalization factor can
be calculated from the observed ratios for the housekeeping genes,
spikes, or total signals to give a conversion factor that results in the
expected ratio for the control spots.

For example, a housekeeping gene in experiment A gives a ratio of 2,
while the gene of interest has a Cy3/Cy5 ratio of 5. Therefore the
normalized ratio for the gene of interest is 5/2 = 2.5. In experiment C,
the housekeeping gene has a ratio of 3, while the gene of interest has a
Cy3/Cy5 ratio of 7.5. The normalized ratio is 7.5/3 = 2.5.

The three methods discussed above assume that the normalization factor
is constant over the whole signal range, which in most cases is not.

M I C R O A R R AY

63-0048-49 ● 138hb

11.7.2 Non-linear normalization
It has been found that linear normalization is not necessarily accurate
(67). Examining the data shown in Figure 87a can show this. In this
experiment, Cy3-labelled muscle and Cy5-labelled muscle probes
(identical mRNA labelled with two different fluors) were hybridized to
a single slide. The results of this experiment are plotted below as a plot
of log Cy3/Cy5 ratio against the log Cy5 signal (Fig 87b). As the same
mRNA was used, it would be expected that the log Cy3/Cy5 ratio should
be constant over all Cy5 signals. However, as can be seen from the graph,
the ratio is higher at low Cy5 signal levels compared to the figure at high
Cy5. Therefore, the normalization factor used for spots with a low Cy5
signal should be different from the normalization factor that is used at
high Cy5 signals.

There are two principal non-linear methods of calculating the normalization
factor. One method is to rank all the data points according to their
Cy3+Cy5 signal. Then for each 50 genes calculate the normalization
factor for those 50, in the same way as total normalization is carried out.
A more precise way is to fit a curve to the data so that the normalization
factor for each point can be calculated. Software packages are commercially
available that can perform this kind of normalization. A non-linear
normalization generally results in a more accurate normalization than
linear normalization.

11.7.3 Post normalization
Once the normalization procedure has been carried out for all the data
points, the behavior of controls is examined next. The negative controls
should have a signal-to-noise ratio of less than 3 [(SNR = [average signal
– average background]/standard deviation of background). Any higher
SNR than 3 suggests that the data obtained from this experiment may
not be accurate.

If a series of dynamic range controls have been included, this is one
way to estimate sensitivity. A control which has a SNR above 3 would be
regarded as having been detected. If spikes have been included, such that
the spikes have been placed in the Cy3 reaction at a different amount
compared to the Cy5 reaction, then the theoretical ratio can
be compared to the actual ratio. Finally, controls such as pen-to-pen
variation controls may suggest other potential problems within the
experiment.

If the data from the slide meets the criteria set by the researcher then the
next step is to look at the variation between replicates. It is recommended
that each experiment be repeated several times, and there are statistical

● 139

C H A P T E R 1 1 : D E S I G N , C O N T R O L S A N D D ATA A N A LY S I S O F M I C R O A R R AY E X P E R I M E N T S

criteria as to how many replicates should be carried out to give a
certain degree of confidence in your results (64). Replicates could be
within multiple spots on the same slide, but can also be carried out using
several different slides. Typically log ratios are calculated so that ratios
less than 1 appear as a negative value. The coefficient of variation
(CV = [Standard deviation of the ratio] / [mean ratio]) can also be
calculated and provides a simple measure of the value of a particular
data point. Data points with high CVs can be highlighted or discarded.
Often ratios with high CVs are due to low signal in one or both of the
channels. A standard practice by some researchers is therefore to discard
spots which have a signal in both channels with a SNR below 3. If there
is a low signal (below a SNR of 3) in one channel, then the ratio could be
considered to be an arbitrary fixed value to avoid very large ratios
(to prevent, for example if Cy5 signal is zero, the Cy3/Cy5 would be
infinite). In addition, it should be remembered that there may be
significant biological variation that must be taken into account when
designing experiments.

11.8 Visualization and clustering
After microarray data is normalized to account for differences in Cy3
and Cy5 signals, it can subsequently be exported to any number of data
visualization software for further analysis. These software products can
be used to mine the data for significant changes in gene expression. The
process of visualization can significantly enhance data analysis. It can
provide helpful features, such as data integration, customized query
devices, and pattern recognition. Clustering data points, or genes, that
show similar responses on microarray analysis can be used to identify
genes that have similar gene expression patterns and which possibly
belong to the same pathway.

M I C R O A R R AY

63-0048-49 ● 140hb

11.9 Visualization software products offered by
Amersham Biosciences

11.9.1 Spotfire DecisionSite for Functional Genomics
This software combines the core capabilities of Spotfire™ DecisionSite™

with specialized tools for interrogating and extracting information from
microarray data. In addition to simplified access to data and information,
Spotfire DecisionSite for Functional Genomics provides researchers with
leading analytical methods used in gene expression analysis. Dynamic
visualizations and interaction with computational results help researchers
in validating and prioritizing target genes (Fig 88).

Some of the features of this software include:

■ easy access to information, in any format, wherever it resides

■ visually interactive representations of enriched data sets for
enhanced analysis

■ publication and sharing of results for collaborative decision-making

■ idenification of key patterns with distinction calculation, hierarchical,
bi-directional hierarchical, and K-means cluster analysis

■ preparation of data for analysis with standard array and gene
based normalization

■ identification of entities exhibiting characteristic or signature
profiles with ad hoc profile search and analysis

Fig 88. Exploring gene expression
data using hierarchical clustering, and
principal component analysis with
Spotfire DecisionSite for Functional
Genomics.

● 141

C H A P T E R 1 1 : D E S I G N , C O N T R O L S A N D D ATA A N A LY S I S O F M I C R O A R R AY E X P E R I M E N T S

11.10 Scierra Microarray Laboratory Workflow
Systems: Information Management Systems for
Microarray Laboratories
Microarray technology is rapidly becoming the mainstream platform for
high-throughput gene expression analysis. As microarray experiments
generate vast amounts of experimental and biological data, an urgent
need is created for informatics tools that can manage the microarray
workflow process more effectively and efficiently. Scierra™ Microarray
Laboratory Workflow System, as a part of a larger integrated laboratory
information managment system, is designed to address this need.

11.10.1 Scierra Laboratory Workflow Systems
Scierra Laboratory Workflow Systems (LWS) are a series of bioinformatics
solutions to aid in the collection, annotation, collation, curation, and
analysis of biological data. The platform includes four products:

■ Scierra Sequencing LWS System

■ Scierra Genotyping LWS System

■ Scierra Microarray LWS System

■ Scierra Proteomics LWS System

These Scierra LWS products are built on a common software framework
that manages and tracks all aspects of an experiment. Each system
mirrors the natural workflow found within the laboratory, and succeeds
in linking manual processes, instrumentation, software, and reagent use
into one system. This integration enables the collection and comparison
of each type of biological information. The open framework design
allows the introduction of new instruments and reagents, thereby
providing a scalable system that will grow as needs increase.

11.10.2 Scierra LWS architecture
Scierra LWS is a three-tiered application comprised of an Oracle™

database, a middleware application server, and multiple clients. Scierra
LWS can accept data from most available network client sources,
including computers running Windows™ 2000 or Windows NT™. Work
is easily requested and results readily accessed through a standard
browser-based user interface that communicates to the middleware
application server.

M I C R O A R R AY

63-0048-49 ● 142hb

11.10.3 Scierra Microarray Laboratory Workflow System
(MA-LWS)
A typical microarray workflow involves array content preparation,
array production, sample preparation and labelling, array hybridization,
scanning, and image analysis.

Scierra MA-LWS has been designed to mirror the workflow of the typical
microarray lab (Fig 89). It allows users to perform many tasks. First,
users can organize large numbers of samples and experiments based on
projects. Users can also manage and track a large variety of samples and
reagents, including:

■ crude biological samples, including blood, tissue, and cells

■ total RNA, mRNA, and labelled cDNA

■ spotting plates and spotting sample types, including cDNA and oligo

■ spotting substrates, chemistry, and protocol

■ arrayed slides

Scierra MA-LWS allows users to manage and track every activity in the
microarray workflow, including:

■ array preparation—spotting custom arrays and pre-arrayed slides

■ sample preparation and labelling

■ hybridization, scanning, and image analysis

Scierra MA-LWS makes it possible to integrate components of different
microarray systems, including spotters and scanners, and image analysis
software. Users can store and effectively retrieve large amounts of
information. Flexible reporting tools provide for standard and user-defined
queries across different activities. With Scierra MA-LWS, the precious
microarray data is completely captured and securely stored in the
database for further analysis.

● 143

Fig 89. Scierra MA-LWS mirrors
the microarray workflow.

C H A P T E R 1 1 : D E S I G N , C O N T R O L S A N D D ATA A N A LY S I S O F M I C R O A R R AY E X P E R I M E N T S

Sample
Definition

Experimental
Design

Sample
Submission

Sample
Receiving

Biological Samples Array

Total RNA
Extraction

mRNA
Preparation

Sample
Labeling

Sample
Clean Up

Spotting plate
Receiving

Compression/
Decompression

Quantification

Normalize and
Aliquot

Pre-arrayed
slides

In House Array
Design

Spotting

Treatment
Post-spotting

Sample
Quantification

Sample
Fragmentation

Hybridization

Array
Scanning

Spotfinding

Normalization

ReportsResult
Retrieval

Result
Query

M I C R O A R R AY

63-0048-49 ● 144hb

● 145

C H A P T E R 1 2 : T R O U B L E S H O O T I N G M I C R O A R R AY E X P E R I M E N T S

Chapter 12
T R O U B L E S H O O T I N G M I C R O A R R AY E X P E R I M E N T S

12.0 Introduction
Microarray analysis is a complicated multistep process consisting of
discrete steps as shown in Figure 90. Each of these steps is critical in
determining whether the experiment is successful, and problems
encountered at any stage will be detrimental to the quality of data
obtained. Troubleshooting microarray experiments needs to consider
all these steps.

Fig 90. Flowchart of microarray experiment.

Array spotter

Slide processor

Glass slide

Arrayed slide
with DNA

Hybridized slide with
CyDye-labelled cDNA or RNA probe

Array scanner
Scanned slide

Analysis software

Biological data
generated by microarrays

Analysis of
scanned data

The microarray process

9
3

4

2
6

7
1

2

M I C R O A R R AY

63-0048-49 ● 146hb

The output from a microarray experiment is the intensity of
hybridization signals, which reflect the expression levels of the
corresponding genes in the analyzed samples. However, other
experimental factors also have significant influence on the
magnitude of these signals. Some of these factors are listed
in Figure 91.

12.1 Optimization of the microarray system
As microarray analysis is not trivial to perform, careful optimization of the
microarray system is recommended. Due to the wide choice of reagents,
consumables and instruments from various manufacturers, it is important
to optimize the selected combination of materials and protocols before
starting real experiments. Some reagents may not work well with other
reagents; for example, spotting buffer may not be compatible with all
different slide surfaces, and different hybridization buffers may give very
different results on identical slides.

System optimization should test all microarray components together
using target sequences and probes that are as close to real samples as
possible. Such experiments should incorporate controls, as discussed in
Chapter 11. Combining the use of realistic sets of targets and control
reagents, as illustrated in Figure 92, gives the best results. The aim of

Fig 92. Panel A shows a scanned microarray
image from a yellow experiment in which
skeletal muscle mRNA was labelled with
Cy3 and Cy5. Only a proportion of the
microarray slide is shown. Panel B shows a
scatterplot derived from a yellow experiment.
The microarray used in this experiment
contained ratio control targets in addition to
cDNA clones and mRNA corresponding to
these control sequences was spiked into the
mRNA before labelling. These ratio control
spots appear as green and red dots on the
array image and are also shown on the
scatterplot, where they fall above and below
the scatter line.

10000

100000

1000000

Cy3 volume

Cy5 volume

1000 10000 100000 1000000

Scatter plot

1000

Non-specific
random signals

Background
corrected and
normalized RFUs

ScoreCard
ratio controls

Fig 91. Factors influencing the intensity of
observed microarray signals.

sample

Slide

Length of labelled
target molecules

Amount of target in
hybridization reaction

Number of target
molecules in sample

Labelling
density

Hybridization
efficiency:
• diffusion
• kinetics
• Tm

Hybridization
conditions:
• buffer
• time
• stringency

Detection
set up:
• PMT
• Cy3 vs Cy5
• lasers

a)

b)

● 147

C H A P T E R 1 2 : T R O U B L E S H O O T I N G M I C R O A R R AY E X P E R I M E N T S

system optimization is to find the best overall protocol for the system
and to determine what is the standard performance of the system.

12.1.1 The yellow experiment
The yellow experiment is an efficient tool for microarray system
optimization. In this experiment, the same RNA sample is labelled with
both fluorescent dyes, typically with Cy3 and Cy5 fluors. Hybridization
of equal amounts of both probes onto a microarray should produce equal
hybridization signals from both colors. In a false color array image, all
target spots should appear as yellow dots. As computer screen images of
microarray data can be misleading, analyzing numerical data from a
yellow experiment as a scatter plot is more informative. As no differential
gene expression is expected, normalized Cy3 signals plotted against
normalized Cy5 signals should appear as a straight line. Figure 92 shows
an example of microarray data generated from a typical yellow experiment.
Because RNA isolated from different cell cultures or individuals is likely
to contain slightly different levels of some transcripts, it is recommended
that pooled RNA obtained from several RNA isolations is used for system
optimization. Alternatively, purified RNA is also available commercially.

Yellow experiments only require one type of RNA sample, but provide
information on all aspects of the microarray process. In contrast,
experiments in which two different RNA species are used have the added
complication that differential gene expression will be present in unknown
quantities. In reverse-color experiments, in which both samples are
labelled separately with two colors and hybridizations are performed
with both possible combinations, any inherent variation between the
quality of the two arrays can complicate the optimization process and
result in wrong conclusions. For example, high and uneven Cy3
background on one of the slides in a reverse-color experiment can give
the appearance of unbalanced labelling with one fluorescent dye. For
‘real’ experiments in which information about gene expression is being
sought, reverse color experiments are useful.

M I C R O A R R AY

63-0048-49 ● 148hb

12.2 Experimental design and execution

12.2.1 Experimental variation
Experimental variation must be taken into account when designing and
carrying out microarray experiments (Fig 93). No two microarray
experiments, even if replicas of each other, will give exactly the same
results. Each step of the process contributes to this variation, which may
mask the presence of differential gene expression, leading to false negative
results. If the amount of variation is not known, false positive results can
also be obtained if randomly varying results are taken at face value.

12.2.2 Replication in microarray analysis
Replication is the key to identifying and quantifying variation in
microarray experiments. It has been found that performing three replica
microarray hybridizations with different slides reduced the misclassification
of gene expression compared with performing single hybridizations (64).
Data calculated and pooled from all these replicas enables statistical
determination of experimental variation in terms of standard deviation
and coefficient of variance (CV).

Microarray experiments should contain the following:

■ Each target should be present in at least two, preferably more,
copies on the microarray.

■ Multiple slides should be hybridized with each probe pair.

■ Multiple RNA samples should be obtained for each experimental
condition.

Fig 93. Experimental variation. Four
identical microarray slides were hybridized
simultaneously with equal aliquots of the
same probe. Scatterplots of normalized
gene expression data are shown. Variation
in background fluorescence arising from
uneven slide surfaces was the major
contributing factor to experimental
variation in this case.

0

200

100

150

Slide A Slide B Slide C Slide D

● 149

C H A P T E R 1 2 : T R O U B L E S H O O T I N G M I C R O A R R AY E X P E R I M E N T S

12.2.3 Step controls
Separately monitoring the various steps in microarray analysis, while
lengthening the protocols, provides quality control information. Step
controls also offer the following benefits:

■ Researchers’ resources are used most efficiently, with the
least amount of waste.

■ Problems can be identified on a step-by-step basis, and
most likely causes obtained.

■ Information from intermediate steps allows conclusions
about the overall validity of microarray results to be drawn.

Ideal step controls provide numerical or visual information that
unequivocally characterizes the success of that step. Recommended
control procedures are listed in Table 6. The control measures indicated
in bold should be included in every microarray experiment. Additional
controls are recommended to be performed when new protocols or
reagents are being tested. It is advisable to prepare some extra reagents if
control procedures are performed. Greatest benefits from step controls
are derived when the results are evaluated before continuing with the
experiment.

12.3 Performing microarray analysis
There are several critical points to performing a successful microarray
hybridization experiment. Please take note of the following:

■ Follow all protocols precisely.

■ Be consistent across experiments when several separate
hybridizations are involved.

■ Maintain precise technique when performing the microarray
experiment and analyzing the results.

■ Always use appropriate reagents for each protocol; alterations
can be a source of error in final data analysis.

■ Keep record of individual reagents used in each experiment
as it can be useful in identifying causes of problems.

Table 7 lists some typical problems in microarray analysis and their
likely causes. Most of these problems can be identified and avoided by
following the recommended quality control measures listed in Table 7,
which can also aid in identifying the cause of the problem. Often there
can be several contributing causes to any problem.

M I C R O A R R AY

63-0048-49 ● 150hb

Step Control mearsures

Preparation of cDNA targets by PCR ■ Verify presence of only one band in agarose electrophoresis.
■ Determine quantity of target DNA.
■ Sequence target to verify identity.

Microarray slide coating ■ Scan to detect presence of background fluorescence or
dirt particles.

■ Perform additional surface tests.

Microarray printing ■ Use fluorescent DNA as control for printing quality.
■ Use DNA-binding dyes to detect printing DNA on slide.
■ Perform a test yellow experiment with well-characterized

RNA preparation for each printing batch and especially
when new targets are introduced.

■ Incude plenty of control targets on slide.
■ Note down temperature and humidity of printing chamber.
■ Keep track of how many times targets have been used.
■ Keep track of when slides were printed.

RNA isolation ■ Check purity and integrity of RNA by gel electrophoresis
or RT-PCR.

■ Determine quantity of RNA.

Sample labelling and purification ■ Spike in synthetic control mRNA.
■ Perform control labelling reaction with control RNA.
■ Determine incorporation of CyDye into labelled

sample by spectrophotometry.
■ Determine whether purified sample contains free

CyDye by gel electrophoresis.
■ Determine size of labelled nucleic acid fragments

with gel electrophoresis.
■ Determine the amount of labelled nucleic acid.
■ Determine the amount of CyDye per microgram of

labelled nucleic acid (labelling density).
■ Determine the recovery of labelled cDNA from purification

step by radioactive spiking or gel analysis.

Hybridization and stringency washes ■ Use equal and optimal amounts of Cy3- and Cy5-labelled
probes in the hybridization.

■ Include positive and negative hybridization controls.
■ Perform hybridization without probe.

Scanning ■ Test scanner performance in order to verify
correct functioning.

■ Perform scans at different settings to ensure
optimal data collection.

■ Visually inspect scanned images to detect any
obvious blemishes or areas of poor data.

Data analysis ■ Background correct and normalize data before
drawing conclusions.

■ Examine how well normalization worked.
■ Determine the amount of variation in experiment.
■ Never trust data from one slide.

Verification of microarray results ■ Use independent analytical techniques to verify whether
the results obtained from microarray analysis are
reproducible and biologically significant.

Table 6. Quality control measures for microarray analysis.

● 151

C H A P T E R 1 2 : T R O U B L E S H O O T I N G M I C R O A R R AY E X P E R I M E N T S

Symptom Possible cause Remedy

No hybridization signal. ■ Target concentration too low. ■ Determine target concentration before
slide spotting.

■ Targets not clean enough. ■ Remove PCR components from targets
before slide spotting.

■ Poor retention of targets on slide. ■ Prepare new microarray slides. Check
that spotting buffer and protocol are
compatible with slide type.

■ No transcripts in RNA sample. ■ Obtain new RNA/mRNA sample and
test it before labelling.

■ Failed labelling reaction. ■ Always check the success of labelling
reaction before using it in hybridization.

■ Faulty component in labelling reaction. ■ Test components of labelling reaction
against new reagents. Use control RNA.

■ Loss of probe in purification step. ■ Check success of probe purification
before use.

■ Poor hybridization. ■ Check that hybridization buffer and
protocol are compatible with slide type.

■ Failure of scanning instrument. ■ Test performance of scanner with known
amounts of fluors.

■ Detection sensitivity too low. ■ Adjust detection sensitivity.
■ CyDye have been exposed to light ■ Protect CyDye from light.

during handling.
■ Target genes not expressed in ■ Use housekeeping genes and positive

examined tissue. controls to ascertain proper functioning
of the system.

■ Human error at some stage. ■ Repeat experiment and use step controls
to monitor progress.

Low or undetectable Cy3 and/or ■ Poor retention of targets on slide. ■ Check purity and concentration of
Cy5 signal. Identical probes were hybridized targets. Use slides of different batch.

with two different types of slide that Use different slide type.
contained the same targets
(Fig 94n, 94o).

■ Targets are old. ■ Prepare new targets for spotting.

■ Poor labelling reaction with one dye. ■ Check success of labelling reaction. Check
One or more components faulty in performance of all components of labelling
labelling reaction. reaction such as nucleotides, enzyme and

fluorescent nucleotides or reactive dyes.

■ Loss of probe in purification. ■ Check performance of purification. Do not
purify Cy3 and Cy5 probes together.

■ Unequal amount of Cy3 and Cy5. ■ Use equal amounts of
probes in hybridization.

■ Too little probe in hybridization. ■ Measure the amount of probe before
hybridization. Use more RNA to prepare
probe.

■ Free CyDye in probe. ■ Optimize probe purification.

■ Poor quality RNA sample or samples. ■ Test RNA before labelling.

■ Too much or too little quantity of RNA. ■ Measure amount of RNA before labelling.

■ RNA contaminated by DNA. ■ Use DNAse I to remove DNA.

Table 7. Troubleshooting microarray experiments,

M I C R O A R R AY

63-0048-49 ● 152hb

Symptom Possible cause Remedy
■ Hybridization conditions not optimal. ■ Check compatibility of hybridization

buffer and slide surface. Use lower
hybridization stringency.

■ High background in hybridization. ■ Use slides of a different batch.
Optimize hybridization and wash
protocol.

■ Overexposure of Cy3 and Cy5 to light ■ Protect CyDye from light always.
during storage and handling.

■ Laser source not working optimally. ■ Check laser performance.

■ Detection sensitivity not optimal. ■ Optimize laser power and detection
sensitivity settings.

■ Detection sensitivity not optimal. ■ Optimize laser power and detection
sensitivity settings.

■ Human error. ■ Repeat experiment with step controls.

Unbalanced Cy3 and ■ Too high labelling density leading to ■ Label to a lower density.
Cy5 signals. quenching of one fluorescent dye.

■ Too much CyDye nucleotide in ■ Use less CyDye nucleotide.
labelling reaction.

■ Too much of one probe in hybridization ■ Optimize the amount of probe in hybridization.
leading to quenching. Measure the amount of probe in hybridization.

■ Some nucleotide sequences label poorly. ■ Use a different labelled nucleotide.
Use a different labelling method.

■ Poor or variable quality of RNA ■ Use good quality RNA for labelling.
sample/samples. Biological variation Use pooled RNA samples.
in RNA samples.

■ High fluorescent background in . ■ See separate entry.
one color.

■ Normalization method is not adequate. ■ Use a different normalization method.

■ High amount of variation in experiment. ■ Optimize and standardize experimental
conditions to reduce amount of variation.

High background, weak ■ Poor labelling reaction. ■ Check success of labelling reaction
specific signals. before hybridization.

■ Random nonamers used for labelling ■ Prepare probe with oligo(dT) primer.
total RNA.

■ Probe fragments very short. ■ Use good quality RNA. Check purity
of RNA. Re-purify RNA.

Uneven fluorescent background ■ Poor slide quality with an uneven ■ Use slides of a different batch. Optimize slide
on slide. coating. Often background is higher surface treatment protocol. Use different

on one side of slide (Fig 94a). source of microscope slides.

■ Fluorescent background from ■ Optimize wash protocol. Include water dip at
pre-hybridization or the end. Dry slides quickly.
hybridization solution (Fig 94f).

Table 7 cont’d. Troubleshooting microarray experiments.

● 153

C H A P T E R 1 2 : T R O U B L E S H O O T I N G M I C R O A R R AY E X P E R I M E N T S

Symptom Possible cause Remedy
■ Salts in wash buffer dried onto ■ Dip slide into water before drying.

dried onto slide (Fig 94b).

■ Powder from lab gloves adheres ■ Handle slides using powder-free gloves.
to slide.

■ Edge of coverslip has dried during ■ Perform hybridization under humid
manual hybridization (Fig 94m). conditions.

Most spots give high ■ High amount of unspecific signals. ■ Increase stringency of hybridization
uniform signal. and washes.

Even fluorescent background. ■ Poor slide quality (Fig 94g, 94i). ■ Use slides from different batch.
Use different source of microscope slides.

■ Too much probe used in hybridization. ■ Quantify probe before use.

■ Over labelling of sample. ■ Optimize amount of probe to use.
Optimize labelling density.

Speckled background on slide. ■ CyDye nucleotides remain in probe ■ Optimize purification of probe.
(Fig 94d). Check probe for presence of free CyDye.

Particles seen on slide. ■ Dust particles have been fixed ■ Always handle slides in clean environment.
onto slide. Use air stream to remove any dust particles

from dry slides before spotting and use.

■ Slide surface is scratched (Fig 94p). ■ Handle slides with care using forceps.

■ Finger prints seen on slide. ■ Never touch slides with bare hands.

Bubble effect on slide. ■ Air has been trapped under ■ Remove air bubbles from hybridization.
coverslip (Fig 94c).

Spots appear as comets ■ Hybridized probe is coming loose ■ Optimize wash conditions. Dry slides
with tails. during low stringency wash/water quickly after washes and water dip.

dip (Fig 94j).

Deformed spots. ■ Doughnut spots (Fig 94l). ■ Control humidity of spotting process.

■ Tiny spots.(Fig 94e). ■ Test printing pen performance.

■ Variably sized spots (Fig 94k). ■ Wrong spotting buffer for slide
chemistry.

■ Negative spots caused by slide ■ Use slides of a different batch.
background which is higher than
hybridization signals (Fig 94h).

Table 7 cont’d. Troubleshooting microarray experiments.

M I C R O A R R AY

63-0048-49 ● 154hb

c)

f)

i)

a) b)

d) e)

g) h)

Fig 94. Troubleshooting microarray experiments.

● 155

C H A P T E R 1 2 : T R O U B L E S H O O T I N G M I C R O A R R AY E X P E R I M E N T S

j)

m)

p)

k) l)

n) o)

M I C R O A R R AY

63-0048-49 ● 156hb

● 157

R E F E R E N C E S

References

References cited in text
1. Baldwin, D. et al. A comparison of gel-based, nylon filter and

microarray techniques to detect differential RNA expression in
plants. Curr Opinions in Biol. 2, 96–103 (1999).

2. Watson, A. et al. Technology for microarray analysis of
gene expression. Current Opinions in Biotech. 9 609–614 (1998).

3. Schena, M. et al. Microarrays: Biotechnology’s discovery platform
for functional genomics. Trends in Biotech. 16, 301–306 (1998).

4. Kozian, D. H. and Kirschbaum, B. J. Comparative gene expression
analysis. Trends in Biotech. 17, 73–78 (1999).

5. Braxton, S. and Bedilion, T. The integration of microarray
information in the drug development process. Current Opinions
in Biotech. 9, 643–649 (1998).

6. Mirnics, K. et al. Analysis of complex brain disorders with gene
expression microarrays: Schizophrenia as a disease of the synapse.
Trends in Neuroscience 24, 479–486 (2001).

7. Schulze, A. and Downward, J. Navigating gene expression using
microarrays — a technology review. Nature Cell Biology 3,
e190–e195 (2001).

8. Van Berkum, N. L. and Holstege, F. C. P. DNA microarrays: raising
the profile. Current Opinions in Biotech. 12, 48–52 (2001).

9. Alizadeh, A. A. et al. Towards a novel classification of human
malignancies based on gene expression patterns. J Pathol. 195(1),
41–52 (2001).

10. DeRisi, J. et al. Use of cDNA microarray to analyze gene expression
patterns in human cancer. Nature Genetics 14, 457–460 (1996).

11. Rew, D. A. DNA microarray technology in cancer research.
European Journal of Surgical Oncology 27, 504–508 (2001).

12. Shoemaker, D. D. et al. Experimental annotation of the human
genome using microarray technology. Nature 409, 922–927 (2001).

13. Lieb, J. D. et al. Promoter-specific binding of Rap1 revealed by
genome-wide maps of protein-DNA association. Nature Genetics 28,
327–334 (2001).

14. Hu, G. K. et al. Predicting splice variant from DNA chip expression
data. Genome Research 11, 1237–1245 (2001).

M I C R O A R R AY

63-0048-49 ● 158hb

15. Meltzer, P. S. Spotting the target: microarrays for disease gene
discovery. Current Opin in Genetics and Dev. 11, 258–263 (2001).

16. Sapolsky, R. J. et al. High-throughput polymorphism screening and
genotyping with high-density oligonucleotide arrays. Genet Anal.
14(5-6), 187–92 (1999).

17. Larsen, L. A. et al. Recent developments in high-throughput
mutation screening. Pharmacogenomics 2(4), 38799 (2001).

18. Drobyshev, A. et al. Sequence analysis by hybridization with
oligonucleotide microchip: identification of beta-thalassemia
mutations. Gene 188(1), 45–52 (1997).

19. Lockhardt, D. J. and Winzeler, E. A. Genomics, gene expression
and DNA arrays. Nature 405, 827–836 (2000).

20. Jain, K. K. Applications of biochip and microarray systems in
pharmacogenomics. Pharmacogenomics 1, 289–307 (2000).

21. Gray, N. S. et al. Exploiting chemical libraries, structure and
genomics in the search for kinase inhibitors. Science 281,
533–538 (1998).

22. Kane, M. D. et al. Assessment of the sensitivity and specificity
of oligonucleotide (50mer) microarrays. Nucleic Acids Res. 28,
4552–4557 (2000).

23. Li, F. and Stormo, G. D. Selection of optimal DNA oligos for gene
expression arrays. Bioinformatics 17, 1067–1076 (2001).

24. Lockhart, D. J. et al. Expression monitoring by hybridization to
high-density oligonucleotide arrays. Nat Biotech. 14(13), 1675–1680
(1996).

25. Schena, M. et al. Parallel human genome analysis: Microarray-based
expression monitoring of 1000 genes. Proc. Natl. Acad. Sci. 93,
10614–10619 (1996).

26. Schepinov, M. S. et al. Steric factors influencing hybridization of
nucleic acid to oligonucleotide arrays. Nucl Acids Res. 25,
1155–1161 (1997).

27. Schena, M. et al. Microarrays: biotechnology's discovery platform
for functional genomics. Trends Biotechnol. 17, 217–218 (1997).

28. Welford, S. M. et al. Detection of differentially expressed genes in
primary tumor tissues using representational differences analysis
coupled to microarray hybridization. Nucleic Acids Res. 26,
3059–65 (1998).

● 159

R E F E R E N C E S

29. Penn, S. G. et al. Mining the human genome using microarrays
of open reading frames. Nat Genet 2000 26, 315–318 (2000).

30. Hedge, P. et al. A concise guide to cDNA microarray analysis.
BioTechniques 29, 548–562 (2000).

31. Knight, J. When the chips are down. Nature 410, 860–861 (2001).

32. Taylor, E. et al. Sequence verification as quality control.
Biotechniques 31, 62–65 (2001).

33. Schuchhardt, J. et al. Normalization strategies for cDNA
microarrays. Nucl. Acids Res. 28, e47 (2000).

34. Yamanaka, Y. et al. Gene expression profiles of human small airway
epithelial cells treated with low doses of 14- and 16-membered
macrolides. Biochem. Biophys. Res. Comm. 287, 198–203 (2001).

35. Lipschutz, R. J. et al. High density synthetic oligonucleotide arrays.
Nature genetics 21(supplement), 20–24 (1999).

36. Zammatteo, N. et al. Comparison between different strategies of
covalent attachment of DNA to glass surfaces to build DNA
microarrays. Anal Biochem. 280(1), 143–50 (2000).

37. Worley, J. et al. Microarray Biochip Technology (Schena, M., ed.),
Eaton Publishing/BioTechniques Books, Natick, MA, pp. 65–85
(2000).

38. DeRisi, J. L. et al. Exploring the metabolic and genetic control of
gene expression on genomic scale. Science 278, 680–686 (1997).

39. Fodor, S. P. et al. Light-directed, spatially addressable parallel
chemical synthesis. Science 251, 767–73 (1991).

40. Mujumdar, R. B. et al. Cyanine dye labeling reagents:
sulfoindocyanine succinimidyl esters. Bioconjug Chem. 4(2),
105–11 (1993).

41. Yu, H. et al. Cyanine dye dUTP analogs for enzymatic labeling of
DNA probes. Nucleic Acids Res. 22, 3226–32 (1994).

42. Sambrook, J. et al. Molecular Cloning: A Laboratory Manual, Cold
Spring Harbor Laboratory Press, Cold Spring Harbor, New York
(1989).

M I C R O A R R AY

63-0048-49 ● 160hb

43. Ausubel, F. M., Current Protocols in Molecular Biology, Greene
Publishing Associates and Wiley-Interscience, New York (2000).

44. Gruffat, D. et al. Comparison of four methods for isolating large
mRNA: Apolipoprotein B mRNA in bovine and rat livers. Anal
Biochem. 249, 77–83 (1996).

45. Rosenow, C. et al. Prokaryotic RNA preparation methods useful
for high density array analysis: comparison of two approaches.
Nucl. Acid Res. 29, e112 (2001).

46. (Farrell, R. E., ed.), RNA Methodologies, A laboratory guide for
Isolation and Characterization, Academic Press, Inc., New York,
pp. 125–157 (1997).

47. Randolp, J. B. and Waggoner, A. S. Stability, specificity and
fluorescence brightness of multiply-labeled fluorescent DNA
probes. Nucl Acid Res. 25, 2923–2929 (1997).

48. Smoot L. M. et al. Global differential gene expression in response to
growth temperature alteration in group A Streptococcus. Proc. Natl.
Acad. Sci. 98, 10416–421 (2001).

49. Talaat A. M. et al. Genome-directed primers for selective labeling of
bacterial transcripts for DNA microarray analysis. Nature Biotech.
18, 679–682 (2000).

50. Van Gelder, R. N. et al. Amplified RNA synthesized from limited
quantities of heterogeneous cDNA. Proc Natl Acad Sci. 87,
1663–1667 (1990).

51. Eberwine, J. H. et al. Analysis of gene expression in single live
neurons. Proc Natl Acad Sci. 89, 3010–3014 (1992).

52. Luo, L. et al. Gene expression profiles of laser-captured adjacent
neuronal subtypes. Nature Medicine 5, 117–122 (1999).

53. Herrler, M. Use of SMART-generated cDNA for differential gene
expression. J Molecular Medicine 78, B23 (2000).

54. Southern, E. M. Detection of specific sequences among DNA
fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503
(1975).

55. Casey, J. and Davidson, N. Rates of formation and thermal
stabilities of RNA:DNA and DNA:DNA duplexes at high
concentrations of formamide. Nucleic Acids Res. 4, 1539–1551
(1977).

● 161

R E F E R E N C E S

56. Southern, E. et al. Molecular interactions on microarrays. Nat
Genet. 21(1 Suppl), 5–9 (1999).

57. O’Shea, D., in Introduction to Lasers and their applications,
Addison-Wesley, Reading, MA, pp. 51–78 (1978).

58. Smith, W. J., in Modern Optical Engineering, McGraw Hill, Boston,
MA, pp. 142–145 (1990).

59. Skoog, D. A. et al., in Principles of Instrumental analysis, Harcourt
Brace, Philadelphia, p. 108 (1998).

60. Gonzalez, R. C. and Woods, R. E., in Digital Image Processing,
Addison-Wesley, Reading, MA, pp. 31–37 (1978).

61. Brazma A. et al. One-stop shop for microarray data. Nature. 403,
699–700 (2000).

62. Brazma, A. and Vilo, J. Gene expression data analysis. FEBS Letters
480, 17–24 (2000).

63. Brazma, A. et al. Minimum information about a microarray
experiment (MIAME) — toward standards for microarray data.
Nature genetics. 29, 365–371 (2001).

64. Lee, M. et al. Importance of replication in microarray gene
expression studies: Statistical methods and evidence from repetitive
cDNA hybridizations. Proc Natl Acad Sci. 97, 9834–9839 (2000).

65. Bernard, K. et al. Multiplex messenger assays: simultaneous,
quantitative measurement of expression of many genes in the context
of T cell activation. Nucl Acids Res. 24, 1435–1442 (1996).

66. Yue, H. et al. An evaluation of the performance of cDNA
microarrays for detecting changes in global mRNA expression.
Nucleic Acids Res. 29, e41 (2001).

67. Tseng, G. C. et al. Issues in cDNA microarray analysis: quality
filtering, channel normalization, models of variations and
assessment of gene effects. Nucl. Acids Res. 29, 2549–2557 (2001).

68. Hemmilä, I.A., Applications of Fluorescence in Immunoassays,
John Wiely and Sons, Inc. New York (1991).

M I C R O A R R AY

63-0048-49 ● 162hb

Product Quantity Code Number

Microarray probe preparation
CyScribe First-Strand cDNA Labelling Kit 25 reactions RPN6200
CyScribe First-Strand cDNA Labelling Kit 25 reactions RPN6200X
with CyScribe GFX Purification Kit
CyScribe First-Strand cDNA Labelling System-dUTP 50 reactions RPN6201
CyScribe First-Strand cDNA Labelling System-dUTP 50 reactions RPN6201X
with CyScribe GFX Purification Kit
CyScribe First-Strand cDNA Labelling System-dCTP 50 reactions RPN6202
CyScribe First-Strand cDNA Labelling System-dCTP 50 reactions RPN6202X
with CyScribe GFX Purification Kit
CyScribe Post-Labelling Kit 24 reactions RPN5660
CyScribe Post-Labelling Kit with CyScribe 24 reactions RPN5660X
GFX Purification Kit
CyScribe Direct mRNA Labelling Kit 24 reactions RPN5665
Cy3-dCTP 25 nmol PA53021
Cy5-dCTP 25 nmol PA55021
Cy3-dUTP 25 nmol PA53022
Cy5-dUTP 25 nmol PA55022
Cy3-UTP 100 nmol PA53026
Cy5-UTP 100 nmol PA55026
CyDye Post-Labelling Reactive Dye Pack 24 reactions RPN5661

Lucidea brand products
Lucidea Array Spotter 1 63-0040-09
Lucidea SlidePro Module 1 1 18-1162-01
Lucidea SlidePro Module 2 1 18-1162-02
Lucidea SlidePro Module 3 1 18-1162-03
Lucidea SlidePro Module 4 1 18-1162-04
Lucidea SlidePro Module 5 1 18-1162-05
Lucidea Automated Spotfinder 1 63-0038-18
Lucidea Universal ScoreCard 200 hybridizations 63-0042-85
Lucidea Reflective Slides Available soon

Microarray scanning systems
Typhoon 9610 Variable Mode Imager 1 63-0038-55

● 163

O R D E R I N G I N F O R M AT I O N

Product Quantity Code Number

Image analysis software
ArrayVision for Scanners 1 ARV-100
Spotfire DecisionSite for Functional Genomics 1 63-0036-56
ImageQuant Solutions for Windows 2000 for Scanners 1 63-0035-16

Bioinformatics products
Scierra Microarray Laboratory Workflow System

Electrophoresis systems
Ready-to-Run Separations Unit 1 80-6460-95

RNA purification products
RNase-free water 500 ml US70783
QuickPrep Total RNA Extraction Kit 1 27-9271-01
RNA Extraction Kit 1 27-9270-01
QuickPrep Micro mRNA Purification Kit 1 27-9255-01

Spectrophotometry products
Ultraspec 3300 pro UV/Visible Spectrophotometer 1 80-2112-33

Hybridization equipment and reagents
Microarray Hybridization Solutions version 2 1 RPK0325
Humid Hybridization Cabinet for microarrays 1 RPK0176
SSC 20� 100 ml US19629
SDS 20% 500 ml US75832

Other
Hybond-N+ Membrane 50 RPN82B
Vistra Green Nucleic Acid Stain 500 ml RPN5786
RapidGel-XL - 6% 100 ml US75861
RapidGel-XL - 8% 100 ml US75862
ALFexpress Sizer 50-500 50 27-4539-01
TBE Buffer Pre-mixed Powder 10� 6 bottles US70454

M I C R O A R R AY

63-0048-49 ● 164hb

A

aldehyde 23-24

ALFexpress Sizer 89

algorithms 11, 130

aminosilane 13, 23, 25

ArrayVision 130, 132

AutoSeq 70

B

bacterial RNA 46-47, 57

beamsplitters, fluorescence 125

bioinformatics 141

C

characterizing labelled probe
spectrophotometry 81-84
thin layer chromatography 84-87
PAGE 90

chromatography 27, 48, 85-86, 89

clustering 129, 139-140

confocal scanning 115, 117

contact printing 2, 10, 21

controls 4-15, 104, 108-109,
127-129, 133-138, 149

CyDye Fluorophores 34-37

CyDirect 77, 79

CyScribe First-Strand cDNA
Labelling Kits 70-72

CyScribe Post-Labelling Kit 73-76

CyScribe Direct mRNA Labelling
Kit 77

CyScribe GFX Purification Kits 70

D

data analysis 129

deposition 10, 13, 18, 20-22, 24

differential gene expression 6-7, 38,
51, 54, 69, 74-75, 105, 147-148

DNA fragments
as genetic content 10-13

E

electrophoresis 13, 48, 81, 89, 90, 91

eurkaryotic 46, 55, 57

extinction coefficient 30-31, 37, 81, 83

experimental design 148-149

F

fluorescence
detection 38-39, 89-91, 114,
124-125
excitation 30, 112-114
emission 30
collection of 116-117
filtration 118-123
intensity 130
variation 148

Index

● 165

I N D E X

fluorescent dyes 4-5, 7, 29, 32, 34,
38, 54, 59, 61, 64, 70, 100, 120,
147

fluorochrome 29, 38-39, 111-112,
114, 120-124

fluorophore 29, 30-34, 38-39, 53

H

housekeeping genes 14, 135, 137

hybridization
manual 95-101
automated 103-109

I

image analysis 130-131

ImageQuant Image and Analysis
Software 87

L

labelling density 7, 33, 53-55, 61, 64,
68-69, 72-73, 78-79, 88

labelling methods 55-57
enzymatic 58-59
first-strand synthesis 60-61
cDNA post-labelling 62-65

Lucidea Array Spotter 22

Lucidea Automated Spotfinder 130,
132

Lucidea Reflective Slides 26, 102

Lucidea SlidePro Hybridizer 22, 103

Lucidea Universal ScoreCard 22, 14,
136

M

melting temperature 96

microarray
applications 6-8
bioinformatics 141-142
hybridization 5, 94-104
slides 23-26, 101-102

N

normalization 15, 129, 135-139

O

oligo(dT) 46-47, 49, 56-57, 60, 66,
71-73, 133

oligonucleotides 2, 8-11, 14-15
deposition 18, 24-25
synthesis 17-18

open reading frames 8, 12

P

photobleaching 31, 39, 100

photolithography 2,18

piezoelectric printing 20

poly-lysine 23, 25

post-labelling 62-65, 73-76, 79

probe labelling 4

prokaryotic 47

M I C R O A R R AY

63-0048-49 ● 166hb

Q

quality controls 150

quantum yield 30-31

quenching 33-34, 53-55, 61, 82

R

radioactive spiking 84-85, 89

random priming 56-57, 69, 71-73

reflective slides 26, 97, 102

relative fluorescence units (RFU) 39

reverse trancriptase 1, 49, 60, 63,
65-67, 73, 137

ribonuclease enzymes 41-43, 47, 79

RNA
contamination 41-43, 46, 49, 79
degradation 41-44, 48-49
isolation 45-49
measurement 48

RNA ampification 66-68

S

saturation 38, 98, 122, 136

scanners 39, 81, 89, 111-116,
119-124

Scierra Laboratory Workflow System
141-142

signal-to-noise ratios 105, 138

specificity 11-12, 15, 52, 57

spectrophotometry 81-84

spot morphology 19-20, 23, 131

spotfinding software 132

Spotfire DecisionSite for Functional
Genomics 140

stokes shift 30, 32

syringe-solenoid deposition 20

T

target nucleic acids 27

target sequences 9, 11-12, 14, 52,
55-56, 133, 146

troubleshooting 151-155

Typhoon Imager 86, 89, 91, 125

V

visualization software 140

Y

yellow experiment 55, 147

Microarrays

A microarray is a pattern of ssDNA probes which are immobilized on a surface (called a chip
or a slide). The probe sequences are designed and placed on an array in a regular pattern of
spots. The chip or slide is usually made of glass or nylon and is manufactured using
technologies developed for silicon computer chips. Each microarray chip is arranged as a
checkerboard of 105 or 106 spots or features, each spot containing millions of copies of a
unique DNA probe (often 25 nt long).

Like Southern & northern blots, microarrays use hybridization to detect a specific DNA or
RNA in a sample. But whereas a Southern blot uses a single probe to search a complex
DNA mixture, a DNA microarray uses a million different probes, fixed on a solid surface, to
probe such a mixture. The exact sequence of the probes at each feature/location on the
chip is known. Wherever some of the sample DNA hybridizes to the probe in a particular
spot, the hybridization can be detected because the target DNA is labeled (and unbound
target is washed away). Therefore one can determine which of the million different probe
sequences are present in the target.

{NOTE: In a Southern, the target DNA is immobilized on a membrane; in a microarray, the
probes are fixed to the slide or chip. In a Southern, the probe is labeled; in a microarray, the
DNA being studied is labeled.}

Additionally, the amount of signal directly depends on the quantity of labeled target DNA.
Thus microarrays can give a quantitative description of how much of a particular sequence
is present in the target DNA. This is particularly useful for studying gene expression, one
common application of microarray technology.

Obviously, microarrays must be read mechanically, using a laser and detector. Good
software for interpreting the raw data is crucial (as one can imagine a long list of sources of
error in reading the individual spots, including nonspecific hybridization and background
fluorescence).

To study gene expression, mRNA is isolated from the cells of interest and converted into
labeled cDNA. This cDNA is then washed over a microarray carrying features representing
all the genes that could possibly be expressed in those cells. If hybridization occurs to a
certain feature, it means the gene is expressed. Signal intensity at that feature/spot indicates
how strongly the gene is expressed (as it is a sign of how much mRNA was present in the
original sample). One can therefore study gene expression in an entire cell (not just for one
or two genes) under various conditions, over time, or in normal vs. diseased cells.

Microarrays are sensitive enough to detect single base differences, mutations, or SNPs
(single nucleotide polymorphisms). This makes them useful for a wide range of applications,
for example: identifying strains of viruses; identifying contamination of food products with
cells from other plants or animals; detecting a panel of mutations in a patient’s cancer cells
that may influence the disease’s response to treatment.

Protein microarrays are also being developed to allow massive screening for interactions
between proteins on the microarray, and other proteins, substrates, or ligands.

From Affymetrix, makers of the GeneChip brand DNA microarrays: “Monitoring gene expression lies at the
heart of a wide variety of medical and biological research projects, including classifying diseases, understanding
basic biological processes, and identifying new drug targets. Until recently, comparing expression levels across
different tissues or cells was limited to tracking one or a few genes at a time. Using microarrays, it is possible to

simultaneously monitor the activities of
thousands of genes (see Figure 1).

Figure 1. Standard eukaryotic gene
expression assay. The basic concept behind
the use of GeneChip microarrays for gene
expression is simple: labeled cDNA or cRNA
targets derived from the mRNA of an
experimental sample are hybridized to nucleic
acid probes attached to the solid support. By
monitoring the amount of label associated with
each DNA location, it is possible to infer the
abundance of each mRNA species
represented. Although hybridization has been
used for decades to detect and quantify
nucleic acids, the combination of the
miniaturization of the technology and the large
and growing amounts of sequence
information, have enormously expanded the
scale at which gene expression can be
studied.

Global views of gene expression are often essential for obtaining comprehensive pictures of cell function. For
example, it is estimated that between 0.2 to 10% of the 10,000 to 20,000 mRNA species in a typical mammalian
cell are differentially expressed between cancer and normal tissues. Understanding the critical relative changes
among all the genes in this set would be impossible without the use of whole-genome analysis. Whole-genome
analyses also benefit studies where the end goal is to focus on small numbers of genes, by providing an
efficient tool to sort through the activities of thousands of genes, and to recognize the key players. In addition,
monitoring multiple genes in parallel allows the identification of robust classifiers, called "signatures", of disease.
Often, these signatures are impossible to obtain from tracking changes in the expression of individual genes,
which can be subtle or variable. Global analyses frequently provide insights into multiple facets of a project. A
study designed to identify new disease classes, for example, may also reveal clues about the basic biology of
disorders, and may suggest novel drug targets.”

http://www.bio.davidson.edu/courses/genomics/chip/chip.html

LEFT: Affymetrix GeneChip
raw data

RIGHT: Actual data for a yeast
gene expression microarray

IMPORTANT TO UNDERSTAND:

The yeast gene expression microarray above (with yellow, green & red spots) is an example of a
comparison of gene expression between two conditions (in this case, yeast grown in the presence and
absence of oxygen). This microarray would tell you about changes in gene expression during
fermentation vs. oxidative respiration.

• Isolate mRNA from yeast grown aerobically; make cDNA and label RED
• Isolate mRNA from yeast grown anaerobically; make cDNA and label GREEN
• Wash BOTH cDNAs onto appropriate yeast microarray
• Analyze data

*Red spot = this gene was expressed ONLY under aerobic conditions
*Green spot = this gene was expressed ONLY under anaerobic conditions
*Yellow spot = this gene was expressed under BOTH conditions
*Black spot = no gene expression under either condition

If you are interested in how Affymetrix makes their GeneChips (proprietary name for Affymetrix
product) using photolithography, you’ll find an easy to read students’ description at:

http://www.affymetrix.com/corporate/outreach/lesson_plan/downloads/student_manual_activitie
s/activity3/activity3_manufacturing_background.pdf

Note that there is a competing method for microarray synthesis, pioneered by Stanford University.
You can probably find information at their Stanford Microarray Database.

Nature Protocols

Systematic and Integrative Analysis of Large Gene Lists Using DAVID

Bioinformatics Resources

Da Wei Huang
1
, Brad T. Sherman

1
, Richard A. Lempicki

*

Laboratory of Immunopathogenesis and Bioinformatics, Clinical Services Program,

SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702.

1
 These authors contributed equally to this study.

* Correspondence: Dr. Richard A Lempicki.

E-mail: rlempicki@mail.nih.gov

Ph. (301) 846-5093

Lab Web Site: http://david.niaid.nih.gov or http://david.abcc.ncifcrf.gov

Lab Fax: (301) 846-6762

E-mail Addresses for Authors:

Da Wei Huang huangdawei@mail.nih.gov

Brad T. Sherman bsherman@mail.nih.gov

Richard A Lempicki rlempicki@niaid.nih.gov

mailto:rlempicki@niaid.nih.gov
http://david.niaid.nih.gov/
http://david.abcc.ncifcrf.gov/
mailto:huangdawei@niaid.nih.gov
mailto:bsherman@niaid.nih.gov
mailto:rlempicki@niaid.nih.gov

2

ABSTRACT

DAVID Bioinformatics Resources (DAVID) at http://david.abcc.ncifcrf.gov

consists of an integrated biological knowledgebase and analytic tools aiming at

systematically extracting biological meaning from large gene/protein lists. This protocol

explains how to use DAVID, a high throughput and integrated data mining environment,

to analyze gene lists derived from high throughput genomic experiments. The procedure

first requires uploading a gene list containing any number of common gene identifiers

followed by analysis using one or more text and pathway mining tools such as Gene

Functional Classification, Functional Annotation Chart or Clustering, and Functional

Annotation Table. By following this protocol, investigators are able to gain an in-depth

understanding of the biological themes in lists of genes that are enriched in genome-scale

studies.

SEARCH TERMS

Computational Biology; Bioinformatics; Genomics; Microarray data analysis; Bio-

knowledge databases; Gene functional annotation; High throughput gene functional

analysis; Gene functional classification.

3

INTRODUCTION

High-throughput genomic, proteomic and bioinformatics scanning approaches,

such as, expression microarray, promoter microarray, proteomic data, and ChIP-on-

CHIPs, provide significant capabilities to study a large variety of biological mechanisms

including associations with diseases. These technologies usually result in a large

'interesting' gene list (ranging in size from hundreds to thousands of genes) involved in

studied biological conditions. Data analysis of the large gene lists is a very important

downstream task following the above example high throughput technologies in order to

understand the biological meaning of the output gene lists. The data analysis of such high

complex and large volume datasets is a challenging task, which requires support from

special bioinformatics software packages. In this protocol, we introduce DAVID (the

Database for Annotation, Visualization and Integrated Discovery) Bioinformatics

Resources
1,2

, which is able to extract biological features/meaning associated with large

gene lists. DAVID is able to handle any type of gene list, no matter which genomic

platform or software package generated them.

DAVID, released in 2003
2,3

, as well as a number of other similar publicly

available tools, including, but not limited to, GoMiner
4
, GOstat

5
, Onto-express

6
,

GoToolBox
7
, FatiGO

8
, GFINDer

9
, GOBar

10
, and GSEA

11
, (See Supplementary Data 1

for a complete list), address various aspects of the challenge of functionally analyzing

large gene lists. Although each tool has distinct features and strengths, as reviewed by

Khatri et al.
12

, they all adopt a common core strategy to systematically map a large

number of interesting genes in a list to the associated biological annotation (e.g. Gene

Ontology Terms), and then statistically highlight the most over-represented (enriched)

4

biological annotation out of thousands of linked terms and contents. Enrichment analysis

is a promising strategy that increases the likelihood for investigators to identify biological

processes most pertinent to the biological phenomena under study.

 The analysis of large gene lists is indeed more of an exploratory, computational

procedure rather than a purely statistical solution. As compared to other similar services,

DAVID provides some unique features and capabilities, such as, an integrated and

expanded backend annotation database
13

, advanced modular enrichment algorithms
14

, and

powerful exploratory ability in an integrated data mining environment
1
. Even though

users can learn more in-depth information about DAVID algorithms in our original

publications
1-3,13-15

, we now briefly summarize the rationale regarding the key DAVID

modules, as well as the analytic limitations (also see Table 1 for across comparisons), so

that readers may be able to quickly follow the protocol.

Large Gene Lists Ready for Functional Analysis by DAVID

 In this protocol, we use a previously published gene list
16

 (Supplementary Data 2)

as an example to illustrate the results obtained from the various DAVID analytic

modules. To obtain this list, freshly isolated peripheral blood mononuclear cells

(PBMCs) were treated with an HIV envelope protein (gp120) and genome-wide gene

expression changes were observed using Affymetrix U95A microarray chips
16

. The aim

of the experiment was to investigate cellular responses to viral envelope protein infection,

which may help in understanding the mechanisms for HIV replication in resting or sub-

optimally activated PBMCs.

5

 The quality of large gene lists derived from high-throughput biological studies is

one of the most important foundations that directly influences the success of the

following functional analysis in DAVID. Due to the complexity of the data mining

situations involved in biological studies, there is no good systematic way, at the present

time, to quantitatively estimate the quality of the gene list ahead of time (i.e. before the

gene functional analysis). However, based on real-life data analysis experiences during

the past several years, a 'good' gene list may exhibit most, if not all of following

characteristics:

1) Contain many important genes (marker genes) as expected for given study (e.g. IL8,

CCL4, and TNFSF8 from the example gene list)

2) Reasonable number of genes ranging from hundreds to thousands (e.g. 100 to 2000

genes), not extremely low or high.

3) Most of the genes significantly pass the statistical threshold (e.g. selecting genes by

comparing gene expression between control and experimental cells with t-test statistics:

fold changes >=2 and P-values <=0.05) for selection. Importantly, statistical thresholds

do not have to be sacrificed (e.g. fold changes >=1.1 and p-value<=0.2) in order to reach

a comfortable gene size.

4) Notable portion of up/down-regulated genes are involved in certain interesting

biological processes, rather than randomly spread throughout all possible biological

processes.

5) A 'good' gene list should consistently contain more enriched biology than that of a

random list in the same size range during analysis in DAVID (Supplementary Data 3 for

detailed discussions).

6

6) High reproducibility (e.g. by independent experiments under the same conditions or by

leave-one-out statistical test) to generate a similar gene list under the same conditions.

7) The high quality of the high-throughput data can be confirmed by other independent

wet lab tests/experiments.

Some of the estimating points (2, 3, 6, & 7) come from upstream analysis while DAVID

may help in examining others (1, 4 & 5).

Moreover, for enrichment analysis, in general, a larger gene list can have higher

statistical power resulting in a higher sensitivity (more significant p-values) to slightly

enriched terms, as well as to more specific terms. Otherwise, the sensitivity is decreased

toward largely enriched terms and broader/general terms. Although the size of the gene

list influences (in a non-linear way) the absolute enrichment p-values, which makes it

difficult to directly compare the absolute enrichment p-values across gene lists, the

enrichment p-values are fairly comparable within the same or same size of gene list. In

addition, when different sizes of gene lists are generated from the same dataset with

different threshold stringencies (within a reasonable range), the absolute enrichment p-

values may vary from list to list. However, the relative rank/order of the enriched terms

may remain fairly stable, which will lead to consistent global conclusions of functional

annotations across the different sizes of gene lists derived from the same dataset (data not

shown). This kind of reproducibility and consistency should be expected using DAVID

tools if the underlying high-throughput biological studies are robust.

Interestingly, we found that many gene lists input to DAVID are in the size range

of 1 to 10 genes. The enrichment statistic‟s power will be very limited in such extreme

cases. However, the unique exploratory capability of DAVID could still be very powerful

7

for analyzing such small gene lists. Since the analysis is most likely in a very focused and

small scope, analysts may take advantage of the unique exploratory capability of DAVID

to navigate through all of the well organized heterogeneous annotation contents around

the focused genes regardless of the statistics.

Submission of User’s Gene Identifiers to DAVID

Comprehensively mapping a user‟s gene identifiers (gene IDs) to the relevant

biological annotation in the DAVID database is an essential foundation for the success of

any high-throughput gene functional analysis. Gene IDs and biological annotations are

highly redundant within the vast array of public databases. The DAVID

Knowledgebase
13

, was designed to collect and integrate diverse gene identifiers as well

as more than 40 well-known publicly available annotation categories (Supplementary

Data 4), which are then centralized by internal DAVID identifiers in a non-redundant

manner. The wide range of biological annotation coverage and the non-redundant

integration of gene IDs in the DAVID Knowledgebase enables a user‟s gene ID to be

mapped across the entire database, thus providing comprehensive coverage of gene-

associated annotation. If a significant portion (>=20%) of input gene IDs fail to be

mapped to an internal DAVID ID, a specially designed module, the DAVID Gene ID

Conversion Tool
15

, will start up in order to help map such IDs.

Principle of 'Gene Population Background' in enrichment analysis

8

 The principle foundation of enrichment analysis is that if a biological process is

abnormal in a given study, the co-functioning genes should have a higher potential

(enriched) to be selected as a relevant group by the high-throughput screening

technologies. To decide the degree of enrichment, a certain background must be set up in

order to perform the comparison (also see Step 1 in Table 2). For example, 10% of the

user's genes are kinases vs. 1% of the genes in the human genome (this is the gene

population background) that are kinases. The enrichment can therefore be quantitatively

measured by some common and well-known statistical methods including Chi-square,

Fisher's exact test, Binomial probability, and Hypergeometric distribution. Thus, a

conclusion may be obtained for the particular example, that is, kinases are enriched in the

user's study, and therefore play important roles in the study. However, 10% alone cannot

make such a conclusion without comparing it to the background information (i.e. 1%).

 In this sense, the background is one of the critical factors that impact the

conclusion to a certain degree, particularly when two ratios are close. There are many

ways to set the backgrounds, e.g. all genome genes; genes on an Affymetrix chip; and a

sub-set of genome genes that the user used in their study. In general, larger backgrounds,

e.g. the total genes in the genome as a population background, intends to give more

significant p-values, as compared to a narrowed-down set of genes as a population

background, such as genes only existing on a microarray. Even though there is no gold

standard for the population background, a general guideline is to set up the population

background as the pool of genes which have a chance to be selected for the studied

annotation category in the scope of the users' particular study.

9

 One of the advantages of DAVID is its flexibility of setting different population

backgrounds to meet different situations. DAVID has an automatic procedure to „guess‟

the background as the global set of genes in the genome based on user's uploaded gene

list. Thus, in a regular situation, users do not have to set up a population background by

themselves. We found that it works generally well simply because most of the studies

analyzed by DAVID are genome-wide or close to genome-wide studies. Moreover, other

options are also available for user's choices including all genes in the studied genome,

genes in various microarray chips, and most importantly any gene set that users define

and upload. The latter feature requires significant computational power so that it is rarely

found in similar web-based applications. In summary, various settings and options for

population backgrounds can meet the range of needs of general users to those of power

users.

DAVID Gene Name Batch Viewer

Gene IDs, such as Entrez Gene 3558, typically do not convey biological meaning

in and of itself. The Gene Name Batch Viewer
1
 is able to quickly attach meaning to a list

of gene IDs by rapidly translating them into their corresponding gene names (Figure 3,

Slide 4 of Supplementary Data 5 for more detail). Thus, before proceeding to analysis

with other more comprehensive analytic tools, investigators can quickly glance at the

gene names to further gain insight about their study and to answer questions such as,

"Does my gene list contain important genes relevant to the study?". In addition, a set of

10

hyperlinks are provided for each gene entry, allowing users to further explore additional

functional information about each gene.

DAVID Gene Functional Classification

As the analysis proceeds, Gene Functional Classification
14

 provides the distinct

ability for investigators to explore and view functionally related genes together, as a unit,

in order to concentrate on the larger biological network rather than at the level of an

individual gene. In fact, the majority of co-functioning genes may have diversified names

so that genes cannot be simply classified into functional groups according to their names.

However, Gene Functional Classification, accomplished with a set of novel fuzzy

clustering techniques, is able to classify input genes into functionally related gene groups

(or classes) based on their annotation term co-occurrence rather than on gene names.

Condensing large gene lists into biologically meaningful modules greatly improves one‟s

ability to assimilate large amounts of information and thus switches functional annotation

analysis from a gene-centric analysis to a biological module-centric analysis (Figure 4,

Slide 5 and 6 of Supplementary Data 5 for more detail). Taken together with the 'drill-

down' function associated with each biological module and visualizations to view the

relationships between the many-genes-to-many-terms associations, investigators are able

to more comprehensively understand how genes are associated with each other and with

the functional annotation.

11

DAVID Functional Annotation Chart

Functional Annotation Chart
1-3

 provides typical gene-term enrichment (over-

represented) analysis, that is also provided by other similar tools, to identify the most

relevant (over-represented) biological terms associated with a given gene list (Figure 5,

Slide 8 of Supplementary Data 5 for more detail). Compared to other similar enrichment

analysis tools, the notable difference of this function provided by DAVID is its extended

annotation coverage
13

, increasing from only GO in the original version of DAVID to

currently over 40 annotation categories, including GO terms, protein–protein interactions,

protein functional domains, disease associations, bio-pathways, sequence features,

homology, gene functional summaries, gene tissue expression, and literature.

(Supplementary Data 4). The annotation categories can be flexibly included or excluded

from the analysis based upon a user‟s choices (Slide 7 of Supplementary Data 5 for more

detail). The enhanced annotation coverage alone increases the analytic power by allowing

investigators to analyze their genes from many different biological aspects in a single

space. In addition, to take full advantage of the well-known KEGG and BioCarta

pathways, DAVID Pathway Viewer, which is accessed by clicking on pathway links

within the chart report, can display genes from a user's list on pathway maps to facilitate

biological interpretation in a network context (Figure 4). Finally, the choice of pre-built

or user-defined gene population backgrounds provides the user with the ability to tailor

the enrichment analysis to meet the user‟s specific analytic situation.

DAVID Functional Annotation Clustering

12

Functional Annotation Clustering
14

 uses a similar fuzzy clustering concept as

Functional Classification by measuring relationships among the annotation terms based

on the degree of their co-association with genes within the user‟s list in order to cluster

somewhat heterogeneous, yet highly similar annotation into functional annotation groups

(Figure 6, Slide 10 of Supplementary Data 5 for more detail). This reduces the burden of

associating different terms associated with the similar biological process, thus allowing

the biological interpretation to be more focused at the “biological module” level. The 2-D

view tool is also provided for examining the internal relationships among the clustered

terms and genes (Slide 6 of Supplementary Data 5). This type of grouping of functional

annotation is able to give a more insightful view of the relationships between annotation

categories and terms compared to the traditional linear list of enriched terms since highly

related/redundant annotation terms may be dispersed among hundreds, if not thousands,

of other terms.

DAVID Functional Annotation Table

 Functional Annotation Table
1,2

 is a query engine for the DAVID Knowledgebase,

without statistical calculations (Figure 7, Slide 11 of Supplementary Data 5). For a given

gene list, the tool can quickly query corresponding annotation for each gene and present

them in a table format. Thus, users are able to explore annotation in a gene by gene

manner. This is a useful analytic module particularly when users want to closely look at

the annotation of highly interesting genes.

13

Purpose

This paper will mainly describe the protocol of how to use each DAVID analytic

module in a logical, sequential order, as well as how to switch among the analytic

modules (Figure 1). The example gene list used in this protocol (also available as demo

list 2 on DAVID web site) allows new users to quickly test and experience various

functions provided by DAVID. The protocol provides a routine analytic flow for new

users to begin, as well as the flexibility for experienced users to use the modules in

different combinations in order to balance the different focuses and strengths of each

module to better meet specific analytical questions (Figure 1). Moreover, table 2 lists

major statistical methods and filtering parameters that may influence the DAVID analysis

and result interpretation in certain ways, for users to quickly look up specific statistical

topics according to their interests.

14

MATERIALS

EQUIPMENT

A computer with high speed internet access and a web browser.

EQUIPMENT SETUP

Hardware requirements and computer configurations

DAVID is a web-based tool designed so that a computer with a standard web browser

using default settings should work well. There is no need for special configuration and

installation. Although DAVID was tested with several combinations of internet browsers

and operating systems, MS Internet Explorer or Firefox in a Window XP operating

system is recommended in order to obtain the most satisfactory usability.

Input Data

A list of gene identifiers is the only required input for all DAVID analytic modules/tools.

The gene list may be derived from any type of high-throughput genomic, computational

or proteomic study, such as DNA expression microarray, proteomics, CHIP-on-CHIP,

SNP array, CHIP-sequence, etc. The format of the gene list to be uploaded is described

throughout the web site, and is either one gene ID per line or a list of comma delimited

gene IDs in one line (Supplementary Data 6). DAVID supports most common public

gene identifiers
13

 (see Supplementary Data 4). In addition, after the gene list is submitted

to DAVID, all DAVID analytic modules can access the current list from the gene list

manager so that there is no need to re-submit the gene list for each DAVID tool.

An example gene list derived from an HIV microarray study
16

 is used in this protocol, as

well as available as demo_list2 on DAVID web site. The HIV microarray study is briefly

15

described in the introduction section. More detail can be found in the original

publication
16

.

Result Download

All results derived from DAVID may be explored and visualized on the web browser.

Moreover, all results generated by DAVID can be downloaded in simple flat text formats,

thereafter to be edited or plotted by other graphic tools, e.g. MS Excel, for publication

purposes, as well as for archive purposes.

16

TIME TAKEN

The total analysis time varies, ranging from several minutes to hours, and is dependent on

the analytical questions being addressed, the number of genes in the list being analyzed

and the familiarity with the tools. It is not uncommon to make several visits to focus on

different questions regarding a gene list of interest. Indeed computational time is only a

small portion of the total time whereas exploring, interpreting and re-exploring both

within DAVID and external to DAIVD tends to dominate most of the time. We used a PC

computer with the Windows XP operating system, 2 G memory, 2.0 GHz CPU and

1Mbps internet connection for the data analysis of a gene list consisting of ~400

Affymetrix IDs (Supplementary Data 2) derived from an HIV study
16

(presented in the

Anticipated Results section). During the analysis course, for regular functional calls, each

result was typically returned in ~10 seconds. For the most computationally intensive

functions, such as Gene Functional Classification, results were typically returned within

~30 seconds, otherwise, never longer than 1 minute.

17

PROCEDURE

Submission of User’s Gene IDs to DAVID

1| Submit a gene list to DAVID (Figure 2 & Slide 2 of Supplementary Data 5). Go to

http://david.abcc.ncifcrf.gov or http://david.niaid.nih.gov and click on “Start Analysis” on

the header. To do this, use the gene list manager panel that appears on the left side of the

page (Figure 2) and perform the following steps: (i) Copy and paste a list of gene IDs

into the box A or load a text file containing gene IDs to box B. See more details

regarding format requirements in the Materials Section and also see Supplementary Data

6. (ii) Select the appropriate gene identifier type for your input gene IDs. See more

details for supported ID types in the Materials Section. (iii) Indicate the list to be

submitted as a gene list (i.e. genes to be analyzed) or as background genes (i.e. gene

population background). (iv) Click the “Submit List” button.

CAUTION It takes ~30 seconds for a typical submission of ~1000 gene IDs; the

progress bar, below the header, will disappear after a successful submission and a gene

list name should appear in the list manager box; If >=20% input gene IDs cannot be

recognized, the submission will be redirected to the DAVID Gene ID Conversion Tool
15

for further diagnosis. By default, the background is automatically set up as the genome-

wide set of genes for the species that is found to have the majority of genes in the user‟s

input list. However, it is always a good practice to double check the default, or select a

more appropriate pre-built background through the “background” tab on top of the list

manager.

http://david.abcc.ncifcrf.gov/
http://david.niaid.nih.gov/

18

2| Access DAVID analytic modules (Figure 2 & Slide 3 of Supplementary Data 5) via

the tool menu page. The tool main menu is the central page which lists a set of hyperlinks

leading to all available analytic modules. Clicking on each link will lead to the

corresponding analytic module for analysis of your current gene list, highlighted in the

gene list manager.

CRITICAL SETP: By clicking on “Start Analysis” on the header menu, users can

always go back to this page at any time, no matter where they are, for choosing or

switching to other analysis modules for current gene list.

Gene Name Batch Viewer

3| Run “Gene Name Batch Viewer” and explore results (Figure 3 & Slide 4 of

Supplementary Data 5). Click on the “Gene Name Batch Viewer” link on the tool menu

page. All the gene names will be listed by the Gene Name Batch Viewer. For a gene of

interest, one or all of following options may be conducted:

(A) Click on the gene name to link to more detailed information.

(B) Click on “RG” (related genes) beside the gene name to search for other functionally

related genes.

(C) Use the browser‟s “Find” function to search for particular items.

Gene Functional Classification

4| Run “Gene Functional Classification” and explore results (Figure 4 & Slide 5 of

Supplementary Data 5). Get back to the tool menu page by clicking on “Start analysis” on

the header. Click on “Gene Functional Classification Tool” to classify the input gene list

19

into gene groups. For any gene groups of interest, one or all of following options may be

conducted:

(A) Click on the gene name which leads to individual gene reports for in-depth

information about the gene.

(B) Click on the red “T” (term reports) to list associated biology of the gene group.

(C) Click on “RG” (related genes) to list all genes functionally related to the particular

gene group.

(D) Click on the “green icon” to invoke 2-D (gene-to-term) view.

(E) Create a new sub-gene list for further analysis on a subset of the genes.

TROUBLESHOOTING 2-D view is a Java Applet application that may take awhile to

load for the first time; the 2-D view Java Applet may require you to accept the online

security certificate.

CAUTION The input genes are classified using the default clustering stringency. Users

may re-run the classification function leading to optimal results for the particular case by

re-setting the stringency (high, medium or low) in the options on top of the result page.

Functional Annotation Chart

5| Run “Functional Annotation Chart” (Slide 7 of Supplementary Data 5). Go back to the

tool menu page by clicking on “Start Analysis” on the header. (i) Click on “Functional

Annotation Chart” to go the “Summary Page” of the tool suite. (ii) Choose functional

annotation categories of your interest (Slide 7 of Supplementary Data 5): Accept 7

default functional annotation categories; Or expand the tree beside each main category

(i.e. Main Accessions, Gene Ontology, etc) to select or deselect functional annotation

20

categories of your interest. (iii) Click on the “Functional Annotation Chart” button on the

bottom of the page leading to a chart report.

6| Explore the results of the "Functional Annotation Chart" (Figure 5 & Slide 8 of

Supplementary Data 5). For an annotation term of interest, one or all of following options

may be conducted:

(A) Click on the term name linking to a more detailed description.

(B) Click on “RT” (related terms) to list other related terms.

(C) Click on the “blue bar” to list all associated genes.

(D) Click on a pathway name to view genes on the pathway picture.

CAUTION By default, the order of the annotation terms is based on the

EASE(enrichment) score. However, results can also be sorted by different values in the

columns; The annotation terms with EASE score <= 0.1 are displayed in the results by

default. The stringency of this filter (EASE score cutoff) may be set higher or lower

through the options provided at the top of the report page in order to include more or less

of the annotation terms.

Functional Annotation Clustering

7| Run “Functional Annotation Clustering” (Slide 10 of Supplementary Data 5). Go back

to the tool menu page by clicking on “Start Analysis” on the header. (i) Click on

“Functional Annotation Clustering” to go to the “Summary Page” of the tool suite. (ii)

Select annotation categories as described in step 5. (iii) Click on the “Functional

Annotation Clustering” button on the bottom of the page.

21

8| Explore the results of "Functional Annotation Clustering" (Figure 6 & Slide 10 of

Supplementary Data 5). For an annotation term cluster of interest, one or all of following

options may be conducted:

(A) Click on the term name linking to a more detailed description.

(B) Click on “RT” (related terms) to list other related terms.

(C) Click on the “blue bar” to list all associated genes of corresponding individual term.

(D) Click on the red “G” to list all associated genes of all terms within the cluster.

(E) Click on the “green icon” to display the 2-D (gene-to-term) view for all genes and

terms within the cluster.

CAUTION The annotation terms are clustered using the default clustering stringency.

Users may re-run the classification function leading to optimal results for the particular

case by resetting the stringency (high, medium or low) in the options on top of the result

page.

Functional Annotation Table

9| Run “Functional Annotation Table” (Slide 11 of Supplementary Data 5). Go back to

the tool menu page by clicking on “Start Analysis” on the header and perform the

following steps: (i) Click on “Functional Annotation Table” to go the “Summary Page”

of the tool suite. (ii) Select annotation categories as described in step 5. (iii) Click on

“Functional Annotation Table” button on the bottom of the page.

10| Explore the results of “Functional Annotation Table” (Figure 7 & Slide 11 of

Supplementary Data 5). For a gene of your interest:

(A) Click on annotation terms for a detailed description.

22

(B) Click on “Related Genes” to search functionally related genes.

CAUTION When the output is too large to be displayed by internet browsers, only top

500 records are shown on the result page. However, full results are available to be

downloaded as a tab delimited text file through the download link on the top of the result

page.

23

TROUBLESHOOTING

Step Problem Possible Reason Solution

1 Gene ID submission is stuck

and I got the message “You

are either not sure which

identifier type your list

contains, or less than 80% of

your list has mapped to your

chosen identifier type. Please

use the Gene Conversion

Tool to determine the

identifier type.”

User knows the correct gene ID

types, but selected wrong one

that did not match the actual

input IDs.

Go back to re-submit with correct selection

of gene ID type; Or move forward with

DAVID Gene ID Conversion tool to

determine the potential gene ID type.

User does not know the correct

gene ID type corresponding to

their gene list.

Submission panel in DAVID offers a special

ID type, called “Not sure”. Gene ID

submission will be redirected to the DAVID

Gene ID Conversion tool which has a

mechanism to scan the entire ID system in

DAVID to help you to determine the

potential ID type(s) of your genes.

There is more than one type of

gene ID in the user's list

DAVID Gene ID Conversion Tool can help

you determine the gene ID types and

translate them to one single type.

User‟s gene ids may contain a

version number

Remove the version number since DAVID

will not recognize them.

>=20% of your gene IDs

belong to low quality or retired

IDs.

DAVID Gene ID Conversion Tool may help

to identify the problem IDs. User should

consider removing them from the gene list,

or move forward to analysis ignoring the

problem.

1, 3 The gene number that

DAVID recognizes does not

match the number in my gene

list

Repeated IDs in user's list DAVID ID submission will automatically

remove redundancy.

Particular ID(s) mapped to

many different genes

DAVID ID Conversion Tool could help to

identify the problem IDs. User should

consider removing the 'bad' ID(s) from the

gene list

User's input gene IDs are gene

symbol

Gene symbol is not species-specific so that

one symbol may be mapped to many

homologous genes across different species.

You can define particular species matching

your study, after the gene symbols are

submitted, in the gene list manager.

3, 4, 5, 6,7, 8,

9, 10

Result page is blank or empty

30 minute timeout If your web browser is inactive longer than

30 minutes, DAVID will clean up all

information (your gene list, etc.) on the

server side. Thus, you have to restart your

analysis by resubmitting your gene list.

The size of the gene list is too

small

Enrichment or clustering algorithms are

based on the survey between input genes

against background genes. Thus, a

reasonable size (e.g. >30) of input genes is

required. Otherwise, certain algorithms will

not work properly.

The cutoff or stringency options

are too high

Lower down the thresholds accordingly

24

Wrong background selected Background is automatically set up as the

genome-wide set of genes corresponding to

the species for the majority of genes in the

gene list. Sometimes, the system may not

choose the appropriate species. User may

check and correct the appropriate

background through the Gene List Manager.

Small or minor species Some small species may have very little

annotation for the genes. There is nothing

that can be done about this situation.

Alternatively, you could map the genes to

the homologous genes in a better annotated

species.

4, 8 2-D view not displayed Network certificate Please accept it by clicking on "Accept".

Basically, you are telling your browser to

trust the DAVID application.

Java plug-in not enabled By default, most browsers should have the

Java plug-in enabled. In case yours is not,

please turn it on through Internet Options.

N/A Service too slow Slow computer and/or internet

speed

Make sure that you have a reasonably good

computer and internet speed. See

recommendations in Material section.

Gene list too large (>3,000) Please be patient.

DAVID server overwhelmed The DAVID service may sometimes be slow

due to too many large, simultaneous

requests. We have monitoring programs to

auto detect and fix the situation in a short

time period. If the situation is not resolved in

a reasonable amount of time, please report

the problem to the DAVID team through the

contact provided on the DAVID website.

25

 ANTICIPATED RESULTS

We now submit the example gene list (~400 genes), derived from an HIV

microarray study
16

, to DAVID in order to illustrate the results obtained from various

DAVID analytic modules. More detailed information and the availability regarding the

gene list can be found in the Materials and Introduction sections of this protocol.

Moreover, Supplementary Data 5 provides screen shots of each major step of the

following analysis.

Submission of User’s Gene IDs to DAVID

A successful submission of the gene list to DAVID is shown in Figure 2 (also

Slide 2 & 3 of Supplementary Data 5). Users should see the progress bar under the header

move through submission and disappear upon completion of the submission. The gene

list manager panel on the left side, thereafter displays the list name (e.g. Upload_list_1)

and corresponding species information (Home Sapiens [391]). The number (i.e. 391)

appended after the species information is the number of genes that are recognized by

DAVID. A set of hyperlinks on right side page lists the analytic modules available in the

DAVID analytic pipeline. Users may follow the order of the pipeline to conduct analysis

or jointly use analytic modules in varying combinations in order to meet the user‟s

specific needs (Figure 1). Most importantly, the page serves as a central page (Figure 2)

for users to choose analytic modules. Users may go back to this page at any time by

clicking the “Start Analysis” button on the header in order to switch back and forth

among analytic modules as needed.

26

Gene Name Batch Viewer

The corresponding gene names of input gene IDs were displayed as shown in

Figure 3 and Slide 4 of Supplementary Data 5. Users may explore the gene names to

examine whether there are any interesting study or marker genes in the list. Many

immune related genes, containing names like “interleukin”, “chemokine”, “kinase” and

“tumor necrosis factor” can be found in the list, which are consistent with that reported in

the publicaton
16

. A set of hyperlinks provided for each gene can further lead to more

detail information about a given gene. In addition, by clicking on the “RG” (related

genes) search function beside a gene name, for example, “interleukin 8”, all other

functionally related chemokine genes (e.g. cxcl 1, 2, 3, 4, 20) will be listed so that users

will be able to see other functionally similar genes in the list based on the bait gene.

Gene Functional Classification

The tool classified the example gene list(~400 genes) into 10 functional groups in

an easily readable tabular format. An example output is illustrated in Figure 4 as well as

in Slide 5 of Supplementary Data 5. Gene groups (with significant enrichment scores

>=1), such as cytokines/chemokines (Group 1: 3.39), kinases (group 2: 2.21), clathrin

membrane fusion genes (Group 3: 1.86), transcription factors (Group 6: 1.39), etc., can

be easily identified. All of these gene groups are highly relevant to an HIV study and are

therefore expected biological results
16

. Organizing the large gene list into gene groups

allows investigators to quickly focus on the overall major common biology associated

27

with a gene group rather than one gene at a time, thereby avoiding dilution of focus

during the analysis due to too many single genes. Furthermore, the “2-D View” function

associated with each group is able to display all related terms and genes in detail in one

picture, in order to examine their inter-relationships. For example, for the kinase group

(Group 2), a user who is not familiar with kinases may explore the terms of kinase

activity, transferase activity, ATP-binding, nucleotide binding, protein metabolism,

tyrosine specificity, serine/threonine specificity, regulation of G protein signaling, signal

transduction, and so on in one view at the same time (Slide 6 of Supplementary Data 5).

Therefore, we can quickly learn the biology for the kinase group, with the above related

terms in a single view and also identify the fine differences among them. For example,

there are two G-protein coupled receptor kinases, three protein tyrosine kinases and six

kinases involved in cell surface receptor-linked signal transduction among the 23 kinases

within the group. The fine details may be very important for pinpointing the key biology

associated with a study.

Functional Annotation Chart

 Over five hundred enriched (over-represented) biological terms were reported

(Figure 5 and Slide 8 of Supplementary Data 5). Many of them are highly immune

related, such as response to pathogenic bacteria, chemokine activity, cell migration,

clathrin coated vesicle membrane, kinase activity, RNA polymerase II transcription factor

activity, cell communication. This is consistent with observations previously identified

by the other analytic modules, as well as meeting the expectation for the HIV study
16

.

28

The report offers a lot of redundant details regarding the enriched biology associated with

the gene list, which certainly helps the interpretation of the biology, but also may dilute

the focus. Moreover, a set of hyperlinks provided for each term will lead to more details

about each term, such as in-depth description, associated genes, other related terms,

directed acyclic graph (DAG) of GO, etc. Notably, the pathway viewer module offers

visualization of users‟ genes on enriched pathways. For example, “IL-10 Anti-

inflammatory Signaling Pathway” was reported in the output. We can observe that IL10

was activated as an upstream immune regulator and was then further regulated by HO-1.

As result, the IL1/TNFa/IL6 complex was activated leading to further downstream

inflammatory responses (Figure 8). Thus, the inter-relationship of input genes was

examined on the pathway in a network context.

Functional Annotation Clustering

The tool condensed the input gene list into smaller, much more organized

biological annotation modules in a similar format (Figure 6 & Slide 10 of Supplementary

Data 5) as that of Gene Annotation Clustering, but in a term-centric manner. Similarly, it

allows investigators to focus on the annotation group level by quickly organizing many

redundant/similar/hierarchical terms within the group. Annotation clusters, such as

immune response, transcriptional regulation, chemokine activity, cytokine activity, kinase

acitivity, signaling transduction, cell death, etc., could be found on the top of output as

expected for this study
16

. The highly organized and simplified annotation results allow

users to quickly focus on the major biology at an annotation cluster level instead of trying

29

to derive the same conclusions by putting together pieces that are scattered throughout a

list of hundreds of terms in a typical term enrichment analysis. In addition, the „G‟

(genes) link provided for each cluster can comprehensively pool all related genes from

different terms within the cluster. For example, each of the 7 terms within cluster 2

(inflammatory response cluster) associates with both overlapping as well as differing

genes. Therefore, a pooled gene list brought together by cluster 2 regarding inflammatory

response may be much more comprehensive, compared to the genes selected from one or

a few individual terms.

Summary

Collectively, all of the DAVID analytic modules aim to extract biological meaning

from the given gene list from different biological angles with highly consistent and

expected results for a given study. Integration of the results from the different analytic

modules (Figure 1) will take advantage of the different focus and strength of each

module, in order to make the overall biological picture, assembled based on the gene list,

more comprehensive and detailed. For a given gene list, DAVID Bioinformatics

Resources is able to help users to (Figure 1 b):

 Convert gene IDs from one type to another

 Diagnose and fix problems with gene IDs

 Explore gene names in batch

 Discover enriched functionally-related gene groups

 Display relationship of many-genes-to-many-terms on 2-D view.

 Initial glance of major biological functions associated with my gene list

 Identify enriched (over-represented) annotation terms

 Visualize genes on BioCarta & KEGG pathway maps

30

 Link gene-disease associations

 Highlight protein functional domains and motifs

 Redirect to related literature

 List interacting proteins

 Cluster redundant and heterozygous annotation terms

 Search other functionally similar genes in genome, but not in my list

 Search other annotations functionally similar to one of my interest

 Read all annotation contents associated with a gene

 And more

31

ACKNOWLEDGMENTS

The authors are grateful to the referees for their constructive comments and thank Robert

Stephens, David Bryant and David Liu in the ABCC group for web server support.

Thanks also go to Xin Zheng and Jun Yang in the Laboratory of Immunopathogenesis

and Bioinformatics (LIB) group for discussion. We also thank Bill Wilton and Mike

Tartakovsky for information technology and network support. The project has been

funded with federal funds from the National Institute of Allergy and Infectious Diseases

(NIAID), National Institutes of Health (NIH), under Contract No. NO1-CO-56000. The

annotation of this tool and publication do not necessarily reflect the views or policies of

the Department of Health and Human Services, nor does mention of trade names,

commercial products, or organizations imply endorsement by the United States

Government.

32

REFERENCES

1. Huang da, W. et al. DAVID Bioinformatics Resources: expanded annotation

database and novel algorithms to better extract biology from large gene lists.

Nucleic Acids Res 35, W169-75 (2007).

2. Dennis, G., Jr. et al. DAVID: Database for Annotation, Visualization, and

Integrated Discovery. Genome Biol 4, P3 (2003).

3. Hosack, D.A., Dennis, G., Jr., Sherman, B.T., Lane, H.C. & Lempicki, R.A.

Identifying biological themes within lists of genes with EASE. Genome Biol 4,

R70 (2003).

4. Zeeberg, B.R. et al. High-Throughput GoMiner, an 'industrial-strength'

integrative gene ontology tool for interpretation of multiple-microarray

experiments, with application to studies of Common Variable Immune

Deficiency (CVID). BMC Bioinformatics 6, 168 (2005).

5. Beissbarth, T. & Speed, T.P. GOstat: find statistically overrepresented Gene

Ontologies within a group of genes. Bioinformatics 20, 1464-5 (2004).

6. Khatri, P., Bhavsar, P., Bawa, G. & Draghici, S. Onto-Tools: an ensemble of

web-accessible, ontology-based tools for the functional design and

interpretation of high-throughput gene expression experiments. Nucleic

Acids Res 32, W449-56 (2004).

7. Martin, D. et al. GOToolBox: functional analysis of gene datasets based on

Gene Ontology. Genome Biol 5, R101 (2004).

8. Al-Shahrour, F., Diaz-Uriarte, R. & Dopazo, J. FatiGO: a web tool for

finding significant associations of Gene Ontology terms with groups of genes.

Bioinformatics 20, 578-80 (2004).

9. Masseroli, M., Galati, O. & Pinciroli, F. GFINDer: genetic disease and

phenotype location statistical analysis and mining of dynamically annotated

gene lists. Nucleic Acids Res 33, W717-23 (2005).

10. Lee, J.S., Katari, G. & Sachidanandam, R. GObar: a gene ontology based

analysis and visualization tool for gene sets. BMC Bioinformatics 6, 189

(2005).

11. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based

approach for interpreting genome-wide expression profiles. Proc Natl Acad

Sci U S A 102, 15545-50 (2005).

12. Khatri, P. & Draghici, S. Ontological analysis of gene expression data:

current tools, limitations, and open problems. Bioinformatics 21, 3587-95

(2005).

13. Sherman, B.T. et al. DAVID Knowledgebase: a gene-centered database

integrating heterogeneous gene annotation resources to facilitate high-

throughput gene functional analysis. BMC Bioinformatics 8, 426 (2007).

14. Huang da, W. et al. The DAVID Gene Functional Classification Tool: a novel

biological module-centric algorithm to functionally analyze large gene lists.

Genome Biol 8, R183 (2007).

15. Huang, D.W., Sherman, B.T. & Lempicki, R.A. DAVID gene ID conversion

tool. Bioinformation 2, 428-430 (2008).

33

16. Cicala, C. et al. HIV envelope induces a cascade of cell signals in non-

proliferating target cells that favor virus replication. Proc Natl Acad Sci U S

A 99, 9380-5 (2002).

34

TABLE

Table 1: Side-by-side comparisons of DAVID’s major analytic modules

 Input user's large gene lists

DAVID

Analytic

Module/Tool

Gene Name Batch

Viewer
1

Gene Functional

Classification
14

Functional Annotation

Chart
1,2

Functional

Annotation

Clustering
14

Functional

Annotation

Table
1,2

Brief

definition

/explanation

List names of user's

genes

Classify user's

genes into gene

groups

Identify enriched

annotation terms

associated with user's

gene list

Cluster

functionally

similar terms

associated with

user's gene list

into groups

Query associated

terms for all user's

genes

Key Points Gene-centric

singular

exploration

Gene-centric

modular analysis

Term-centric singular

enrichment analysis

(typical enrichment

analysis)

Term-centric

modular

enrichment

analysis

Large scale query

Example

question to

ask

What are the genes

in my list?

What major gene

family in my list?

What are enriched

annotation terms for my

gene list?

What are

enriched

annotation

groups for my

gene list?

What are all

selected annotations

for my genes?

Main

Functions
 Display all gene

names in a linear

tabular text format

 Deep links to more

information around

given gene

 Search other

functionally related

genes

 Classify

functionally

related genes into

groups

 2-D view for

related gene-term

relationship

 Rank importance

of gene groups

with enrichment

score

 Highlight

annotation terms

for gene groups

 Identify enriched

annotation terms in a

linear tabular text format

 Deep links to more

information around terms

and associated genes

 Search other functionally

related terms

 View genes on pathway

maps

 Cluster

functionally

related

annotations into

groups

 2-D view for

related gene-

term relationship

 Rank importance

of annotation

groups with

enrichment score

 Pool genes for

annotation

groups

Query selected

annotations for

given genes.

Advantages Roughly explore

genes one-by-one

 Quickly check if

the

expected/important

genes are in the list

 Quickly learn

annotation about

genes of interests

 All genes included

in the analysis

 Explore genes

group-by-group

rather than

singular gene

one-by-one

 Highlight

important gene

groups by

enrichment scores

 Study

functionally

related genes and

their relationship

Simple format to explore

all singular enriched

terms

 Explore

annotations

group-by-group

rather than

singular term

one-by-one.

 Highlight

important

annotation

groups by

enrichment

scores

 Study

 Quickly Explore all

annotations (both

enrich and not

enriched ones) for

given genes

 Good for analysis of

small # of focused

genes

 Save entire

annotation profile of

given gene list in

text file ready for

other external

35

in a network

format

 Good to catch

major biology

functionally

related genes and

their relationship

in a network

format

 Good to focus

on major and

fine biology

analysis

Drawbacks Related genes

scattered in the

results losing inter-

relationships of

genes during

exploration

 Difficult to judge

enriched genes or

noisy genes without

enrichment

calculation

Some genes

without strong

neighbors will be

left out from the

analysis

 Related/redundant terms

scattered in the results

 Some fine biology could

be diluted by the

redundancy

 Lack of term-term

relationships during

analysis

Some enriched

terms without

strong neighbors

will be left out

from the analysis

 Difficult to explore

large gene list.

 No enrichment

analysis

36

Table 2: Major statistical methods and associated parameters used in DAVID.

Step

Module/Page Statistics

/Parameters

Explanation/Definition How to Understand the Value

1 Submission

of User's

Gene IDs

Background

genes (or

called

population

genes)

To decide the degree of enrichment, a

certain background must be set up in

order to be compared to the user's gene

list. For example, 10% of user's genes are

kinases vs. 1% of genes in human

genome (this is population background)

are kinases. Thus, the conclusion is

obvious in the particular example that the

user's study is highly related to kinase.

However, 10% itself alone cannot

provide such a conclusion without

comparing it to the background

information.

 A general guideline is to set up the reference background as

the pool of genes which have a chance to be selected for the

studied annotation category under the scope of users'

particular study.

 Default background is the entire genome-wide genes of the

species matching the user's input IDs. Pre-built backgrounds

such as genes in Affy chips, etc. are available for the user's

choice.

 In principle, a larger gene background tends to give smaller

p-values. Since most of the high-throughput studies are, or at

least are close to, genome-wide scope, the default

background is good for regular cases in general.

4 Gene

Functional

Classification
1,14

Classification

Stringency

To control the behavior of DAVID Fuzzy

clustering.
 A general guideline is to choose higher stringency settings for

tight, clean and smaller numbers of clusters; Otherwise lower

for loose , broader and larger numbers of clusters.

 Default setting is medium.

 Five pre-defined levels from lowest to highest for user's

choices.

 Users may want to play with different stringency for more

satisfactory results.

Enrichment

Score (for

each group)

To rank overall importance (enrichment)

of gene groups. It is the geometric mean

of all the enrichment p-values (EASE

scores) for each annotation term

associated with the gene members in the

group. To emphasize that the geometric

mean is a relative score instead of an

absolute p value, minus log

transformation is applied on the average

p-values

 A higher score for a group indicates that the gene members in

the group are involved in more important (enriched) terms in

a given study, therefore more attention should go to them.

 Enrichment score of 1.3 is equivalent to non-log scale 0.05.

thus, more attention should go to groups with scores >= 1.3

 However, the gene groups with lower scores could be

potentially interesting, and should be explored as well if

possible.

6 Functional

Annotation

Chart1,2

P-value (or

called EASE

Score)

To examine the significance of gene-term

enrichment with a modified Fisher's

Exact Test (EASE Score). For example,

10% of user's genes are kinases vs. 1% of

genes in human genome (this is

population background) are kinases.

Thus, the EASE score is <0.05 which

suggests that kinases are significantly

more enriched than random chance in the

study for this particular example.

 The smaller the p-values, the more significant they are.

 Default cutoff is 0.1

 Users could set different levels of cutoff through option panel

on the top of result page.

 Due to the complexity of biological data mining of this type,

p-values are suggested to be treated as score systems, i.e.

suggesting roles, rather than decision making roles. Users

themselves should play critical roles in judging "are the

results making sense or not for expected biology".

Benjamini To globally correct enrichment p-values

in order to control family-wide false

discovery rate under certain rate (e.g. <=

0.05). It is one of the multiple testing

correction techniques (Bonferroni,

Benjamini and FDR) provided by

DAVID.

 More terms examined, more conservative the corrections

are. As a result, all the p-values get larger.

 It is great if the interesting terms have significant p-values

after the corrections. But since the multiple testing

correction techniques are known as conservative

approaches, it could hurt the sensitivity of discovery if over

emphasizing them. Users' judgment could be critical as

discussed in EASE Score in Functional Annotation Chart

section.

Fold

Enrichment

To measure the magnitude of

enrichment. For example, 10% of user's

genes are kinases vs. 1% of genes in

human genome (this is population

background) are kinases. Thus, the fold

enrichment is 10 fold. Fold enrichment

 Fold enrichment 1.5 and above are suggested to be

considered as interesting.

 Fold enrichment and EASE Score should be always

examined side-by-side. Terms with larger fold enrichments

and smaller may be interesting.

 Caution should be taken when big fold enrichment are

37

along with EASE Score could rank the

enriched terms in a more comprehensive

way.

obtained from a small number of genes (e.g. <=3). This

situation often happens to the terms with a few genes (more

specific terms) orfsmaller size (e.g. <100) of user's input

gene list. In this case, the reliability is not as much as those

fold enrichment scores obtained from larger numbers of

genes.

% # of genes involved in given term is

divided by the total # of user's input

genes, i.e. Percentage of user's input

gene hitting a given term. For example,

10% of user's genes hit "kinase activity".

 It gives overall idea of gene distributions among the terms.

 The higher percentage does not necessarily have a good

EASE Score because it also depends on the percentage of

background genes as discussed in the EASE Score in

Functional Annotation Chart section.

8 Functional

Annotation

Clustering1,14

Classification

Stringency

To control the behalvior of DAVID

Fuzzy clustering.
 A general guideline is to choose higher stringency setting for

tight, clean and smaller numbers of clusters; Otherwise lower

for looser , broader and larger numbers of clusters.

 Default setting is medium.

 Five pre-defined levels from lowest to highest for user's

choices.

 Users may want to play with different stringency to obtain

more satisfactory results.

Enrichment

Score (for

each group)

To rank overall importance (enrichment)

of annotation term groups. It is the

geometric mean of all the enrichment p-

values (EASE scores) of each annotation

term in the group. To emphasize that the

geometric mean is a relative score

instead of an absolute p value, minus log

transformation is applied on the average

p-values

 A higher score for a group indicates that annotation term

members in the group are playing more important (enriched)

roles in given study, therefore pay more attention toward

them.

 Enrichment score 1.3 is equivalent to non-log scale 0.05.

thus, more attention should go to groups with scores >= 1.3

 However, the annotation groups with lower scores could be

potentially interesting, and should be explored as well if

possible.

P-value (or

called EASE

Score) (for

individual

term

members)

To examine the significance of gene-term

enrichment with a modified Fisher's

Exact Test (EASE Score). This p-value

is calculated in exactly the same way as

in the Functional Annotation Chart

section.

The explanation is the same as that in Functional Annotation

Chart section.

Benjamini To globally correct enrichment p-values

of individual term members. The idea

and calculations are exactly the same as

that in Functional Annotation Chart

section.

The explanation is the same as that in the Functional

Annotation Chart section.

38

FIGURES

Figure 1. Analytic tools/modules in DAVID. a. After the user‟s gene list is submitted

to DAVID, the gene list manager may be accessed by all DAVID analytic modules (red

boxes) at any time. The circled numbers indicate step numbers described in the procedure

section to facilitate reading. b. DAVID analytic modules, each having different strengths

and focus, can be used independently or jointly. A roadmap to help users to choose some

or all DAVID analytic modules for the analysis of large gene lists.

39

Figure 2. Submit a gene list to DAVID and access various analytic tools/modules. a.

Following the example input format and steps on the left side uploading panel, a list of

genes may be uploaded into DAVID. b. After successfully uploading a gene list(s), a set

of analytic modules are available for the analysis of the current gene list highlighted in

the gene list manager on the left side. Importantly, users may go to this page at any time

by clicking “Start Analysis” on the header in order to access any analytic tool of interest.

Figure 3. An example layout of DAVID Gene Name Batch Viewer. User's input gene

IDs are translated into meaningful and readable gene names. The link on each gene name

can lead to more in-depth information.

40

Figure 4. An example layout of DAVID Gene Functional Classification. User's genes

were organized and condensed into several functional groups. The gene members in each

group share common biological functions. A set of accessory tools provided for each

group will further facilitate the 'drill-down' analysis of biological inter-relationships

among the gene members within the same group.

Figure 5. An example layout of DAVID Annotation Chart. The enriched functional

annotation terms associated with user's gene list are identified and listed according to

their enrichment p-value by DAVID. The links on the page can lead to various detail

information regarding corresponding items.

41

Figure 6. An example layout of DAVID Functional Annotation Clustering. The

similar annotation terms are grouped into clusters so that user can read through the

important terms in a way of block-by-block instead of individual-by-individual.

Figure 7. An example layout of DAVID Annotation Table. Various annotation

contents for given gene are list in a tabular format. The contents for each gene are

separated by the header rows in blue color.

42

Figure 8. Pathway map viewer. The red star indicates the associations between pathway

genes and the user‟s input genes. Following the pathway flow, IL10 was activated as an

upstream immune stimulator. Then the middle stream gene, HO-1, was involved. IL-

1/INFa/IL-6, as downstream regulator, was finally activated. Thus, the user‟s genes may

be analyzed in a network context.

43

SUPPLEMENTARY DATA

Supplementary Data 1. Collection of ~68 similar enrichment analysis tools. The tools

are roughly categorized into three classes according to their backend algorithms.

Reference links are provided for more information of each tool.

Supplementary Data 2. ~400 Affymetrix IDs
16

 used in this paper.

Supplementary Data 3. Comparisons of the enrichment p-values between gene lists

derived from microarray study vs. same size of gene lists generated randomly. A 'good'

gene lists should consistently contain more enriched biology than that of random list in

the same sizes.

Supplementary Data 4. Summaries of gene identifier types and annotation categories

supported in the DAVID system.

Supplementary Data 5. Screen shots of each major analysis step according to the

description in the manuscript.

Supplementary Data 6. Examples for the input formats of a gene list.

Systematic and integrative analysis of large gene
lists using DAVID bioinformatics resources
Da Wei Huang1,2, Brad T Sherman1,2 & Richard A Lempicki1

1Laboratory of Immunopathogenesis and Bioinformatics, Clinical Services Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland 21702,
USA. 2These authors contributed equally to this work. Correspondence should be addressed to R.A.L. (rlempicki@mail.nih.gov) or D.W.H. (huangdawei@mail.nih.gov)

Published online 18 December 2008; doi:10.1038/nprot.2008.211

DAVID bioinformatics resources consists of an integrated biological knowledgebase and analytic tools aimed at systematically

extracting biological meaning from large gene/protein lists. This protocol explains how to use DAVID, a high-throughput and

integrated data-mining environment, to analyze gene lists derived from high-throughput genomic experiments. The procedure first

requires uploading a gene list containing any number of common gene identifiers followed by analysis using one or more text and

pathway-mining tools such as gene functional classification, functional annotation chart or clustering and functional annotation

table. By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes

that are enriched in genome-scale studies.

INTRODUCTION
High-throughput genomic, proteomic and bioinformatics
scanning approaches, such as expression microarray, promoter micro-
array, proteomic data and ChIP-on-CHIPs, provide significant
capabilities to study a large variety of biological mechanisms,
including associations with diseases. These technologies usually
result in a large ‘interesting’ gene list (ranging in size from hundreds
to thousands of genes) involved in studied biological conditions.
Data analysis of the large gene lists is a very important downstream
task following the above example of high-throughput technologies
to understand the biological meaning of the output gene lists. The
data analysis of such highly complex and large volume data sets is a
challenging task, which requires support from special bioinfor-
matics software packages. In this protocol, we introduce DAVID
(the database for annotation, visualization and integrated discov-
ery) bioinformatics resources1,2, which is able to extract biological
features/meaning associated with large gene lists. DAVID is able to
handle any type of gene list, no matter which genomic platform or
software package generated them.

DAVID, released in 2003 (refs. 2,3), as well as a number of other
similar publicly available tools, including, but not limited to,
GoMiner4, GOstat5, Onto-express6, GoToolBox7, FatiGO8, GFIN-
Der9, GOBar10 and GSEA11 (see Supplementary Data 1 for a
complete list), address various aspects of the challenge of function-
ally analyzing large gene lists. Although each tool has distinct
features and strengths, as reviewed by Khatri et al.12, they all
adopt a common core strategy to systematically map a large
number of interesting genes in a list to the associated biological
annotation (e.g., gene ontology terms), and then statistically high-
light the most overrepresented (enriched) biological annotation
out of thousands of linked terms and contents. Enrichment analysis
is a promising strategy that increases the likelihood for investigators
to identify biological processes most pertinent to the biological
phenomena under study.

The analysis of large gene lists is indeed more of an exploratory,
computational procedure rather than a purely statistical solution.
As compared with other similar services, DAVID provides some
unique features and capabilities, such as an integrated and
expanded back-end annotation database13, advanced modular

enrichment algorithms14 and powerful exploratory ability in an
integrated data-mining environment1. Even though users can learn
more in-depth information about DAVID algorithms in our
original publications1–3,13–15, we now briefly summarize the ratio-
nale regarding the key DAVID modules, as well as the analytic
limitations (see Table 1 for comparisons of DAVID’s analytical
modules), so that readers may be able to quickly follow the
protocol.

Large gene lists ready for functional analysis by DAVID
In this protocol, we use a previously published gene list16 (Supple-
mentary Data 2) as an example to illustrate the results obtained
from the various DAVID analytic modules. To obtain this list,
freshly isolated peripheral blood mononuclear cells were treated
with an HIV envelope protein (gp120) and genome-wide gene
expression changes were observed using Affymetrix U95A micro-
array chips16. The aim of the experiment was to investigate cellular
responses to viral envelope protein infection, which may help in
understanding the mechanisms for HIV replication in resting or
suboptimally activated peripheral blood mononuclear cells.

The quality of large gene lists derived from high-throughput
biological studies is one of the most important foundations that
directly influence the success of the following functional analysis in
DAVID. Owing to the complexity of the data-mining situations
involved in biological studies, there is no good systematic way, at
present, to quantitatively estimate the quality of the gene list ahead
of time (i.e., before the gene functional analysis). However, on the
basis of real-life data analysis experiences during the past several
years, a ‘good’ gene list may exhibit most, if not all, of the following
characteristics:
(1) Contains many important genes (marker genes) as expected

for given study (e.g., IL8, CCL4 and TNFSF8 from the example
gene list in Supplementary Data 2).

(2) Reasonable number of genes ranging from hundreds to thou-
sands (e.g., 100–2,000 genes), not extremely low or high.

(3) Most of the genes significantly pass the statistical threshold for
selection (e.g., selecting genes by comparing gene expression
between control and experimental cells with t-test statistics:

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

44 | VOL.4 NO.1 | 2009 | NATURE PROTOCOLS

PROTOCOL

fold changes Z2 and P-values r0.05). Importantly, statistical
thresholds do not have to be sacrificed (e.g., fold changes Z1.1
and P-value r0.2) to reach a comfortable gene size.

(4) Notable portion of up- or downregulated genes are involved in
certain interesting biological processes, rather than being
randomly spread throughout all possible biological processes.

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

TABLE 1 | Side-by-side comparisons of DAVID’s major analytic modules.

Input user’s large gene lists

DAVID analytic
module/tool

Gene name batch
viewer1

Gene functional
classification14

Functional annotation
chart1,2

Functional annotation
clustering14

Functional annotation
table1,2

Brief definition/
explanation

List names of user’s
genes

Classify user’s genes
into gene groups

Identify enriched
annotation terms
associated with user’s
gene list

Cluster functionally
similar terms associated
with user’s gene list
into groups

Query associated
terms for all user’s
genes

Key points Gene-centric singular
exploration

Gene-centric
modular analysis

Term-centric singular
enrichment analysis
(typical enrichment
analysis)

Term-centric modular
enrichment analysis

Large-scale query

Example question
to ask

What are the genes in
my list?

What are the major
gene families in my
list?

Which annotation terms
are enriched for my
gene list?

Which annotation
groups are enriched for
my gene list?

What are the associated
annotations for each of
my genes?

Main functions Display all gene names
in a linear tabular text
format
Deep links to more
information around
given gene
Search other function-
ally related genes

Classify functionally
related genes into
groups
2D view for related
gene–term relation-
ship
Rank importance of
gene groups with
enrichment score
Highlight annota-
tion terms for gene
groups

Identify enriched
annotation terms in a
linear tabular text
format
Deep links to more
information around
terms and associated
genes
Search other function-
ally related terms
View genes on pathway
maps

Cluster functionally
related annotations
into groups
2D view for related
gene–term relationship
Rank importance of
annotation groups with
enrichment score
Pool genes for
annotation groups

Query selected
annotations for given
genes

Advantages Roughly explore genes
one by one
Quickly check if the
expected/important
genes are in the list
Quickly learn annota-
tion about genes of
interests
All genes are included
in the analysis

Explore genes group
by group rather than
singular genes one
by one
Highlight important
gene groups by
enrichment scores
Study functionally
related genes and
their relationship in
a network format
Good to catch major
biology

Simple format to
explore all singular
enriched terms

Explore annotations
group by group rather
than singular terms one
by one
Highlight important
annotation groups by
enrichment scores
Study functionally
related genes and their
relationship in a net-
work format
Good to focus on major
and fine-level biology

Quickly explore all
annotations (both
enriched and non-
enriched ones) for
given genes
Good for analysis of
small number of focused
genes
Save entire annotation
profile of a given gene
list in text file ready for
other external analysis

Drawbacks Related genes scattered
in the results lose
interrelationships
during exploration
Difficult to judge
important genes or
nonspecific genes
without enrichment
calculation

Some genes without
strong neighbors
will be left out from
the analysis

Related/redundant
terms scattered in the
results
Some fine-level biology
could be diluted by the
redundancy
Lack of term–term
relationships during
analysis

Some enriched terms
without strong neigh-
bors will be left out
from the analysis

Difficult to explore large
gene list
No enrichment analysis

NATURE PROTOCOLS | VOL.4 NO.1 | 2009 | 45

PROTOCOL

(5) A ‘good’ gene list should consistently contain more enriched
biology than that of a random list in the same size range during
analysis in DAVID (see Supplementary Data 3 for detailed
discussions).

(6) High reproducibility (e.g., by independent experiments under
the same conditions or by leave-one-out statistical test) to
generate a similar gene list under the same conditions.

(7) The high quality of the high-throughput data can be confirmed
by other independent wet lab tests or experiments.

Some of these points (2, 3, 6 and 7) come from upstream analysis,
whereas DAVID may help in examining others (1, 4 and 5).

Moreover, for enrichment analysis, in general, a larger gene list
can have higher statistical power resulting in a higher sensitivity
(more significant P-values) to slightly enriched terms, as well as to
more specific terms. Otherwise, the sensitivity is decreased toward
largely enriched terms and broader/general terms. Although the
size of the gene list influences (in a nonlinear way) the absolute
enrichment P-values, which makes it difficult to directly compare
the absolute enrichment P-values across gene lists, the enrichment
P-values are fairly comparable within the same or same size of gene
list. In addition, when different sizes of gene lists are generated from
the same data set with different threshold stringencies (within a
reasonable range), the absolute enrichment P-values may vary from
list to list. However, the relative rank/order of the enriched terms
may remain fairly stable, which will lead to consistent global
conclusions of functional annotations across the different sizes of
gene lists derived from the same data set (data not shown). This
kind of reproducibility and consistency should be expected using
DAVID tools if the underlying high-throughput biological studies
are robust.

Interestingly, we found that many gene lists input to DAVID are
in the size range of 1–10 genes. The enrichment statistic’s power
will be very limited in such extreme cases. However, the unique
exploratory capability of DAVID could still be very powerful for
analyzing such small gene lists. As the analysis is most likely in a
very focused and small scope, analysts may take advantage of the
unique exploratory capability of DAVID to navigate through all of
the well-organized heterogeneous annotation contents around the
focused genes regardless of the statistics.

Submission of user’s gene identifiers to DAVID
Comprehensively mapping of a user’s gene identifiers (gene IDs) to
the relevant biological annotation in the DAVID database is an
essential foundation for the success of any high-throughput gene
functional analysis. Gene IDs and biological annotations are highly
redundant within the vast array of public databases. The DAVID
knowledgebase13 was designed to collect and integrate diverse gene
identifiers as well as more than 40 well-known publicly available
annotation categories (Supplementary Data 4), which are then
centralized by internal DAVID identifiers in a nonredundant
manner. The wide range of biological annotation coverage and
the nonredundant integration of gene IDs in the DAVID know-
ledgebase enables a user’s gene ID to be mapped across the entire
database, thus providing comprehensive coverage of gene-asso-
ciated annotation. If a significant portion (Z20%) of input gene
IDs fail to be mapped to an internal DAVID ID, a specially designed
module, the DAVID Gene ID Conversion Tool15, will start up to
help map such IDs.

Principle of ‘gene population background’ in enrichment
analysis
The principle foundation of enrichment analysis is that if a
biological process is abnormal in a given study, the co-functioning
genes should have a higher potential (enriched) to be selected as a
relevant group by the high-throughput screening technologies. To
decide the degree of enrichment, a certain background must be set
up to perform the comparison (also see Step 1 in Table 2). For
example, 10% of the user’s genes are kinases versus 1% of the genes
in the human genome (this is the gene population background)
that are kinases. The enrichment can therefore be quantitatively
measured by some common and well-known statistical methods,
including w2, Fisher’s exact test, Binomial probability and Hyper-
geometric distribution. Thus, a conclusion may be obtained for the
particular example, that is, kinases are enriched in the user’s study,
and therefore have important functions in the study. However, we
cannot make such a conclusion with 10% alone, without compar-
ing it with the background information (i.e., 1%).

In this sense, the background is one of the critical factors that
impact the conclusion to a certain degree, particularly when two
ratios are close. There are many ways to set the backgrounds, e.g., all
genome genes; genes on an Affymetrix chip; and a subset of genome
genes that the user used in their study. In general, larger back-
grounds, e.g., the total genes in the genome as a population
background, intend to give more significant P-values, as compared
with a narrowed-down set of genes as a population background,
such as genes existing only on a microarray. Even though there is no
gold standard for the population background, a general guideline is
to set up the population background as the pool of genes that have
a chance to be selected for the studied annotation category in the
scope of the users’ particular study.

One of the advantages of DAVID is its flexibility of setting
different population backgrounds to meet different situations.
DAVID has an automatic procedure to ‘guess’ the background as
the global set of genes in the genome on the basis of the user’s
uploaded gene list. Thus, in a regular situation, users do not have to
set up a population background by themselves. We found that it
works generally well just because most of the studies analyzed by
DAVID are genome-wide or close to genome-wide studies. More-
over, other options are also available for user’s choices, including all
genes in the studied genome, genes in various microarray chips and
most importantly any gene set that users define and upload. The
last feature requires significant computational power so that it is
rarely found in similar Web-based applications. In summary,
various settings and options for population backgrounds can
meet the range of needs of general users to those of power users.

DAVID gene name batch viewer
Gene IDs, such as Entrez Gene 3558, typically do not convey
biological meaning in and of itself. The gene name batch viewer1

is able to quickly attach meaning to a list of gene IDs by rapidly
translating them into their corresponding gene names (Fig. 1, and
see slide 4 of Supplementary Data 5 for more detail). Thus,
before proceeding to analysis with other more comprehensive
analytic tools, investigators can quickly glance at the gene
names to further gain insight about their study and to answer
questions such as, ‘Does my gene list contain important
genes relevant to the study?’. In addition, a set of hyperlinks

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

46 | VOL.4 NO.1 | 2009 | NATURE PROTOCOLS

PROTOCOL

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

TABLE 2 | Major statistical methods and associated parameters used in DAVID.

Step no. Module/page Statistics/parameters Explanation/definition How to understand the value

1 Submission of

User’s Gene IDs

Background genes (or called

population genes)

To decide the degree of enrichment, a

certain background must be set up to be

compared with the user’s gene list. For

example, 10% of user’s genes are kinases

versus 1% of genes in human genome (this

is population background) are kinases.

Thus, the conclusion is obvious in the

particular example that the user’s study is

highly related to kinase. However, 10%

itself alone cannot provide such a con-

clusion without comparing it with the

background information

A general guideline is to set up the reference

background as the pool of genes that have a

chance to be selected for the studied annotation

category under the scope of users’ particular

study

Default background is the entire genome-wide

genes of the species matching the user’s input

IDs. Prebuilt backgrounds, such as genes in

Affymetrix chips and so on, are available for the

user’s choice

In principle, a larger gene background tends to

give smaller P-values. As most of the high-

throughput studies are, or at least are close to,

genome-wide scope, the default background is

good for regular cases in general

4 Gene Functional

Classification1,14

Classification stringency To control the behavior of DAVID Fuzzy

clustering

A general guideline is to choose higher strin-

gency settings for tight, clean and smaller

numbers of clusters; otherwise, lower for loose,

broader and larger numbers of clusters

Default setting is medium

Five predefined levels from lowest to highest for

user’s choices

Users may want to play with different stringency

for more satisfactory results

Enrichment score (for each

group)

To rank overall importance (enrichment) of

gene groups. It is the geometric mean of

all the enrichment P-values (EASE scores)

for each annotation term associated with

the gene members in the group. To

emphasize that the geometric mean is

a relative score instead of an absolute

P-value, minus log transformation is

applied on the average P-values

A higher score for a group indicates that the gene

members in the group are involved in more

important (enriched) terms in a given study;

therefore, more attention should go to them

Enrichment score of 1.3 is equivalent to non-log

scale 0.05. Thus, more attention should be given

to groups with scores Z1.3

However, the gene groups with lower scores

could be potentially interesting and should be

explored as well, if possible

6 Functional Anno-

tation Chart1,2

P-value (or called EASE score) To examine the significance of gene–term

enrichment with a modified Fisher’s exact

test (EASE score). For example, 10% of

user’s genes are kinases versus 1% of genes

in human genome (this is population

background) are kinases. Thus, the EASE

score is o0.05, which suggests that

kinases are significantly more enriched

than random chance in the study for this

particular example

The smaller the P-values, the more significant

they are

Default cutoff is 0.1

Users could set different levels of cutoff through

option panel on the top of result page.

Owing to the complexity of biological data

mining of this type, P-values are suggested to be

treated as score systems, i.e., suggesting roles

rather than decision-making roles. Users them-

selves should play critical roles in judging ‘are

the results making sense or not for expected

biology’

Benjamini To globally correct enrichment P-values to

control family-wide false discovery rate

under certain rate (e.g., r0.05). It is one

of the multiple testing correction techni-

ques (Bonferroni, Benjamini and FDR)

provided by DAVID

More terms examined, more conservative the

corrections are. As a result, all the P-values get

larger

It is great if the interesting terms have signifi-

cant P-values after the corrections. But as the

multiple testing correction techniques are

known as conservative approaches, it could hurt

the sensitivity of discovery if overemphasizing

them. Users’ judgment could be critical as dis-

cussed in EASE score in Functional Annotation

Chart section

(continued)

NATURE PROTOCOLS | VOL.4 NO.1 | 2009 | 47

PROTOCOL

are provided for each gene entry, allowing users to further
explore additional functional information about each gene.

DAVID gene functional classification
As the analysis proceeds, gene functional classification14 provides
the distinct ability for investigators to explore and view functionally

related genes together, as a unit, to concentrate on the larger
biological network rather than at the level of an individual gene.
In fact, the majority of cofunctioning genes may have diversified
names so that genes cannot be simply classified into functional
groups according to their names. However, gene functional classi-
fication, accomplished with a set of novel fuzzy clustering

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

TABLE 2 | Major statistical methods and associated parameters used in DAVID (continued).

Step no. Module/page Statistics/parameters Explanation/definition How to understand the value

Fold enrichment To measure the magnitude of enrichment.

For example, 10% of user’s genes are

kinases versus 1% of genes in human

genome (this is population background)

are kinases. Thus, the fold enrichment is

tenfold. Fold enrichment along with EASE

score could rank the enriched terms in a

more comprehensive way

Fold enrichment 1.5 and above are suggested to

be considered as interesting

Fold enrichment and EASE score should always be

examined side by side. Terms with larger fold

enrichments and smaller may be interesting

Caution should be taken when big fold enrich-

ments are obtained from a small number of genes

(e.g., r3). This situation often happens to the

terms with a few genes (more specific terms) or

of smaller size (e.g., o100) of user’s input gene

list. In this case, the reliability is not as much as

those fold enrichment scores obtained from

larger numbers of genes

% Number of genes involved in given term is

divided by the total number of user’s input

genes, i.e., percentage of user’s input gene

hitting a given term. For example, 10% of

user’s genes hit ‘kinase activity’

It gives overall idea of gene distributions among

the terms

The higher percentage does not necessarily have

a good EASE score because it also depends on the

percentage of background genes as discussed in

the EASE score in Functional Annotation Chart

section

8 Functional

Annotation

Clustering1,14

Classification stringency To control the behavior of DAVID Fuzzy

clustering

A general guideline is to choose higher strin-

gency setting for tight, clean and smaller num-

bers of clusters; otherwise, lower for looser,

broader and larger numbers of clusters

Default setting is medium

Five predefined levels from lowest to highest for

user’s choices

Users may want to play with different stringency

to obtain more satisfactory results

Enrichment score

(for each group)

To rank overall importance (enrichment) of

annotation term groups. It is the geo-

metric mean of all the enrichment P-values

(EASE scores) of each annotation term in

the group. To emphasize that the geo-

metric mean is a relative score instead of

an absolute P-value, minus log transfor-

mation is applied on the average P-values

A higher score for a group indicates that anno-

tation term members in the group are playing

more important (enriched) roles in given study;

therefore, pay more attention toward them

Enrichment score 1.3 is equivalent to non-log

scale 0.05. Thus, more attention should be given

to groups with scores Z1.3

However, the annotation groups with lower

scores could be potentially interesting, and

should be explored as well if possible

P-value (or called EASE score)

(for individual term members)

To examine the significance of gene–term

enrichment with a modified Fisher’s exact

test (EASE score). This P-value is calcu-

lated in exactly the same way as in the

Functional Annotation Chart section

The explanation is the same as that in Functional

Annotation Chart section

Benjamini To globally correct enrichment P-values of

individual term members. The idea and

calculations are exactly the same as that in

Functional Annotation Chart section

The explanation is the same as that in the

Functional Annotation Chart section

48 | VOL.4 NO.1 | 2009 | NATURE PROTOCOLS

PROTOCOL

techniques, is able to classify input genes
into functionally related gene groups (or
classes) on the basis of their annotation
term co-occurrence rather than on gene
names. Condensing large gene lists into
biologically meaningful modules greatly
improves one’s ability to assimilate large
amounts of information and thus switches
functional annotation analysis from a gene-
centric analysis to a biological module-cen-
tric analysis (Fig. 2, and see slides 5 and 6 of
Supplementary Data 5 for more details).
Taken together with the ‘drill-down’ func-
tion associated with each biological module
and visualizations to view the relationships
between the many-genes-to-many-terms
associations, investigators are able to more
comprehensively understand how genes are
associated with each other and with the
functional annotation.

DAVID functional annotation chart
Functional annotation chart1–3 provides
typical gene–term enrichment (overrepre-
sented) analysis, which is also provided by
other similar tools, to identify the most
relevant (overrepresented) biological terms
associated with a given gene list (Fig. 3, and see slide 8 of
Supplementary Data 5 for more detail). Compared with other
similar enrichment analysis tools, the notable difference of this
function provided by DAVID is its extended annotation coverage13,

increasing from only GO in the original version of DAVID to
presently over 40 annotation categories, including GO terms,
protein–protein interactions, protein functional domains, disease
associations, bio-pathways, sequence features, homology, gene

functional summaries, gene tissue expres-
sion and literature (Supplementary Data
4). The annotation categories can be flex-
ibly included or excluded from the analysis
on the basis of a user’s choices (see slide 7 of
Supplementary Data 5). The enhanced
annotation coverage alone increases the
analytic power by allowing investigators to
analyze their genes from many different
biological aspects in a single space. In addi-
tion, to take full advantage of the well-
known KEGG and BioCarta pathways,
DAVID pathway viewer, which is accessed
by clicking on pathway links within the
chart report, can display genes from a
user’s list on pathway maps to facilitate
biological interpretation in a network
context (see slide 9 of Supplementary
Data 5). Finally, the choice of prebuilt or

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

Figure 1 | An example layout of DAVID gene name batch viewer. User’s input gene IDs are translated into

meaningful and readable gene names. The link on each gene name can lead to more in-depth information.

Figure 2 | An example layout of DAVID gene

functional classification. User’s genes were

organized and condensed into several functional

groups. The gene members in each group share

common biological functions. A set of accessory

tools provided for each group will further facilitate

the ‘drill-down’ analysis of biological inter-

relationships among the gene members within the

same group.

NATURE PROTOCOLS | VOL.4 NO.1 | 2009 | 49

PROTOCOL

user-defined gene population backgrounds
provides the user with the ability to tailor
the enrichment analysis to meet the user’s
specific analytic situation.

DAVID functional annotation clustering
Functional annotation clustering14 uses a
similar fuzzy clustering concept as functional
classification by measuring relationships
among the annotation terms on the basis of
the degree of their coassociation with genes
within the user’s list to cluster somewhat
heterogeneous, yet highly similar annotation
into functional annotation groups (Fig. 4, see
slide 10 of Supplementary Data 5 for more
detail). This reduces the burden of associat-
ing different terms associated with the similar
biological process, thus allowing the biologi-
cal interpretation to be more focused at the
‘biological module’ level. The 2D view tool is
also provided for examining the internal
relationships among the clustered terms
and genes (see slide 6 of Supplementary
Data 5). This type of grouping of functional annotation is able to
give a more insightful view of the relationships between annotation
categories and terms compared with the traditional linear list of
enriched terms, as highly related/redundant annotation terms may be
dispersed among hundreds, if not thousands, of other terms.

DAVID functional annotation table
Functional annotation table1,2 is a query engine for the DAVID
knowledgebase, without statistical calculations (Fig. 5, see slide 11
of Supplementary Data 5 for further details). For a given gene list,
the tool can quickly query corresponding annotation for each gene
and present them in a table format. Thus, users are able to explore

annotation in a gene-by-gene manner. This is a useful analytic
module particularly when users want to closely look at the
annotation of highly interesting genes.

Summary
Collectively, all of the DAVID analytic modules aim to extract
biological meaning from the given gene list from different biological
angles with highly consistent and expected results for a given study.
Integration of the results from the different analytic modules (Fig. 6)
will take advantage of the different focus and strength of each module,
to make the overall biological picture assembled on the basis of the
gene list, more comprehensive and detailed. For a given gene list,

DAVID bioinformatics resources is able to
help users to (Fig. 6b):
� Convert gene IDs from one type to another
� Diagnose and fix problems with gene IDs
� Explore gene names in batch
� Discover enriched functionally related

gene groups
� Display relationship of many-genes-to-

many-terms on 2D view
� Provide an initial glance of major bio-

logical functions associated with gene list
� Identify enriched (overrepresented)

annotation terms
� Visualize genes on BioCarta and KEGG

pathway maps
� Link gene–disease associations
� Highlight protein functional domains

and motifs
� Redirect to related literature
� List interacting proteins
� Cluster redundant and heterozygous

annotation terms
� Search other functionally similar genes in

genome, but not in list

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

Figure 3 | An example layout of DAVID annotation chart. The enriched functional annotation terms

associated with user’s gene list are identified and listed according to their enrichment P-value by DAVID.

The links on the page can lead to various detailed information regarding corresponding items.

Figure 4 | An example layout of DAVID functional annotation clustering. The similar annotation terms are

grouped into clusters so that the user can read through the important terms in the way of block by block

instead of individual by individual.

50 | VOL.4 NO.1 | 2009 | NATURE PROTOCOLS

PROTOCOL

� Search other annotations functionally
similar to one of interest

� Read all annotation contents associated
with a gene.

This article will mainly describe the proto-
col of how to use each DAVID analytic
module in a logical, sequential order, as
well as how to switch among the analytic
modules (Fig. 6). The example gene list
used in this protocol (also available as
demo list 2 on DAVID website) allows
new users to quickly test and experience
various functions provided by DAVID. The
protocol provides a routine analytic flow
for new users to begin, as well as the
flexibility for experienced users to use, the
modules in different combinations to bal-
ance the different focuses and strengths of
each module to better meet specific analy-
tical questions (Fig. 6). Moreover, Table 2
lists major statistical methods and filtering
parameters that may influence the DAVID
analysis and result interpretation in certain
ways, for users to quickly look up specific
statistical topics according to their interests.

MATERIALS
EQUIPMENT
A computer with high-speed Internet access and a Web browser.

EQUIPMENT SETUP
Hardware requirements and computer configurations DAVID is a Web-
based tool designed so that a computer with a standard Web browser using
default settings should work well. There is no need for special configuration
and installation. Although DAVID was tested with several combinations of
Internet browsers and operating systems, MS Internet Explorer or
Firefox in a Window XP operating system is recommended to obtain the most
satisfactory usability.

Input data A list of gene identifiers is the only required input for all DAVID
analytic modules or tools. The gene list may be derived from any type of high-
throughput genomic, computational or proteomic study, such as DNA expression
microarray, proteomics, CHIP-on-CHIP, SNP array, CHIP-sequence and so on.
The format of the gene list to be uploaded is described throughout the website and
is either one gene ID per line or a list of comma-delimited gene IDs in one line
(Supplementary Data 6). DAVID supports most common public gene identi-
fiers13 (see Supplementary Data 4). In addition, after the gene list is submitted to
DAVID, all DAVID analytic modules can access the present list from the gene list
manager so that there is no need to resubmit the gene list for each DAVID tool.

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

Figure 5 | An example layout of DAVID Annotation Table. Various annotation contents for a given

gene are listed in a tabular format. The contents for each gene are separated by the header rows in

blue color.

Users’ large gene lists derived from
high-throughput genomic studies

Gene list manager and
tool/module menu page

Analytic flow
with DAVID

Submit gene
lists

Access/switch
modules through
tool menu page

Jointly use DAVID
analytic modules
in a sequential
order or any
customized
combination

Obtain
annotation
results

Integrate and
summarize
results

Step no.
described
in protocol

Gene name
batch
viewer

Res
ult

s

Res
ult

s

Res
ult

s

Res
ult

s

Res
ult

s

Gene
functional

classification

Functional
annotation

chart

Comparison and integration of
results from various tools

Functional
annotation
clustering

Functional
annotation

table

1

2

3 4
5

6
7
8

9

10

No.

2 2 2 2

Highly recommended

Recommended

Convert gene IDs from one type to another

Gen
e

ID
 co

nv
er

sio
n

to
ol

Gen
e

na
m

e
ba

tch
 vi

ew
er

Gen
e

fu
nc

tio
na

l c
las

sif
ica

tio
n

Fun
cti

on
al

an
no

ta
tio

n
ch

ar
t

Fun
cti

on
al

an
no

ta
tio

n
clu

ste
rin

g

Fun
cti

on
al

an
no

ta
tio

n
ta

ble

Diagnose and fix problems of gene IDs
Explore gene names in batch
Discover enriched functionally related gene groups
Display relationship of many-genes-to-many-terms on 2D view.
Initial glance of major biological functions associated with gene list
Identify enriched (overrepresented) annotation terms
Visualize genes on BioCarta and KEGG pathway maps
Link gene–disease associations
Highlight protein functional domains and motifs
Redirect to related literatures
List interacting proteins
Cluster redundant and heterozygous annotation terms
Search other functionally similar genes in genome, but not in list 1 1
Search other annotations functionally similar to one of my interests
Read all annotation contents associated with a gene

a b

Figure 6 | Analytic tools/modules in DAVID. (a) After the user’s gene list is submitted to DAVID, the gene list manager may be accessed by all DAVID analytic

modules (red boxes) at any time. The circled numbers indicate step numbers described in PROCEDURE to facilitate reading. (b) DAVID analytic modules, each

having different strengths and focus, can be used independently or jointly. A roadmap to help users to choose some or all DAVID analytic modules for the

analysis of large gene lists.

NATURE PROTOCOLS | VOL.4 NO.1 | 2009 | 51

PROTOCOL

An example gene list derived from an HIV microarray study16 is used in this
protocol, as well as available as demo_list2 on DAVID website. The HIV
microarray study is briefly described in INTRODUCTION. More detail can
be found in the original publication16.

Result download All results derived from DAVID may be explored and visualized
on the Web browser. Moreover, all results generated by DAVID can be downloaded
in simple flat text formats, thereafter to be edited or plotted by other graphic tools,
e.g., MS Excel, for publication purposes as well as for archive purposes.

PROCEDURE
Submission of user’s gene IDs to DAVID
1| Submit a gene list to DAVID (Fig. 7, and see slide 2 of Supplementary Data 5 for further details). To do this, go to
http://david.abcc.ncifcrf.gov or http://david.niaid.nih.gov and click on ‘Start Analysis’ on the header. Use the gene list manager
panel that appears on the left side of the page (Fig. 7) and perform the following steps:

(A) Copy and paste a list of gene IDs into box A or load a text file containing gene IDs to box B (see more details regarding
format requirements in EQUIPMENT SETUP, and also see Supplementary Data 6).

(B) Select the appropriate gene identifier type for your input gene IDs (see more details of supported ID types in EQUIPMENT
SETUP).

(C) Indicate the list to be submitted as a gene list (i.e., genes to be analyzed) or as background genes (i.e., gene population
background).

(D) Click the ‘Submit List’ button.
! CAUTION It takes B30 s for a typical submission of B1,000 gene IDs; the progress bar, below the header, will disap-
pear after a successful submission and a gene list name should appear in the list manager box; if Z20% input gene IDs
cannot be recognized, the submission will be redirected to the DAVID Gene ID Conversion Tool15 for further diagnosis. By
default, the background is automatically set up as the genome-wide set of genes for the species that is found to have the
majority of genes in the user’s input list. However, it is always a good practice to double-check the default, or select a
more appropriate prebuilt background through the ‘background’ tab on top of the list manager.
? TROUBLESHOOTING

2| Access DAVID analytic modules
(Fig. 7, and see slide 3 of Supplemen-
tary Data 5) through the tools menu
page. The tools main menu is the central
page that lists a set of hyperlinks
leading to all available analytic modules.
Clicking on each link will lead to the
corresponding analytic module for analy-
sis of your present gene list, highlighted
in the gene list manager.
m CRITICAL STEP By clicking on ‘Start
Analysis’ on the header menu, users can
always go back to this page at any time,
no matter where they are, for choosing or
switching to other analysis modules for
the present gene list.

Gene name batch viewer
3| Run ‘Gene Name Batch Viewer’ and
explore results (Fig. 1, and see slide 4
of Supplementary Data 5). To do this,
click on the ‘Gene Name Batch Viewer’

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

a

b

Figure 7 | Submit a gene list to DAVID and access

various analytic tools/modules. (a) Following the

example input format and steps on the left-side

uploading panel, a list of genes may be uploaded

into DAVID. (b) After successfully uploading a

gene list(s), a set of analytic modules are

available for the analysis of the present gene list

highlighted in the gene list manager on the left

side. Importantly, users may go to this page at

any time by clicking ‘Start Analysis’ on the header

to access any analytic tool of interest.

52 | VOL.4 NO.1 | 2009 | NATURE PROTOCOLS

PROTOCOL

link on the tools menu page. All the gene names will be listed by the gene name batch viewer. For a gene of interest, one or all
of following options may be conducted

(A) Click on the gene name to link to more detailed information.
(B) Click on ‘RG’ (related genes) beside the gene name to search for other functionally related genes.
(C) Use the browser’s ‘Find’ function to search for particular items.

? TROUBLESHOOTING

Gene functional classification
4| Run ‘Gene Functional Classification’ and explore results (Fig. 2, and see slide 5 of Supplementary Data 5). To do this,
return to the tools menu page by clicking on ‘Start analysis’ on the header. Click on ‘Gene Functional Classification Tool’ to
classify the input gene list into gene groups. For any gene groups of interest, one or all of the following options may be
conducted:

(A) Click on the gene name that leads to individual gene reports for in-depth information about the gene.
(B) Click on the red ‘T’ (term reports) to list associated biology of the gene group.
(C) Click on ‘RG’ (related genes) to list all genes functionally related to the particular gene group.
(D) Click on the ‘green icon’ to invoke 2D (gene-to-term) view.
(E) Create a new subgene list for further analysis on a subset of the genes.
! CAUTION The input genes are classified using the default clustering stringency. Users may rerun the classification
function leading to optimal results for the particular case by resetting the stringency (high, medium or low) in the options
on top of the result page.
m CRITICAL STEP 2D view is a Java Applet application that may take awhile to load for the first time; the 2D view Java
Applet may require you to accept the online security certificate.
? TROUBLESHOOTING

Functional annotation chart
5| Run ‘Functional Annotation Chart’ (see slide 7 of Supplementary Data 5). To do this, return to the tools menu page by
clicking on ‘Start Analysis’ on the header. Click on ‘Functional Annotation Chart’ to go the ‘Summary Page’ of the tool suite.
Choose functional annotation categories of your interest (see slide 7 of Supplementary Data 5) either by accepting seven
default functional annotation categories or by expanding the tree beside each main category (i.e., main accessions, gene
ontology and so on) to select or deselect functional annotation categories of your interest. Then click on the ‘Functional
Annotation Chart’ button on the bottom of the page leading to a chart report.

6| Explore the results of the ‘Functional Annotation Chart’ (Fig. 3, and see slide 8 of Supplementary Data 5). For an annota-
tion term of interest, one or all of following options may be conducted:

(A) Click on the term name linking to a more detailed description.
(B) Click on ‘RT’ (related terms) to list other related terms.
(C) Click on the ‘blue bar’ to list all associated genes.
(D) Click on a pathway name to view genes on the pathway picture.
! CAUTION By default, the order of the annotation terms is based on the EASE (enrichment) score. However, results can
also be sorted by different values in the columns. The annotation terms with EASE score r0.1 are displayed in the results
by default. The stringency of this filter (EASE score cutoff) may be set higher or lower through the options provided at the
top of the report page to include more or less of the annotation terms.
? TROUBLESHOOTING

Functional annotation clustering
7| Run ‘Functional Annotation Clustering’ (see slide 10 of Supplementary Data 5). To do this, return to the tools menu page
by clicking on ‘Start Analysis’ on the header. Click on ‘Functional Annotation Clustering’ to go to the ‘Summary Page’ of the tool
suite. Select annotation categories as described in Step 5, then click on the ‘Functional Annotation Clustering’ button on the
bottom of the page.

8| Explore the results of ‘Functional Annotation Clustering’ (Fig. 4, and see slide 10 of Supplementary Data 5). For an anno-
tation term cluster of interest, one or all of following options may be conducted:

(A) Click on the term name linking to a more detailed description.
(B) Click on ‘RT’ (related terms) to list other related terms.
(C) Click on the ‘blue bar’ to list all associated genes of corresponding individual term.
(D) Click on the red ‘G’ to list all associated genes of all terms within the cluster.
(E) Click on the ‘green icon’ to display the 2D (gene-to-term) view for all genes and terms within the cluster.
! CAUTION The annotation terms are clustered using the default clustering stringency. Users may rerun the classification

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

NATURE PROTOCOLS | VOL.4 NO.1 | 2009 | 53

PROTOCOL

function leading to optimal results for the particular case by resetting the stringency (high, medium or low) in the options
on top of the result page.
? TROUBLESHOOTING

Functional annotation table
9| Run ‘Functional Annotation Table’ (see slide 11 of Supplementary Data 5). To do this, return to the tools menu
page by clicking on ‘Start Analysis’ on the header. Click on ‘Functional Annotation Table’ to go the ‘Summary Page’ of the tool
suite. Select annotation categories as described in Step 5, then click on ‘Functional Annotation Table’ button on the bottom of
the page.

10| Explore the results of ‘Functional Annotation Table’ (Fig. 5, and see slide 11 of Supplementary Data 5). For a gene of your
interest, the following options may be conducted:

(A) Click on annotation terms for a detailed description.
(B) Click on ‘Related Genes’ to search functionally related genes.
! CAUTION As the output is too large to be displayed by Internet browsers, only top 500 records are shown on the result
page. However, full results are available to be downloaded as a tab-delimited text file through the download link on top of
the result page.
? TROUBLESHOOTING

� TIMING
The total analysis time varies, ranging from several minutes to hours, and is dependent on the analytical questions being
addressed, the number of genes in the list being analyzed and the familiarity with the tools. It is not uncommon to make
several visits to focus on different questions regarding a gene list of interest. Indeed, computational time is only a small
portion of the total time, whereas exploring, interpreting and re-exploring both within DAVID and external to DAVID tends to
dominate most of the time. We used a PC computer with the Windows XP operating system, 2-GB memory, 2.0 GHz CPU and
1-Mbps Internet connection for the data analysis of a gene list consisting of B400 Affymetrix IDs (Supplementary Data 2)
derived from an HIV study16 (presented in ANTICIPATED RESULTS). During the analysis course, for regular functional calls, each
result was typically returned in B10 s. For the most computationally intensive functions, such as gene functional classification,
results were typically returned within B30 s; otherwise, never longer than 1 min.

? TROUBLESHOOTING
Troubleshooting advice can be found in Table 3.

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

TABLE 3 | Troubleshooting table.

Step Problem Possible reason Solution

1 Gene ID submission is stuck and I got the

message, ‘‘You are either not sure which

identifier type your list contains, or less

than 80% of your list has mapped to your

chosen identifier type. Please use the

Gene Conversion Tool to determine the

identifier type’’

User knows the correct gene ID types,

but selected wrong one that did not

match the actual input IDs

Go back to resubmit with correct selection of gene ID

type or move forward with DAVID Gene ID Conversion

tool to determine the potential gene ID type

User does not know the correct gene

ID type corresponding to their gene list

Submission panel in DAVID offers a special ID type,

called ‘Not sure’. Gene ID submission will be redirected to

the DAVID Gene ID Conversion tool, which has a

mechanism to scan the entire ID system in DAVID to help

you to determine the potential ID type(s) of your genes

There is more than one type of gene

ID in the user’s list

DAVID Gene ID Conversion Tool can help you deter-

mine the gene ID types and translate them to one

single type

User’s gene IDs may contain a version

number

Remove the version number, as DAVID will not recog-

nize them

Z20% of your gene IDs belong to low

quality or retired IDs

DAVID Gene ID Conversion Tool may help to identify

the problem IDs. The user should consider removing

them from the gene list or move forward to analysis,

ignoring the problem

(continued)

54 | VOL.4 NO.1 | 2009 | NATURE PROTOCOLS

PROTOCOL

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

TABLE 3 | Troubleshooting table (continued)

Step Problem Possible reason Solution

1 and 3 The gene number that DAVID recognizes

does not match the number in my gene list

Repeated IDs in user’s list DAVID ID submission will automatically remove

redundancy

Particular ID(s) mapped to many

different genes

DAVID ID Conversion Tool could help to identify the

problem IDs. User should consider removing the ‘bad’

ID(s) from the gene list

User’s input gene IDs are gene symbols Gene symbol is not species specific, so one symbol

may be mapped to many homologous genes across

different species. You can define particular species

matching your study, after the gene symbols are

submitted, in the gene list manager

3, 4, 6, 8 and 10 Result page is blank or empty 30-min timeout If your Web browser is inactive for more than 30 min,

DAVID will clean up all information (your gene list and

so on) on the server side. Thus, you have to restart

your analysis by resubmitting your gene list

The size of the gene list is too small Enrichment or clustering algorithms are based on the

survey between input genes against background

genes. Thus, a reasonable size (e.g., 430) of input

genes is required. Otherwise, certain algorithms will

not work properly

The cutoff or stringency options are too

high

Lower down the thresholds accordingly

Wrong background selected Background is automatically set up as the genome-

wide set of genes corresponding to the species for the

majority of genes in the gene list. Sometimes, the

system may not choose the appropriate species. User

may check and correct the appropriate background

through the Gene List Manager

Small or minor species Some small species may have very little annotation for

the genes. There is nothing that can be done about

this situation. Alternatively, you could map the

genes to the homologous genes in a better-annotated

species

4, 8 2D view is not displayed Network certificate Please accept it by clicking on ‘Accept’. Basically, you

are telling your browser to trust the DAVID application

Java plug-in is not enabled By default, most browsers should have the Java plug-

in enabled. In case yours is not, please turn it on

through Internet Options

NA Service is too slow Slow computer and/or Internet speed Make sure that you have a reasonably good computer

and Internet speed. See recommendations in

MATERIALS

Gene list is too large (43,000) Please be patient

DAVID server is overwhelmed The DAVID service may sometimes be slow due to too

many large, simultaneous requests. We have monitor-

ing programs to autodetect and fix the situation in a

short time period. If the situation is not resolved in a

reasonable amount of time, please report the problem

to the DAVID team through the contact provided on

the DAVID website

NA, not applicable.

NATURE PROTOCOLS | VOL.4 NO.1 | 2009 | 55

PROTOCOL

ANTICIPATED RESULTS
We use submission of the example gene list (B400 genes derived from an HIV microarray study16) to DAVID to illustrate the
results obtained from various DAVID analytic modules. More detailed information and the availability regarding the gene list can
be found in the Materials and Introduction sections of this protocol. Moreover, Supplementary Data 5 provides screen shots of
each major step of the following analysis.

Submission of user’s gene IDs to DAVID
A successful submission of the gene list to DAVID is shown in Figure 7 (also see slides 2 and 3 of Supplementary Data 5).
Users should see the progress bar under the header move through submission and disappear upon completion of the submission.
The gene list manager panel on the left side thereafter displays the list name (e.g., Upload_list_1) and corresponding species
information (Homo sapiens (391)). The number (i.e., 391) appended after the species information is the number of genes that
are recognized by DAVID. A set of hyperlinks on the right-side page lists the analytic modules available in the DAVID analytic
pipeline. Users may follow the order of the pipeline to conduct analysis or jointly use analytic modules in varying combinations
to meet the user’s specific needs (Fig. 6). Most importantly, the page serves as a central page (Fig. 7) for users to choose
analytic modules. Users may go back to this page at any time by clicking the ‘Start Analysis’ button on the header to switch
back and forth among analytic modules as needed.

Gene name batch viewer
The corresponding gene names of input gene IDs are displayed as shown in Figure 1 and slide 4 of Supplementary Data 5.
Users may explore the gene names to examine whether there are any interesting study or marker genes in the list. Many
immune-related genes, containing names like ‘interleukin’, ‘chemokine’, ‘kinase’ and ‘tumor necrosis factor’ can be found in the
example list, which are consistent with that reported in the publicaton16. A set of hyperlinks provided for each gene can further
lead to more detailed information about a given gene. In addition, by clicking on the ‘RG’ (related genes) search function
beside a gene name, e.g., ‘interleukin 8’, all other functionally related chemokine genes (e.g., cxcl 1, 2, 3, 4, 20) will be listed
so that users will be able to see other functionally similar genes in the list based on the bait gene.

Gene functional classification
The tool classified the example gene list (B400 genes) into ten functional groups in an easily readable tabular format. An
example output is illustrated in Figure 2 as well as in slide 5 of Supplementary Data 5. Gene groups (with significant
enrichment scores Z1), such as cytokines/chemokines (group 1: 3.39), kinases (group 2: 2.21), clathrin membrane fusion
genes (group 3: 1.86), transcription factors (group 6: 1.39) and so on, can easily be identified. All of these gene groups are
highly relevant to an HIV study and are therefore expected biological results16. Organizing the large gene list into gene groups
allows investigators to quickly focus on the overall major common biology associated with a gene group rather than one gene
at a time, thereby avoiding dilution of focus during the analysis due to too many single genes. Furthermore, the ‘2D View’
function associated with each group is able to display all related terms and genes in detail in one picture, to examine their
interrelationships. For example, for the kinase group (group 2), a user who is not familiar with kinases may explore the terms of
kinase activity, transferase activity, ATP-binding, nucleotide binding, protein metabolism, tyrosine specificity, serine/threonine
specificity, regulation of G protein signaling, signal transduction and so on in one view at the same time (slide 6 of
Supplementary Data 5). Therefore, we can quickly learn the biology for the kinase group, with the above-mentioned related
terms in a single view and also identify the fine differences among them. For example, there are two G-protein-coupled receptor
kinases, three protein tyrosine kinases and six kinases involved in cell surface receptor-linked signal transduction among the
23 kinases within the group. The fine details may be very important for pinpointing the key biology associated with a study.

Functional annotation chart
Over 500 enriched (overrepresented) biological terms were reported (Fig. 3, and slide 8 of Supplementary Data 5). Many of
them are highly immune related, such as response to pathogenic bacteria, chemokine activity, cell migration, clathrin-coated
vesicle membrane, kinase activity, RNA polymerase II transcription factor activity, cell communication. This is consistent with
observations identified earlier by the other analytic modules, as well as meeting the expectation for the HIV study16. The report
offers a lot of redundant details regarding the enriched biology associated with the gene list, which certainly helps the
interpretation of the biology, but also may dilute the focus. Moreover, a set of hyperlinks provided for each term will lead to
more details about each term, such as in-depth description, associated genes, other related terms, directed acyclic graph (DAG)
of GO and so on. Notably, the pathway viewer module offers visualization of users’ genes on enriched pathways. For example,
‘IL-10 Anti-inflammatory Signaling Pathway’ was reported in the output. We can observe that IL10 was activated as an upstream
immune regulator and was then further regulated by HO-1. As a result, the IL1/TNFa/IL6 complex was activated leading to
further downstream inflammatory responses (Fig. 8, and slide 9 of Supplementary Data 5). Thus, the interrelationship of input
genes was examined on the pathway in a network context.

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

56 | VOL.4 NO.1 | 2009 | NATURE PROTOCOLS

PROTOCOL

Functional annotation clustering
The tool condensed the input gene list into smaller, much
more organized biological annotation modules in a similar
format (Fig. 4, and see slide 10 of Supplementary Data 5)
as that of gene annotation clustering, but in a term-centric
manner. Similarly, it allows investigators to focus on the
annotation group level by quickly organizing many redundant/
similar/hierarchical terms within the group. Annotation
clusters, such as immune response, transcriptional regulation,
chemokine activity, cytokine activity, kinase acitivity,
signaling transduction, cell death and so on, could be
found on the top of the output as expected for this study16.
The highly organized and simplified annotation results allow
users to quickly focus on the major biology at an annotation
cluster level instead of trying to derive the same conclusions
by putting together pieces that are scattered throughout a
list of hundreds of terms in a typical term-enrichment
analysis. In addition, the ‘G’ (genes) link provided for each
cluster can comprehensively pool all related genes from
different terms within the cluster. For example, each of the
seven terms within cluster 2 (inflammatory response cluster)
associates with both overlapping as well as differing
genes. Therefore, a pooled gene list brought together by cluster 2 regarding inflammatory response may be much more
comprehensive, compared with the genes selected from one or a few individual terms.

Note: Supplementary information is available via the HTML version of this article.

ACKNOWLEDGMENTS We are grateful to the referees for their constructive
comments and thank Robert Stephens, David Bryant and David Liu in the ABCC
group for Web server support. Thanks also go to Xin Zheng and Jun Yang in the
Laboratory of Immunopathogenesis and Bioinformatics (LIB) group for discussion.
We also thank Bill Wilton and Mike Tartakovsky for information technology and
network support. The project has been funded with federal funds from the National
Institute of Allergy and Infectious Diseases (NIAID) and National Institutes of
Health (NIH), under Contract no. NO1-CO-56000. The annotation of this tool and
publication does not necessarily reflect the views or policies of the Department of
Health and Human Services, nor does mention of trade names, commercial products
or organizations imply endorsement by the United States Government.

Published online at http://www.natureprotocols.com/
Reprints and permissions information is available online at http://npg.nature.com/
reprintsandpermissions/

1. Huang da, W. et al. DAVID bioinformatics resources: expanded annotation
database and novel algorithms to better extract biology from large gene lists.
Nucleic Acids Res. 35, W169–W175 (2007).

2. Dennis, G. Jr. et al. DAVID: database for annotation, visualization, and integrated
discovery. Genome Biol. 4, P3 (2003).

3. Hosack, D.A., Dennis, G. Jr., Sherman, B.T., Lane, H.C. & Lempicki, R.A.
Identifying biological themes within lists of genes with EASE. Genome Biol. 4,
R70 (2003).

4. Zeeberg, B.R. et al.High-Throughput GoMiner, an ‘industrial-strength’ integrative
gene ontology tool for interpretation of multiple-microarray experiments, with
application to studies of common variable immune deficiency (CVID). BMC
Bioinformatics 6, 168 (2005).

5. Beissbarth, T. & Speed, T.P. GOstat: find statistically overrepresented Gene
Ontologies within a group of genes. Bioinformatics 20, 1464–1465 (2004).

6. Khatri, P., Bhavsar, P., Bawa, G. & Draghici, S. Onto-Tools: an ensemble of
web-accessible, ontology-based tools for the functional design and
interpretation of high-throughput gene expression experiments. Nucleic Acids
Res. 32, W449–W456 (2004).

7. Martin, D. et al. GOToolBox: functional analysis of gene datasets based on Gene
Ontology. Genome Biol. 5, R101 (2004).

8. Al-Shahrour, F., Diaz-Uriarte, R. & Dopazo, J. FatiGO: a web tool for finding
significant associations of Gene Ontology terms with groups of genes.
Bioinformatics 20, 578–580 (2004).

9. Masseroli, M., Galati, O. & Pinciroli, F. GFINDer: genetic disease and phenotype
location statistical analysis and mining of dynamically annotated gene lists.
Nucleic Acids Res. 33, W717–W723 (2005).

10. Lee, J.S., Katari, G. & Sachidanandam, R. GObar: a gene ontology
based analysis and visualization tool for gene sets. BMC Bioinformatics 6, 189
(2005).

11. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach
for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102,
15545–15550 (2005).

12. Khatri, P. & Draghici, S. Ontological analysis of gene expression data:
current tools, limitations, and open problems. Bioinformatics 21, 3587–3595
(2005).

13. Sherman, B.T. et al. DAVID knowledgebase: a gene-centered database integrating
heterogeneous gene annotation resources to facilitate high-throughput gene
functional analysis. BMC Bioinformatics 8, 426 (2007).

14. Huang da, W. et al. The DAVID gene functional classification tool: a novel
biological module-centric algorithm to functionally analyze large gene lists.
Genome Biol. 8, R183 (2007).

15. Huang, D.W., Sherman, B.T. & Lempicki, R.A. DAVID gene ID conversion tool.
Bioinformation 2, 428–430 (2008).

16. Cicala, C. et al. HIV envelope induces a cascade of cell signals in non-proliferating
target cells that favor virus replication. Proc. Natl. Acad. Sci. USA 99, 9380–9385
(2002).

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

Inflammatory response

LPS-induced pathway

Extracellular

JAK/STAT-
inducible

genes

MAPK pathway

Bilirubin+CO

BLVRA

Homo Biliverdin

HO-1

P38 pathway

Inflammatory cytokine genes

Nucleus
Macrophage
CytoplasmHO-1 gene

JAKJAK
STATs STATs

IL
-1

0R

IL-10
IL-1

IL-6

TNFα

Figure 8 | Pathway map viewer. The red star indicates the associations

between pathway genes and the user’s input genes. Following the pathway flow,

IL10 was activated as an upstream immune stimulator. Then, the middle stream

gene, HO-1, was involved. IL-1/INFa/IL-6, as downstream regulator, was finally

activated. Thus, the user’s genes may be analyzed in a network context.

NATURE PROTOCOLS | VOL.4 NO.1 | 2009 | 57

PROTOCOL

Genome Resource Facility

http://grf.lshtm.ac.uk/microarrayoverview.htm[10/18/2013 11:22:21 AM]

 Microarray Overview

- Introduction
- What is DNA microarray technology
- Types of DNA microarray technology
- Glass cDNA Microarrays
- Advantages of cDNA Microarrays
- Disadvantages of cDNA Microarrays
- In situ oligonucleotide array format
- Advantages of in situ oligonucleotide array format
- Disadvantages of in situ oligonucleotide array format
- Principles of DNA microarray experiments
- Application

Introduction

DNA microarray technology (also known as DNA arrays, DNA chips or biochips) represents one of the
latest breakthroughs and indeed major achievements in experimental molecular biology. This novel
technology, which started to appear during the second half of the 1990s, has historically evolved from
the initial experimental reports published in the mid 1970s which indicated that labelled nucleic acids
could be used to monitor the expression of nucleic acid molecules attached to a solid support.
However, it was not until 1995 that the first article describing the application of DNA microarray
technology to expression analysis was published in the scientific literature by Patrick Brown and his
colleagues at Stanford University (Brown., et al. 1995).

Today, however, there is prominent evidence that the technology has made a dramatic advancements
since its development and gained an increasing popularity among scientific researchers. It is also
unquestionable that many scientific researchers are presumptive about the novelty of this technology
regarding it as an indispensable as well as a needful research tool.

Such widespread adoption of DNA microarray technology in both industry and many academic research
laboratories, was largely due to its aptitude to provide scientific researchers the opportunity to quickly
and accurately perform simultaneous analysis of literally thousands of genes in a massively parallel
manner, or even entire genome of an organism e.g. (Bacteria, Yeast, Virus, Protozoa, Mouse or
Human) in a single experiment, hence providing extensive and valuable information on gene
interaction and function.

Here, our aim is to give a brief overview of cDNA microarray technology, particularly explaining
(Watson., et al. 1998) what is a cDNA microarray technology (Sinclair., 1999) the various
types/platforms of cDNA microarray technology, highlighting both their advantages and disadvantages
as well as how they are fabricated or manufactured (Burgess., 2001) the technology's basic
fundamental principles and how it works are also outlined, as well as potential applications.

However, for detailed information of the potential and the scientific value of cDNA microarray
technology in modern research, the reader is advised to look up the large number of excellent reviews
of DNA array technology available (Rhodius., et al 2002). We particularly recommend the January
1999 supplement of Nature Genetics (Bowtell., 1999).

What is DNA microarray technology?

In it's broadest term, DNA microarray technology may be defined as a high-throughput and versatile
technology used for parallel gene expression analysis for thousands of genes of known and unknown
function, or DNA homology analysis for detecting polymorphisms and mutations in both prokaryotic
and eukaryotic genomic DNA.

However, in its precise and accurate definition DNA microarray is an orderly arrangement of thousands
of identified sequenced genes printed on an impermeable solid support, usually glass, silicon chips or
nylon membrane.

Each identified sequenced gene on the glass, silicon chips or nylon membrane corresponds to a
fragment of genomic DNA, cDNAs, PCR products or chemically synthesised oligonucleotides of up to
70mers and represents a single gene.

http://www.lshtm.ac.uk/
http://grf.lshtm.ac.uk/index.htm
http://grf.lshtm.ac.uk/microarraysection.htm
http://grf.lshtm.ac.uk/bioinformaticssection.htm
http://grf.lshtm.ac.uk/sequencing.htm
http://grf.lshtm.ac.uk/references.htm
http://grf.lshtm.ac.uk/links.htm
http://grf.lshtm.ac.uk/contactus.htm
http://www.lshtm.ac.uk/itd/
http://www.lshtm.ac.uk/pmbu/
http://grf.lshtm.ac.uk/sitemap.htm
http://grf.lshtm.ac.uk/microarraysection.htm

Genome Resource Facility

http://grf.lshtm.ac.uk/microarrayoverview.htm[10/18/2013 11:22:21 AM]

Usually a single DNA microarray slide/chip may contain thousands of spots each representing a single
gene and collectively the entire genome of an organism. A schematic diagram of the two most
commonly used DNA microarray formats to date are shown in Figure 1 and 2.

Figure 1. Glass complementary DNA (cDNA) microarray produced by using high-speed precision robot.
This type of DNA microarray can bear between 10,000 - 20,000 spots (genes) on an area of 3.6 cm2.
Each spot represents the product of a specific gene and is generated by depositing a few nano liters of
PCR product representing that specific gene usually at concentration of 100-500 µg/ml. The diameter
of each spot is also typically 50-150 µm.

Figure 2. Illustration of a DNA GeneChip (Affymetrix).

Types of DNA microarrays

There are currently two platforms/types of DNA microarrays that are commercially available.

1. Glass DNA microarrays which involves the micro spotting of pre-fabricated cDNA fragments on a
glass slide.
2. High-density oligonucleotide microarrays often referred to as a "chip" which involves in situ
oligonucleotide synthesis.

However, from a manufacturing point of view, there are fundamental differences between the two
platforms in regard to the sizes of printed DNA fragments, the methods of printing the DNA spots on
the slide/chip, and also the data images generated.

Genome Resource Facility

http://grf.lshtm.ac.uk/microarrayoverview.htm[10/18/2013 11:22:21 AM]

Glass cDNA microarrays

Glass DNA microarrays was the first type of DNA microarray technology developed. It was pioneered
by Patrick Brown and his colleagues at Stanford University and is produced by using a robotic device,
which deposits (spots) a nanoliter of DNA (50-150 µm in diameter) onto a coated microscope glass
slide surface in serial order with a distance of approximately 200-250 µm from each other, one spot-
one gene. These moderate sized glass cDNA microarrays also bear about 10,000 spots or more on an
area of 3.6 cm2.

As the name suggests, glass cDNA microarrays use specially manufactured glass slides with desired
physico-chemical characteristics e.g. excellent chemical resistance against solvents, good mechanical
stability (increased thermal strain point) and low intrinsic fluorescence properties.

However, to produce a complete whole genome glass DNA microarray, a series of consecutive steps
are followed, ideally each step requiring an appropriate and careful approach. Here, we will not discuss
in detail how each step is performed, but briefly outline these steps in the order they are followed.

The first step of manufacturing a glass cDNA microarray is selecting the material to spot onto the
microscope glass surface e.g. the genes from public databases/repositories or institutional sources.
This is followed by the preparation and purification of DNA sequences representing the gene of
interest. In the preparation process, PCR is used to amplify the DNA from library of interest using a
universal primers or gene specific primers and the purity of the DNA fragments representing genes of
interest are generally checked by sequencing or using on agarose gel to concomitantly obtain an
estimate of the DNA concentration. This is an important step because all the DNA fragments should be
of similar concentration/molarity and size, to achieve similar reaction kinetics for all hybridisations.
The third step is spotting DNA solution onto chemically modified glass slides usually with poly(L-lysine)
or other cross-linking chemical coating materials such as polyethyleneimine polymer p-aminophenyl
trimethoxysilane/diazotization chemistry and dendrimeric structure. It is these substrates that are
coated on the surface of the glass slide that determines how the DNA solution will be immobilised on
the surface e.g. covalent or non covalent. However in the course of poly(L-lysine) the negatively
charged phosphate groups in the DNA molecule, form an ionic bond with the positively charged amine-
derivatised surface. This spotting step is achieved via a contact printing using precisely controlled
robotic pins or other equivalent delivering technology such as inkjet printing.

The last step of manufacturing glass DNA microarrays is the post-print processing step involving the
drying of the DNA on the slide overnight at room temperature and the use of UV cross-linking to
prevent subsequent binding of DNA, and to decrease the background signal upon hybridisation of a
labelled target.

Figure 3. Steps of manufacturing glass cDNA microarrays.

Advantages of cDNA microarrays

Advantages of Glass cDNA microarrays include their relative affordability with a lower cost. Its
accessibility requiring no specific equipment for use such that hybridisation does not need specialised
equipment, and data capture can be carried out using equipment that is very often already available in
the laboratory and flexibility of design as necessitated by the scientific goals of the experiment. In
addition to that, Glass cDNA microarrays also have increased detection sensitivity due to longer target
sequences (2 kbp).

Disadvantages of cDNA microarrays

Genome Resource Facility

http://grf.lshtm.ac.uk/microarrayoverview.htm[10/18/2013 11:22:21 AM]

Despite their wide spread use, glass cDNA microarray have a few disadvantages such as intensive
labour requirement for synthesising, purifying, and storing DNA solutions before microarray
fabrication. Further, more printing devices required thus making microarrays more expensive. Also
during microarray experiments in the laboratory, sequence homologies between clones representing
different closely related members of the same gene family may result in a failure to specifically detect
individual genes and instead may hybridise to spot(s) designed to detect transcript from a different
gene. This phenomena is known as cross hybridisation.

in situIn situ oligonucleotide array format

In situ (on chip) oligonucleotide array format is a sophisticated platform of microarray technology
which is manufactured by using the technology of in situ chemical synthesis that was first developed
by Stephen Fodor et al. (1991). However, the industry leader in the field of in situ oligonucleotide
microarrays (Affymetrix) has further pioneered this type of technology to manufacture so-called
GeneChips which refers to its high density oligonucleotide based DNA arrays.

Presently, the commercial versions of Affymetrix GeneChips hold up to 500,000 probes/sites in a 1.28-
cm2 chip area, and due to such very high information content (genes), they are finding widespread
use in the hybridisation-based detection and analysis of mutations and polymorphisms, such as single
nucleotide polymorphisms or disease-relevant mutations analysis ("genotyping"), as well as a wide
range of other applications such gene expression studies, to mention a few.

The basic principles of manufacturing Affymetrix's GeneChips is the use of photolithography and
combinatorial chemistry to manufacture short single strands of DNA onto 5-inch square quartz wafers.
Unlike glass cDNA, the genes on the chip are designed based on sequence information alone, and then
using an industry chip synthesiser, sequences are directly synthesised onto the surface of the 5-inch
square quartz wafer at a pre-selected positions.

Detailed stepwise synthesis of in situ synthesis of oligonucleotides (Affymetrix GeneChips) is beyond
the scope of this overview, but we will briefly outline some of the concepts related to the fabrication
process.

The fabrication process of Affymetrix's GeneChips using a DNA photolithography process starts by the
derivatization of the solid support, usually quartz with a covalent linker molecule terminated with a
photolabile protecting group. This is firstly achieved by washing the quartz to ensure uniform
hydroxylation across its surface and then placing it in a bath of silane, which reacts with the hydroxyl
groups of the quartz and forms a matrix of covalently linked molecules.

The in situ synthesis of oligonucleotides occur in parallel, resulting in consecutive addition of A, C, G
and T nucleotides to the appropriate gene sequences on the array. At each step in the synthesis
process, oligonucleotide chains that for example require adenine in the next position are deprotected
by light at the appropriate positions by a mask. The quartz (chip) is then flooded with a solution
containing activated adenine nucleotides with a removable protection group, which are coupled to the
deprotected positions. Uncoupled adenine residues are washed away and another mask is applied to
further carry out the deprotection of the next nucleotide. Finally, repeating the process ~70 times,
with 70 different masks, allows synthesis of the complete array of thousands of 25-mer
oligonucleotides in parallel.

Advantages of in situ oligonucleotide array format

Advantages offered by the in situ oligonucleotide array format include speed, specificity and
reproducibility. Speed, in terms of generating the array is prime advantage because, spotting the DNA
onto the chip requires only that the DNA sequence of interest be known, therefore no time is spent in
the handling of cDNA resources such as the preparation and accurate determination of handling
bacterial clones, PCR products, or cDNAs, thus reducing the likelihood of contamination and mix up.
However, before manufacturing the array, prior knowledge of the genome sequence is required to
design the oligonucleotide sets, and when this is not available, alternative methods of printing isolated
genetic material may be preferred.

Other advantages of the in situ oligonucleotide array format include high specificity and reproducibility.
Both of these attributes are due to the way oligonucleotide sequences to be printed on the chip are
designed and the use of multiple, short sequence(s) representing the unique sequence of genes. For
example, when designing oligonucleotide sequences for a gene, each sequence is designed to be
perfectly complementary to a target gene sequence, at the same time an additional partner sequence
is designed that is identical except for a single base mismatch in its centre. This sequence mismatch
strategy, along with the use of multiple sequence(s) for each gene increases specificity and helps to
identify and minimise the effects of non-specific hybridisation and background signal. This strategy
also allows the direct subtraction of cross-hybridisation signals and discrimination between real and
non-specific signals.

Disadvantages of in situ oligonucleotide array
format

Genome Resource Facility

http://grf.lshtm.ac.uk/microarrayoverview.htm[10/18/2013 11:22:21 AM]

There are several disadvantages to the in situ oligonucleotide array format including practical
limitations in terms of affordability and flexibility. Firstly, in situ oligonucleotide array formats tend to
have expensive specialised equipments e.g. to carry out the hybridisation, staining of label, washing,
and quantitation process. Secondly, ready made in situ oligonucleotide array format (GeneChips) are
still expensive, although there has been reductions in cost as the market of microarrays has expanded.
Thirdly, although short-sequences used on the array confer high specificity, they may have decreased
sensitivity/binding compared with glass cDNA microarrays. Such low sensitivity however is
compensated for by using multiple probes.

In situ oligonucleotide array format also offers reduced flexibility although this is not the case with
respect to the array design. However, there are occasions when the production of the array,
hybridisation and detection equipment are restricted to centralised manufacturer facilities, thus
limiting the researcher's flexibility. Similarly, the cost and time needed to manufacture the in situ
oligonucleotide array format makes it uneconomical for an average laboratory to synthesise its own
chips.

Principles of DNA Microarray experiments

The principle of DNA microarray technology is based on the fact that complementary sequences of DNA
can be used to hybridise immobilised DNA molecules. This involves three major multi-stage steps;

1- Manufacturing of microarrays: This step involves the availability of a chip or a glass slide with its
special surface chemistry, the robotics used for producing microarrays by spotting the DNA (targets)
onto the chip or for their in situ synthesis.
2- Sample preparation and array hybridisation step: This step involves mRNA or DNA isolation followed
by fluorescent labelling of cDNA probes and hybridisation of the sample to the immobilised target DNA.
3- Image acquisition and data analysis: Finally, this step involves microarray scanning, and image
analysis using sophisticated software programs that allows us to quantify and interpret the data.

However, here, we will concentrate on how microarray experiments are performed in the laboratory,
rather than the technological developments involving array construction or manufacturing using
precision robotic devices.

Typically, a microarray experiment involves the comparison of a query or experimental sample
representing the expression pattern of genes in a specific set of conditions, with a control sample
representing all the genes that are expressed in the cells/tissue to be analysed.

An example of this is comparisons made between expression profiles of bacteria within infected cells
(query) and the same bacteria cultured under standardised in vitro conditions of growth (control). Or
similarly a comparison made between an isogenic mutant and the wildtype strain.

There are four major steps in performing a typical microarray experiment.

1. Sample preparation and labelling
2. Hybridisation
3. Washing
4. Image acquisition and Data analysis

Sample preparation and labelling

There are a number of different ways in which a DNA microarray sample is prepared and labelled. All
of these different approaches however have their own advantages and disadvantages with respect to
many factors such as the starting amount of RNA or DNA required, through to cost, time and data
acquisition and transformation. However the choice of which one to use depends on these factors as
well as the type of microarray technology used, for example the slide type and the detection
equipment. Here, we used the term "sample" to refer to the free, fluorescently labelled cDNA, not to
confuse with the immobilised DNA known as reporter element (s)

Initially, the sample preparation starts by isolating a total RNA containing messenger RNA that ideally
represents a quantitative copy of genes expressed at the time of sample collection (experimental
sample & reference sample). This step is crucial, simply because the overall success of any microarray
experiment depends on the quality of the RNA.

For example purity in the sense of homogeneity or uniformity of the mRNA is a critical factor in the
downstream hybridisation performance, particularly when fluorescence is used, as cellular proteins,
lipids, and carbohydrates can mediate significant nonspecific binding of labeled cDNAs to matrix
surfaces. The sample mRNA extracted from the biological sample of interest and the reference are
then separately converted into complementary DNA (cDNA) using a reverse-transcriptase enzyme.
This step also requires a short primer to initiate cDNA synthesis. Next, each cDNA (Sample and
Control) are labelled with a different tracking molecule, often fluorescent cyanine dyes (i.e. Cy3 and
Cy5)

Array hybridisation

Hybridisation is the process of joining two complementary strands of DNA to form a double-stranded
molecule. Here, the labelled cDNA (Sample and Control) are mixed together, and then purified to
remove contaminants such as primers, unincorporated nucleotides, cellular proteins, lipids, and
carbohydrates. Purification is usually carried out using filter spin columns such as Qiaquick from
Qiagen. After purification, the mixed labelled cDNA is competitively hybridised against denatured PCR
product or cDNA molecules spotted on a glass slide. Ideally, each molecule in the labelled cDNA will
only bind to its appropriate complementary target sequence on the immobilised array.

Before hybridisation however, the microarray slides are incubated at high temperature with solutions

Genome Resource Facility

http://grf.lshtm.ac.uk/microarrayoverview.htm[10/18/2013 11:22:21 AM]

of saline-sodium buffer (SSC), Sodium Dodecyl Sulfate (SDS) and bovine serum albumin (BSA) to
reduce background due to nonspecific binding.

The slides are washed after hybridisation, first to remove any labelled cDNA that did not hybridise on
the array, and secondly to increase stringency of the experiment to reduce cross hybridisation. The
later is achieved by either increasing the temperature or lowering the ionic strength of the buffers.

Image acquisition and data analysis is the final step of microarray experiments. The aim is to produce
an image of the surface of the hybridised array. Here the slide is dried and placed into a laser scanner
to determine how much labelled cDNA (probe) is bound to each target spot. Laser excitation of the
incorporated targets yield an emission with characteristic spectra, which is measured using a confocal
laser microscope. Classically, microarray software often uses green spots on the microarray to
represent genes upregulated compared to control, red to represent those genes that are
downregulated in the experimental sample, and yellow to represent those genes of equal abundance in
both experimental and control samples.

Figure 4. Microarray experimental principles.

Applications of DNA Microarray Technology

The range of applications for microarray technology is enormous. However, although in depth details
of each one is beyond the scope of this overview, there are two distinctive applications of microarrays
that are in wide spread use.

1. Gene expression profiling to measure the expression of genes between different cell populations.
2. Comparative genomics to analyse genomic alterations such as sequence and single nucleotide
polymorphisms.

Microarray as a gene expression profiling tool

Genome Resource Facility

http://grf.lshtm.ac.uk/microarrayoverview.htm[10/18/2013 11:22:21 AM]

The principle aim of using microarray technology as a gene expression profiling tool is to answer some
of the fundamental questions in biology such as "when, where, and to what magnitude genes of
interest are expressed.'' Clearly, if a gene is not expressed in a defined time/condition at a defined cell
compartment, then it is possible to imagine it can play no role in that subnetwork. This approach is
based on the assumption that cellular genes are expressed in response to a particular state and that
the expression profile represents the subset of gene transcripts or mRNA expressed in a cell or tissue.
In addition to that, expression profiling by microarray analysis provides another approach to measure
changes in the multigene patterns of expression to better understand about regulatory mechanisms
and broader bioactivity functions of genes.

It is therefore appreciable that the knowledge obtained from microarray gene expression analysis will
probably increase our basic understanding of the cause and consequences of diseases (pathogenesis),
how drugs and drug candidates work in cells and organisms, and what gene products might have
therapeutic uses or may be studied further as an appropriate targets for therapeutic intervention.

For example, in the context of microbiology, microarray gene expression is used to analyse complex
cellular behaviour and to explore the complex interaction between host and microbial pathogens. This
ambitious and plausible attempt to understand such molecular interaction is achieved by directly
comparing gene expression profiles of host cell to the expression profile of the pathogen. Also an ex
vivo measurement of gene expression for host cells before and after they are infected with a microbial
pathogen can greatly increase our understanding of such complex molecular interplay. Furthermore by
following the pattern of gene expression at different times, it is possible to elucidate which host or
pathogen genes are up or downregulated over the course of infection to further identify critical target
genes and drug-specific targets in both host and microbial pathogens.

Microarray as a comparative genomics tool

Another important application of microarray technology, which is also finding a widespread use is gene
mutation analysis to analyse genomic alterations such as sequence and single nucleotide
polymorphisms. Currently, in the context of microbiology microarray gene mutation analysis is directed
to characterisation of genetic differences among microbial isolates, particularly closely related species.
For example detecting the presence or absence of DNA sequences/gene(s) between pathogenic and
non-pathogenic strains of the same species. Such informative approach would allow us to reveal genes
exclusively present in the former that may be required for infectivity, virulence or adaptation to a
particular host niche

Similarly, DNA microarray technology can be used to compare between a fully sequenced genome and
an unsequenced but related genome of closely related bacteria. Interestingly, such approach can
provide us a valuable information about the diversity and evolution of pathogens and symbionts.
Comparisons of this kind use a microarray containing representations of all the open reading frames
(ORFs) of the sequenced, reference strain and labelled DNA from the unsequenced, experimental
strain. The resulting hybridised array will then reveal genes common to both strains and genes that
are present in the reference strain but absent in the experimental strain. This method, however, may
not detect genes present in the experimental strain, but missing in the reference strain, although the
use of multi-genome (species array) may detect genes present in the experimental strain. This method
may not also detect point mutations, including frame-shift mutations, small deletions and deletions in
homologous repetitive elements, rearrangements of the genome that have not resulted in deletion of a
gene from the experimental strain. However the use of affymetrix gene chip can identify these
mutations.

An elegant and well known example of using microarray as a comparative genomics tool is the
comparison made by Behr et al., 1999 between several Mycobacterium bovis vaccine strains e.g. the
genome composition of the sequenced M. tuberculosis laboratory strain H37Rv with the closely related
pathogenic species, M. bovis, and with several strains of the bacille Calmette-Guerin (BCG) vaccine
variant that was produced by serial in vitro passage of M. bovis between 1908 and 1921.

This particular study, has revealed several chromosomal deletions in the different vaccine strains in
comparison to their progenitor, these deletions are possibly thought to be responsible for the variable
effectiveness of the BCG vaccine seen worldwide.

http://grf.lshtm.ac.uk/microarraysection.htm

MEETING ABSTRACT Open Access

Network analysis of gene fusions in human cancer
Morgan Harrell1, Junfeng Xia1, Zhongming Zhao1,2,3*

From 12th Annual UT-ORNL-KBRIN Bioinformatics Summit 2013
Buchanan, TN, USA. 22-24 March 2013

Background
Gene fusions are hybrid genes formed when two dis-
crete genes are incorrectly joined together. Gene fusions
are found to play roles in tumorigenesis. For example,
the fusion gene BCR-ABL translates into an abnormal
tyrosine kinase that accelerates development of chronic
myelogenous leukemia [1]. A network is a relational
representation of nodes (e.g., genes) with edges, and is a
useful approach to explore biological interactions among
many related nodes. Network analysis of gene fusions
in cancer would aid the exploration of gene fusion
occurrence and association with tumorigenesis. Hoglund
et al [2] performed an initial investigation of gene
fusions network after collecting 291 tumorigenesis
related gene fusions from the Mitelman database in
2006. Since then, gene fusion data has exponentially
increased. There is no current and comprehensive can-
cer-related gene fusion network to assist in targeting
cancer-associated genes.

Materials and methods
We mined three public databases for cancer-related
gene fusion sequences, and one database for fusions
records from cancer studies, transcriptome analysis, and
genetic disorders. Specifically, we processed each dataset
by removing incomplete entries and then extracted
gene-fusion pairs. Genes serve as the nodes in the net-
work and each fusion pair is joined by an edge. Repeat-
ing pairs were represented once. We used Cytoscape to
build five networks: one for each dataset and the fifth
that encompasses all datasets. We graphed the occur-
rence of degree in each single dataset network to deter-
mine an empirical definition for hub genes.

Results
The comprehensive network includes 9852 genes, displays
12,791 relationships, and highlights 1248 hub genes. The
network highlights genes such as MLL and MALAT1, both
of which have roles in tumorigenesis. The network also
highlights genes such as WDR74 and COL1A1, which are
not much studied.

Conclusions
This preliminary network analysis provides interesting fea-
tures of tumorigenesis-related fusions. Further systematic
analysis of gene fusion networks may aid researchers to
better understand cancer gene fusions and test novel
fusions in specific types of cancer.

Acknowledgements
We would like to thank the members in Bioinformatics and Systems
Medicine Laboratory for their valuable discussion in this project. This work
was partially supported by the National Library of Medicine Training Grant
2T15LM007450-11 and the Stand Up To Cancer-American Association for
Cancer Research Innovative Research Grant (SU2C-AACR-IRG0109) and the
VICC Cancer Center Core grant P30CA68485 from National Institutes of
Health.

Authors’ details
1Department of Biomedical Informatics, Vanderbilt University School of
Medicine, Nashville, TN 37203, USA. 2Department of Psychiatry, Vanderbilt
University School of Medicine, Nashville, TN 37232, USA. 3Department of
Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232,
USA.

Published: 22 October 2013

References
1. Bartram CR, de Klein A, Hagemeijer A, van Agthoven T, Geurts van Kessel A,

Bootsma D, Grosveld G, Ferguson-Smith MA, Davies T, Stone M, et al:
Translocation of c-ab1 oncogene correlates with the presence of a
Philadelphia chromosome in chronic myelocytic leukaemia. Nature 1983,
306:277-280.

2. Hoglund M, Frigyesi A, Mitelman F: A gene fusion network in human
neoplasia. Oncogene 2006, 25:2674-2678.

doi:10.1186/1471-2105-14-S17-A13
Cite this article as: Harrell et al.: Network analysis of gene fusions in
human cancer. BMC Bioinformatics 2013 14(Suppl 17):A13.

* Correspondence: zhongming.zhao@vanderbilt.edu
1Department of Biomedical Informatics, Vanderbilt University School of
Medicine, Nashville, TN 37203, USA
Full list of author information is available at the end of the article

Harrell et al. BMC Bioinformatics 2013, 14(Suppl 17):A13
http://www.biomedcentral.com/1471-2105/14/S17/A13

© 2013 Harrell et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/pubmed/6580527?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6580527?dopt=Abstract
mailto:zhongming.zhao@vanderbilt.edu
http://creativecommons.org/licenses/by/2.0

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/275052835

KPP: KEGG Pathway Painter

Article in BMC Systems Biology · April 2015

DOI: 10.1186/1752-0509-9-S2-S3 · Source: PubMed

CITATIONS

6

READS

163

3 authors:

Some of the authors of this publication are also working on these related projects:

Editorial work View project

DELSAGlobal.org View project

Ganiraju Manyam

University of Texas MD Anderson Cancer Center

63 PUBLICATIONS 1,659 CITATIONS

SEE PROFILE

Aybike Birerdinc

George Mason University

88 PUBLICATIONS 943 CITATIONS

SEE PROFILE

Ancha Baranova

George Mason University

323 PUBLICATIONS 5,281 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ancha Baranova on 20 April 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/275052835_KPP_KEGG_Pathway_Painter?enrichId=rgreq-491e57a893ef2669bb9d9f54a6c69511-XXX&enrichSource=Y292ZXJQYWdlOzI3NTA1MjgzNTtBUzoyMjAzOTA4OTE3NTc1NjhAMTQyOTU1NjY5MTAzOQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/275052835_KPP_KEGG_Pathway_Painter?enrichId=rgreq-491e57a893ef2669bb9d9f54a6c69511-XXX&enrichSource=Y292ZXJQYWdlOzI3NTA1MjgzNTtBUzoyMjAzOTA4OTE3NTc1NjhAMTQyOTU1NjY5MTAzOQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Editorial-work-5?enrichId=rgreq-491e57a893ef2669bb9d9f54a6c69511-XXX&enrichSource=Y292ZXJQYWdlOzI3NTA1MjgzNTtBUzoyMjAzOTA4OTE3NTc1NjhAMTQyOTU1NjY5MTAzOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/DELSAGlobalorg?enrichId=rgreq-491e57a893ef2669bb9d9f54a6c69511-XXX&enrichSource=Y292ZXJQYWdlOzI3NTA1MjgzNTtBUzoyMjAzOTA4OTE3NTc1NjhAMTQyOTU1NjY5MTAzOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-491e57a893ef2669bb9d9f54a6c69511-XXX&enrichSource=Y292ZXJQYWdlOzI3NTA1MjgzNTtBUzoyMjAzOTA4OTE3NTc1NjhAMTQyOTU1NjY5MTAzOQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ganiraju_Manyam?enrichId=rgreq-491e57a893ef2669bb9d9f54a6c69511-XXX&enrichSource=Y292ZXJQYWdlOzI3NTA1MjgzNTtBUzoyMjAzOTA4OTE3NTc1NjhAMTQyOTU1NjY5MTAzOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ganiraju_Manyam?enrichId=rgreq-491e57a893ef2669bb9d9f54a6c69511-XXX&enrichSource=Y292ZXJQYWdlOzI3NTA1MjgzNTtBUzoyMjAzOTA4OTE3NTc1NjhAMTQyOTU1NjY5MTAzOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Texas_MD_Anderson_Cancer_Center?enrichId=rgreq-491e57a893ef2669bb9d9f54a6c69511-XXX&enrichSource=Y292ZXJQYWdlOzI3NTA1MjgzNTtBUzoyMjAzOTA4OTE3NTc1NjhAMTQyOTU1NjY5MTAzOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ganiraju_Manyam?enrichId=rgreq-491e57a893ef2669bb9d9f54a6c69511-XXX&enrichSource=Y292ZXJQYWdlOzI3NTA1MjgzNTtBUzoyMjAzOTA4OTE3NTc1NjhAMTQyOTU1NjY5MTAzOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aybike_Birerdinc?enrichId=rgreq-491e57a893ef2669bb9d9f54a6c69511-XXX&enrichSource=Y292ZXJQYWdlOzI3NTA1MjgzNTtBUzoyMjAzOTA4OTE3NTc1NjhAMTQyOTU1NjY5MTAzOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aybike_Birerdinc?enrichId=rgreq-491e57a893ef2669bb9d9f54a6c69511-XXX&enrichSource=Y292ZXJQYWdlOzI3NTA1MjgzNTtBUzoyMjAzOTA4OTE3NTc1NjhAMTQyOTU1NjY5MTAzOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/George_Mason_University2?enrichId=rgreq-491e57a893ef2669bb9d9f54a6c69511-XXX&enrichSource=Y292ZXJQYWdlOzI3NTA1MjgzNTtBUzoyMjAzOTA4OTE3NTc1NjhAMTQyOTU1NjY5MTAzOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aybike_Birerdinc?enrichId=rgreq-491e57a893ef2669bb9d9f54a6c69511-XXX&enrichSource=Y292ZXJQYWdlOzI3NTA1MjgzNTtBUzoyMjAzOTA4OTE3NTc1NjhAMTQyOTU1NjY5MTAzOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ancha_Baranova?enrichId=rgreq-491e57a893ef2669bb9d9f54a6c69511-XXX&enrichSource=Y292ZXJQYWdlOzI3NTA1MjgzNTtBUzoyMjAzOTA4OTE3NTc1NjhAMTQyOTU1NjY5MTAzOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ancha_Baranova?enrichId=rgreq-491e57a893ef2669bb9d9f54a6c69511-XXX&enrichSource=Y292ZXJQYWdlOzI3NTA1MjgzNTtBUzoyMjAzOTA4OTE3NTc1NjhAMTQyOTU1NjY5MTAzOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/George_Mason_University2?enrichId=rgreq-491e57a893ef2669bb9d9f54a6c69511-XXX&enrichSource=Y292ZXJQYWdlOzI3NTA1MjgzNTtBUzoyMjAzOTA4OTE3NTc1NjhAMTQyOTU1NjY5MTAzOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ancha_Baranova?enrichId=rgreq-491e57a893ef2669bb9d9f54a6c69511-XXX&enrichSource=Y292ZXJQYWdlOzI3NTA1MjgzNTtBUzoyMjAzOTA4OTE3NTc1NjhAMTQyOTU1NjY5MTAzOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ancha_Baranova?enrichId=rgreq-491e57a893ef2669bb9d9f54a6c69511-XXX&enrichSource=Y292ZXJQYWdlOzI3NTA1MjgzNTtBUzoyMjAzOTA4OTE3NTc1NjhAMTQyOTU1NjY5MTAzOQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

RESEARCH Open Access

KPP: KEGG Pathway Painter
Ganiraju Manyam1,2, Aybike Birerdinc1, Ancha Baranova1,3*

From IX International Conference on the Bioinformatics of Genome Regulation and Structure\Systems Biol-
ogy (BGRS\SB-2014)
Novosibirsk, Russia. 23-28 June 2014

Abstract

Background: High-throughput technologies became common tools to decipher genome-wide changes of gene
expression (GE) patterns. Functional analysis of GE patterns is a daunting task as it requires often recourse to the
public repositories of biological knowledge. On the other hand, in many cases researcher’s inquiry can be served
by a comprehensive glimpse. The KEGG PATHWAY database is a compilation of manually verified maps of
biological interactions represented by the complete set of pathways related to signal transduction and other
cellular processes. Rapid mapping of the differentially expressed genes to the KEGG pathways may provide an idea
about the functional relevance of the gene lists corresponding to the high-throughput expression data.

Results: Here we present a web based graphic tool KEGG Pathway Painter (KPP). KPP paints pathways from the
KEGG database using large sets of the candidate genes accompanied by “overexpressed” or “underexpressed”
marks, for example, those generated by microarrays or miRNA profilings.

Conclusion: KPP provides fast and comprehensive visualization of the global GE changes by consolidating a list of
the color-coded candidate genes into the KEGG pathways. KPP is freely available and can be accessed at http://
web.cos.gmu.edu/~gmanyam/kegg/

Background
High-throughput technologies became common tools to
decipher genome-wide changes of gene expression (GE)
patterns or relative protein abundance. Typical output
of these large-scale studies is represented by the list
comprised of hundreds of gene candidates with attached
quantitative labels. Functional analysis of these gene lists
is a daunting task as it requires regular recourse to the
public repositories of biological knowledge or use of
expensive databases of manually curated biological
annotation [1,2]. On the other hand, in many cases
researcher’s inquiry can be successfully served by a com-
prehensive glimpse.
Functional analysis of markers identified from large-

scale datasets can be performed using a wide variety of
bioinformatics tools. As microarrays became a common
tool to decipher global gene expression, centralized

systems like Gene Expression Omnibus (GEO), ArrayEx-
press was developed to congregate the valuable profile
data [3,4]. An analysis of combined datasets generated in
independent microarray experiments (so-called “microar-
ray meta-analysis”), is often being employed [5], for
example, to develop biomarker panels or to extract
insights into the pathogenesis of various chronic diseases
[6] including human malignancies [7]. Meta-analysis lead
to an increase of the complexity in microarray analysis;
therefore, sophistication of subsequent functional analysis
also increased. Gene Ontology (GO) and other pathway-
centered types of analysis became indispensable [8].
KEGG (Kyoto Encyclopedia of Genes and Genomes) is a

compendium of databases covering both annotated gen-
omes and protein interaction networks for all sequenced
organisms. Its integral part, KEGG PATHWAY, is a com-
pilation of manually verified pathway maps displaying
both the molecular interactions and the biochemical reac-
tions [9]. The recent version of this database includes a
complete set of pathways related to signal transduction
and other cellular processes [10]. The extensive collection

* Correspondence: abaranov@gmu.edu
1School of Systems Biology, George Mason University, Fairfax, VA - 22030,
USA
Full list of author information is available at the end of the article

Manyam et al. BMC Systems Biology 2015, 9(Suppl 2):S3
http://www.biomedcentral.com/1752-0509/9/S2/S3

© 2015 Manyam et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://web.cos.gmu.edu/~gmanyam/kegg
http://web.cos.gmu.edu/~gmanyam/kegg
mailto:abaranov@gmu.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

of the pathways at KEGG can be utilized for the rapid
graphical evaluation of the functional relevance of the
observed changes in GE patterns. This will save the pre-
cious time of the expert biologists and bioinformatics
specialists.
Pathways assembled into the KEGG database are dis-

played as semi-static objects that can be manipulated
using tools like KGML and KEGG application program-
mable interface (API) [11,12]. KEGG API provides a
routine that highlights specified genes within the parti-
cular metabolic pathway (http://www.genome.jp/kegg/
tool/color_pathway.html). Similar task may be also exe-
cuted using G-language Genome Analysis Environment
[13]. Both approaches work on the pathway by pathway
basis. Another tool, Pathway Express, calculates the
pathway-wise impact of differentially expressed genes
based on normalized fold change and depicts the path-
ways with differentially expressed genes [14]. However,
the fold-change approach and its associated standard
t-test statistics usually produce severely over-fitted mod-
els. A number of recently developed approaches gener-
ate gene rankings dissociated from the fold change
estimates [15,16]. An analysis of these gene lists may
benefit from the binary graphical mapping of upregu-
lated and downregulated elements within the complete
collection of pathway maps. Resulting graphical pictures
may be helpful both as tool for a quick assessment of
the functional relevance of a gene list and as a set of the
snapshots easily convertible into the illustrative material
for presentations or manuscript figures.
With this notion, here we present a web-based tool,

KEGG Pathway Painter (KPP). KPP performs a batch
painting of relevant pathways according to the uploaded
lists of up-regulated and down-regulated genes in KEGG.
KPP returns a set of images that give a holistic perspec-
tive to the functional importance of the change in the GE
patterns revealed by a given high-throughput experiment
and facilitate the extraction of the biological insights.

Implementation
KPP was implemented using PERL/CGI. Pathways
assembled into the KEGG database are displayed as semi-
static objects that can be manipulated using tools like
KGML (KEGG Markup Language) and KEGG API (Appli-
cation Programming Interface). The API allows access to
the resources stored in KEGG system in an interactive and
user-friendly way (http://www.genome.jp/kegg/rest/).
KEGG Pathway Painter (KPP) accepts the up-regulated

and down-regulated gene lists as two different text files
containing the gene identifiers of any sequenced organ-
ism. Permitted identifiers include GenBank id, NCBI
GENE id, NCBI GI accession, Unigene ID and Uniprot
ID. Conversion of the gene identifiers, extraction of the
corresponding pathway and their painting is performed

by specific API routines. The KPP processes data through
direct interface to the KEGG database, and therefore, the
KPP painted pathways are always up-to date with refer-
ence to KEGG knowledgebase. In KPP, genes of interest
can be also highlighted with user-specified foreground
and background colors allowing easy visual differentiat-
ing of up- and down-regulated genes.
Mapped genes are automatically consolidated within

each pathway. The number of the KPP returned pathways
could be filtered by either the total number of the painted
genes in a given pathway or the ratio of painted genes to
the total number of genes in a given pathway. The chosen
pathways passing the criteria on filter are color coded
according to users’ preferences. Users can browse through
these high-resolution pathway images along with gene
information and an archive of the painted pathways can
also be saved for future reference. After completion of the
query, the URL to the index of resulting output images is
e-mailed to the user along with the job summary.

Results and discussion
The motivation for the development of KPP came up
from the idea to build a user-friendly, platform-indepen-
dent and simple tool to visualize the placement of genes
in their associated pathways. The simplicity of KPP is
due to the acceptance of gene identifiers without refer-
ence to respective microarray platform. This isolation
enhances its utility for the studies of the data from Real-
Time-PCR or medium-throughput platforms or even for
validation of the various hypotheses concerning an
involvement of the groups of genes in one or another
biological process.
This utility of KPP was demonstrated by highlighting of

cell cycle related events using the publicly available pros-
tate carcinoma dataset (GDS1439) [17] from the NCBI
GEO database (see Figure 1), by aiding the selection of
the mutations and epigenetic events to be tested as a
companion diagnostics of treatment susceptibility and
resistance in non-small lung carcinoma patients (not
shown) and an analysis of the host-associated risk factors
associated with lack of sustained virological response
(SVR) in various cohorts of HCV patients [18,19].
In one of these examples, KPP-aided visual parsing the

pathways encompassing molecular components relevant
to HCV pathogenesis allowed to pinpoint the Janus
kinase-signal transducers and activators of transcription
signaling cascade as the major pathogenetic component
responsible for not achieving SVR [18], a conclusion that
was later confirmed in in vitro experiments with blocking
antibodies, a pharmacological inhibitor, and siRNAs [20].
In another example, KPP allowed to visualize a sus-

tained pattern of treatment-induced gene expression in
patients carrying interferon/ribavirin-responding IL28B
genotype C/C, while in patients with therapy-resistant

Manyam et al. BMC Systems Biology 2015, 9(Suppl 2):S3
http://www.biomedcentral.com/1752-0509/9/S2/S3

Page 2 of 4

http://www.genome.jp/kegg/tool/color_pathway.html
http://www.genome.jp/kegg/tool/color_pathway.html
http://www.genome.jp/kegg/rest/

IL28B T* genotype, the background pre-activation of
interferon-dependent genes precluded further therapeu-
tic boost [19]. Thus, KPP provided a critical insight into
the lower rate of SVR observed in these patients.
Furthermore, KPP analysis revealed LI28B genotype
independent role of SOCS1 in therapeutic response [19].
This KPP-aided hypothesis was later investigated both
in vitro experiments showing that SOCS1 acts as a sup-
pressor of type I IFN function against HCV [21] and in
serum samples interferon/ribavirin-treated Hepatitis C
patients who demonstrated that methylation-based silen-
cing of SOCS-1 is associated with better therapeutic
response [22]. Thus, KPP was indispensable in acquiring
mechanistic insights into the differential therapeutic
response in Hepatitis C infected patients.

The major fetching point of the KPP tool lies in its tight
connection with the KEGG database, as this will allow for
the pathway visualization of every sequenced organism.
However this flexibility comes at the cost of possible
KEGG-attributed delay of the data transfer, the resultant
tool is substantially more convenient for the user than the
tools embed into existing pathway analysis environment,
for example, Cytoskape (http://www.cytoscape.org/).
Another commonly used pathway parsing tool, Reactome
Skypainter (http://www.reactome.org/), is restricted to
underlying knowledge base and, therefore, limits the
potential set of insights to be extracted.
It is important to note that the painting of individual

pathways can be performed through by the KEGG web-
site itself (http://www.genome.jp/kegg/), however, the

Figure 1 Image of the MAPK signaling pathway painted by KPP according to the imported list of genes differentially expressed in the
prostatic carcinoma as compared to normal prostate. Red and blue boxes represent up- and down- regulated genes, respectively. The genes
in green background represent the species specific genes (Homo sapiens, in this case).

Manyam et al. BMC Systems Biology 2015, 9(Suppl 2):S3
http://www.biomedcentral.com/1752-0509/9/S2/S3

Page 3 of 4

http://www.cytoscape.org/
http://www.reactome.org/
http://www.genome.jp/kegg/

practicality of KPP is in its comprehensive visual repre-
sentation of up- and downregulated genes in the KEGG
dataset as a whole. In other words, KPP allows one to
extract immediate and visual insights about cumulative
change in each pathway under scrutiny. Users can
browse through high-resolution pathway images and
download an archive of the painted pathways that may
be used as figures for upcoming manuscripts.

Conclusion
In summary, KPP provides fast and comprehensive
visualization of the global GE changes by consolidating
a list of the color-coded candidate genes into the KEGG
pathways.

List of abbreviations:
KPP - KEGG Pathway Painter
GE - Gene Expression
KGML - KEGG Markup Language
API - Application Programming Interface
SVR - Sustainer Virological Response

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All three authors contributed to the study design, interpretation of results
and producing the manuscript. All authors read and approved the final
manuscript.

Acknowledgements
The authors express gratitude to the general support provided by College of
Science, George Mason University, a State Contract 14.607.21.0098 dated
November 27th, 2014 (Ministry of Science and Education, Russia) and by the
Human Proteome Scientific Program of the Federal Agency of Scientific
Organizations, Russia.
Availability of support data: The data supporting the results of this article
are included within the article and on the publicly available website http://
web.cos.gmu.edu/~gmanyam/kegg/kpp.html.

Declarations
Open access fees were covered by funds of College of Science, George
Mason University.
This article has been published as part of BMC Systems Biology Volume 9
Supplement 2, 2015: Selected articles from the IX International Conference on
the Bioinformatics of Genome Regulation and Structure\Systems Biology (BGRS
\SB-2014): Systems Biology. The full contents of the supplement are available
online at http://www.biomedcentral.com/bmcsystbiol/supplements/9/S2.

Authors’ details
1School of Systems Biology, George Mason University, Fairfax, VA - 22030,
USA. 2The UT MD Anderson Cancer Center, Houston, TX - 77030, USA.
3Research Centre for Medical Genetics RAMS, Moscow, Russia.

Published: 15 April 2015

References
1. Ganter B, Giroux CN: Emerging applications of network and pathway

analysis in drug discovery and development. Curr Opin Drug Discov Devel
2008, 11(1):86-94.

2. Chen G, Cairelli MJ, Kilicoglu H, Shin D, Rindflesch TC: Augmenting
microarray data with literature-based knowledge to enhance gene
regulatory network inference. PLoS Comput Biol 2014, 10(6):e1003666.

3. Kolesnikov N, Hastings E, Keays M, Melnichuk O, Tang YA, Williams E,
Dylag M, Kurbatova N, Brandizi M, Burdett T, Megy K, Pilicheva E, Rustici G,
Tikhonov A, Parkinson H, Petryszak R, Sarkans U, Brazma A: ArrayExpress
update-simplifying data submissions. Nucleic Acids Res 2015,
43(Database):D1113-6.

4. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF,
Soboleva A, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM,
Muertter RN, Edgar R: NCBI GEO: archive for high-throughput functional
genomic data. Nucleic Acids Res 2009, 37(Database):D885-90.

5. Tseng GC, Ghosh D, Feingold E: Comprehensive literature review and
statistical considerations for microarray meta-analysis. Nucleic Acids Res
2012, 40(9):3785-99.

6. Mayburd A, Baranova A: Knowledge-based compact disease models
identify new molecular players contributing to early-stage Alzheimer’s
disease. BMC Syst Biol 2013, 7:121.

7. Yang Z, Chen Y, Fu Y, Yang Y, Zhang Y, Chen Y, Li D: Meta-analysis of
differentially expressed genes in osteosarcoma based on gene
expression data. BMC Med Genet 2014, 15:80.

8. Carnielli CM, Winck FV, Paes Leme AF: Functional annotation and
biological interpretation of proteomics data. Biochim Biophys Acta 2015,
1854(1):46-54.

9. Tanabe M, Kanehisa M: Using the KEGG database resource. Curr Protoc
Bioinformatics 2012, Chapter 1(Unit1.12).

10. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M: KEGG for integration
and interpretation of large-scale molecular data sets. Nucleic Acids Res
2012, 40(Database):D109-14.

11. Kawashima S, Katayama T, Sato Y, Kanehisa M: KEGG API: A web service
using SOAP/WDSL to access the KEGG system. Genome Informatics 2003,
14:673-674.

12. Klukas C, Schreiber F: Dynamic exploration and editing of KEGG pathway
diagrams. Bioinformatics 2007, 23(3):344-50.

13. Arakawa K, Mori K, Ikeda K, Matsuzaki T, Kobayashi Y, Tomita M: G-language
Genome Analysis Environment: a workbench for nucleotide sequence
data mining. Bioinformatics 2003, 19(2):305-6.

14. Khatri P, Sellamuthu S, Malhotra P, Amin K, Done A, Draghici S: Recent
additions and improvements to the Onto-Tools. Nucleic Acids Res 2005,
33(Web Server):W762-5.

15. Simon R: Microarray-based expression profiling and informatics. Curr
Opin Biotechnol 2008, 19(1):26-9.

16. Emmert-Streib F, Glazko GV, Altay G, de Matos Simoes R: Statistical
inference and reverse engineering of gene regulatory networks from
observational expression data. Front Genet 2012, 3:8.

17. Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, Tomlins SA, Shah RB,
Chandran U, Monzon FA, Becich MJ, Wei JT, Pienta KJ, Ghosh D, Rubin MA,
Chinnaiyan AM: Integrative genomic and proteomic analysis of prostate
cancer reveals signatures of metastatic progression. Cancer Cell 2005,
8(5):393-406.

18. Birerdinc A, Afendy A, Stepanova M, Younossi I, Manyam G, Baranova A,
Younossi ZM: Functional pathway analysis of genes associated with
response to treatment for chronic hepatitis C. J Viral Hepat 2010,
17(10):730-6.

19. Younossi ZM, Birerdinc A, Estep M, Stepanova M, Afendy A, Baranova A:
The impact of IL28B genotype on the gene expression profile of
patients with chronic hepatitis C treated with pegylated interferon alpha
and ribavirin. J Transl Med 2012, 10:25.

20. Zhang L, Jilg N, Shao RX, Lin W, Fusco DN, Zhao H, Goto K, Peng LF,
Chen WC, Chung RT: IL28B inhibits hepatitis C virus replication through
the JAK-STAT pathway. J Hepatol 2011, 55(2):289-98.

21. Shao RX, Zhang L, Hong Z, Goto K, Cheng D, Chen WC, Jilg N, Kumthip K,
Fusco DN, Peng LF, Chung RT: SOCS1 abrogates IFN’s antiviral effect on
hepatitis C virus replication. Antiviral Res 2013, 97(2):101-7.

22. Tseng KC, Chou JL, Huang HB, Tseng CW, Wu SF, Chan MW: SOCS-1
promoter methylation and treatment response in chronic hepatitis C
patients receiving pegylated-interferon/ribavirin. J Clin Immunol 2013,
33(6):1110-6.

doi:10.1186/1752-0509-9-S2-S3
Cite this article as: Manyam et al.: KPP: KEGG Pathway Painter. BMC
Systems Biology 2015 9(Suppl 2):S3.

Manyam et al. BMC Systems Biology 2015, 9(Suppl 2):S3
http://www.biomedcentral.com/1752-0509/9/S2/S3

Page 4 of 4

View publication statsView publication stats

http://web.cos.gmu.edu/~gmanyam/kegg/kpp.html.
http://web.cos.gmu.edu/~gmanyam/kegg/kpp.html.
http://www.biomedcentral.com/bmcsystbiol/supplements/9/S2
https://www.researchgate.net/publication/275052835

Published online 28 October 2014 Nucleic Acids Research, 2015, Vol. 43, Database issue D447–D452
doi: 10.1093/nar/gku1003

STRING v10: protein–protein interaction networks,
integrated over the tree of life
Damian Szklarczyk1, Andrea Franceschini1, Stefan Wyder1, Kristoffer Forslund2,
Davide Heller1, Jaime Huerta-Cepas2, Milan Simonovic1, Alexander Roth1, Alberto Santos3,
Kalliopi P. Tsafou3, Michael Kuhn4,5, Peer Bork2,*, Lars J. Jensen3,* and
Christian von Mering1,*

1Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich,
Switzerland, 2European Molecular Biology Laboratory, 69117 Heidelberg, Germany, 3Novo Nordisk Foundation
Center for Protein Research, University of Copenhagen, 2200 Copenhagen N, Denmark, 4Biotechnology Center,
Technische Universität Dresden, 01062 Dresden, Germany and 5Max Planck Institute of Molecular Cell Biology and
Genetics, 01062 Dresden, Germany

Received September 15, 2014; Accepted October 07, 2014

ABSTRACT

The many functional partnerships and interactions
that occur between proteins are at the core of cel-
lular processing and their systematic characteriza-
tion helps to provide context in molecular systems
biology. However, known and predicted interactions
are scattered over multiple resources, and the avail-
able data exhibit notable differences in terms of qual-
ity and completeness. The STRING database (http:
//string-db.org) aims to provide a critical assessment
and integration of protein–protein interactions, in-
cluding direct (physical) as well as indirect (func-
tional) associations. The new version 10.0 of STRING
covers more than 2000 organisms, which has neces-
sitated novel, scalable algorithms for transferring in-
teraction information between organisms. For this
purpose, we have introduced hierarchical and self-
consistent orthology annotations for all interacting
proteins, grouping the proteins into families at var-
ious levels of phylogenetic resolution. Further im-
provements in version 10.0 include a completely re-
designed prediction pipeline for inferring protein–
protein associations from co-expression data, an API
interface for the R computing environment and im-
proved statistical analysis for enrichment tests in
user-provided networks.

INTRODUCTION

For a full description of a protein’s function, knowledge
about its specific interaction partners is an important pre-
requisite. The concept of protein ‘function’ is somewhat hi-
erarchical (1–4), and at all levels in this hierarchy, interac-
tions between proteins help to describe and narrow down
a protein’s function: its three-dimensional structure may
become meaningful only in the context of a larger pro-
tein assembly, its molecular actions may be regulated by
co-operative binding or allostery, and its cellular context
may be controlled by a multitude of transport, sequestering,
and signaling interactions. Given this importance of inter-
actions, many protein annotation and classification schemes
assign groups of interacting proteins into functional sets,
designated either as physical complexes, signaling pathways
or tightly linked ‘modules’ (1,5–7). However, the partition-
ing of interactions into distinct pathways or complexes can
be somewhat arbitrary, and may not do justice to the preva-
lence of crosstalk and dynamic variation in the interaction
landscape (8). A widely used concept that avoids partition-
ing of function arbitrarily is the protein network, i.e. the
topological summary of all known or predicted protein in-
teractions in an organism. For functional studies, arguably
the most useful networks are those that integrate all types
of interactions: stable physical associations, transient bind-
ing, substrate chaining, information relay and others. The
STRING database (Search Tool for the Retrieval of Inter-
acting Genes/Proteins) is dedicated to such functional asso-
ciations between proteins, on a global scale.

Protein–protein interaction information can already be
retrieved from a number of online resources. First, primary
interaction databases (e.g. 9–13) which are largely collabo-

*To whom correspondence should be addressed. Tel: +41 44 6353147; Fax: +41 44 6356864; mering@imls.uzh.ch
Correspondence may also be addressed to Peer Bork. Tel: +49 6221 387 8526; Fax: +49 6221 387 517; bork@embl.de
Correspondence may also be addressed to Lars J. Jensen. Tel: +45 353 25025; Fax: +45 353 25001; lars.juhl.jensen@cpr.ku.dk

C© The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

 at U
niversity of A

arhus on January 22, 2015
http://nar.oxfordjournals.org/

D
ow

nloaded from

http://string-db.org
http://nar.oxfordjournals.org/

D448 Nucleic Acids Research, 2015, Vol. 43, Database issue

Figure 1. The STRING network view. Combined screenshots from the STRING website, which has been queried with a subset of proteins belonging to
two different protein complexes in yeast (the COP9 signalosome, as well as the proteasome). Colored lines between the proteins indicate the various types
of interaction evidence. Protein nodes which are enlarged indicate the availability of 3D protein structure information. Inset top right: for each protein,
accessory information is available which includes annotations, cross-links and domain structures. Inset bottom right: the same network is shown after the
addition of a user-configurable ‘payload’-dataset (26). In this case, the payload corresponds to color-coded protein abundance information, and reveals
systematic differences in the expression strength of both complexes.

rating (14,15) provide curated experimental data originating
from a variety of biochemical, biophysical and genetic tech-
niques. Second, since protein–protein interactions can also
be predicted computationally, a number of resources have
their main focus on interaction prediction, using a variety of
algorithms (e.g. 16–20). Lastly, a group of online resources
is providing an integration of both known and predicted
interactions, thus aiming for high comprehensiveness and
coverage. These include STRING, as well as GeneMANIA
(21), FunCoup (18), I2D (22), ConsensusPathDB (22) and
others. Within this landscape of online resources, STRING
places its focus on interaction confidence scoring, compre-
hensive coverage (in terms of number of proteins, organisms
and prediction methods), intuitive user interfaces and on a
commitment to maintain a long-term, stable resource (since
2000).

The basic interaction unit in STRING is the functional
association, i.e. a specific and productive functional rela-
tionship between two proteins, likely contributing to a com-
mon biological purpose. Interactions are derived from mul-
tiple sources: (i) known experimental interactions are im-

ported from primary databases, (ii) pathway knowledge is
parsed from manually curated databases, (iii) automated
text-mining is applied to uncover statistical and/or seman-
tic links between proteins, based on Medline abstracts and
a large collection of full-text articles, (iv) interactions are
predicted de novo by a number of algorithms using ge-
nomic information (23–25) as well as by co-expression
analysis and (v) interactions that are observed in one or-
ganism are systematically transferred to other organisms,
via pre-computed orthology relations. STRING centers
on protein-coding gene loci––alternative splice isoforms or
post-translationally modified forms are not resolved, but
are instead collapsed at the level of the gene locus. All
sources of interaction evidence are benchmarked and cal-
ibrated against previous knowledge, using the high-level
functional groupings provided by the manually curated Ky-
oto Encyclopedia of Genes and Genomes (KEGG) path-
way maps (5).

As of the current update to version 10.0, the number of
organisms covered by STRING has increased to 2031, al-
most doubling over the previous release. The update also

 at U
niversity of A

arhus on January 22, 2015
http://nar.oxfordjournals.org/

D
ow

nloaded from

http://nar.oxfordjournals.org/

Nucleic Acids Research, 2015, Vol. 43, Database issue D449

Figure 2. Improved Co-expression analysis. STRING v10 features a completely re-designed pipeline for accessing and processing gene expression infor-
mation. Left: overview of the individual steps; note that redundant expression experiments are now detected and pruned automatically. Right: improved
benchmark performance of the resulting co-expression links, relative to the previous version of STRING, in four model organisms (ROC curves). The
benchmark is based on the KEGG pathway maps; predicted interactions are considered to be true positives when both interacting proteins are annotated
to the same KEGG map.

encompassed importing and processing all primary data
sources again, re-running all prediction algorithms and re-
executing the entire text-mining pipeline with new dictio-
naries and extended text collections. Many of the features
and interfaces of STRING have already been described pre-
viously (26–28). Below, we have given a short overview of
the resource and describe recent additions and modifica-
tions.

User interface

The main entry point into the STRING website is the
protein search box on its start page. It supports queries
for multiple proteins, can be restricted to certain organ-
isms or clades of organisms, and uses a weighted scheme
to rank annotation text matches and identifier matches.
Users can also arrive via a number of external websites (29–
32) that maintain cross-links with STRING, including the
partner resources Search Tool for Interactions of Chem-
icals (STITCH; 33) and eggNOG (34)––the latter both
share protein sequences, annotations and name-spaces with
STRING. A third way to enter STRING is via logging on to
the My Data section; this allows users to upload gene-lists,
create identifier mappings, view their browsing history and
provide additional ‘payload’ data to be displayed alongside
the interactions.

Once a protein or set of proteins is identified, users pro-
ceed to the network view (Figure 1). From there, it is pos-
sible to inspect the interaction evidence, to re-adjust the
score-cutoffs and network size limits and to view detailed
information about the interacting proteins. Upon switch-
ing to the ‘advanced’ mode (via the tool panel below the
network), users can also cluster and rearrange the network
and test for statistical enrichments in the network. The lat-
ter feature has been enhanced for the current version 10.0
of STRING: enrichment detection now also covers human
disease associations and tissue annotations, which might
be statistically enriched in a given network. For this fea-
ture, STRING connects with the partner databases TIS-
SUES (http://tissues.jensenlab.org) and DISEASES (http:
//diseases.jensenlab.org), which also share sequence and
name spaces with STRING, and which annotate proteins
to tissues or to disease entities based on a combination of
automated text-mining and knowledge imports.

Interaction transfer between organisms

Since version 6.0 of STRING, a significant source of inter-
actions for any given organism has been the transfer of in-
teraction knowledge from orthologous proteins observed to
be interacting in another organism. Since version 9.1, these
so-called ‘interolog’ transfers were based on pre-computed

 at U
niversity of A

arhus on January 22, 2015
http://nar.oxfordjournals.org/

D
ow

nloaded from

http://tissues.jensenlab.org
http://diseases.jensenlab.org
http://nar.oxfordjournals.org/

D450 Nucleic Acids Research, 2015, Vol. 43, Database issue

Figure 3. Access to STRING from R/Bioconductor. Left: example session describing how to initialize a human protein network from the STRING
database backend, and how to map a set of gene names against it. A subset of the proteins is then plotted as a STRING network (right), complete with
auxiliary numerical payload-information highlighting some nodes of interest (red color halos).

orthology relations imported from the eggNOG database
(34). Orthologs in eggNOG are provided in a hierarchical
and nested fashion, allowing the transfer of interactions by
traversing up and down along the hierarchy of clades in the
tree of life (26). For this purpose, the nested orthology as-
signments should ideally be fully self-consistent: proteins
assigned to an orthologous group for a given phylogenetic
clade should be grouped together in all higher-level clades
too. In past versions of the orthologous groups, this has
not always been the case for technical reasons (orthology
assignments are computed independently for each clade).
However, for STRING v10, a post-processing pipeline has
been devised that makes the orthology setup fully self-
consistent. It implements consistency by iteratively splitting
and merging orthologous groups at the various clades and
levels, until a fully consistent state is achieved. As of now,
this post-processed set of orthologs forms the basis for all
interaction-transfers in STRING v10. In future releases, the
same hierarchical and consistent set of protein families and
orthologs will be used also for more intuitive navigation and
search features on the user interface.

Co-expression analysis

It has long been established that co-expression is a proxy
for co-regulation (35,36) and a strong indicator of func-
tional associations. The co-expression scores in STRING
v10 are computed using a revised and improved pipeline
(Figure 2), making use of all microarray gene expression
experiments deposited in NCBI Gene Expression Omnibus
(NCBI GEO) (37). As of March 2014, GEO consisted of

more than 12 000 different platforms (GPL), 45 000 experi-
ments (GSE) and over 1 million matrices (GSM). By includ-
ing the large amount of diverse arrays in the analysis we can
decrease the bias of individual platforms and experiments,
and reduce the impact of non-informative matrices. Prior to
the analysis, 22 organisms were identified as providing suf-
ficient data (at least 50 experiments each). The first step of
the pipeline maps probe identifiers from each platform file
(GPL) to STRING genes, using dictionaries from the text-
mining pipeline. Samples with less than 100 map-able genes
and experiments with less than three samples are excluded
from further analysis. The microarray expression values (ex-
tracted from the GSE files) are then normalized (z-value
normalization) and values for each probe merged into sin-
gle vectors (separately for single-channel and dual-channel
arrays). Additionally, single-channel array values are log2-
transformed and their mean is subtracted, to make them
compatible with fold-change values in the two-channel case.
Expression values of genes measured by more than one
probe are averaged. In order to remove the redundancy
and to increase information density between the arrays, the
gene expression vectors are correlated with one another (us-
ing Spearman’s rank correlation) and the full set of arrays
is pruned using the Hobohm-2 algorithm (38) with sim-
ilarity thresholds of 0.7 and 0.95, for single-channel and
dual-channel arrays, respectively. The new gene expression
values are then correlated gene-by-gene (Pearson correla-
tion) and the resulting values are calibrated against com-
mon membership in KEGG pathway maps (release 2014-
07-21) in order to compute STRING scores. Lastly, the

 at U
niversity of A

arhus on January 22, 2015
http://nar.oxfordjournals.org/

D
ow

nloaded from

http://nar.oxfordjournals.org/

Nucleic Acids Research, 2015, Vol. 43, Database issue D451

scores from single- and dual-channel arrays are combined in
a probabilistic manner to get the final scores. KEGG bench-
mark performance clearly improves relative to STRING
v9.1 (Figure 2). The improvements can be attributed to the
increased size of the GEO repository (experiments added
since 2011) and to changes in our pipeline, namely: (i) the
additional step to prune highly correlated samples using the
Hobohm-2 algorithm and (ii) several minor improvements
and bug fixes.

R/Bioconductor access

Apart from directly browsing and searching the website,
data access in STRING is possible also via a REST-based
API (application programing interface) and via wholesale
data download. With version 10.0, we have introduced
a further option: direct access from the R programming
environment, following the Bioconductor standard (39).
The corresponding package is named STRINGdb (Fig-
ure 3), and can be downloaded from the Bioconductor
repository (http://www.bioconductor.org/packages/release/
bioc/html/STRINGdb.html). The package interacts with
the STRING server via the REST API and via additional,
dedicated web services. To optimize the speed of subsequent
accesses, the entire interaction network and associated data
for a given organism are downloaded from the server and
cached locally in the R environment, whenever possible. The
package is built around the iGraph framework (40), which
handles the complexity of the network data structures and
provides fast query/analysis functions. Once a network is
loaded/cached into an iGraph object, high-level functions
facilitate the most common user tasks, such as mapping pro-
tein names onto their corresponding STRING identifiers,
retrieving the neighbors of a protein of interest, retrieving
PubMed IDs for publications that support a given interac-
tion, finding clusters of proteins in the network and gener-
ating stable links back to the STRING website.

The plot network function can be used to display a native
STRING network of proteins in R (Figure 3). Functions
are also available to augment a given network with user-
provided node colorings (‘payload information’, see also
Figure 1), such that subsets of proteins can be tagged and
visually highlighted. Statistical enrichment tests can be ex-
ecuted on gene lists within the STRING namespace, cov-
ering Gene Ontology and pathway annotations, as well as
tissue and diseases annotations. Results can be visualized
as lists of enriched terms and/or heatmaps. The R-package
proves particularly valuable for users arriving with a very
large set of genes, for which the web-based interface of
STRING has previously been a major bottleneck.

ACKNOWLEDGEMENTS

The authors wish to thank Yan P. Yuan (EMBL Heidelberg)
for excellent technical support with the STRING backend
servers. Prof. Dr Thomas Rattei and his SIMAP team (Uni-
versity of Vienna) are gratefully acknowledged for extensive
technical support during access to their systematic protein–
protein similarity data.

FUNDING

Swiss Institute of Bioinformatics; Novo Nordisk Foun-
dation Center for Protein Research (Copenhagen); Euro-
pean Molecular Biology Laboratory (EMBL, Heidelberg).
Funding for open access charges: University of Zurich.
Conflict of interest statement. None declared.

REFERENCES
1. Ashburner,M., Ball,C.A., Blake,J.A., Botstein,D., Butler,H.,

Cherry,J.M., Davis,A.P., Dolinski,K., Dwight,S.S., Eppig,J.T. et al.
(2000) Gene ontology: tool for the unification of biology. The Gene
Ontology Consortium. Nat. Genet., 25, 25–29.

2. Lee,D., Redfern,O. and Orengo,C. (2007) Predicting protein function
from sequence and structure. Nat. Rev. Mol. Cell Biol., 8, 995–1005.

3. Ouzounis,C.A., Coulson,R.M., Enright,A.J., Kunin,V. and
Pereira-Leal,J.B. (2003) Classification schemes for protein structure
and function. Nat. Rev. Genet., 4, 508–519.

4. Bairoch,A. and Boeckmann,B. (1994) The SWISS-PROT protein
sequence data bank: current status. Nucleic Acids Res., 22, 3578–3580.

5. Kanehisa,M., Goto,S., Sato,Y., Kawashima,M., Furumichi,M. and
Tanabe,M. (2014) Data, information, knowledge and principle: back
to metabolism in KEGG. Nucleic Acids Res., 42, D199–D205.

6. Croft,D., Mundo,A.F., Haw,R., Milacic,M., Weiser,J., Wu,G.,
Caudy,M., Garapati,P., Gillespie,M., Kamdar,M.R. et al. (2014) The
Reactome pathway knowledgebase. Nucleic Acids Res., 42,
D472–D477.

7. Sherman,B.T., Huang da,W., Tan,Q., Guo,Y., Bour,S., Liu,D.,
Stephens,R., Baseler,M.W., Lane,H.C. and Lempicki,R.A. (2007)
DAVID Knowledgebase: a gene-centered database integrating
heterogeneous gene annotation resources to facilitate
high-throughput gene functional analysis. BMC Bioinformatics, 8,
426–437.

8. Gibson,T.J. (2009) Cell regulation: determined to signal discrete
cooperation. Trends Biochem. Sci., 34, 471–482.

9. Kerrien,S., Aranda,B., Breuza,L., Bridge,A., Broackes-Carter,F.,
Chen,C., Duesbury,M., Dumousseau,M., Feuermann,M., Hinz,U.
et al. (2012) The IntAct molecular interaction database in 2012.
Nucleic Acids Res., 40, D841–D846.

10. Licata,L., Briganti,L., Peluso,D., Perfetto,L., Iannuccelli,M.,
Galeota,E., Sacco,F., Palma,A., Nardozza,A.P., Santonico,E. et al.
(2012) MINT, the molecular interaction database: 2012 update.
Nucleic Acids Res., 40, D857–D861.

11. Chatr-Aryamontri,A., Breitkreutz,B.J., Heinicke,S., Boucher,L.,
Winter,A., Stark,C., Nixon,J., Ramage,L., Kolas,N., O’Donnell,L.
et al. (2013) The BioGRID interaction database: 2013 update. Nucleic
Acids Res., 41, D816–D823.

12. Salwinski,L., Miller,C.S., Smith,A.J., Pettit,F.K., Bowie,J.U. and
Eisenberg,D. (2004) The Database of Interacting Proteins: 2004
update. Nucleic Acids Res., 32, D449–D451.

13. Schaefer,M.H., Fontaine,J.F., Vinayagam,A., Porras,P., Wanker,E.E.
and Andrade-Navarro,M.A. (2012) HIPPIE: Integrating protein
interaction networks with experiment based quality scores. PloS One,
7, e31826.

14. Orchard,S., Kerrien,S., Abbani,S., Aranda,B., Bhate,J., Bidwell,S.,
Bridge,A., Briganti,L., Brinkman,F.S., Cesareni,G. et al. (2012)
Protein interaction data curation: the International Molecular
Exchange (IMEx) consortium. Nat. Methods, 9, 345–350.

15. Orchard,S., Ammari,M., Aranda,B., Breuza,L., Briganti,L.,
Broackes-Carter,F., Campbell,N.H., Chavali,G., Chen,C.,
del-Toro,N. et al. (2014) The MIntAct project–IntAct as a common
curation platform for 11 molecular interaction databases. Nucleic
Acids Res., 42, D358–D363.

16. Luo,Q., Pagel,P., Vilne,B. and Frishman,D. (2011) DIMA 3.0:
Domain Interaction Map. Nucleic Acids Res., 39, D724–D729.

17. McDowall,M.D., Scott,M.S. and Barton,G.J. (2009) PIPs: human
protein-protein interaction prediction database. Nucleic Acids Res.,
37, D651–D656.

18. Schmitt,T., Ogris,C. and Sonnhammer,E.L. (2014) FunCoup 3.0:
database of genome-wide functional coupling networks. Nucleic
Acids Res., 42, D380–D388.

 at U
niversity of A

arhus on January 22, 2015
http://nar.oxfordjournals.org/

D
ow

nloaded from

http://www.bioconductor.org/packages/release/bioc/html/STRINGdb.html
http://nar.oxfordjournals.org/

D452 Nucleic Acids Research, 2015, Vol. 43, Database issue

19. Zhang,Q.C., Petrey,D., Garzon,J.I., Deng,L. and Honig,B. (2013)
PrePPI: a structure-informed database of protein-protein
interactions. Nucleic Acids Res., 41, D828–D833.

20. Baspinar,A., Cukuroglu,E., Nussinov,R., Keskin,O. and Gursoy,A.
(2014) PRISM: a web server and repository for prediction of
protein-protein interactions and modeling their 3D complexes.
Nucleic Acids Res., 42, W285–W289.

21. Zuberi,K., Franz,M., Rodriguez,H., Montojo,J., Lopes,C.T.,
Bader,G.D. and Morris,Q. (2013) GeneMANIA prediction server
2013 update. Nucleic Acids Res., 41, W115–W122.

22. Niu,Y., Otasek,D. and Jurisica,I. (2010) Evaluation of linguistic
features useful in extraction of interactions from PubMed;
application to annotating known, high-throughput and predicted
interactions in I2D. Bioinformatics, 26, 111–119.

23. Valencia,A. and Pazos,F. (2002) Computational methods for the
prediction of protein interactions. Curr. Opin. Struct. Biol., 12,
368–373.

24. Huynen,M.A., Snel,B., von Mering,C. and Bork,P. (2003) Function
prediction and protein networks. Curr. Opin. Struct. Biol., 15,
191–198.

25. Lewis,A.C., Saeed,R. and Deane,C.M. (2010) Predicting
protein-protein interactions in the context of protein evolution. Mol.
Biosyst., 6, 55–64.

26. Franceschini,A., Szklarczyk,D., Frankild,S., Kuhn,M.,
Simonovic,M., Roth,A., Lin,J., Minguez,P., Bork,P., von Mering,C.
et al. (2013) STRING v9.1: protein-protein interaction networks,
with increased coverage and integration. Nucleic Acids Res., 41,
D808–D815.

27. Szklarczyk,D., Franceschini,A., Kuhn,M., Simonovic,M., Roth,A.,
Minguez,P., Doerks,T., Stark,M., Muller,J., Bork,P. et al. (2011) The
STRING database in 2011: functional interaction networks of
proteins, globally integrated and scored. Nucleic Acids Res., 39,
D561–D568.

28. Jensen,L.J., Kuhn,M., Stark,M., Chaffron,S., Creevey,C., Muller,J.,
Doerks,T., Julien,P., Roth,A., Simonovic,M. et al. (2009) STRING
8–a global view on proteins and their functional interactions in 630
organisms. Nucleic Acids Res., 37, D412–D416.

29. Letunic,I., Doerks,T. and Bork,P. (2012) SMART 7: recent updates to
the protein domain annotation resource. Nucleic Acids Res., 40,
D302–D305.

30. Gaudet,P., Argoud-Puy,G., Cusin,I., Duek,P., Evalet,O., Gateau,A.,
Gleizes,A., Pereira,M., Zahn-Zabal,M., Zwahlen,C. et al. (2013)
neXtProt: organizing protein knowledge in the context of human
proteome projects. J. Proteome Res., 12, 293–298.

31. Safran,M., Dalah,I., Alexander,J., Rosen,N., Iny Stein,T.,
Shmoish,M., Nativ,N., Bahir,I., Doniger,T., Krug,H. et al. (2010)
GeneCards Version 3: the human gene integrator. Database, 2010,
1–16.

32. UniProt Consortium,X (2014) Activities at the Universal Protein
Resource (UniProt). Nucleic acids research, 42, D191–D198.

33. Kuhn,M., Szklarczyk,D., Pletscher-Frankild,S., Blicher,T.H., von
Mering,C., Jensen,L.J. and Bork,P. (2014) STITCH 4: integration of
protein-chemical interactions with user data. Nucleic Acids Res., 42,
D401–D407.

34. Powell,S., Forslund,K., Szklarczyk,D., Trachana,K., Roth,A.,
Huerta-Cepas,J., Gabaldon,T., Rattei,T., Creevey,C., Kuhn,M. et al.
(2014) eggNOG v4.0: nested orthology inference across 3686
organisms. Nucleic Acids Res., 42, D231–D239.

35. Marcotte,E.M., Pellegrini,M., Thompson,M.J., Yeates,T.O. and
Eisenberg,D. (1999) A combined algorithm for genome-wide
prediction of protein function. Nature, 402, 83–86.

36. Eisen,M.B., Spellman,P.T., Brown,P.O. and Botstein,D. (1998)
Cluster analysis and display of genome-wide expression patterns.
Proc. Natl. Acad. Sci. U.S.A., 95, 14863–14868.

37. Barrett,T., Wilhite,S.E., Ledoux,P., Evangelista,C., Kim,I.F.,
Tomashevsky,M., Marshall,K.A., Phillippy,K.H., Sherman,P.M.,
Holko,M. et al. (2013) NCBI GEO: archive for functional genomics
data sets–update. Nucleic Acids Res., 41, D991–D995.

38. Hobohm,U., Scharf,M., Schneider,R. and Sander,C. (1992) Selection
of representative protein data sets. Protein Sci., 1, 409–417.

39. Gentleman,R.C., Carey,V.J., Bates,D.M., Bolstad,B., Dettling,M.,
Dudoit,S., Ellis,B., Gautier,L., Ge,Y., Gentry,J. et al. (2004)
Bioconductor: open software development for computational biology
and bioinformatics. Genome Biol., 5, R80.

40. Csárdi,G. and Nepusz,T. (2006) The igraph software package for
complex network research. Inter. J. Comp. Syst., 1695, 1–9.

 at U
niversity of A

arhus on January 22, 2015
http://nar.oxfordjournals.org/

D
ow

nloaded from

http://nar.oxfordjournals.org/

Contact: pdfsupport@pdf-tools.com

Owner: PDF Tools AG

 Kasernenstrasse 1
 8184 Bachenbülach
 Switzerland

 http://www.pdf-tools.com

Copyright 2000-2018

PDF Prep Tool Suite
Version 4.11

User Manual

http://www.pdf-tools.com/
http://www.pdf-tools.com/

PDF Prep Tool Suite, Version 4.11 Page 2 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Table of Contents

1 Introduction .. 5
1.1 Functions ... 5
1.2 SDK .. 6

2 License Management ... 7
2.1 Graphical License Manager Tool .. 7

List all installed license keys.. 7
Add and delete license keys .. 7
Display the properties of a license ... 8
Select between different license keys for a single product 8

2.2 Command Line License Manager Tool .. 8
List all installed license keys.. 8
Add and delete license keys .. 8
Select between different license keys for a single product 8

2.3 License Key Storage .. 8
Windows... 9
Mac OS X.. 9
Unix / Linux .. 9

2.4 Setting the License Key via the API ... 9

3 Object Model .. 10

4 Processing Model ... 10

5 Language Bindings .. 11

6 Getting Started .. 12
6.1 Create a Document from Scratch .. 12
6.2 Add Content to an Existing Input File .. 12

7 Output PDF Creation .. 13
7.1 Set the PDF Version .. 13
7.2 Encryption ... 13
7.3 Disable Stream Compression .. 14
7.4 Font Renaming ... 14
7.5 Error Handling .. 15
7.6 Open a PDF File for Input ... 15
7.7 Attach an Input File... 16
7.8 Accessing the Current Input File ... 17
7.9 Set the Page Size and Orientation ... 17
7.10 Set the Crop Box .. 18
7.11 Adding a New Page ... 18
7.12 Accessing the Current Header or Background Content Layer 19

8 Retrieving File Information .. 20
8.1 Obtain the PDF Version .. 20
8.2 Obtain the File Name ... 20
8.3 Obtain the Keys List .. 20
8.4 Obtain Document Attributes ... 20
8.5 Get Meta Data .. 21
8.6 Get the Name and Current Data of a Form Field.. 21
8.7 Get the Position of a Form Field .. 21
8.8 Get Information about Pages .. 23
8.9 Retrieve Text from a PDF File ... 23

PDF Prep Tool Suite, Version 4.11 Page 3 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

8.10 Retrieve Bookmarks from a PDF File .. 24
8.11 Retrieve Annotations from a PDF File ... 25
8.12 Retrieve the Border Style from Annotations .. 26
8.13 Get List of Fonts ... 27
8.14 Get Color Information .. 27
8.15 Save File Attachment .. 27
8.16 Close the File ... 27
8.17 Get UserUnit .. 28
8.18 Set the Font for Text Output .. 29
8.19 Set Text Spacing .. 30
8.20 Set the Gray Level for Lines and Filling .. 30
8.21 Set the Color for Lines ... 31
8.22 Set the Color for Filling .. 31
8.23 Set the Alpha Transparency for Filling and Stroking 31
8.24 Using Color Spaces ... 32
8.25 Placement of Character Strings ... 32
8.26 Placement of a Logo .. 33
8.27 Placement of an Image .. 34
8.28 Embedding any PDF Text Operator .. 35
8.29 Set the Spacing of Text Lines ... 35
8.30 Set the Text Matrix ... 35
8.31 Set a Relative Starting Position for Text (Tab) .. 35
8.32 Calculate the Width for a Character String ... 35
8.33 Text Tables .. 36
8.34 Draw a Line or Polygon .. 36
8.35 Draw a Rectangle.. 37
8.36 Draw Curves .. 37
8.37 Area Filling and Clipping .. 37
8.38 Embedding any PDF Non-Text Commands .. 38

9 Form Fields, Annotations ... 39
9.1 Set the Data .. 39
9.2 Define a Custom Font .. 40
9.3 Get a Font Name .. 40
9.4 Delete a Form Field ... 40
9.5 Add a Text Form Field ... 40
9.6 Copy a Form Field ... 41
9.7 Form Flattening .. 41
9.8 Add a Text Annotations ... 42
9.9 Delete an Annotation ... 42
9.10 Delete Viewer Extension Rights... 42
9.11 Add an Image Annotation .. 43
9.12 Set the Line Spacing in a Form Field .. 43
9.13 Get the Name of the Font in a Form Field ... 44

10 Generate Output .. 46
10.1 Create Another Page ... 46
10.2 Copy Pages from the Input File ... 46
10.3 Copy Color Spaces from the Input File ... 47
10.4 Copy Named Destinations from the Input File ... 47
10.5 Copy Custom Objects from the Input File ... 47
10.6 Copy All Objects from the Input File .. 47
10.7 Import Bitmap Images .. 48
10.8 Add Page Numbers.. 48

PDF Prep Tool Suite, Version 4.11 Page 4 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

10.9 Change the Header or Background .. 49
10.10 Add Bookmarks .. 49
10.11 Add Links ... 51
10.12 Add File Attachments .. 51
10.13 Add Destination .. 52
10.14 Set Document Action ... 52
10.15 Set Form Fontsize Range ... 53
10.16 Document Open Settings ... 53
10.17 Set Document Information Attributes .. 54
10.18 Set Document Metadata .. 54
10.19 Close the Output File ... 55
10.20 Set the license key at runtime .. 55

11 Linearization .. 57

12 Return Codes C .. 59

PDF Prep Tool Suite, Version 4.11 Page 5 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

1 Introduction

The PDF Prep Tool Suite is a programming library for creating, splitting and merging
PDF documents. It can be used to add content such as text, images and vector
graphics. Interactive elements such as links, form fields and bookmarks can be added
and processed. The component is used for the following tasks:

 Assemble PDF documents

 Personalize documents

 Fill in form fields

PDF documents can be created from scratch – for instance on the basis of a template
to which data is added from a source such as a database.

Properties such as position, font, size and color are freely selectable. Once created,
PDF documents can be encrypted and optimized for fast web-based viewing.

1.1 Functions

 Merge any number of pages from one or multiple PDF documents

 Apply content to the background or foreground of an existing or new page

 Text (page number, address, customer number, etc.)

 Image (company logo, scanned signature)

 Vector graphic (line, square, curve)

 Extract text including font and positioning information

 Add, fill in, delete and read out form fields

PDF Prep Tool Suite, Version 4.11 Page 6 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

 Add internal and external links and comments

 Copy content from multiple pages to one page including positioning, scaling and
rotation

 Set and get outlines (bookmarks) in PDF documents

 Define and extract document properties such as title, author, date of creation,
etc.

 Read encrypted PDF documents

 Encrypt PDF documents with a password and set permission flags

 Optimize PDF files for fast web view (linearization)

 Set color as RGB or CMYK

 Set page size (media box) and visible area (crop box)

 Remove viewer access rights

1.2 SDK

The PDF Prep Tool Suite constitutes a specialized module based on the PDF Library
SDK. It facilitates the generation of PDF documents based on existing PDF files or parts
thereof, controlled by a simple API. It is also possible to create pages via API calls, and

to add header or footer text onto pages from input files.

To facilitate the use with Microsoft Visual Basic, a COM interface is available on
Windows platforms. Java applications can make use of the component via a Java
interface based on JNI via a Java API package.

This document is not an introduction to PDF. You will need to refer to ISO 32000 or an
Adobe PDF specification as a complementary source of information.

PDF Prep Tool Suite, Version 4.11 Page 7 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

2 License Management

There are three possibilities to pass the license key to the application:

1. The license key is installed using the GUI tool (Graphical user interface). This is
the easiest way if the licenses are managed manually. It is only available on
Windows.

2. The license key is installed using the shell tool. This is the preferred solution for

all non-Windows systems and for automated license management.

3. The license key is passed to the application at runtime via the “LicenseKey”
property. This is the preferred solution for OEM scenarios.

2.1 Graphical License Manager Tool

The GUI tool LicenseManager.exe is located in the bin directory of the product kit.

 List all installed license keys

The license manager always shows a list of all installed license keys in the left pane of
the window. This includes licenses of other PDF Tools products.

The user can choose between:

 Licenses available for all users. Administrator rights are needed for modifications.

 Licenses available for the current user only.

 Add and delete license keys

License keys can be added or deleted with the “Add Key” and “Delete” buttons in the
toolbar.

 The “Add key” button installs the license key into the currently selected list.

 The “Delete” button deletes the currently selected license keys.

PDF Prep Tool Suite, Version 4.11 Page 8 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

 Display the properties of a license

If a license is selected in the license list, its properties are displayed in the right pane
of the window.

 Select between different license keys for a single product

More than one license key can be installed for a specific product. The checkbox on the
left side in the license list marks the currently active license key.

2.2 Command Line License Manager Tool

The command line license manager tool licmgr is available in the bin directory for all
platforms except Windows.

A complete description of all commands and options can be obtained by running the
program without parameters:

licmgr

 List all installed license keys

licmgr list

The currently active license for a specific product ist marked with a star ‘*’ on the left
side.

 Add and delete license keys

Install new license key

licmgr store X-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX

Delete old license key

licmgr delete X-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX

Both commands have the optional argument -s that defines the scope of the action:

 g: For all users

 u: Current user

 Select between different license keys for a single product

licmgr select X-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX

2.3 License Key Storage

Depending on the platform the license management system uses different stores for
the license keys.

PDF Prep Tool Suite, Version 4.11 Page 9 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

 Windows

The license keys are stored in the registry:

 HKLM\Software\PDF Tools AG (for all users)

 HKCU\Software\PDF Tools AG (for the current user)

 Mac OS X

The license keys are stored in the file system:

 /Library/Application Support/PDF Tools AG (for all users)

 ~/Library/Application Support/PDF Tools AG (for the current user)

 Unix / Linux

The license keys are stored in the file system:

 /etc/opt/pdf-tools (for all users)

 ~/.pdf-tools (for the current user)

Note: The user, group and permissions of those directories are set explicitly by the
license manager tool.

It may be necessary to change permissions to make the licenses readable for all users.
Example:

chmod -R go+rx /etc/opt/pdf-tools

2.4 Setting the License Key via the API

When deploying applications that use the PrepTool API, you may prefer to pass the
license key at runtime, rather than register the key on all potential target systems. The
typical call sequence in the application will be as follows:

 /* Initialize; this will load a license key stored on the computer */

 PTInitialize();

 /* Set the license key */

 PTSetLicenseKey("0-12345-ABCDE-67890-FGHIJK-12345-ABCDE");

 /* License check */

 if (!PTGetLicenseIsValid())

 {

 printf("no valid license found.\n");

 PTUninitialize();

 return 10;

 }

Note: the COM and Java bindings automatically perform the “PTInitialize()” function. If
a license key is installed on the computer, the application can detect that by directly
calling “PTLib.getLicenseIsValid()” (Java) or querying the “LicenseIsValid” property of
an IDoc, PDoc or PDFLinearizer Object (COM).

PDF Prep Tool Suite, Version 4.11 Page 10 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

3 Object Model

The core entities in the PDF Prep Tool Suite are PDF files - either existing ones serving

for input, or new ones being created. In the COM interface, these are the IDoc and
PDoc types.

Another important entity for creating PDF files are content objects. A content object
represents a layer of text and graphics objects that is used to construct a PDF page.
The Prep Tool Suite uses content objects to construct PDF pages via API calls, and also
to put a layer containing text, images etc. on top selected pages that are copied from

existing PDF files.

Text content
analysis

page extraction

Content construction

PDoc

Content
(Backgrd.)

Content
(Page)

IDoc

TToken
Rectangle

Content
(Header)

There are also some auxiliary object types which are used to return structured
information about PDF files, like text tokens on a page, or rectangle coordinates of
media boxes or form field locations.

4 Processing Model

The processing model of the PDF Prep Tool Suite with regard to PDF creation is batch
oriented. Pages are written sequentially without much buffering in memory. Contrary
to interactive models where a document is opened, then modified randomly, and finally
saved, the Prep Tool Suite works differently: Any modifications to be made to existing
pages of PDF files are prepared either by reading the corresponding PDF objects into a
cache where they are modified, or by posting modifications that are to be made when
transferring PDF objects to output. After that, a copy operation saves the range of

pages to output.

The reason for this model is resource conservation and speed.

PDF Prep Tool Suite, Version 4.11 Page 11 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

5 Language Bindings

There are three different bindings to the Prep Tool Suite: A conventional native library
interface (DLL on Win32), a COM interface for Win32, and Java wrapper classes based
on JNI. The C++ classes of the implementation are not exposed directly in any API.

The native interface is most suitable for C/C++ applications on any platform (Windows
or Unix), but can also be used from Visual Basic on Win32.

The COM interface is most suitable for Visual Basic applications, but can also be used
by any other development environment that can make use of COM objects, such as
Delphi. Unlike the other APIs, COM allows for optional and default parameters. You will
get the appropriate hints in the Visual Basic development environment.

Object type/type of interface Native COM Java

Reference to PDF output file Handle PDoc PTDoc

Reference to PDF input file InputHandle IDoc PTInput

Reference to current page ContentHandle content PTContent

Reference to current header or
background layer

ContentHandle content PTContent

Reference to current outline BookmarkHandle Bookmark PTBookmark

Reference to current form field - FormField PTFormBox,

PTFormData

Reference to current linearized file - PDFLinearizer PTLinearizer

Reference to current text token PTTokenInfo TToken PTTextToken

The native binding uses the type VBSTR to return character strings from the Prep Tool
Suite to the application. VBSTR is compatible with Visual Basic, i. e. Visual Basic will
correctly free these strings again.

C applications need to explicitly free strings obtained from the Prep Tool Suite by

calling PTFreeVBSTR. This function will call the Win32 function SysFreeString().

On UNIX systems, PTFreeVBSTR simply calls the standard free() function from stdlib.h.

PDF Prep Tool Suite, Version 4.11 Page 12 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

6 Getting Started

This chapter gives a brief overview of how the PDF Prep Tool Suite can be used.
Important to know is:

 The PDF Prep Tool Suite never modifies an input file. Modifications are always
applied and visible in the created output.

 Only one output file can be opened at a time. Several input files can be opened
at once, but only one can be attached to an output file at a time.

 "Attached" means that when calling to InputCopyPages, or InputCopyAll, the
pages of the attached input file are copied to the output file.

There are basically two possibilities to create a document:

6.1 Create a Document from Scratch

The PDF Prep Tool is not intended to be used as a PDF Creator, even though it provides
the functionality to add text, raster graphics and vector graphics such as lines or
rectangles.

When creating a document from scratch, content is to be written on the Page layer.
The Header and Background layers cannot be used at this time.

In Visual Basic 6, creating a document from scratch could look like this:

Dim outdoc As New PREPTOOLLib.PDoc

outdoc.New "C:\temp\hello.pdf"

outdoc.Page.SetFont "Helvetica", 50

outdoc.Page.PrintText "Hello World.", 100, 300

outdoc.Close

6.2 Add Content to an Existing Input File

An input file can be opened by either creating an IDoc object, open a document and
attach the IDoc to the PDoc object, or by a call to InputOpen of the PDoc object.
Adding new content can be achieved by writing on the Header or Background layer.

After a call to InputCopyAll or InputCopyPages, the content of the pages of the input
document is merged with the Header and Background layers.

The Page layer cannot be used at this time to add content to the page. Writing on the
Page layer creates a new page.

Here is a Visual Basic 6 sample:
Dim outdoc As New PREPTOOLLib.PDoc

outdoc.New "C:\temp\output.pdf"

outdoc.InputOpen "C:\temp\hello.pdf"

outdoc.Header.SetFont "Helvetica", 50

outdoc.Header.PrintText "Hello again.", 100, 400

outdoc.InputCopyPages 1, 1

outdoc.Close

PDF Prep Tool Suite, Version 4.11 Page 13 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

7 Output PDF Creation

Creation of an PDF file for output is performed as shown in the table below. Note that
the COM interface requires two steps, because a COM object cannot be created with
parameters.

Native Handle PDocNew(const char* Filename, short PgWidth, short

PgHeight, PTError* err)

COM Dim Obj As New PDoc

Dim Obj As Object: Set Obj = CreateObject("PrepTool.PDoc")

New(Filename As String, Width As Integer, Height As Integer) As

 Boolean

Java new PTDoc(String Filename)

new PTDoc()

The procedure PDocNew creates a new PDF file that is initially empty. The pages
created and written to via the API will all have the specified page height and width.

Note that the PDF coordinate system has its origin at the left bottom of the page. The
European format A4 has a width of 595 (points) and a height of 842.
A return value of 0 for the Handle means that the output file could not be created. In
the native interface, you must use the PTError* parameter to obtain the error code
which is necessary to determine the reason why creation failed.

In the Java binding, the page format must be set by a separate method (setPageSize).

To create a PDF file in memory without writing it to disk, you can omit the file (i. e.
specify NULL / 0 for this parameter). The Java API exhibits a constructor with no

parameter for this.

The CloseB function will retrieve the byte array corresponding to the contents of the
PDF file.

7.1 Set the PDF Version

Native PTError PDocSetPDFVersion(Handle h, const char* version)

COM SetPDFVersion(Version As String)

Java void setPDFVersion(String Version)

This function sets the PDF version stored at the beginning of each PDF file. The default
value is "1.4".

Note that the PDF version must be set before writing anything else to the output file.

7.2 Encryption

To provide a certain protection of PDF files, Adobe has specified "Standard Security" in
the PDF specifications. This is based on encryption algorithms and is available in the

PDF Prep Tool Suite, Version 4.11 Page 14 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Prep Tool Suite.

Native PTError PDocSecurity(Handle h, const char* ownerPw, const char*

userPw, const char* flags)

COM SetSecurity(OwnerPassword As String, UserPassword As String,

Flags As String)

Java void SetSecurity(String Ownerpassword, String Userpassword,

String Flags)

This method will set the passwords and protection flags of the file to be created. It
must be called immediately after the New method (before any objects are written to
output).

The "Flags" parameter sets the protection attributes. It can contain a combination (or
none) of the following characters:

"p": do not print the document from Acrobat

"c": changing the document is denied in Acrobat

"s": selection and copying of text and graphics is denied

"a": adding or changing annotations or form fields is denied

The following flags are defined for 128 bit encryption (PDF 1.4, Acrobat 5.0):

"i": disable editing of form fields

"e": disable extraction of text and graphics

"d": disable document assembly

"q": disable high quality printing

The flag "5" can be used in combination with one of the "old" flags to force 128 bit
encryption without setting any of the i, e, d, or q flags. Note that using any of these
Acrobat 5 related flags will produce a file that cannot be opened with older versions of
Acrobat.

Omitting these flags will result in a PDF file that is fully usable when opened using the
user password.

7.3 Disable Stream Compression

Native void PDocCompress(Handle h, short Yes)

COM not available (default: compression enabled)

Java enabled if environment variable PDPREP_OPT_NC is defined

The function PDocCompress can be used to disable the compression of content streams
generated by Prep Tool. By default, compression is enabled.

7.4 Font Renaming

Acrobat viewers before 4.05 had the problem of incorrectly rendering text with fonts
that were multiply defined in a file. PDF Prep Tool automatically renames such fonts to
work around this viewer problem. This renaming can create new problems when

PDF Prep Tool Suite, Version 4.11 Page 15 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

printing the resulting file, and when the font is not embedded in the file. In these
cases, you should use SetPreserveFontNames method to disable the renaming feature.

Native PTError PDocSetPreserveFontNames(Handle h, short on)

COM SetPreserveFontNames(on As Boolean)

Java void setPreserveFontNames(boolean on)

7.5 Error Handling

Error handling is implemented via a "get last error" method for PDF input and output
objects.

Native int PDocLastError(Handle h)

COM ErrCode() As ErrorType

Java int getLastError()

The COM interface defines its own error codes which are defined in the COM interface.

The native interface returns the normal "errno" codes of the operating system where
appropriate, and a set of special Prep Tool errors that are defined in the include file.

NOTE: the "success" error code has been changed to conform with "errno", i.e. a value
of 0 (zero) corresponds to successful operation, rather than the value 1 which

previously was returned in most cases. Please refer to the file pdptdef.h.

The Java interface uses Java exceptions combined with the native error codes. Please
refer to the Java class definitions.

7.6 Open a PDF File for Input

You can open a PDF file to retrieve information from it via the API, or to use it as a
resource to copy pages to an output file, or both.

This is how to open the input file by referring to an output file object:

Native PTError PDocInputOpen(Handle h, const char* inputFile)

COM InputOpen(Filename As String) As Boolean

Java Boolean inputOpen(String Filename)

Boolean inputOpen(String URL)

A call to PDocInputOpen makes resources of an existing PDF file available - either to
copy a non built-in font into the output file, or to copy pages to the output file.

Only one input file can be active at a time. A subsequent call to PDocInputOpen will
automatically close the previous input file.

A return value of !=PTSuccess (Java/COM: false) means that the input file could not be
opened.

In Java it is possible to provide an URL instead of a file name.

If you want to open a PDF file for input without need to create some other PDF file, you

PDF Prep Tool Suite, Version 4.11 Page 16 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

can do this as follows:

Native InputHandle IDocOpen(const char* Filename, PTError* errCode)

InputHandle IDocMemOpen(const char* pdfBytes, int len, PTError*

errCode)

COM Dim Obj1 As New IDoc

Dim Obj2 As Object

Set Obj2 = CreateObject("PrepTool.IDoc")

Obj1.Open(Filename As String) As Boolean

Obj1.OpenMem(Bytes [As Byte()]) As Boolean

Java new PTInput(String Filename)

new PTInput(String URL)

new PTInput(byte[] pdfBytes)

It is possible to open a PDF "file" stored in memory rather than referring to the file
system using the MemOpen function. In Java, the PTInput constructor taking a byte
array can be used for this.

When using IDocMemOpen, the "pdfBytes" are copied during this call and can be
disposed of as needed (all language bindings).

In the COM interface the following construct can be used to ensure that the PDoc and
its corresponding IDoc are running in the same appartment:

COM Dim Obj1 as New PDoc

Dim Obj2 as IDoc

Set Obj2 = Obj1.CreateIDoc

To open a password protected (encrypted) PDF file, you need the following API calls:

Native InputHandle IDocOpenPw(const char* inputFile, const char*

password, PTError* errCode)

InputHandle IdocMemOpenPw(const char* pdfBytes, int len, const

char* password, PTError* errCode)

COM Open(Filename As String, Password As String) As Boolean

OpenMem(Bytes, Password As String) As Boolean

Java new PTInput(String Filename, String Password)

new PTInput(String URL, String Password)

new PTInput(byte[] pdfBytes, String Password)

The COM API uses the same methods to open encrypted and non-encrypted files. The
password parameter is optional.

7.7 Attach an Input File

When you have previously opened an existing PDF file using IDocOpen, you may later

PDF Prep Tool Suite, Version 4.11 Page 17 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

want to use it as a source for pages or other resources to create an output file.

Native PTError PDocAttach(Handle h, InputHandle hIDoc)

COM Attach(Input As IDoc) As Boolean

Java void attachInput(PTInput input)

Note: Once you have attached an input file to an output PDF, you must not attach it to
another output PDF file; also, you must not close it, because it will be closed
automatically when the output PDF is closed.

Attaching a new input file to an output PDF will also close the previous input file
(except when using the COM API).

7.8 Accessing the Current Input File

The make use of the full set of PDF file analysis features, you may want to know the
input file object reference of an output file object.

Native InputHandle PdocGetInputHandle(Handle h)

COM Input() As IDoc

Java PTInput getInput()

7.9 Set the Page Size and Orientation

Native PTError PDocPageSize (Handle h, short Width, short Height)

COM PageSize(Width As Integer, Height As Integer)

Java void setPageSize(short Width, short Height)

Use this function to set the dimension of pages to be created. The width and height are
specified in points corresponding to the standard PDF coordinate system. The
MediaBox of the page will be set as [0 0 <width> <height>]. The default values are
595 by 842, i. e. A4 portrait. There are minimum and maximum values that vary
between different versions of the Acrobat viewers.

If you want to create landscape pages, you can either set the width and height
accordingly, or turn the coordinate system by printing from bottom to top while
specifying a value of 90 for the Rotate attribute of the page. Please read the
explanations about the PDF and text coordinate system in the specifications.

Native PTError PDocPageRotate(Handle h, short orientation)

COM SetPageRotate(Orientation As Integer)

Java void setPageRotate(int Orientation)

The orientation for viewing the content of a page can be set using this function. Legal
values that can be specified are 0 (default) and multiples of 90 (e. g. 270, -90, 180,
etc.).

These settings do not affect pages copied from existing PDF files, see SetInputRotate
(below) for this.

PDF Prep Tool Suite, Version 4.11 Page 18 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

To change the format or orientation of such pages, you can create empty pages of the
desired format and add the content of the existing file using the "Logo" functions. This
allows you to use arbitrary coordinate transformations for positioning and scaling the

page. This method will not work to copy annotations (such as form fields, links, etc.).

Native PTError PDocSetInputRotate(Handle h, short orientation)

PTError PDocClearInputRotate(Handle h)

COM SetInputRotate(Orientation As Integer)

ClearInputRotate

Java void setInputRotate (short Orientation)

void clearInputRotate()

SetPageRotate has the effect to replace the page rotation stored in input PDFs with the
value specified when copying pages into the output PDF. To restore the behavior of
keeping the value as in the input file, use ClearInputRotate.

7.10Set the Crop Box

The Crop Box is the displayed part of the PDF. This function allows the setting the Crop
Box for pages that are created or copied. The Crop Box must never be larger than the
Media Box.

Native PTError PDocSetCropBox(Handle h, float Left, float Bottom, float

Right, float Top)

COM SetCropBox(Left As Single, Bottom As Single, Right As Single, Top

As Single)

Java void setCropBox(float Left, float Bottom, float Right, float Top)

The crop box can be set for a newly created page. It is also applied to the pages that
are copied using InputCopyPages or InputCopyAll.

7.11Adding a New Page

A new page is automatically added to the output file when you request its handle for
the first time or after a call to PDocNewPage.

Native ContentHandle PDocGetContentHandle(Handle h)

COM Page() As content

Java PTContent getPageContent()

The content handle and the Java PTContent object are only valid as long as the page is
in construction. Once it is written to output, it is invalid and may no longer be used.

The COM object can be reused to access the next page after a call to the NewPage
method only. In all other cases, a new Content object reference must be obtained from
the PDoc object.

PDF Prep Tool Suite, Version 4.11 Page 19 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

7.12Accessing the Current Header or Background Content Layer

In order to construct the header content layer, you need the corresponding object
reference from the output file object.

Native ContentHandle PDocGetHeaderHandle(Handle h)

ContentHandle PDocGetBackgroundHandle(Handle h)

COM Header() As content

Background() As content

Java PTContent getHeaderContent()

PTContent getBackgroundContent()

A header (or background) content reference is valid as long as the header is not
cleared. After a call to HeaderClear or BackgroundClear, it becomes invalid and may no
longer be used.

The header content layer will be placed on top of pages copied into an output PDF
(using InputCopyPages), while the background layer will be placed behind. Note that
the background content may be hidden by non-transparent pages of an input file.

PDF Prep Tool Suite, Version 4.11 Page 20 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

8 Retrieving File Information

In the native interface, you refer to a handle of type "InputHandle".

In the COM interface, you refer to an object of type "IDoc".

In the Java binding, you refer to an object of class "PTInput".

You can obtain this kind of object reference in one of the ways described above.

8.1 Obtain the PDF Version

Native VBSTR IDocPDFVersion(InputHandle h)

COM GetVersion() As String

Java String getPDFVersion()

Returns the PDF version of the file, as stored in the file header.

8.2 Obtain the File Name

Native VBSTR IDocGetFileName(InputHandle h)

COM GetFileName() As String

Java String getFileName()

Retrieves the name of the PDF file. If the file was opened from memory, a unique
string is returned starting with "internal: ". If the file is not open, an empty string is
returned.

8.3 Obtain the Keys List

Native PTError IDocGetInfoKeys(InputHandle h, VBSTR* keys)

COM GetInfoKeys() As String

Java String getInfoKeys()

This function returns a carriage-return separated list of the keys that are present in the
/Info attribute of the PDF file. The keys are returned with the leading slash character –
e. g. /Author, /Title, etc.

8.4 Obtain Document Attributes

Native PTError IDocGetInfoAttr(InputHandle h, const char* key, VBSTR*

value)

PTError IDocGetInfoAttrU(InputHandle h, const char* key, PDBSTR

value)

PDF Prep Tool Suite, Version 4.11 Page 21 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

COM GetInfoAttr(ByVal Key As String) As String

Java String getInfoAttr(String Key)

This function returns the value of a document attribute stored in the /Info attribute of
the PDF file.

8.5 Get Meta Data

Native VBSTR IDocGetMetaData(InputHandle h)

COM GetMetaData() As String

Java String getMetaData()

GetMetaData returns the XML meta data stored in the PDF document.

8.6 Get the Name and Current Data of a Form Field

Native PTError IDocGetFormData(InputHandle h, short FieldNum, VBSTR*

Name, VBSTR* Data, VBSTR* Description, int* FormFlags, int*

AnnotFlags, VBSTR* FieldType)

COM GetFormData(ByVal FieldNum As Integer, Name As String, Data As

String, Descr As String, Multiline As Boolean) As Boolean

Java PTFormData getFormData(int FieldNum)

The parameter FieldNum (default=1) is an iterator by which you can obtain the names
and current data of all text form fields. FieldNum runs from 1 to the number of form

fields. A result of !=PTSuccess/False/null will be returned, if you go beyond the last
form field.

PTFormData.Name = Name as String

PTFormData.Data = Data as String

PTFormData.Description = Description as String

The native and the Java interface also supply type information (FieldType). This type
information is composed of the field type of the field itself, followed by the export
values (separated by new-line characters).

Note that there can be more than one instance of a form field. If this is the case, each
instance can have different flags, and you need to use GetFormBox to check the
individual settings.

8.7 Get the Position of a Form Field

Native PTError API IDocGetFormBox(InputHandle h, const char* fieldName,

float box[], short inst, int* page, short* fontID DEFAULT_NULL,

float* fs, short* al, int* formFlags, int* annotFlags)

COM GetFormBox(ByVal FieldName As String, ByVal Instance As Short, X

PDF Prep Tool Suite, Version 4.11 Page 22 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

As Single, Y As Single, W As Single, H As Single, Page As

Integer, FontID As PtFormFontType, Fontsize As Single, Alignment

As Short, Formflag As PTFormFlags, Annotflags As PTAnnotFlags) As

Boolean

Java PTFormBox getFormBox(String Fieldname, int Instance)

PTFormBox getFormBox(String Fieldname)

There can be more than one field occurrence with a certain name. All these
occurrences share the same data and also other attributes like description or multi-
line. Individual form fields have their own location, display text in a different font and
with different alignment. GetFormBox returns the latter information that belongs to
individual form fields. The "instance" parameter serves to distinguish different
occurrences. Instance numbers start at 1. The function will return a PTSuccess
(True/non-null) result if the instance is found.

The parameters are:

- Fieldname: the name of the form field (IN)

- Instance: a numerator to distinguish between form fields that have the same name
(IN)

- box,

box[0-3] =X/Y/W/H: the coordinates of the rectangle occupied by the form field

if (box.length > 4)

 Page = (int) box [4];

 if (box.length >= 10) {

 FontID = (int) box [5];

 FontSize = box [6];

 Alignment = (short) box [7];

 FormFlags = (short) box [8];

 AnnotFlags = (short) box [9];

- Page: the number of the page on which the field is located (1..number of pages)

- FontID: the identification of the font used to display text (e. g. Helvetica = 0, see
declaration of font constants)

- FontSize: the size of the text being displayed

- Alignment: the alignment for displaying the form text (0 = left, 1 = centered, 2 =
right)

- Formflags: the flags set for the form ("/Ff" entry in the form field’s dictionary, see
AddTextField)

- Annotflags: the general annotation flags ("/F") set for the field

The form specific flags being returned are described in the PDF specification:

- 1: read-only (flag & 1 != 0)

- 2: required (flag & 2 != 0)

PDF Prep Tool Suite, Version 4.11 Page 23 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

- 3: no export (flag & 4 != 0)

- 13: multi-line (flag & 4096 != 0), etc.

The general annotation flags are

- 1: invisible

- 2: hidden

- 3: printable, etc.

8.8 Get Information about Pages

Native int IDocNumPages(InputHandle h)

PTError IDocAcquirePage(InputHandle h, int Page)

PTError IDocPageBox(InputHandle h, float* X, float* Y, float*

Width, float* Height)

PTError IDocMediaBox(InputHandle h, float* X, float* Y, float*

Width, float* Height)

short IDocPageRotate(InputHandle h)

COM NumPages() As Long

GoPage(PageNum As Long) As Boolean

GetVisibleBox(Left, Bottom, Right, Top)

GetMediaBox(Left, Bottom, Right, Top)

GetRotate() As Integer

Java int getNumPages()

boolean acquirePage(int PageNumber)

PTRectangle getPageBox()

PTRectangle getMediaBox()

short getPageRotate()

This set of functions can be used to retrieve information about individual pages in a
PDF file.

The "visible box" corresponds to the crop box; if none is present, the media box is
returned.

The "Rotate" attribute of a page tells a viewer application that the page shall be
rotated for presentation.

8.9 Retrieve Text from a PDF File

Native PTError IDocReadText(InputHandle h, VBSTR* text, PTTokenInfo* m,

VBSTR* font)

PTError IDocReadTextU(InputHandle h, PDBSTR* text, PTTokenInfo*

PDF Prep Tool Suite, Version 4.11 Page 24 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

m, VBSTR* font)

COM GetToken() As TToken

Java PTTextToken readTextToken()

This function retrieves text fragments from a PDF file’s pages. The metrics structure
contains the coordinates, font size, width and orientation of the retrieved character
string. The page number is also contained, because ReadText passes automatically to
the next page when no more text is found on a page.

The PTTokenInfo structure contains a float array indicating to position of each
individual character of the retrieved string (CharRightPos). This float array is
dynamically allocated and must be initialized before calling IDocReadText and again
afterwards when not used any more. This is done with the functions PTInitToken() and
PTFreeToken(). For C++ programmers, the class CPTTokenInfo is available which takes
care of initializing the structure and freeing the allocated memory again.

8.10Retrieve Bookmarks from a PDF File

Native BookmarkHandle IDocGetBookmarkRoot(InputHandle h)

PTError PBMGoNext(BookmarkHandle h)

PTError PBMGoUp(BookmarkHandle h)

PTError PBMGoDown(BookmarkHandle h)

PTError PBMReset(BookmarkHandle h)

PTError PBMGetTitle(BookmarkHandle h, VBSTR* title)

PTError PBMGetTitleU(BookmarkHandle h, PDBSTR* title)

PTError PBMGetLevel(BookmarkHandle h, int* level)

PTError PBMGetNumChildren(BookmarkHandle h, int* numChildren)

PTError PBMKidsVisible(BookmarkHandle h, bool* kidsVisible)

PTError PBMGetInfo(BookmarkHandle h, VBSTR* info)

PTError PBMRelease(BookmarkHandle h)

BookmarkHandle API PBMClone(BookmarkHandle h)

COM GetBookmarkRoot() As Bookmark

Java PTBookmark getBookmarkRoot()

The bookmark root node can be retrieved trough the function GetBookmarkRoot. Java
and COM uses the classes PTBookmark and Bookmark to encapsulate the appropriate

native functions (GetTitle, GoNext, ..)

Navigate trough the tree by using the functions GoNext to go to the next bookmark,
GoDown to go one level deeper, GoUp to go one level up and reset to move to the root
bookmark. GoDown, GoUp and GoNext return false if there isn’t a next bookmark or
the node has no children (GoDown) or is no parent (GoUp).

To retrieve information about the current bookmark use the get functions. GetTitle

returns the bookmark title. The native method GetTitleU returns the title in Unicode.

PDF Prep Tool Suite, Version 4.11 Page 25 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Java and COM methods always return Unicode strings. GetLevel returns the current
level of the bookmark. The root level is –1. GetNumChildren returns the number of
children for the current bookmark. Use the Clone function to get a copy of the current

bookmark. For Java and the native API you have to release a bookmark to free the
memory. Use the release function to do this.

To release the title string in the native API, use the functions PTFreeVBSTR and
PTFreePDBSTR.

The GetInfo function returns additional information about a bookmark. This information
is returned in a character string. The string content depends on the type of action or

destination attached to the bookmark. The following types are supported:

GoTo: Go to a destination in the current document (Starting at 0).

GoToR: Go to a destination in another document.

Launch: Launch an application.

URI: Open an Internet link.

The action types have to be interpreted as follows:

Action type String

GoTo GoTo Destination

GoToR GoToR file Destination

Launch Launch file

URI URI web-link

A destination can be one of the following:

page /XYZ left top zoom
page /Fit
page /FitH top
page /FitV left
page /FitR left bottom right top
page /FitB
page /FitBH top
page /FitBV left

For more information about action types and destinations, refer to the PDF-Reference.

Use a parser to split up the string into the tokens. The separation between two
arguments is the blank character.

8.11Retrieve Annotations from a PDF File

Native PTError IDocGetAnnotation(InputHandle h, PTAnnotType*

AnnotType, float rect[], int* BorderStyle, int*

pIdentification)

PTError IDocGetAnnotationInfo(InputHandle h, VBSTR* AnnotInfo)

PTError IDocGetAnnotationInfoU(InputHandle h, PDBSTR*

AnnotInfo)

COM GetAnnotation(Type As PTAnnotType, Info As String, Left As

PDF Prep Tool Suite, Version 4.11 Page 26 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Single, Bottom As Single, Right As Single, Top As Single,

BorderStyle As Long, Identification As Long) As Boolean

Java PTAnnotData readAnnotation()

These functions are used to retrieve annotations from a PDF document. Two types of
annotations can be retrieved, text and link annotations. The type is retrieved through
the PTAnnotType structure.

The function GetAnnotation returns one annotation per call for the current page. Call
the function again to retrieve the next annotation. The function will return an error if it

has no next annotation.

Use the GetAnnotationInfo function in the native API to retrieve the info string from
the current annotation. The GetInfoAnnotationU function, retrieves the info string in
Unicode. Use PTFreeVBSTR and PTFreePDBSTR to free these strings.

The return values are interpreted as follows:

AnnotType: the type of the annotation (eText or eLink)

rect[]: the location of the annotation on the page (left, bottom, right, top)

Info: If it’s a text annotation this holds the text. If it’s a Link annotation this holds an
action or named destination. See ‘Retrieve Bookmarks from a PDF File’ for more
information about the structure of the info string in this case.
Java encapsulates the return values in the class PTAnnotData.

8.12Retrieve the Border Style from Annotations

Native n.a.

COM GetBorderStyle(ID As Long) As IBorderStyle

Java n.a.

If the annotation has a Border Style dictionary (entry BS), this function returns an
IBorderStyle interface, otherwise nothing is returned. ID is the identification of the
annotation which is received using the method GetAnnotation.

IBorderStyle has the following properties:

String BS Describes the border style. The following substrings are possible:
"S" (Solid), "D" (Dashed), "B" (Beveled), "I" (Inset), "U"
(Underline).

Long ColorRGB The color as RGB value. ColorRGB = red + 256 * green + 256 *
256 * blue. Where red, green and blue are values 0-255.

String DashArray A dash array defining a pattern of dashes and gaps to be used in
drawing a dashed border. The array is returned a string, the

separator is the blank. For example, a "1 2" string specifies a
border drawn with 1-point dashes alternating with 2-point gaps.

Integer DashOff The size of the gaps. See DashArray.

Integer DashOn The size of the dash. See DashArray.

Integer Width The border width in points. If this value is 0, no border is drawn.

PDF Prep Tool Suite, Version 4.11 Page 27 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

8.13Get List of Fonts

Native PTError IDocGetFonts(InputHandle h, int PageNumber, VBSTR* Fonts)

COM GetFonts(Optional ByVal PageNumber As Long) As String

Java String getFonts(int Page)

This function returns a "\r" (Chr$(13)) separated list of the fonts contained in the PDF
file. If the Page parameter is specified as 0, the whole document is searched for fonts.

8.14Get Color Information

Native short IDocNumColorSpaces(InputHandle h)

VBSTR IDocGetSeparation(InputHandle h, short index)

COM NumColors() As Long

GetColor(ByVal Index As Long) As String

Java int getNumColors()

String getColor(int Index)

These functions return information about ColorSpace entries in the resources dictionary
of the current page of the input file (AquirePage must previously be called).

The index to retrieve the names of the color space separation runs from 1 to the
number of colors.

8.15Save File Attachment

Native PTError IDocSaveAttachment(InputHandle h, const char* filename)

COM SaveFileAttachment(FileName As String) As Boolean

Java void saveAttachment(OutputStream os)

This function permits retrieval of the file that is embedded in a FileAttachment
annotation.

Note that SaveFileAttachment depends on the GetAnnotation function, and will only
work when the last annotation returned by GetAnnotation is a file attachment.

8.16Close the File

Native PTError IDocClose(InputHandle h)

COM Close() As Boolean

Java void close()

This function closes the input file and releases all resources associated with it. When
the COM object’s reference count goes to zero, an automatic close is performed.

When using the Java API, you must be careful: call "close" only, if you obtained the

PDF Prep Tool Suite, Version 4.11 Page 28 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

PTInput object using "new". If you obtained it via PTDoc.getInput(), the input file will
be closed when closing the PTDoc object.

8.17Get UserUnit

Native float IDocUserUnit(InputHandle h)

COM GetUserUnit() As Single

Java n.a.

Returns the UserUnit as float if defined in the PDF document. If no UserUnit is defined,
1 is returned.

PDF Prep Tool Suite, Version 4.11 Page 29 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Content Construction

The following methods refer to objects of type content, and can thus be equally applied
to "print" to a page or to construct the content layer of a header.

In the native interface, you refer to a handle of type "ContentHandle".

In the COM interface, you refer to an object of type "Content".

In the Java binding, you refer to an object of class "PTContent".

8.18Set the Font for Text Output

Native PTError PConSetFont(ContentHandle h, const char* fontName, float

fontSize)

COM SetFont(ByVal FontName As String, ByVal FontSize As Single) As

Boolean

Java boolean setFont(String Name, float Size)

boolean setFont(String Name)

boolean setFont(float Size)

In the native and COM interfaces, the parameters Name and Size are optional. Once
you have set the font’s name, it is possible to change its size by just passing the new

size. For missing arguments, you can specify 0.

The procedure PConSetFont must be called prior to PConPutText to set the font to be
used and its size. Only predefined Acrobat fonts can be specified here ("Helvetica",
"Helvetica-Bold", "Helvetica-Oblique", "Times-Roman", "Times-Italic", "Times-Bold",
"Courier", "Courier-Oblique", "Courier-Bold", "Symbol", "ZapfDingbats").

The fonts "Helvetica-BoldOblique", "Courier-BoldOblique" and "Times-BoldItalic" are
built in fonts, but cannot be used because their definition requires additional
information which is not yet supported. However, if these fonts or any other non
standard font is defined in the current input file, PT will copy that font to the output
file.

SetFont returns FALSE if the font cannot be set (i. e. is not a standard font and is not
found in the current input file).

Note the following issues about using fonts:

When there is no current input file (see PDocInputOpen), you must only use standard
built-in fonts like Helvetica, Times-Roman, etc. (see PConSetFont).

When there is a current input file, SetFont tries to find a font with this name in the
input file and copy the font data to the output file. It is then legal to use this font.

To use a non standard font, you can thus create a template file containing the font
data. As Acrobat optimizes the font data to what is actually necessary, make sure you
place the full variety of characters that you later need into the file. To refer to the font,
you specify its name in the "fontName" parameter. It is actually sufficient to specify
only a significant portion of the name (matching is case sensitive - check the spelling
of the font in the template file!).

PDF Prep Tool Suite, Version 4.11 Page 30 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Some fonts will have the effect that the encoding of individual characters in the PDF
file is different from the corresponding ASCII code. Currently, you can only use fonts
that conform to certain conventions. The standard fonts "Helvetica", "Helvetica-Bold",

"Helvetica-Oblique”, "Times-Roman", "Times-Italic", "Times-Bold", "Courier", "Courier-
Oblique", "Courier-Bold", "Symbol", "ZapfDingbats" should always work. Other fonts
will be embedded into the PDF file. Their encoding depends on the tool which produced
the PDF file. PDFWriter on Windows produces a standard ASCII encoding
(WinAnsiEncoding) for a font for which Distiller Assistant will create an encoding which
shifts codes by 29. (You will notice this also in Acrobat, when you select text, copy it to
the clipboard, and try to use it in another application).

The Prep Tool DLL uses a heuristic to determine if there is a code shift by evaluating
the "FirstChar" key of the font dictionary. It uses this value to shift the code, assuming
that this code corresponds to the first printable character which is a blank space (ASCII
32). When you prepare a template PDF, make sure it contains a blank space (plus all
other characters you want to have available).

8.19Set Text Spacing

Native PTError PConSetCharSpacing(ContentHandle h, float value)

PTError PConSetWordSpacing(ContentHandle h, float value)

PTError PConSetTz(ContentHandle h, float value)

COM SetCharSpacing(ByVal Value As Single)

SetWordSpacing(ByVal Value As Single)

SetTz(ByVal Value As Single)

Java void setCharSpacing(float value)

void setWordSpacing(float value)

void setTz(float value)

The character spacing (Tc) adds some space between each character of a text string.
The measure is in points. It does not scale with the text’s font size. The word spacing
is an additional spacing that is applied to space characters only.

The "Tz" value controls the horizontal scaling of text. The default value is 100.

8.20Set the Gray Level for Lines and Filling

Native PConSetGray(ContentHandle h, float line, float fill)

COM SetGrayLevel(ByVal GrayLine As Single, ByVal GrayFill As

Single)

Java void setGray(float line, float fill)

void setGrayLine(float value)

void setGrayFill(float value)

Text characters consist of a line shape (that is usually not drawn) and the fill area.
Thus, you can set the gray level of text by setting the gray level for filling (“g” operator

PDF Prep Tool Suite, Version 4.11 Page 31 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

in PDF).

.. etc.

8.21Set the Color for Lines

Native PTError PConLineColor(ContentHandle h, float red, float green,

float blue)

PTError PConLineColorCMYK(ContentHandle h, float cyan, float

magenta, float yellow, float black)

COM SetLineColor(ByVal red As Single, ByVal green As Single, ByVal

blue As Single)

SetLineColorCMYK(ByVal cyan As Single, ByVal magenta As Single,

ByVal yellow As Single, ByVal black As Single)

Java void setLineColor(float red, float green, float blue)

void setLineColorCMYK(float cyan, float magenta, float yellow,

float black)

This method sets the color of lines. The values of r, g, b must lie in the range of 0 and
1. They correspond to the contributions of red, green and blue. 0,0,0 corresponds to
black, 1,0,0 to red, etc. Alternatively the color can be set using CMYK (Cyan, Magenta,

Yellow, Black) parameters. The range of the CMYK color parameters lies between 0 and
1.

8.22Set the Color for Filling

Native PTError PConFillColor(ContentHandle h, float red, float green,

float blue)

PTError PConFillColorCMYK (ContentHandle h, float cyan, float

magenta, float yellow, float black)

COM SetFillColor(ByVal red As Single, ByVal green As Single, ByVal

blue As Single)

SetFillColorCMYK(ByVal cyan As Single, ByVal magenta As Single,

ByVal yellow As Single, ByVal black As Single)

Java void setFillColor(float red, float green, float blue)

void setFillColor(float cyan, float magenta, float yellow, float

black)

This method sets the color for filling shapes. It also affects the color of text.

8.23Set the Alpha Transparency for Filling and Stroking

Native PTError PConSetFillAlpha(ContentHandle h, float alpha)

PTError PConSetStrokeAlpha(ContentHandle, float alpha)

PDF Prep Tool Suite, Version 4.11 Page 32 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

COM SetFillAlpha(ByVal alpha b As Single) As Boolean

SetStrokeAlpha(ByVal alpha b As Single) As Boolean

Java n.a.

This method sets the alpha transparency for filling shapes and stroking lines. It also
affects text.

8.24Using Color Spaces

It is also possible to use color spaces to set the fill and line colors. In order to have a
specific color space available for use, it must be defined in the current input file, or it
must have been previously copied to the current output file from some other input file
(see PDocInputCopyColor).

Native PTError PConSetFillCS(ContentHandle h, const char* color, float

scn)

PTError PConSetLineCS(ContentHandle h, const char* color, float

scn)

COM SetFillCS(ByVal Color As String, ByVal scn As Single) As Boolean

SetLineCS(ByVal Color As String, ByVal scn As Single) As Boolean

Java void setFillCS(String Color, float scn)

void setFillCS(String Color)

void setLineCS(String Color, float scn)

void setLineCS(String Color)

These functions return a boolean indicating successful setting of the color. To obtain a
list of all available colors, you can use the functions IDocNumColorSpaces and
IDocGetSeparation.

8.25Placement of Character Strings

Native PTError PConPutText(ContentHandle h, const char* text)

PTError PconPutTextU(ContentHandle h, const PDNSTR text)

PTError PConPutLn(ContentHandle h)

COM PrintText(Text As String, x As Single, y As Single)

PrintNewLine()

Java void putText(String Text)

void putLn()

Print a text string using the current font. You previously need to set the location (Text
Matrix).

The COM interface optionally accepts new coordinates for the text.

PutLn adds a T* operator to the stream.

PDF Prep Tool Suite, Version 4.11 Page 33 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

8.26Placement of a Logo

Native PTError PDocLogo(Handle h, const char* logoFile, short

backGround)

PTError PDocLogoFile(Handle h, const char* logoFile, PTClipType

ct)

PTError PDocLogoInput(Handle h, InputHandle hIDoc, PTClipType ct)

PTError PConPrintLogo(ContentHandle h, long id)

InputHandle PDocGetLogoHandle(Handle h)

COM {PDoc.}SetLogoFile(ByVal Filename As String, Optional Clipping As

PTClipType) As Boolean

{PDoc.}SetLogoInput(LogoInput As IDoc, Optional Clipping As

 PTClipType) As Boolean

{PContent.}PrintLogo(Num As Long) As ErrorType

{PDoc.}Logo() As IDoc

Java boolean {PTDoc.}setLogoFile(String Filename)

boolean {PTDoc.}setLogoFile(String Filename, int cliptype)

boolean {PTDoc.}setLogoFile(String URL)

boolean {PTDoc.}setLogoFile(PTInput input, int cliptype)

void {PTContent.}putLogo(int LogoPageNum)

PTInput {PTDoc.}getLogoFile()

First, you need to define which PDF file to extract logos from. Subsequently, you can
select any page of the logo file as the logo to be placed either on the page content or
on the header layer.

The box, which should be applied when copying the logo page can be set to any box
(pdClipTrimBox, pdClipCropBox, pdClipMediaBox, pdClipBleedBox). The default is the
TrimBox.

The native interface works slightly different for backward compatibility reasons:
PDocLogo implicitly also prints the logo from page one, and it is possible to put it in the
background. The new function PDocLogoFile only opens the file and leaves it up to
PConPrintLogo to use it.

A PTNullRef value returned by the PrintLogo function indicates that the page being
used as a logo does not contain any contents and thus has no effect on the output. The
Java function putLogo will not raise an exception in this case as it would when
encountering some other error (such as PTFailed when passing an invalid page
number).

Please note that pages merged from existing PDF files may not be transparent and
thus cover the background logo. On the other hand, the logo may not be transparent
and hide existing contents if placed in the foreground. The best technique is thus to
make sure the logo is transparent as required and place it in the foreground. As a help

to this, it is possible to apply a crop box to the logo file (see below). Unfortunately,

PDF Prep Tool Suite, Version 4.11 Page 34 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Acrobat insists on a minimal size for cropped pages. You may need other ways to
reduce the crop box further (the "pdcat" tool can do it). With Adobe Acrobat, you can
remove any background rectangles with the TouchUp Object Tool. PrepTool inspects

the logo’s content stream and removes a white background if it is the first object in the
stream.

There is no coordinate transformation when placing the logo, i. e. it will be shown at
the same offsets to the coordinate system origin (0,0 - left, bottom) as in the
uncropped logo file. You can use the DrawCmd function to set a coordinate system
transformation (PDF "cm" operator), if you want to set the position of the logo via the

API.

The bounding box (clip rectangle applied to the logo when being placed on a page) for
the logo corresponds to the TrimBox if specified - otherwise the MediaBox of the logo
file).

Note: the same logo can be applied to several PDF files to be merged.

Several logo files can be used to contribute to the construction of a PDF document. An
output document keeps the logo files open, and you can switch back to a previously
used logo file by setting it again. The PrintLogo (putLogo) method applies to the
currently active logo file.

8.27Placement of an Image

An image imported via CreateImage can be placed into a page (or header) content
using PrintImage.

The X/Y/W/H parameters can be omitted. In this case, no coordinate transformation to
place the image in the specified rectangle is generated. If you want to rotate the
image, it would be necessary that you explicitly generate the transformation matrix
before placing the image.

Native PTError PConPrintImage(ContentHandle h, int ident, float X, float

Y, float Width, float Height)

COM PrintImage(ByVal Ident As Long, ByVal X As Single, ByVal Y As

Single, ByVal Width As Single, ByVal Height As Single) As Boolean

Java void PintImage(int ident, float X, float Y, float Width, float

Height)

To place an image via a coordinate transformation, you need to issue the following PDF
operator sequence:

DrawCmd("q") save the current coordinate system state

DrawCmd("1 2 3 4 5 6 cm") set the coordinate transformation using the "cm"
operator

PrintImage(1) generate the XObject placement into the stream

DrawCmd("Q") restore to the saved coordinate system state

Note that (1, 2, 3, 4, 5, 6) is just an example showing the syntax of the command. The
actual numbers will be determined by the scaling, rotation, and positioning parameters
you have.

PDF Prep Tool Suite, Version 4.11 Page 35 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

8.28Embedding any PDF Text Operator

Native PTError PConTextOp(ContentHandle h, const char* command)

COM TextCmd(ByVal Command As String)

Java void putTextOp(String Command)

You can pass any legal PDF text operator directly to the PDF stream. Correctness of
the command is not checked. PT only makes sure that your command will be
surrounded by "BT" and "ET" operators.

8.29Set the Spacing of Text Lines

Native PTError PConSetLineSpacing (ContentHandle h, float value)

COM SetLineSpacing(TL As Single)

Java void setLineSpacing(float TL)

This function will send a "TL" operator to the PDF stream. A useful line spacing would
be equal to the current font size.

8.30Set the Text Matrix

Native PTError PConSetTm(ContentHandle h, float a, float b, float c,

float d, x float, y float)

COM SetTm(a As Single, b As Single, c As Single, d As Single, x As

Single, y As Single)

Java void setTm(float a, float b, float c, float d, float x, float y)

Set the text matrix. The default text matrix is [1 0 0 1 0 0]. The first 4 numbers
determine the orientation of the text being written subsequently. [1 0 0 1] means text
is written in increasing x direction and constant y coordinate. The last two numbers in
the text matrix define the coordinates of the starting point for text.

8.31Set a Relative Starting Position for Text (Tab)

Native PTError PConPutTab(ContentHandle h, float a, float b)

COM n.a.

Java void putTab(float a, float b)

Issues a “Td” operator with the specified arguments. (See PDF specification).

8.32Calculate the Width for a Character String

Native float PConGetTextWidth(ContentHandle h, const char* text)

float PConGetTextWidthU(ContentHandle h, const PDBSTR text)

PDF Prep Tool Suite, Version 4.11 Page 36 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

COM GetTextWidth(ByVal Text As String) As Single

Java float getTextWidth(String Text)

This function calculates the length that the specified text string would need with the
current font settings. You can use this to adjust the starting coordinates for center or
right alignment.

Please note that the function does not take into account any character or word spacing
that you might have set using the TextOp function.

8.33Text Tables

Native short PConTableHeight(ContentHandle h, short nrRows)

PTError PConTableDraw(ContentHandle h, short Left, short Top,

short NumRows, short NumCols, short ColumnWidths[])

PTError PConTableText(ContentHandle, short Row, short Column,

const char* Text, short Alignment)

PTError PConTableTextU(ContentHandle, short Row, short Column,

const PDBSTR Text, short Alignment)

COM GridHeight(nRows As Integer) As Integer

PrintGrid(x As Integer, y As Integer, nRows As Integer,

col1Width As Integer, col2Width As Integer, col3Width As

Integer, col4Width As Integer)

GridText(row As Integer, col As Integer, Text As String,

Alignment As Integer)

Java short calucateGridHeight(short nRows)

void drawGrid(short x, short y, short nRows, short colWidths[])

void putGridText(short row, short col, String text, short

Alignment)

This set of functions lets you draw the border lines of a simple table and fill the table
with text. You need to set the text font and size first. This setting will determine the
vertical dimensions of the table.

PrintGrid must always be called prior to printing text. If you do not want any grid lines
to be drawn, set the line width to zero (SetLineWidth(0)).

The column widths need to be specified explicitly. In the COM interface, you can have
at most 4 columns. The parameters are optional. You will get as many columns as you
specify widths.

8.34Draw a Line or Polygon

Native PTError PConSetLineWidth(ContentHandle h, float Width)

PTError PConMoveTo(ContentHandle h, float X, float Y)

PTError PConDrawTo(ContentHandle h, float X, float Y)

PDF Prep Tool Suite, Version 4.11 Page 37 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

COM SetLineWidth(Width As Single)

MoveTo(x As Single, y As Single)

DrawTo(x As Single, y As Single)

Java void setLineWidth(float Width)

void moveTo(float x, float y)

void drawTo(float x, float y)

Use these functions to draw a line or line polygon.

Note that there are different possible settings for line joins. Please refer to the PDF
specifications ("j" operator).

8.35Draw a Rectangle

Native PTError PConRectangle(ContentHandle h, float x, float y, float

width, float height, short how)

COM DrawRect(x As Single, y As Single, w As Single, h As Single, how

As ShapeFlags)

Java void drawRectangle(float Left, float Bottom, float Width, float

Height, int FillType)

Draw a rectangle with the specified location and dimensions. The parameter "how"
determines, if the rectangle is filled and if the border is drawn: 0=fill area only,
1=both, 2=border only

8.36Draw Curves

Native PTError PConCurveTo(ContentHandle h, float xy[], short type)

COM CurveTo(x1 As Single, y1 As Single, x2 As Single, y2 As Single,

Optional x3 As Single, Optional y3 As Single, type As

PTCurveType)

Java void curveTo(float xy[], char type)

Draw a Bézier curve of the specified type (‘c’, ‘v’, or ‘y’; see PDF specifications).

The ‘c’ type curve requires 3 coordinate pairs, the other types only 2.

This function can be used to extend the current path – just like drawTo.

8.37Area Filling and Clipping

Native PTError PConDrawArea(ContentHandle h, short clip)

COM DrawArea(Optional Clip As Boolean)

Java void drawArea()

void drawAndClipArea()

PDF Prep Tool Suite, Version 4.11 Page 38 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Close the path constructed with drawTo (and/or curveTo calls, and fill with the current
color. Optionally, the clip area is also set to this area.

8.38Embedding any PDF Non-Text Commands

Native PTError PConDrawOp(ContentHandle h, const char* command)

COM DrawCmd(ByVal Command As String)

Java void putDrawOp(String Command)

Pass the specified PDF command string as is to the content stream. You can use this to
make use of many PDF features that are not available by specific API calls.

PDF Prep Tool Suite, Version 4.11 Page 39 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

9 Form Fields, Annotations

9.1 Set the Data

Native PTError PDocInputSetFormData(Handle h, const char* fieldName,

const char* fieldData, short Formflags, short Annotflags)

COM InputSetFormData(Fieldname As String, Data As String, Ff As

PTFormFlag, Af as PTAnnotFlag) As Boolean

Java void inputSetFormData(String Fieldname, String Data)

void inputSetFormData(String Fieldname, String Data, boolean

noRO)

void inputSetFormData(String Fieldname, String Data, short

Formflags, short Annotflags)

Use this to populate the text fields of an input file with data, after opening the form
template using PDocInputOpen and before calling PDocInputCopyPages to generate the
output containing the new data.

This method is called in the context of the output file, because the data is not actually
set in the input file first, but rather added on the fly when the pages are copied to the
output file. You will not get an error when specifying an invalid field name or a field
name that is not copied, because the page containing the field is not in the range of
pages that you specify in InputCopyPages.

Note that it is possible to define multiple fields with the same name in Acrobat. All
these fields have the data in common, but may differ how they appear (placement,
font, alignment, etc.). PDocInputSetFormData will set the data in all instances,
respecting their individual appearance settings.

The NoReadOnly parameter allows you to leave the ReadOnly attribute of the fields
(use 1). Specifying a value of 0 will set all instances of the field to “read only“.

The attributes of the form fields can not be set via the API. Set font, font size,
alignment and so on using Acrobat Exchange in the template file.

Note that no text formatting is supported, and only the standard Acrobat fonts can be
used (unless the field has been created using AddTextField – see below).

Text wrapping will be performed automatically in multi-line fields. You may also supply
already formatted data (e. g. for numbers and dates). To explicitly mark a newline in
multi-line text, use "\r" (Chr$(13)). With this exception, you must use only printable
characters.

You can also print data on a page using output to the header layer. If you want to
place a bar code or image on the page, this is the way to do it.

PT allows you to re-use a specific page from the input file as a template that is filled
with data and copied to output many times. Please be aware of the fact that you have
form fields with identical names but different data in the output file. Once you open
this file in Acrobat, a change of the data of one field will affect all other fields with this
name. As a precaution, you may thus want to set these fields to read-only.

PDF Prep Tool Suite, Version 4.11 Page 40 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

The value of a check box is set using the export string (checked) or the constant string
"Off" (unchecked).

Radio buttons are set by specifying the export string (value of the button to be "on").
"Off" can be used to set all to the "off" state.

9.2 Define a Custom Font

Native PTError IDocSetFormFont(InputHandle h, short fontID, const char*

Basefont)

COM SetFormFont(FontID As PTFormFontType, ByVal BaseFontName As

String) As Boolean

Java void setFormFont(short fontID, String basefont)

This function defines a custom font that can be used for text form fields. This function
only applies to fonts of form fields.

9.3 Get a Font Name

Native PTError IDocGetFontName(InputHandle h, short fontID, VBSTR* name)

COM GetFontName(FontID As PTFormFontType) As String

Java String getFontName(short fontID)

This function returns the name of the base font that corresponds to the specified font
number. This function only applies to fonts of form fields.

9.4 Delete a Form Field

Native PTError IDocDeleteFormField(InputHandle h, const char* fieldName)

COM DeleteFormField(ByVal Fieldname As String) As Boolean

Java void deleteFormField(String Fieldname)

This function deletes all instances of a form field from a template file. Note that the

enumerator of the function IDocGetFormData is affected. When field 1 is deleted, field
2 becomes number 1 etc.

9.5 Add a Text Form Field

Native PTError IDocAddTextField(InputHandle h, const char* fieldName,

const char* fieldDescr, float box[], int page, short fontID,

float fontSize, short alignment, int FormFlags, int

AnnotFlags, int borderRGB, int backgroundRGB, int rotate, int

textRGB)

COM AddTextField(ByVal FieldName As String, ...) As Boolean

Java void addTextField(String fieldName, ...)

PDF Prep Tool Suite, Version 4.11 Page 41 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

void addTextFieldEX(String fieldName, ...)

This function adds a text form field to a PDF file. Note that this field is put into the
transient memory cache of an input file which cannot be saved as such, but must be
copied to an output file. To fill in data into a text field that is added this way, you can
use the SetFormData method. The name of the text field may not contain a "."
(period).

The colors (borderRGB, backgroundRGB) are encoded in the following way:

RGB = RED[0..255] + 256*GREEN[0..255] + 256*256*BLUE[0..255]

or as Hex numbers: RGB = 0xBBGGRR (&H00BBGGRR in Visual Basic)

For example: &H000000FF is red, &H0000FF00 is green, etc. (as in the Visual Basic
color settings)

9.6 Copy a Form Field

Native PTError PDocAddFieldFromLogo(Handle h, const char* fieldName, int

pageNumber, float X, float Y, float Width, float Height, const

char* newName)

COM AddFieldFromLogo(ByVal FieldName As String, PageNumber As Long

 Optional X As Single, Y As Single, Width As Single, Height As

Single, NewName As String) As Boolean

Java void addFieldFromLogo(String fieldName, int pageNumber)

void addFieldFromLogo(String fieldname, int pageNumber, float X,

float Y, float Width, float Height)

void addFieldFromLogo(String fieldname, int pageNumber, float X,

float Y, float Width, float Height, String newName)

This function copies a form field from an existing PDF document to an output PDF
document. The file where the field is taken from is the current logo file (s.
SetLogoFile). You cannot change anything about the field except the coordinates and
the name.

9.7 Form Flattening

Native PTError PDocSetFlatten(Handle h, short On, int mode)

COM SetFlatten(ByVal On As Boolean, Mode As PTFlattenMode)

Java void setFlatten(boolean on)

void setFlatten(Boolean on, int mode)

This output file setting has the effect that text fields are rendered into the page
content during subsequent InputCopyPages calls. This means that the form field is
eliminated, and its content now constitutes part of the page content.

PDF Prep Tool Suite, Version 4.11 Page 42 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

9.8 Add a Text Annotations

This function adds text annotations to an input handle.

Native PTError IDocAddTextAnnotation(InputHandle h, const char* label,

const char* content, float rect[X1, Y1, X2, Y2], int page, float

color[R, G, B], int annotFlags)

COM AddTextAnnotation(Name As String, Content As String, X As

Single, Y As Single, Width As Single, Height As Single, Page As

Long, R As Single, G As Single, B As Single, Flags As

PTAnnotFlags) As Boolean

Java void addTextAnnotation(String title, String content, PTRectangle

location, int colorRGB)

void addTextAnnotation(String title, String content, PTRectangle

location, int colorRGB, int annotFlags)

The "Name" is the title of the text annotation, the "Content" is the text that is visible
when the annotation is opened. The three values for the colors (R: Red, G: Green, B:
Blue) are in the range from 0 to 1. The text annotation is closed per default. The
default for the annotation flags is PTFlagAnnotPrintable.

Native: The four values of the position rectangle mark the lower left corner (X1, Y1)
and the upper right corner (X2, Y2), 0, 0 being in the lower left. The parameter of the
page number is zero based.

COM: The four values of the position mark the lower left corner (X, Y) and the width
and height of the opened text annotation, 0, 0 being in the lower left. The parameter
of the page number is non-zero based.

9.9 Delete an Annotation

This function deletes a text annotation.

Native PTError IDocDeleteAnnotation(InputHandle h, int Identification)

COM DeleteAnnotation(Identification As Long) As Boolean

Java boolean deleteAnnotation(int id)

The parameter Identification is the value that can be retrieved using the method
GetAnnotation.

9.10Delete Viewer Extension Rights

A PDF document can have so called Viewer Extension Rights, which allow the document
to be modified (do form filling) and save it with the Acrobat Reader. Modifying such a
document with the Prep Tool Suite will destroy the Viewer Extension Rights. A warning
message will therefore appear when the document is opened in Acrobat Reader. This
function deletes the Viewer Extension Rights and therefore there will be no warning
message when opened in Acrobat Reader.

Native int IDocDeleteViewerRights(InputHandle h)

PDF Prep Tool Suite, Version 4.11 Page 43 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

COM DeleteViewerRights() As Boolean

Java n.a.

9.11Add an Image Annotation

This function is only available for the COM interface. It adds an annotation containing
an image. It is applied to the output handle. The type of the annotation can be either a
standard stamp annotation or a custom stamp annotation. Prior to calling

AddImageAnnotation, it is required to create an image and get its ID using
CreateImage or CreateImageEx.

Native n.a.

COM {PDoc.}AddImageAnnotation(Page As Long, r1 As Single, r2 As

Single, r3 As Single, r4 As Single, ImageID As Long, Optional

SubType As Integer)

Java n.a.

Parameters:

Page The page number where the annotation is to be placed.

r1, r2, r3, r4 Positioning parameters in PDF points (left, bottom, width,
height), 0/0 at lower left.

ImageID The image ID which is returned from CreateImage or
CreateImageEx.

SubTypes (optional) The available sub types are:

0 = Standard Stamp Annotation

1 = CstmStamp Annotation

other = Unkown Subtype

9.12Set the Line Spacing in a Form Field

The spacing between the text lines in a form field can be defined by using the following
method.

Native void IDocSetFormLineSpacing(InputHandle h, float fLineSpacing)

COM InputSetFormLineSpacing(float LineSpacing)

Java void setFormLineSpacing(float value)

PDF Prep Tool Suite, Version 4.11 Page 44 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

9.13Get the Name of the Font in a Form Field

The name of the font used in a form field can be queried by using the following
method. The value of the id parameter can be retrieved by invoking the
IDocGetFormBox method.

Native PTError IDocGetFontName(InputHandle h, short id, VBSTR* name)

COM GetFontName(PTFormFontType FontID) As String

Java String getFontName(int FontID)

PDF Prep Tool Suite, Version 4.11 Page 45 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

PDF Prep Tool Suite, Version 4.11 Page 46 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

10 Generate Output

10.1Create Another Page

Native PTError PDocNewPage(Handle h)

COM NewPage()

Java void newPage()

A page is automatically create when you access the page object – either at the
beginning of a file, or after you copied pages from an input file. If you need a new
page (i.e. a page brake), you call the NewPage function. The dimensions of the page
are inherited from the last setting made (PDocNew, PDocPageSize).

10.2Copy Pages from the Input File

Native PTError PDocInputCopyPages(Handle h, int firstPage, int lastPage)

PTError PDocMerge(Handle h, const char* inputFile, int

firstPage, int lastPage)

COM InputCopyPages(FirstPage As Long, LastPage As Long) As Boolean

Merge(FileName As String, FirstPage As Integer, LastPage As

Integer) As Boolean

Java void inputCopyPages(int FirstPage, int LastPage)

void merge(String Filename, int Firstpage, int Lastpage)

InputCopyPages and Merge will copy the specified range of pages from the currently
open input file to output. If the file contains form fields, the field data will be set
according to previous PDocInputSetFormData calls. You can repeatedly call CopyPages
and change the header in between.

The pages being copied can be modified not only by setting form data prior to
InputCopyPages, but also by setting the new Rotate (page orientation) value (s.

SetInputRotate).

Note that you should copy all pages containing forms of an input file. Leaving away a
page with form fields will result in orphan entries; duplication of pages works for
viewing the resulting file, but Acrobat 4.0 may behave unexpectedly if you want to
modify a form field of a duplicated page.

Merge (add) pages from an existing PDF file into the output document. The range of
pages to be added is specified using the parameters firstPage and lastPage. The
current Header will be placed on all of these pages. PDocMerge works like
PDocInputOpen followed by PDocInputCopyPages.

PDocMerge returns FALSE (0), if the input file cannot be processed. PDocMerge will
automatically close the current input file, if one exists.

Be careful with repeated merging of PDF files. The font alias used for the header text is
determined before the file to be merged is known. Repeated merging in combination

PDF Prep Tool Suite, Version 4.11 Page 47 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

with placing header text will result in a name conflict. The alias used by Prep Tool is
"/FHdr". You can avoid this problem by using PDocInputOpen before setting the font,
and then copy the pages using PDocInputCopyPages. A potential conflict still remains

when you add further PDF files while keeping the header with its font.

10.3Copy Color Spaces from the Input File

Native PTError PDocInputCopyColor(Handle h, const char* Color)

COM InputCopyColor(ByVal Color As String) As Boolean

Java void inputCopyColor(String Color)

Use this function to copy a color space object from the current input file to the output
file. This feature is useful if you want to use Pantone colors: store the set of colors you
need in a PDF file, and use this file at runtime to provide the necessary color definition
objects. This function works in conjunction with the PConSetFillCS and PConSetLineCS
functions.

10.4Copy Named Destinations from the Input File

Native PTError PDocInputCopyDestNames(Handle h)

COM InputCopyDestNames()

Java void inputCopyDestNames()

This function will copy all named destination entries from the input to the output file. A
situation where this makes sense is when you have bookmarks and links that are also
to be copied. If you do not copy the named destinations, the bookmarks and links will
work, but loose the zoom level, because resolution only works on the page level. Not

copying the named destinations will save space in the resulting file.

10.5Copy Custom Objects from the Input File

Native PTErrpor PDocInputCopyCustObjs(Handle h)

COM InputCopyCustomObjs()

Java void inputCopyCustomObjs()

The input file may contain entries in the Catalog object that are not taken care of by
any of the existing copy functions. To copy these entries along with any referenced
objects, you can use this method. Note that it will copy e. g. also viewer settings or
open actions, if such settings are not specified explicitly for the output documents and

if present in the input file. This function can be used to merge JavaScript resources, it
returns the error pdAlreadyWritten when duplicate JavaScript names are encountered.

10.6Copy All Objects from the Input File

Native PTError PDocInputCopyAll(Handle h)

PDF Prep Tool Suite, Version 4.11 Page 48 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

COM InputCopyAll() As Boolean

Java void inputCopyAll()

This method is equivalent to InputCopyPages (for all pages), InputCopyDestNames,
InputCopyBookmarks, and InputCopyCustomObjs. In other words, it copies the whole
file content from input to output.

10.7Import Bitmap Images

Native short PDocCreateImage(Handle h, int Width, int Height, short

bits, short color, char* imageData, int imageSize, char*

palette, short compression, char* mask)

COM CreateImage(ByVal Width As Long, ByVal Height As Long,

ByVal Bits As Integer, ByVal Color As Boolean, ByVal ImageData As

Byte(), Optional ByVal Palette As Byte(), Optional ByVal IsJPEG

as Boolean, Optional Mask As Byte(), Optional Softmask As Byte())

As Long

CreateImageEx (ByVal Width As Long, ByVal Height As Long, ByVal

Bits As Integer, ByVal Color As Boolean, ByVal ImageData As

Byte(), Optional ByVal Palette As Byte(), Optional Mask As

Byte(), Optional CompressionType As Integer) As Long

Java int createImage(int Width, int Height, short bits, boolean color,

byte[] image, byte[] palette)

int createJPEGImage(int Width, int Height, ..)

int createImage(int Width, int Height, short bits, boolean color,

byte[] image, byte[] palette, boolean isJPEG)

int createImage(int w, int h, short bits, boolean color, byte[]

image, byte[] palette, byte[] mask, int image_type)

final static image_type_standard = 0

final static image_type_JPEG = 1

The CreateImage function creates an image XObject according to the data provided.
The format of the data must correspond to one of the PDF standards for color,
grayscale or bi-level images. Color images have a palette. The palette size in PDF must
be 768. If the effective palette is smaller, the unused part must be set to zero in the
native interface. The COM interface will automatically handle smaller palette sizes.

A positive number value returned by CreateImage identifies the XObject for reference
in PrintImage calls. A value of zero indicates failure to create the image.

10.8Add Page Numbers

Native PTError PDocPutPageNumbers(Handle h, float X, float Y, const

char* Format, long StartPage, short Orientation)

COM PutPageNumbers(Format As String, X As Single, Y As Single,

PDF Prep Tool Suite, Version 4.11 Page 49 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Startpage As Long, Orientation As Integer)

Java void putPageNumbers(String Format, float X, float Y, int

StartPage, int Orientation)

Expand the page marker "%p" in the format string to reflect the current page number
and put this string on each page just like other header text. With the firstPgNr
parameter, you specify where page numbers should start. The page numbering string
will appear on each header that is displayed, starting with the next PDocMerge. The
first time the page numbering string is displayed, it will carry the page number
specified in firstPgNr. Note that the header or the page numbering string may be
created after having copied some pages to the output file. Any previously set format
string will be removed. To stop putting page numbers on a page, you can thus call this
function with an empty format string.

The font used for the page number text is the same as for the header. Do not forget to
specify a font. If you work with different font sizes, then the last setting will be the one
used for the page number string, e. g. if PDocHeaderFont was called after

PDocHeaderPgInfo. The font of page numbers is unpredictable if you do not have a
header layer!

Example: PDocHeaderPgInfo(h, 10, 10, "Page %p of 10", 2);

10.9Change the Header or Background

Native PTError PDocHeaderClear(Handle h)

PTError PdocBackgroundClear(Handle h)

COM HeaderClear()

BackgroundClear()

Java void clearHeader()

void clearBackground()

When you want to change the text, graphics objects or logo added to merged pages,
call PDocHeaderClear and build the new header as desired. You cannot continue to add
anything (text, graphics, logos) to a header stream, once it is applied to pages (i.e.
after calling CopyPages or Merge). This is because the header stream is written to the

output file at this point, and any changes that you make after that are ignored.

After calling PDocHeaderClear, you need to set the font for header text again. It is
possible to re-use the last font imported from an input file by specifying the same
name again.

10.10 Add Bookmarks

Native PTError PDocInputCopyBookmarks(Handle h, int level)

PTError PDocAddWebBookmark(Handle h, int level, const char*

title, const char* URL, int kidsVisible)

PTError PDocAddGoToBookmark(Handle h, int level, const char*

title, int page, short X, short Y, int kidsVisible, float zoom)

PDF Prep Tool Suite, Version 4.11 Page 50 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

PTError PDocAddGoToBookmarkU(Handle h, int level, const PDBSTR,

int page, short X, short Y, int kidsVisible, float zoom)

PTError PDocAddGoToRBookmark(Handle h, int level, const char*

title, const char *destFile, int destPage, short X, short Y, int

kidsVisible, float zoom)

PTError PDocAddGoToRBookmarkU(Handle h, int level, const PDBSTR

title, const char *destFile, int destPage, short X, short Y, int

kidsVisible, float zoom)

PTError PDocAddOpenFileBookmark(Handle h, int level, const char*

title, const char* destFile, int kidsVisible)

PTError PDocAddOpenFileBookmarkU(Handle h, int level, const

PDBSTR title, const char* destFile, int kidsVisible)

PTError PDocAddNullBookmark(Handle h, int level, const char*

title, int kidsVisible)

PTError PDocAddNullBookmarkU(Handle h, int level, const PDBSTR

title, int kidsVisible)

PTError PDocAddJavaScriptBookmark(Handle h, int level, const

char* title, const char* script, int kidsVisible)

PTError PDocAddJavaScriptBookmarkU(Handle h, int level, const

PDBSTR title, const char* script, int kidsVisible)

COM AddWebBookmark(Title As String, Level As Integer, URL As String,

ShowKits As Boolean)

etc.

Java void addWebBookmark(String Title, int Level, String URL)

etc.

All these methods have optionally a further parameter for specifying that bookmarks
on lower levels shall be visible.

The bookmark tree of the output file can be constructed using the above functions. The
first bookmark must be placed on level zero. Subsequent bookmarks can be placed at
most one level above the previous level.

An URL is something like "http://www.pdf-tools.com", but it is also possible to put
relative links like "../index.html".

"GoTo" targets are pages in the same document as the one being created. “page” is
the page number (starting at 1). The "x" and "y" parameters can be used to set the
view window according to the /XYZ entry in link annotations (see PDF specification).
Specify zero values to disable this feature. The "z" parameter describes the zoom
value. 1 stands for 100%, 1.1 for 110%, etc, 0 for keep the current zoom value.

"GoToR" targets are "remote" links, i. e. links to another PDF file (you will note the
extra file name parameter).

"OpenFile" targets are files that represent a document or application that is to be
launched. Document files are opened with the application that is registered for the
document type. On Windows systems, the file extension is used for this.

A Java Script added to a bookmark will be executed when the bookmark is selected.

PDF Prep Tool Suite, Version 4.11 Page 51 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

If bookmarks refer to named destinations, they will be resolved to avoid conflicts
between names in different files.

10.11 Add Links

Native PTError PDocAddWebLink(Handle h, int page, const float rect[],

const char* URL, int style)

PTError PDocAddGoToLink(Handle h, int page, const float rect[],

int destPage, short x, short y, int style, float zoom)

PTError PDocAddGoToRLink(Handle h, int page, const float rect[],

const char* destFile, int destPage, short X, short Y, int style,

float zoom)

PTError PDocAddJavaScriptLink(Handle h, int page, const float

rect[], const char* script, int style)

PTError PdocAddNamedDestLink(Handle h, int page, const float

rect[], int style, const char* destName)

COM AddWebLink(Page As Long, Left As Single, Bottom As Single, Right

As Single, ByVal URL As String, Optional Style)

etc.

Java void addWebLink(PTRectangle Rect, String URL)

etc.

The action behavior of links corresponds to that of bookmarks. Links are located as an
annotation on a page. Therefore, you need to specify the page number and coordinate
rectangle where to put the link instead of the hierarchy level in the bookmark tree.

The Prep Tool Suite supports several border styles; the value –1 will suppress the
border, 0 will result in a solid black border, 1 is dotted red, 2 red solid, 3 green
dashed, 4 green solid, 5 blue dashed, 6 blue solid.

10.12 Add File Attachments

Native PTError AddFileAttachment(Handle h, int page, float* rect, const

char* filepath, const char* icontype, const char* description,

const char* author, const char* subject, int rgb, int opacity)

COM AddFileAttachment(Page As Long, Left As Single, Bottom As

Single, Right As Single, Top As Single, Filepath As String,

IconType As String, Description As String, Optional Author As

String, Optional Subject As String, Optional ColorRGB As Long,

Optional Opacity As Long)

Java void addFileAttachment(PTRectangle rect, InputStream is, String

iconType, String description, String author, String subject, int

rgb, int opacity)

This function adds a file attachment annotation to a PDF file.

Parameters:

PDF Prep Tool Suite, Version 4.11 Page 52 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

- page: the page number (first page is 1)

- Left, Bottom, Right, Top: the annotation's rectangle on the page

- Filepath: the name of the file to be attached

- IconType: the icon's type name ("PushPin","Graph","Paperclip", or "Tag")

- Description: the description field (used as default for the file name when extracting
the attachment)

- Author: the author field (optional)

- Subject: the subject field(optional)

- ColorRGB: the RGB value of the color for the icon

- Opacity: the opacity value in percent (0..100); 0 means transparent; 100 means
opaque (default)

Note that each standard icon type has its specific rectangle width and height in the
Acrobat viewer. Setting other values has the effect that Acrobat viewers will change
the appearance when clicking on the icon.

Paperclip size: 7/17

PushPin size: 14/20

Graph size: 20/20

Tag size: 20/16

Implementation restriction:

Creation of the icon appearance stream is not supported when Using opacity less than
100. Acrobat viewers will correctly display these icons, but third party viewers that
depend on the appearance stream may not show the icon.

10.13 Add Destination

Native PTError AddGotoDestination(Handle h, const char* name, int page,

short X, short Y, float Z)

COM AddGotoDestination(Name As String, Page As Long, X As Integer, Y

As Integer, Z As Single) As Boolean

Java void addGotoDestination(String name, int page)

void addGotoDestination(String name, int page, int X, int Y,

float zoom)

This function adds a Named Destination to the document. A named destination points
to a certain location (e.g. the beginning of a chapter) in the PDF. The location is
defined by the page number and the X, Y and Z (Zoom) position.

10.14 Set Document Action

Native PTError PDocSetDocumentAction(Handle h, PTDocumentAction

documentaction, const char* Script)

COM SetDocumentAction(ActionType As PTDocumentActionType, Script As

String) As Boolean

PDF Prep Tool Suite, Version 4.11 Page 53 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Java boolean setDocumentAction(int DocumentAction, String Script)

This function adds a JavaScript to a document action. The five document actions are: 0
on close, 1 before save, 2 after save, 3 before print and 4 after print.

10.15 Set Form Fontsize Range

Native PTError PDocSetFormFontSizeRange(Handle h, float Max, float Min)

COM SetFormFontSizeRange(Max As Single, As Single)

Java boolean setFormFontSizeRange(float Max, float Min)

With SetFormFontSizeRange it is possible to limit the font sizes for auto-sized form
fields. The default values are Max = 12 and Min = 5.

10.16 Document Open Settings

The following group of functions facilitates the setting of the page layout and mode and
how the first page shall be displayed when opening the document in a viewer (as
offered in the "Document Info"-> "Open.. " dialogue of Acrobat).

Native PTError PDocSetPageMode(Handle h, const char* Mode)

COM SetPageMode(ByVal Mode As String)

Java void setPageMode(String Mode)

The page modes currently supported by Acrobat viewers are "UseNone", "UseOutlines",
"UseThumbs", and "/FullScreen". The SetPageMode function will override any settings
from input files that would otherwise be copied during InputCopyCustomObjs.

Native PTError PDocSetPageLayout(Handle h, const char* Layout)

COM SetPageLayout(ByVal Layout As String)

Java void setPageLayout(String Layout)

The following layouts can be specified: "SinglePage", "OneColumn", "TwoColumnLeft",
"TwoColumnRight".

Native PTError PDocSetOpenAction(Handle h, int Page, const char*

Magnification)

COM SetOpenAction(ByVal Page As Long, ByVal Magnification As

String)

Java void setOpenAction(int Page, String Magnification)

The page to be shown initially when a file is opened can be specified using this
function. At the same time, the zoom factor or type of "fit" can be specified. Legal
values for page numbers are 1 through the number of pages that the file contains; the
magnification can be a positive integer number representing the zoom factor in percent
(100 = normal 100% zoom). The minimum and the maximum is viewer dependent
(currently 25 – 1600). Other legal "magnifications" are "Window" for "Fit Window",
"Width" for "Fit Width", and "Visible" for "Fit Visible". Any other value will be mapped
to "Default".

PDF Prep Tool Suite, Version 4.11 Page 54 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Native PTError PDocClearViewerPreferences(Handle h)

PTError PDocAddViewerPreference(Handle h, const char* Key, const

char* Value)

COM AddViewerPreference(ByVal Key As String, ByVal Value As String,

Optional ClearExisting As Boolean)

Java void clearViewerPreferences()

void addViewerPreference(String Key, String Value)

The viewer preferences entries can be created (or suppressed) by these functions. For
a complete listing of all possible settings, please refer to the PDF specifications.

Viewer preferences are stored in a dictionary. The AddViewerPreferences function adds
a pair of values consisting of the dictionary key and its associated value. Examples are
"/HideToolbar true", "/FitWindow true", "/CenterWindow true",
"/NonFullScreenPageMode /UseThumbs".

10.17 Set Document Information Attributes

Several document attribute values can be set via the following methods. Note that the
value string will be re-encoded from WinAnsiEncoding to PDFEncoding (see Adobe PDF
Reference Manual). This means that only characters existing in both encodings may be

contained.

Native void PDocSetInfo(Handle h, const char* Title, const char*

Subject, const char* Author, const char* Keywords)

COM SetInfo(ByVal Title As String, ByVal Subject As String,

ByVal Author As String, ByVal Keywords As String)

Java void setInfo(String Title, string Subject, string Author, String

Keywords)

SetInfo allows you to set some of the document attributes in the information object.

Native void PDocSetAttr(Handle h, const char* Key, const char* Value)

void PDocSetAttrU(Handle h, const char* Key, const PDBSTR Value)

COM SetAttr(ByVal Key As String, ByVal Value As String)

Java void setInfoAttr(String Key, String Value)

SetAttr permits to set (and add) any value in the information object of the PDF file.

10.18 Set Document Metadata

Native PTError PDocSetMetaData(Handle h, const char* data)

COM SetMetaData(Data As String)

Java void setMetaData(String data)

SetMetaData sets the meta data in the root object of the PDF file. Note that the data

string should constitute a valid XML expression.

PDF Prep Tool Suite, Version 4.11 Page 55 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

10.19 Close the Output File

Native PTError PDocClose(Handle h)

PTError PDocRelease(Handle h)

COM Close() As Boolean

Java void close()

Close the output document. This procedure writes out any pending output and closes
the file.

PDocRelease releases the handle and all memory resources associated with it. No
further calls are allowed with this handle.

If you want to verify that the file has been successfully closed, you first want to call
PDocClose, and then PDocRelease. If PDocClose fails, you can still use the handle to
retrieve error information.

In the Java binding, the close method also releases the associated resources. If an
error occurs during the close operation, an exception is signaled carrying the error
code.

In the COM binding, releasing the last object reference will automatically close the file
and release all associated resources.

To retrieve the bytes of a memory resident PDF file, use the following functions:

Native VBSTR PDocCloseB(Handle h, int* length)

COM bytes = CloseB()

Java void close()

byte[] getBytes()

The CloseB functions perform a normal close and return the bytes of the memory
resident PDF file. Note that the memory buffer of the file is disposed on close. The
memory buffer returned by these functions must be freed by the application.

In Java, the byte array is remains stored with the Java wrapper object and can be
multiply accessed through getBytes() (until the Java object is "finalized").

10.20 Set the license key at runtime

Set the license key programmatically at runtime instead of installing it on the system.

Native int PTSetLicenseKey(const char* szLicenseKey)

COM SetLicenseKey(bstrLicenseKey As String) As Boolean

Java boolean setLicenseKey(String szLicenseKey)

Parameters: The license key

Return value: True: The license key is valid.

PDF Prep Tool Suite, Version 4.11 Page 56 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Check whether a valid license key has been installed in the system or passed at
runtime.

Native int PTGetLicenseIsValid()

COM LicenseIsValid() As Boolean

Java boolean getLicenseIsValid()

Return value: True: A valid license was found.

PDF Prep Tool Suite, Version 4.11 Page 57 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

11 Linearization

Linearization is the processing performed on a PDF file to optimize it for viewing in a
web browser. The elements of the PDF file are regrouped, so that all information
necessary to display the first page is located at the beginning of the file. Furthermore,
information about file offsets is stored in the header of the file and in the so called hint
tables.

Due to the nature of linearization, this process can begin only when a PDF file is

created completely. The functions supporting linearization are thus separate from other
PDF Prep Tool functions.

Native PTError PDLinearize(const char* Input, int Length, const char*

 InputPassword, const char* OutputFileName, const char*

OwnerPassword, const char* UserPassword, const char*

Permissions)

PTError PDLinearizeMem(const char* Input, int Length, const char*

 InputPassword, VBSTR* OutputBuffer, int* OutputLength, const

char* OwnerPassword, const char* UserPassword, const char*

outPermissions)

The native interface offers just these two functions. Input can be provided either as the
file name of the input file when specifying a length of 0, or as the memory buffer

containing the PDF "file" along with the length of that buffer.

The first function writes the linearized PDF to a file, while the second returns it in a
memory buffer. This memory buffer must be freed using PTFreeVBSTR.

The return result of these function is a PTError.

COM Dim tool As New PDFLinearizer

Dim tool As Object

Set tool = CreateObject("PrepTool.PDFLinearizer")

SetSecurity(ByVal OwnerPassword As String, ByVal UserPassword

As String, ByVal Permissions As String)

OpenInput(ByVal Filename As String, Optional ByVal Password As

String) As ErrorType

OpenMem(ByVal PDFBytes As Variant, Optional ByVal Password As

String) As ErrorType

SaveFile(ByVal Filename As String) As ErrorType

SaveMem(Optional Result As ErrorType) As Variant

The COM interface for linearizing PDF files is also quite straight forward. A call of
SetSecurity is optional and will only be used if the resulting file shall be encrypted.

The COM object can be reused for several linearizations. As the input file resources will
be freed on SaveFile or SaveMem, it is necessary to re-open a file before linearization
can be performed again during one of the "Save.. " functions. Password and permission
settings are preserved.

PDF Prep Tool Suite, Version 4.11 Page 58 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

Java PTLinearizer tool = new ..

 PTLinearizer(String Filename, String Password)

 PTLinearizer(String Filename)

 PTLinearizer(byte[] PDFBytes, String Password)

 PTLinearizer(byte[] PDFBytes)

void setSecurity(String Ownerpassword, String Userpassword,

String Flags)

byte[] getLinearizedBytes()

void doLinearization(String Filename)

The Java API is similar to the COM interface with the difference that no reuse of the
PTLinearizer object is permitted. Once linearization has been performed, all resources
are freed.

PDF Prep Tool Suite, Version 4.11 Page 59 of 59

June 14, 2018

 PDF Tools AG – Premium PDF Technology

12 Return Codes C

0 Success

1001 PTNotPDF the file does not start with %PDF

1002 PTTrailer the trailer of the PDF file could not be found

1003 PTXref the XRef table could not be found as defined in trailer

these two errors indicate that the PDF file has been

corrupted as sometimes happens when copied in ASCII mode

by FTP

1004 PTNullRef an object reference could not be resolved (object missing

in file)

1005 PTBadParamValue an illegal parameter value was specified in a method

1006 PTObjRead a particular PDF object could not be read from the file

1007 PTAlreadyWritten a particular PDF object was attempted to write twice

1008 PTBadCallSequence a particular function was called in an inappropriate

context

1009 PTInternal an unexpected situation was encountered that could not be

handled

1010 PTUnexpectedVal an unexpected value was encountered in a PDF object

1011 PTIO an input/output error was encountered

1012 PTInvalidHandle the handle specified is not valid

1013 PTDuplicate an attempt to create a duplicate object is made

1014 PTIllegalFont an invalid font name was specified

1015 PTNoSuchPage an invalid page number was specified

1016 PTNotFound requested information not found for specified criteria

1017 PTFailed License key invalid or generic error

1018 PTEncrypted input file is encrypted (password protected)

1019 PTInvalidPassword the password supplied is not correct

Docs » Cytoscape User Manual 3.4.0 documentation

Cytoscape 3.4.0 User Manual

The Cytoscape User Manual copyright is owned by The Cytoscape Consortium, and is made

available under the same GPL license as Cytoscape itself: LGPL 2.1, the GNU Lesser General

Public License, version 2.1, February 1999 available in text at

http://www.gnu.org/licenses/lgpl-2.1.html.

Copyright (c) 2001-2016 The Cytoscape Consortium

Table of Contents

Introduction

This version of Cytoscape builds upon the new 3.x architecture, developer API and set of user

controls established. If you’re familiar with former versions of Cytoscape, this version will feel

completely familiar and you’ll be all set to go. In future releases, we will continue to tweak and

improve both the software and the documentation. This manual will be updated to reflect all

the latest changes.

This manual describes the installation and use of Cytoscape. For a more thorough

understanding of Cytoscape and its ecosystem, we highly recommend reading the Welcome

Letter accessible on the http://cytoscape.org website.

Launching Cytoscape

Cytoscape is a Java application verified to run on the Linux, Windows, and Mac OS X

platforms. Although not officially supported, other UNIX platforms such as Solaris or

FreeBSD may run Cytoscape if Java version 8 or later is available for the platform.

System Requirements

The system requirements for Cytoscape depend on the size of the networks you want to load,

view and manipulate.

http://www.gnu.org/licenses/lgpl-2.1.html
http://cytoscape.org/

Note that as of Cytoscape v3.2, networks are loaded faster and in less memory than with

previous versions. While this is good news, networks created on v3.2 on a given memory

configuration (e.g., 1GB) may not be loadable by prior Cytoscape versions on the same

memory configuration.

Required Resources

S M A L L N E T W O R K V I S UA L I Z A T I O N L A R GE N E T W O R K A N A L Y S I S / V I S UA L I Z A T I O N

P R O C E S S O R 1GHz As fast as possible, with multiple cores

M E M O R Y 512MB 2GB+

G R A P H I C S C A R D Integrated video High-end graphics card

M O N I T O R XGA (1024X768) Wide or Dual Monitor

Specific system requirements, limitations, and configuration options apply to each platform,

as described in the Release Notes available on the http://cytoscape.org website.

Getting Started

Install Java

Cytoscape requires Java 8 or later.

While Cytoscape versions prior to v3.2 run on Java 6, Oracle and other JVM suppliers

have dropped Java 6 support. Consequently, Cytoscape v3.2 and later don’t support Java 6

either. With v3.3, we have also dropped support for Java 7 for the same reason.

We recommend a 64 bit Java Runtime Environment (JRE). While Cytoscape runs with 32

bit Java versions, using a 64 bit Java allows the largest networks to be loaded and enables

the fastest network processing. For Windows, the default JRE download provided at

java.com is 32 bits regardless of the Windows version. While Cytoscape will run with a 32

bit JRE, it will be limited to loading only small networks. We recommend downloading and

installing a 64 bit JRE.

We currently recommend only Java 8.

For additional information, select the Release Notes button on the Cytoscape web site.

Install Cytoscape

Downloading and Installing

http://cytoscape.org/
http://cytoscape.org/

There are a number of options for downloading and installing Cytoscape. See the download

page at the http://cytoscape.org website for all options.

Automatic installation packages exist for Windows, Mac OS X, and Linux platforms – best

for most users.

You can install Cytoscape from a compressed archive distribution.

You can build Cytoscape from the source code.

You can check out the latest and greatest software from our Git repository

(https://github.com/cytoscape/cytoscape).

Cytoscape installations (regardless of platform) containing the following files and directories:

Cytoscape files and directories

D I R E C T O R Y / F I L E D E S C R I PT I O N

P / C Y T O S C A P E _ V 3 . 3 . 0 Cytoscape program files, startup scripts, and
default location for session files

P / C Y T O S C A P E _ V 3 . 3 . 0 / C Y T O S C A P E . V M O P T I O N S Cytoscape memory configuration settings

P / C Y T O S C A P E _ V 3 . 3 . 0 / S A M P L E D A T A Preset networks as described in the embedded
README.txt file

P / C Y T O S C A P E _ V 3 . 3 . 0 / F R A M E W O R K Cytoscape program files

P / C Y T O S C A P E _ V 3 . 3 . 0 / A P P S Cytoscape core app program files

U / C Y T O S C A P E C O N F I G U R A T I O N Cytoscape properties and program cache files

U / C Y T O S C A P E C O N F I G U R A T I O N / C Y T O S C A P E 3 . P R O P S Cytoscape configuration settings

The p/ directory signifies the program directory, which varies from platform to platform. For

Cytoscape to work properly, all files should be left in the directory in which they were

unpacked. The core Cytoscape application assumes this directory structure when looking for

the various libraries needed to run the application.

The u/ directory signifies the user’s home directory, which varies from user to user and from

platform to platform. To change the user home directory from the default, one can set the

Java environment variable user.home to the desired directory – this is useful when Cytoscape

is installed on a workstation, but the home directory is stored on a central file server.

user.home can be set by adding the following option to the Cytoscape.vmoptions file or the

_JAVA_OPTIONS environment variable, substituting the desired path as appropriate:

-Duser.home=/path/to/desired/home

http://cytoscape.org/
https://github.com/cytoscape/cytoscape

Your operating system may have other mechanisms for setting environment variables – see

your operating system documentation for further details.

A quick note on upgrading your Cytoscape installation

If you have a previous Cytoscape installation you have two options:

1. Starting with a clean slate. For this you should delete your previous installation directory

and the CytoscapeConfiguration directory (see below for the location of this directory).

2. Just keep what you have and simply pick a distinct, new directory for installation. In the

unlikely event that you should encounter any problem, delete the .props files in your

CytoscapeConfiguration directory. If that doesn’t help try deleting the

CytoscapeConfiguration directory. This latter step will cause you to lose all of the apps that

you have installed via the App Store, so only do that if you are having problems or if you

don’t mind reinstalling your apps. The core apps will not be affected by this step.

Launch the Application

As with any application, launch Cytoscape by double-clicking on the icon created by the

installer, by running cytoscape.sh from the command line (Linux or Mac OS X) or by double-

clickinging cytoscape.bat or the Program Launch icon (Windows).

After launching Cytoscape a window will appear that looks like this:

If your Cytoscape window does not resemble this, further configuration may be required.

Consult the Release Notes available on the http://cytoscape.org website.

Note on Memory Consumption

For most regular users, Cytoscape will estimate and reserve the proper amount of memory.

An incorrect estimate may result in Cytoscape hanging at startup or Cytoscape unable to load

your network. Unless Cytoscape fails to start or open your network, it has likely estimated the

available memory correctly, and you can continue to the Quick Tour. If Cytoscape misjudges

the memory size or can’t allocate enough memory, it could be that you’re running with a 32 bit

JRE and could get better results by installing a 64 bit JRE – see the Install Java section above.

When Cytoscape starts, it displays the current memory usage in the lower right corner of the

main interface. You can click on the Memory button at any time to access an option to Free

Unused Memory. While most users won’t need to use this option, it can be useful for users

who have multiple large networks loaded.

Overall Memory Size for Cytoscape

http://cytoscape.org/
file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Quick_Tour_of_Cytoscape.html#quick-tour-of-cytoscape

By default, Cytoscape uses an estimate for initial and maximum memory allocation based on

your operating system, system architecture (32 or 64 bit), and installed memory. You can

change Cytoscape’s initial and/or maximum memory size by editing the Cytoscape.vmoptions

file, which resides in the same directory as the Cytoscape executable. The file contains one

option per line, with each line terminated by a linefeed, and an extra linefeed at the end of the

file. Note that for the MacOS platform, the situation is slightly different – if you are launching

Cytoscape by clicking on the Cytoscape icon, you must edit the

.../Cytoscape.app/Contents/vmoptions.txt file instead. To access this in Finder, you will need

to right-click the Cytoscape app icon and select “Show Package Contents”, which will display

the Contents subdirectory that contains vmoptions.txt.

For example, if you want Cytoscape to initially allocate 2GB of memory and use up to a

maximum of 4GB, edit the Cytoscape.vmoptions file to contain the following lines (... do not

forget the linefeed at the end of each line, and an extra linefeed at the end of the file!):

-Xms2GB

-Xmx4GB

Stack Size

There is one more option related to memory allocation. Some of the functions in Cytoscape

use larger stack space (a temporary memory for some operations, such as layout). Since this

value is set independently from the values above, sometimes layout algorithms fail due to an

out of memory error. To avoid this, you can set a larger heap size for Cytoscape tasks by using

the taskStackSize option in the cytoscape3.props file (located in the CytoscapeConfiguration

directory). This can be edited within Cytoscape using the Preferences Editor (Edit →
Preferences → Properties...*) - look for taskStackSize. The value should be specified in bytes.

Command Line Arguments

Cytoscape recognizes a number of optional command line arguments, including run-time

specification of network files, node and edge data files, and session files. This is the output

generated when Cytoscape is executed with the “-h” or “–help” flag:

usage: cytoscape.{sh|bat} [OPTIONS]
 ‐h,‐‐help Print this message.
 ‐v,‐‐version Print the version number.
 ‐s,‐‐session <file> Load a cytoscape session (.cys) file.
 ‐N,‐‐network <file> Load a network file (any format).
 ‐P,‐‐props <file> Load cytoscape properties file (Java properties
 format) or individual property: ‐P name=value.
 ‐V,‐‐vizmap <file> Load vizmap properties file (Cytoscape VizMap
 format).
 ‐S,‐‐script <file> Execute commands from script file.
 ‐R,‐‐rest <port> Start a rest service.

Any file specified for an option may be specified as either a path or as a URL. For example you

can specify a network as a file (assuming that myNet.sif exists in the current working

directory): cytoscape.sh ‐N myNet.sif .

Note: if there are spaces in the file path, be sure to put quotes around it:

cytoscape.bat ‐N "C:\Program Files\Cytoscape\sampleData\galFiltered.sif" .

Or you can specify a network as a URL: cytoscape.sh ‐N http://example.com/myNet.sif .

Command Line Arguments

A R GUM E N T D E S C R I PT I O N

‐ h , ‐ ‐ h e l p This flag generates the help output you see above and exits.

‐ v , ‐ ‐ v e r s i o n This flag prints the version number of Cytoscape and exits.

‐ s , ‐ ‐ s e s s i o n < f i l e >

This option specifies a session file to be loaded. Since only one session file
can be loaded at a given time, this option may only specified once on a
given command line. The option expects a .cys Cytoscape session file. It
is customary, although not necessary, for session file names to contain the
.cys extension.

‐ N , ‐ ‐ n e t w o r k < f i l e >

This option is used to load all types of network files. SIF, GML, and
XGMML files can all be loaded using the -N option. You can specify as
many networks as desired on a single command line.

‐ P , ‐ ‐ p r o p s < f i l e >

This option specifies Cytoscape properties. Properties can be specified
either as a properties file (in Java's standard properties format), or as
individual properties. To specify individual properties, you must specify
the property name followed by the property value where the name and
value are separated by the '=' sign. For example to specify the
defaultSpeciesName: cytoscape.sh ‐P defaultSpeciesName=Human . If you
would like to include spaces in your property, simply enclose the name
and value in quotation marks:
cytoscape.sh ‐P "defaultSpeciesName=Homo Sapiens" . The property option

subsumes previous options -noCanonicalization, -species, and -

bioDataServer. Now it would look like: cytoscape.sh
‐P defaultSpeciesName=Human ‐P noCanonicalization=true
‐P bioDataServer=myServer .

‐ V , ‐ ‐ v i z m a p < f i l e > This option specifies a Style file.

‐ S , ‐ ‐ s c r i p t < f i l e > This option executes commands from a specifed Cytoscape script file.

‐ R , ‐ ‐ r e s t < p o r t > This option starts a Cytoscape REST service on the specified port.

All options described above (except for starting a REST service) can be accessed from the

menu once Cytoscape is running.

Quick Tour of Cytoscape

Welcome Screen

When you start Cytoscape, you can access basic functions from the Welcome Screen:

The Welcome Screen is designed to access commonly used features of Cytoscape including:

Create new network

Import network

From file

From public database

Import interactome for model organisms

Open recently used session file

Also, a news panel always display latest information for users. For information on user

privacy, see the Cytoscape Privacy Policy.

Basic Features

When a network is loaded, Cytoscape will look similar to the image below:

Most functionalities are self-explanatory, but we’ll go through a concise explanation for

clarity. The main window here has several components:

The Menu Bar at the top (see below for more information about each menu).

The Tool Bar, which contains icons for commonly used functions. These functions are also

available via the menus. Hover the mouse pointer over an icon and wait momentarily for a

description to appear as a tooltip.

file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Cytoscape_Privacy_Policy.html#cytoscape-privacy-policy

The Network Panel (Network tab of the Control Panel, top left). This contains an optional

network overview pane (shown at the bottom left).

The main Network View Window, which displays the network.

The Table Panel (bottom right panel), which displays columns of selected nodes and edges

and enables you to modify the values of column data.

The Network Panel and Table Panel are dockable tabbed Panels. You can undock any of these

panels by clicking on the Float Window control in the upper-right corner of the

CytoPanel. This is useful when you want assign the network panel as much screen space as

possible. To dock the window again, click the Dock Window icon . Clicking the Hide Panel

icon will hide the panel; this can be shown again by choosing View → Show and selecting

the relevant panel.

If you click this control, for example on the Table Panel, you will now have two Cytoscape

windows, the main window, and a new window labeled Table Panel, similar to the one shown

below. A popup will be displayed when you put the mouse pointer on a cell.

Note that Table Panel now has a Dock Window control. If you click this control, the window

will dock onto the main window. For more information on the panels in Cytoscape, see the

Panels section.

Network Editing

Cytoscape also has an edit functionality that enables you to build and modify networks

interactively within the network canvas. To edit a network, just right-click on the open space

of network window, select the menu item Add → Node, a new node will be added to the

canvas. To add an edge, right click on a node, choose the menu item Edit → Add Edge. Then

select the target node, a new edge will be added between the two nodes. In a similar way

file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Panels.html#what-are-panels

annotation objects can be added; pictures, shapes or textboxes; much like in MS PowerPoint

or similar software. Detailed information on network editing can be found in the Editing

Networks section.

The Menus

File

The File menu contains most basic file functionality: File → Open for opening a Cytoscape

session file; File → New for creating a new network, either blank for editing, or from an

existing network; File → Save for saving a session file; File → Import for importing data such

as networks and data; and File → Export for exporting data and images. File → Export →
Network View as Graphics lets you export the network in either JPEG, PDF, PNG, Post Script

or SVG format.

File → Recent Session will list recently opened session files for quick access. File → Run

allows you to specify a Cytoscape script file to run, and File → Print Current Network...

allows printing.

file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Creating_Networks.html#create_a_new_network_or_edit_one_manually

Edit

The Edit menu contains Cut, Copy and Paste functions, as well as Undo and Redo functions

which undo and redo edits made in the Table Panel, the Network Editor and to layout.

There are also options for creating and destroying views (graphical representations of a

network) and networks (the raw network data - not yet visualized), as well as an option for

deleting selected nodes and edges from the current network. All deleted nodes and edges can

be restored to the network via Edit → Undo.

There are also other editing options; Remove Duplicated Edges will delete edges that are

complete duplicates, keeping one edge, Remove Self-Loops removes edges that have the

same source and target node, and Delete Selected Nodes and Edges... deletes a selected

subset of the network. Rename Network... allows you to rename the currently selected

network.

Editing preferences for properties and apps is found under Edit → Preferences →
Properties.... More details on how to edit preferences can be found here.

file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Cytoscape_Preferences.html#cytoscape-preferences

View

The View menu allows you to display or hide the Control Panel, Table Panel, Tool Panel and

the Result Panel. It also provides the control of other view-related functionality.

Select

The Select menu contains different options for selecting nodes and edges.

Layout

The Layout menu has an array of features for visually organizing the network. The features in

the top portion of the network (Bundle Edges, Clear Edge Bends, Rotate, Scale, Align and

Distribute) are tools for manipulating the network visualization. The bottom section of the

menu lists a variety of layout algorithms which automatically lay a network out.

Apps

The Apps menu gives you access to the App Manager (Apps → App Manager) for managing

(install/update/delete) your apps and may have options added by apps that have been

installed. Depending on which apps are loaded, the apps that you see may be different than

what appear here. The below picture shows a Cytoscape installation without installed apps.

Note: A list of available Cytoscape apps with descriptions is available online at:

http://apps.cytoscape.org

In previous versions of Cytoscape, apps were called plugins and served a similar function.

Tools

The Tools menu contains advanced features like the Command Line Dialog, Network

Analyzer, Network Merge and Workflow.

Help

The Help menu allows you to launch the online help viewer and browse the table of contents

for this manual (Contents).

http://apps.cytoscape.org/
file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Command_Tool.html#command-tool
file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Network_Analyzer.html#networkanalyzer
file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Merge.html#merge

The Citations option displays the main literature citation for Cytoscape, as well as a list of

literature citations for installed apps. The list will be different depending on the set of apps

you have installed.

The Update Organism Preset Networks option updates the preset networks available on the

Welcome screen to the latest version.

The Help menu also allows you to connect directly to Cytoscape Help Desk and the Bug

Report interface.

Network Management

Cytoscape allows multiple networks to be loaded at a time, either with or without a view. A

network stores all the nodes and edges that are loaded by the user and a view displays them.

An example where a number of networks have been loaded is shown below:

The network manager (in Control Panel) shows the networks that are loaded. Clicking on a

network here will make that view active in the main window, if the view exists. Each network

has a name and size (number of nodes and edges), which are shown in the network manager. If

a network is loaded from a file, the network name is the name of the file.

Some networks are very large (thousands of nodes and edges) and can take a long time to

display. For this reason, a network in Cytoscape may not contain a “view”. Networks that have

a view are in normal black font and networks that don’t have a view are highlighted in red. You

can create or destroy a view for a network by right-clicking the network name in the network

manager or by choosing the appropriate option in the Edit menu. You can also destroy

previously loaded networks this way.

Certain operations in Cytoscape will create new networks. If a new network is created from

an old network, for example by selecting a set of nodes in one network and copying these

nodes to a new network (via the File → New → Network option), it will be shown immediately

follows the network that it was derived from.

Network views can also be detached (undocked) from the main Cytoscape window. When

detached, a view window can be dragged to another monitor, resized, maximized and

minimized by using the normal window controls for your operating system. Notice, however,

that closing a view window does not destroy it, but simply reattaches it to the Cytoscape

window.

Arrange Network Windows

When you have detached network view windows, you can arrange them by selecting one of

these options under View → Arrange Network Windows:

Grid

Cascade

Vertical Stack

Side by Side

The Network Overview Window

The network overview window shows an overview (or “bird’s eye view”) of the network. It can

be used to navigate around a large network view. The blue rectangle indicates the portion of

the network currently displayed in the network view window, and it can be dragged with the

mouse to view other portions of the network. Zooming in will cause the rectangle to appear

smaller and vice versa.

Creating Networks

There are 4 different ways of creating networks in Cytoscape:

1. Importing pre-existing, fixed-format network files.

2. Importing pre-existing, unformatted text or Excel files.

3. Importing data from from public databases.

4. Creating an empty network and manually adding nodes and edges.

Import Fixed-Format Network Files

Network files can be specified in any of the formats described in the Supported Network

Formats section. Networks are imported into Cytoscape through the File → Import →
Network menu. The network file can either be located directly on the local computer, or

found on a remote computer (in which case it will be referenced with a URL).

Load Networks from Local Computer

In order to load a network from a local file you can select File → Import → Network → File...

or click on on the tool bar. Choose the correct file in the file chooser dialog and press

Open. Some sample network files of different types have been included in the sampleData

folder in Cytoscape.

After you choose a network file, another dialog will pop up. Here, you can choose either to

create a new network collection for the new network, or load the new network into an

existing network collection. When you choose the latter, make sure to choose the right

mapping column to map the new network to the existing network collection.

Network files in SIF, GML, and XGMML formats may also be loaded directly from the

command line using the -N option.

Load Networks from a Remote Computer (URL import)

To load a network from a remote file, you can select File → Import → Network → URL.... In

the import network dialog, insert the appropriate URL, either manually or using URL

bookmarks. Bookmarked URLs can be accessed by clicking on the arrow to the right of the

file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Supported_Network_File_Formats.html#supported-network-file-formats

text field (see the Bookmark Manager in Preferences for more details on bookmarks). Also,

you can drag and drop links from a web browser to the URL text box. Once a URL has been

specified, click on the OK button to load the network.

Another issue for network import is the presence of firewalls, which can affect which files are

accessible to a computer. To work around this problem, Cytoscape supports the use of proxy

servers. To configure a proxy server, go to Edit → Preferences → Proxy Settings.... This is

further described in the Preferences section.

Import Networks from Unformatted Table Files

Cytoscape supports the import of networks from delimited text files and Excel workbooks

using File → Import → Network → File.... An interactive GUI allows users to specify parsing

options for specified files. The screen provides a preview that shows how the file will be

parsed given the current configuration. As the configuration changes, the preview updates

automatically. In addition to specifying how the file will be parsed, the user must also choose

the columns that represent the source and target nodes as well as an optional edge

interaction type.

file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Cytoscape_Preferences.html#cytoscape-preferences
file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Cytoscape_Preferences.html#cytoscape-preferences

Supported Files

The Import Network from Table function supports delimited text files and Microsoft Excel

Workbooks. For Excel Workbooks with multiple sheets, one sheet can be selected for import

at a time. The following is a sample table file:

Sample Network in Table

S O UR C E T A R GE T I N T E R A C T I O N B O O L E A N
D A T A

S T R I N G
D A T A

FL O A T I N G PO I N T
D A T A

YJR022W YNR053C pp TRUE abcd12371 1.2344543

YER116C YDL013W pp TRUE abcd12372 1.2344543

YNL307C YAL038W pp FALSE abcd12373 1.2344543

YNL216W YCR012W pd TRUE abcd12374 1.2344543

YNL216W YGR254W pd TRUE abcd12375 1.2344543

The network table files should contain at least two columns for creating network with edges.

If the file has only one column, the created network will not contain any edges. The interaction

type is optional in this format. Therefore, a minimal network table looks like the following:

Minimal Network Table

S O UR C E T A R GE T

YJR022W YNR053C

YER116C YDL013W

YNL307C YAL038W

YNL216W YCR012W

YNL216W YGR254W

One row in a network table file represents an edge and its edge data columns. This means that

a network file is considered a combination of network data and edge column data. A table may

contain columns that aren’t meant to be edge data. In this case, you can choose not to import

those columns by clicking on the column header in the preview window. This function is useful

when importing a data table like the following (1):

This data file is a tab-delimited text file and contains network data (interactions), edge data,

and node data. To import network and edge data from this table, choose Unique ID A as

source, Unique ID B as target, and Interactor types as interaction type. Next, turn off columns

used for node data (Alternative ID A, species B, etc.). Other columns can be imported as edge

data.

The network import function cannot import node table columns - only edge table columns. To

import node table columns from this table, please see the Node and Edge Column Data

section of this manual.

Note (1): This data is taken from the A merged human interactome datasets by Andrew

Garrow, Yeyejide Adeleye and Guy Warner (Unilever, Safety and Environmental Assurance

Center, 12 October 2006). Actual data files are available at

http://wiki.cytoscape.org/Data_Sets/.

Basic Operations

To import network from text/Excel tables, please follow these steps:

1. Select File → Import → Network → File... or click on on the tool bar.

2. Select a table file in the file chooser dialog.

3. Define the interaction parameters by specifying which columns of data contain the Source

Interaction, Target Interaction, and Interaction Type. Clicking on any column header will

bring up the interface for selecting source, interaction and target:

file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Node_and_Edge_Column_Data.html#node-and-edge-column-data
http://wiki.cytoscape.org/Data_Sets/

4. (Optional) Define edge table columns, if applicable. Network table files can have edge

table columns in addition to network data.

Enable/Disable Table Columns: You can enable/disable column data by selecting the

[attachment:disablecolumn.png] symbol in the column editor.

Change Column Name and Data Types: You can also modify the column name and data

type in the column editor. For more detail, see Modify Column Name/Type below.

5. Click the OK button.

Import List of Nodes Without Edges

The table import feature supports lists of nodes without edges. If you select only a source

column, it creates a network without interactions. This feature is useful with the node

expansion function available from some web service clients. Please read the section

Importing Networks from External Database for more detail.

Advanced Options

You can select several options by clicking the Advanced Options button in the main import

interface.

Delimiter: You can select multiple delimiters for text tables. By default, Tab and Space are

selected as delimiters.

Default Interaction

Transfer first line as column names: Selecting this option will cause all edge columns to be

named according to the first data entry in that column.

Start Import Row: Set which row of the table to begin importing data from. For example, if

you want to skip the first 3 rows in the file, set 4 for this option.

Ignore lines starting with: Rows starting with this character will not be imported. This

option can be used to skip comment lines in text files.

Modify Column Name/Type

file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Creating_Networks.html?highlight=Web%20Service#what-is-a-web-service

In the Import Network from Table interface, you can change the name and data type of

column by clicking on any column header:

Column names and data types can be modified here.

Modify Column Name - just enter a new column name.

Modify Column Data Type - The following column data types are supported:

String

Boolean (True/False)

Integer

Floating Point

List of (one of) String/Boolean/Integer/Floating Point

Cytoscape has a basic data type detection function that automatically suggests the column

data type according to its entries. This can be overridden by selecting the appropriate data

type from the radio buttons provided. For lists, a global delimiter must be specified (i.e., all

cells in the table must use the same delimiter).

Import Networks from Public Databases

Cytoscape has a feature called Import Network from Public Databases. Users can access

various kinds of databases through this function, File → Import → Network → Public

Databases....

What is a Web Service?

A web service is a standardized, platform-independent mechanism for computers to interact

over the internet. These days, many major biological databases publish their data with a web

service API:

List of Biological Web Services: http://taverna.sourceforge.net/services

Web Services at the EBI: http://www.ebi.ac.uk/Tools/webservices/

Cytoscape core developer team have developed several web service clients using this

framework. Cytoscape supports many web services including:

PSICQUIC: Standard web service for biological interaction data sets. The full list of

PSICQUIC-compatible databases is available here.

The following sections describe how to import network from external databases.

Getting Started

To get started, select File → Import → Network → Public Databases....

http://taverna.sourceforge.net/services
http://www.ebi.ac.uk/Tools/webservices/
http://code.google.com/p/psicquic/
http://www.ebi.ac.uk/Tools/webservices/psicquic/registry/registry?action=STATUS

Example: Retrieving Protein-Protein Interaction Networks from
Multiple Databases

Select File → Import → Network → Public Databases....

From the pull-down menu, select the Interaction databases Universal Client.

Enter one or more search terms, such as BRCA1.

Click the Search button to start the search.

Select databases from the hits. This selection will be saved as your default database list.

Click the Import button to import selected network data.

After confirming the download of interaction data, the network of BRCA1 will be imported

and visualized.

Tip: Expanding the Network: Several of the Cytoscape web services provide additional

options in the node context menu. To access these options, right-click on a node and select

Apps → Extend Network by public interaction database.... For example, in the screenshot,

we have loaded the BRCA1 network from IntAct, and have chosen to merge this node’s

neighbors into the existing network.

PSICQUIC Options

PSICQUIC Web Service Client has three search modes:

Search by ID

Search by MIQL

Search by Species

By default, search mode is set to Search by ID. You can search all databases by ID, such as

gene symbol, Uniprot ID, or NCBI gene ID. If the search mode is set to MIQL, you can use

MIQL (https://code.google.com/p/psicquic/wiki/MiqlReference27) for search. If you want to

https://code.google.com/p/psicquic/wiki/MiqlReference27

search interactions by keywords or specific functions, this is the powerful query language to

filter the result. The last option is for importing all interactions for the species (i.e.,

interactome).

Create a New Network or Edit One Manually

A new, empty network can also be created and nodes and edges manually added. To create an

empty network, go to File → New → Network → Empty Network, and then manually add

network components by right clicking on the network canvas or on a node. You can edit an

existing network using the same process.

Adding a Node

To add a new node, right-click on an empty space of the network view panel. Select Add →
Node item from the pop-up menu.

Adding an Edge

To add an edge to connect nodes, right-click on the source node. Select Edit → Add Edge from

the pop-up menu. Next, click on the target node. The Images below show the two steps for

drawing an edge between two nodes. You can abort the drawing of the edge by pressing Esc

key. You can also select two or more nodes to connect and in the right-click menu select Add

→ Edges Connecting Selected Nodes to create edges connecting all selected nodes.

You can delete nodes and edges by selecting a number of nodes and edges, then selecting Edit

→ Cut. You can also delete selected nodes and edges from the Edit menu, under Edit →
Delete Selected Nodes and Edges.... You can recover any nodes and edges deleted from a

network by going to Edit → Undo.

Grouping Nodes

Any number of nodes can be grouped together and displayed as either one group node or as

the individual nodes. To create a group, select two or more nodes and right-click to select

Group → Group Selected Nodes. You will be prompted to select a name for the group node.

Once a group is created, you can use the right-click menu to collapse or expand the group. You

can also quickly collapse/expand a group by double-clicking on the group node or any of its

children to toggle back and forth.

Collapsed group

Expanded group

Adding Network Annotations

Annotations in the form of text, images or shapes can be added to the network canvas by

right-clicking anywhere on the canvas and selecting one of the Annotation choices in the Add

menu. You can add an image of your own, choose from a shapes library or add either plain or

bounded text. Shapes and text are customizable and any added annotations can be edited

from the right-click context menu.

Nested Networks

Cytoscape has the ability to associate a Nested Network with any node. A nested network is

any other network currently defined in Cytoscape. This capability allows for creation of

network hierarchies as well as circular relationships. For example, various module-finding

plugins make use of nested networks in the overview network that they generate. There each

node representing a module contains a nested network.

Creating Nested Networks

There are currently two ways in which a user can create nested networks.

By importing a Nested Network Format (NNF) file. (See: NNF Network Format).

By manually constructing networks and assigning nested networks to individual nodes

through the right-click node context menu. (See Nested Network Node Context Menu).

Visualization of Nested Networks

Nodes containing nested networks that are zoomed in sufficiently display an image for the

nested network. If no current network view exists for the nested network the image will be a

default icon, otherwise it will be a low-resolution rendering of the nested network’s current

layout.

file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Supported_Network_File_Formats.html#nnf
file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Navigation_and_Layout.html#nested-network-node-context-menu

Supported Network File Formats

Cytoscape can read network/pathway files written in the following formats:

Simple interaction file (SIF or .sif format)

Nested network format (NNF or .nnf format)

Graph Markup Language (GML or .gml format)

XGMML (extensible graph markup and modelling language).

SBML

BioPAX

PSI-MI Level 1 and 2.5

GraphML

Delimited text

Excel Workbook (.xls, .xlsx)

Cytoscape.js JSON

The SIF format specifies nodes and interactions only, while other formats store additional

information about network layout and allow network data exchange with a variety of other

network programs and data sources. Typically, SIF files are used to import interactions when

building a network for the first time, since they are easy to create in a text editor or

spreadsheet. Once the interactions have been loaded and network layout has been

http://cytoscape.github.io/cytoscape.js/#notation/elements-json

performed, the network may be saved to GML or XGMML format for interaction with other

systems. All file types listed (except Excel) are text files and you can edit and view them in a

regular text editor.

SIF Format

The simple interaction format is convenient for building a graph from a list of interactions. It

also makes it easy to combine different interaction sets into a larger network, or add new

interactions to an existing data set. The main disadvantage is that this format does not include

any layout information, forcing Cytoscape to re-compute a new layout of the network each

time it is loaded.

Lines in the SIF file specify a source node, a relationship type (or edge type), and one or more

target nodes:

nodeA <relationship type> nodeB
nodeC <relationship type> nodeA
nodeD <relationship type> nodeE nodeF nodeB
nodeG
...
nodeY <relationship type> nodeZ

A more specific example is:

node1 typeA node2
node2 typeB node3 node4 node5
node0

The first line identifies two nodes, called node1 and node2, and a single relationship between

node1 and node2 of type typeA. The second line specifies three new nodes, node3, node4, and

node5; here “node2” refers to the same node as in the first line. The second line also specifies

three relationships, all of type typeB and with node2 as the source, with node3, node4, and

node5 as the targets. This second form is simply shorthand for specifying multiple

relationships of the same type with the same source node. The third line indicates how to

specify a node that has no relationships with other nodes. This form is not needed for nodes

that do have relationships, since the specification of the relationship implicitly identifies the

nodes as well.

Duplicate entries are ignored. Multiple edges between the same nodes must have different

edge types. For example, the following specifies two edges between the same pair of nodes,

one of type xx and one of type yy:

node1 xx node2
node1 xx node2
node1 yy node2

Edges connecting a node to itself (self-edges) are also allowed:

node1 xx node1

Every node and edge in Cytoscape has a name column. For a network defined in SIF format,

node names should be unique, as identically named nodes will be treated as identical nodes.

The name of each node will be the name in this file by default (unless another string is mapped

to display on the node using styles). This is discussed in the section on Styles. The name of

each edge will be formed from the name of the source and target nodes plus the interaction

type: for example, sourceName (edgeType) targetName .

The tag can be any string. Whole words or concatenated words may be used to define types of

relationships, e.g. geneFusion, cogInference, pullsDown, activates, degrades, inactivates,

inhibits, phosphorylates, upRegulates, etc.

Some common interaction types used in the Systems Biology community are as follows:

 pp protein ‐ protein interaction
 pd protein ‐> DNA
 (e.g. transcription factor binding upstream of a regulating gene.)

Some less common interaction types used are:

 pr protein ‐> reaction
 rc reaction ‐> compound
 cr compound ‐> reaction
 gl genetic lethal relationship
 pm protein‐metabolite interaction
 mp metabolite‐protein interaction

file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Styles.html#styles

Delimiters

Whitespace (space or tab) is used to delimit the names in the simple interaction file format.

However, in some cases spaces are desired in a node name or edge type. The standard is that,

if the file contains any tab characters, then tabs are used to delimit the fields and spaces are

considered part of the name. If the file contains no tabs, then any spaces are delimiters that

separate names (and names cannot contain spaces).

If your network unexpectedly contains no edges and node names that look like edge names, it

probably means your file contains a stray tab that’s fooling the parser. On the other hand, if

your network has nodes whose names are half of a full name, then you probably meant to use

tabs to separate node names with spaces.

Networks in simple interactions format are often stored in files with a .sif extension, and

Cytoscape recognizes this extension when browsing a directory for files of this type.

NNF

The NNF format is a very simple format that unlike SIF allows the optional assignment of

single nested network per node. No other node columns can be specified. There are only 2

possible line formats:

A node “node” contained in a “network:”

network node

2 nodes linked together contained in a network:

network node1 interaction node2

If a network name (first entry on a line) appeared previously as a node name (in columns 2 or

4), the network will be nested in the node with the same name. Also, if a name that has been

previously defined as a network (by being listed in the first column), later appears as a node

name (in columns 2 or 4), the previously defined network will be nested in the node with the

same name. In summary: any time a name is used as both, a network name , and a node name,

this implies that the network will be nested in the node of the same name. Additionally

comments may be included on all lines. Comments start with a hash mark ‘#‘ and continue to

the end of a line. Trailing comments (after data lines) and entirely blank lines anywhere are

also permissible. Please note that if you load multiple NNF files in Cytoscape they will be

treated like a single, long concatenated NNF file! If you need to embed spaces, tabs or

backslashes in a name, you must escape it by preceding it with a backslash, so that, e.g. an

embedded backslash becomes two backslashes, an embedded space a backslash followed by a

space etc.

Examples

Example 1

Example_1 C
Example_1 network1
network1 A pp B
network1 B pp A
Example_1 C pp B

Example 2

Example_2 M1
Example_2 M2
M1 A
M2 B pp C
Example_2 A pp B
Example_2 M1 im M2

Example 3

Example_3 M1 im M2
Example_3 M3 im M1
Example_3 M2 im M3
Example_3 C pp M3
Example_3 M2 pp C
M1 A
M2 A pp B
M3 B pp C

Example 4

Example_4 M4
M4 D
M4 M3
M3 M2 pp C
M2 M1 pp B
M1 A
M4 C pp D

GML Format

In contrast to SIF, GML is a rich graph format language supported by many other network

visualization packages. The GML file format specification is available at:

http://www.infosun.fmi.uni-passau.de/Graphlet/GML/

It is generally not necessary to modify the content of a GML file directly. Once a network is

built in SIF format and then laid out, the layout is preserved by saving to and loading from

GML. Properties specified in a GML file will result in a new style named Filename.style when

that GML file is loaded.

XGMML Format

http://www.infosun.fmi.uni-passau.de/Graphlet/GML/

XGMML is the XML evolution of GML and is based on the GML definition. In addition to

network data, XGMML contains node/edge/network column data. The XGMML file format

specification is available at:

http://cgi5.cs.rpi.edu/research/groups/pb/punin/public_html/XGMML/

XGMML is now preferred to GML because it offers the flexibility associated with all XML

document types. If you’re unsure about which to use, choose XGMML.

There is a java system property “cytoscape.xgmml.repair.bare.ampersands” that can be set to

“true” if you have experience trouble reading older files.

This should only be used when an XGMML file or session cannot be read due improperly

encoded ampersands, as it slows down the reading process, but this is still preferable to

attempting to fix such files using manual editing.

SBML (Systems Biology Markup Language) Format

The Systems Biology Markup Language (SBML) is an XML format to describe biochemical

networks. SBML file format specification is available at:

http://sbml.org/documents/

BioPAX (Biological PAthways eXchange) Format

BioPAX is an OWL (Web Ontology Language) document designed to exchange biological

pathways data. The complete set of documents for this format is available at:

http://www.biopax.org/

PSI-MI Format

The PSI-MI format is a data exchange format for protein-protein interactions. It is an XML

format used to describe PPI and associated data. PSI-MI XML format specification is available

at:

http://psidev.sourceforge.net/mi/xml/doc/user/

GraphML

http://cgi5.cs.rpi.edu/research/groups/pb/punin/public_html/XGMML/
http://sbml.org/documents/
http://www.biopax.org/
http://psidev.sourceforge.net/mi/xml/doc/user/

GraphML is a comprehensive and easy-to-use file format for graphs. It is based on XML. The

complete set of documents for this format is available at:

http://graphml.graphdrawing.org/

Delimited Text Table and Excel Workbook

Cytoscape has native support for Microsoft Excel files (.xls, .xlsx) and delimited text files. The

tables in these files can have network data and edge columns. Users can specify columns

containg source nodes, target nodes, interaction types, and edge columns during file import.

Some of the other network analysis tools, such as igraph

(http://cneurocvs.rmki.kfki.hu/igraph/), has feature to export graph as simple text files.

Cytoscape can read these text files and build networks from them. For more detail, please

read the Import Free-Format Tables section of the Creating Networks section.

Cytoscape.js JSON

From Cytoscape 3.1.0 on, Cytoscape supports Cytoscape.js JSON files. You can use this

feature to export your network visualizations to web browsers. Cytoscape.js has two ways to

represent network data, and currently both reader and writer support only the array style

graph notation. For example, this network in Cytoscape:

will be exported to this JSON:

http://graphml.graphdrawing.org/
http://cneurocvs.rmki.kfki.hu/igraph/
file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Creating_Networks.html#creating-networks
http://cytoscape.github.io/cytoscape.js/

{
 "elements" : {
 "nodes" : [{
 "data" : {
 "id" : "723",
 "selected" : false,
 "annotation_Taxon" : "Saccharomyces cerevisiae",
 "alias" : ["RPL31A", "RPL34", "S000002233", "ribosomal protein L31A (L34A) (YL28)"],
 "shared_name" : "YDL075W",
 "SUID" : 723,
 "degree_layout" : 1,
 "name" : "YDL075W"
 },
 "position" : {
 "x" : 693.0518315633137,
 "y" : ‐49.47506554921466
 },
 "selected" : false
 }, {
 "data" : {
 "id" : "726",
 "selected" : false,
 "annotation_Taxon" : "Saccharomyces cerevisiae",
 "alias" : ["RP23", "RPL16B", "S000005013", "ribosomal protein L16B (L21B) (rp23)
(YL15)"],
 "shared_name" : "YNL069C",
 "SUID" : 726,
 "degree_layout" : 1,
 "name" : "YNL069C"
 },
 "position" : {
 "x" : 627.3147710164387,
 "y" : ‐205.99251969655353
 },
 "selected" : false
 }, {
 "data" : {
 "id" : "658",
 "selected" : false,
 "annotation_Taxon" : "Saccharomyces cerevisiae",
 "alias" : ["RPL11B", "S000003317", "ribosomal protein L11B (L16B) (rp39B) (YL22)"],
 "shared_name" : "YGR085C",
 "SUID" : 658,
 "degree_layout" : 2,
 "name" : "YGR085C"
 },
 "position" : {
 "x" : 804.3092778523762,
 "y" : ‐245.6235926946004
 },
 "selected" : false
 }, {
 "data" : {

 "id" : "660",
 "selected" : false,
 "annotation_Taxon" : "Saccharomyces cerevisiae",
 "alias" : ["KAP108", "S000002803", "SXM1"],
 "shared_name" : "YDR395W",
 "SUID" : 660,
 "degree_layout" : 8,
 "name" : "YDR395W"
 },
 "position" : {
 "x" : 730.8733342488606,
 "y" : ‐157.50702317555744
 },
 "selected" : false
 }, {
 "data" : {
 "id" : "579",
 "selected" : false,
 "annotation_Taxon" : "Saccharomyces cerevisiae",
 "alias" : ["RPL11A", "S000006306", "ribosomal protein L11A (L16A) (rp39A) (YL22)"],
 "shared_name" : "YPR102C",
 "SUID" : 579,
 "degree_layout" : 2,
 "name" : "YPR102C"
 },
 "position" : {
 "x" : 841.1395696004231,
 "y" : ‐130.77909119923908
 },
 "selected" : false
 }, {
 "data" : {
 "id" : "578",
 "selected" : false,
 "annotation_Taxon" : "Saccharomyces cerevisiae",
 "alias" : ["GRC5", "QSR1", "RPL10", "S000004065", "ribosomal protein L10"],
 "shared_name" : "YLR075W",
 "SUID" : 578,
 "degree_layout" : 2,
 "name" : "YLR075W"
 },
 "position" : {
 "x" : 910.3755162556965,
 "y" : ‐217.0562556584676
 },
 "selected" : false
 }],
 "edges" : [{
 "data" : {
 "id" : "659",
 "source" : "658",
 "target" : "578",
 "selected" : false,
 "interaction" : "pp",

 "shared_interaction" : "pp",
 "shared_name" : "YGR085C (pp) YLR075W",
 "SUID" : 659,
 "name" : "YGR085C (pp) YLR075W"
 },
 "selected" : false
 }, {
 "data" : {
 "id" : "661",
 "source" : "658",
 "target" : "660",
 "selected" : false,
 "interaction" : "pp",
 "shared_interaction" : "pp",
 "shared_name" : "YGR085C (pp) YDR395W",
 "SUID" : 661,
 "name" : "YGR085C (pp) YDR395W"
 },
 "selected" : false
 }, {
 "data" : {
 "id" : "724",
 "source" : "660",
 "target" : "723",
 "selected" : false,
 "interaction" : "pp",
 "shared_interaction" : "pp",
 "shared_name" : "YDR395W (pp) YDL075W",
 "SUID" : 724,
 "name" : "YDR395W (pp) YDL075W"
 },
 "selected" : false
 }, {
 "data" : {
 "id" : "733",
 "source" : "660",
 "target" : "579",
 "selected" : false,
 "interaction" : "pp",
 "shared_interaction" : "pp",
 "shared_name" : "YDR395W (pp) YPR102C",
 "SUID" : 733,
 "name" : "YDR395W (pp) YPR102C"
 },
 "selected" : false
 }, {
 "data" : {
 "id" : "727",
 "source" : "660",
 "target" : "726",
 "selected" : false,
 "interaction" : "pp",
 "shared_interaction" : "pp",
 "shared_name" : "YDR395W (pp) YNL069C",

 "SUID" : 727,
 "name" : "YDR395W (pp) YNL069C"
 },
 "selected" : false
 }, {
 "data" : {
 "id" : "580",
 "source" : "578",
 "target" : "579",
 "selected" : false,
 "interaction" : "pp",
 "shared_interaction" : "pp",
 "shared_name" : "YLR075W (pp) YPR102C",
 "SUID" : 580,
 "name" : "YLR075W (pp) YPR102C"
 },
 "selected" : false
 }]
 }
}

And this is a sample visualization in Cytoscape.js:

Important Note

Export network and table to Cytoscape.js feature in Cytoscape creates a JSON file WITHOUT

style. This means that you need to export the style in a separate JSON file if you apply style to

your network. Please read the Style section for more details.

Node and Edge Column Data

Interaction networks are useful as stand-alone models. However, they are most powerful for

answering scientific questions when integrated with additional information. Cytoscape allows

the user to add arbitrary node, edge and network information to Cytoscape as

node/edge/network data columns. This could include, for example, annotation data on a gene

or confidence values in a protein-protein interaction. These column data can then be

visualized in a user-defined way by setting up a mapping from columns to network properties

(colors, shapes, and so on). The section on Styles discusses this in greater detail.

Import Data Table Files

Cytoscape offers support for importing data from delimited text and MS Excel data tables.

Sample Data Table 1

Sample Data

O B J E C T K E Y A L I A S S GD I D

A A C 3 YBR085W|ANC3 S000000289

A A T 2 YLR027C|ASP5 S000004017

B I K 1 YCL029C|ARM5|PAC14 S000000534

The data table file should contain a primary key column and at least one data column. The

maximum number of data columns is unlimited. The Alias column is an optional feature, as is

using the first row of data as column names. Alternatively, you can specify each column name

from the File → Import → Table → File... user interface.

Basic Operation

file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Styles.html#styles

1. Select File → Import → Table → File....

2. Select a data file. The file can be either a text or Excel (.xls/.xlsx) file.

3. In the Target Table Data section, choose where to import the data to. You can choose an

existing network collection, a specific network only, or you can choose to import the data

to an Unassigned Table (described below).

4. Depending on what you choose in the Where to import Table Data drop-down, you will

need to select a network collection or specific network. You will also need to select

Importing Type, that is whether the data is node, edge or network table columns.

5. If the table is not properly delimited in the preview panel, change the delimiter in the

Advanced Options panel. The default delimiter is tab. This step is not necessary for Excel

Workbooks.

6. By default, the first column is designated as the primary key. Change the key column if

necessary.

7. Click OK to import.

Unassigned Table

As of Cytoscape 3.1. it is possible to import data tables without assigning them to existing

networks, meaning the data doesn’t have to correspond to any nodes/edges currently loaded.

If a data table is imported as unassigned and a network is later imported that maps to the data

in terms of nodes or edges, the data will link automatically. This is useful when loading a large

dataset (for example expression data), defining a Style for visualizing the data on networks

and later loading individual networks to view the data, for example from an online database.

This feature allows the data to be automatically linked to any network that is applicable,

without having to load the data for each network.

Legacy Cytoscape Attributes Format

In addition to tabular data, the simple attribute file format used in previous versions of

Cytoscape is still supported. Node and edge data files are simply formatted: a node data file

begins with the name of the column on the first line (note that it cannot contain spaces). Each

following line contains the name of the node, followed by an equals sign and the data value.

Numbers and text strings are the most common data types. All values for a given column must

have the same type. For example:

FunctionalCategory
YAL001C = metabolism
YAR002W = apoptosis
YBL007C = ribosome

An edge data file has much the same structure, except that the name of the edge is the source

node name, followed by the interaction type in parentheses, followed by the target node

name. Directionality counts, so switching the source and target will refer to a different (or

perhaps non-existent) edge. The following is an example edge data file:

InteractionStrength
YAL001C (pp) YBR043W = 0.82
YMR022W (pd) YDL112C = 0.441
YDL112C (pd) YMR022W = 0.9013

Since Cytoscape treats edge data as directional, the second and third edge data values refer

to two different edges (source and target are reversed, though the nodes involved are the

same).

Each data column is stored in a separate file. Node and edge data files use the same format,

and have the suffix ”.attrs”.

Node and edge data may be loaded via the File → Import → Table menu, just as data table

files are.

When expression data is loaded using an expression matrix, it is automatically loaded as node

data unless explicitly specified otherwise.

Node and edge data columns are attached to nodes and edges, and so are independent of

networks. Data values for a given node or edge will be applied to all copies of that node or

edge in all loaded network files, regardless of whether the data file or network file is imported

first.

Detailed file format (Advanced users)

Every data file has one header line that gives the name of the data column, and optionally

some additional meta-information about that data column. The format is as follows:

columnName (class=JavaClassName)

The first field is always the column name: it cannot contain spaces. If present, the class field

defines the name of the class of the data values. For example, java.lang.String or String for

Strings, java.lang.Double or Double for floating point values, java.lang.Integer or Integer for

integer values, etc. If the value is actually a list of values, the class should be the type of the

objects in the list. If no class is specified in the header line, Cytoscape will attempt to guess the

type from the first value. If the first value contains numbers in a floating point format,

Cytoscape will assume java.lang.Double; if the first value contains only numbers with no

decimal point, Cytoscape will assume java.lang.Integer; otherwise Cytoscape will assume

java.lang.String. Note that the first value can lead Cytoscape astray: for example,

floatingPointDataColumn
firstName = 1
secondName = 2.5

In this case, the first value will make Cytoscape think the values should be integers, when in

fact they should be floating point numbers. It’s safest to explicitly specify the value type to

prevent confusion. A better format would be:

floatingPointDataColumn (class=Double)
firstName = 1
secondName = 2.5

or

floatingPointDataColumn
firstName = 1.0
secondName = 2.5

Every line past the first line identifies the name of an object (a node in a node data file or an

edge in a edge data file) along with the String representation of the data value. The delimiter is

always an equals sign; whitespace (spaces and/or tabs) before and after the equals sign is

ignored. This means that your names and values can contain whitespace, but object names

cannot contain an equals sign and no guarantees are made concerning leading or trailing

whitespace. Object names must be the Node ID or Edge ID as seen in the left-most column of

the Table Panel if the data column is to map to anything. These names must be reproduced

exactly, including case, or they will not match.

Edge names are all of the form:

sourceName (edgeType) targetName

Specifically, that is

sourceName space openParen edgeType closeParen space targetName

Note that tabs are not allowed in edge names. Tabs can be used to separate the edge name

from the “=” delimiter, but not within the edge name itself. Also note that this format is

different from the specification of interactions in the SIF file format. To be explicit: a SIF entry

for the previous interaction would look like

sourceName edgeType targetName

or

sourceName whiteSpace edgeType whiteSpace targetName

To specify lists of values, use the following syntax:

listDataColumnName (class=java.lang.String)
firstObjectName = (firstValue::secondValue::thirdValue)
secondObjectName = (onlyOneValue)

This example shows a data column whose value is defined as a list of text strings. The first

object has three strings, and thus three elements in its list, while the second object has a list

with only one element. In the case of a list every data value uses list syntax (i.e. parentheses),

and each element is of the same class. Again, the class will be inferred if it is not specified in

the header line. Lists are not supported by Styles and so can’t be mapped to network

properties.

Newline Feature

Sometimes it is desirable to for data values to include linebreaks, such as node labels that

extend over two lines. You can accomplish by inserting into the data value. For example:

newlineDataColumn
YJL157C = This is a long\nline for a label.

Table Panel

When Cytoscape is started, the Table Panel appears in the bottom right of the main

Cytoscape window. This browser can be hidden and restored using the F5 key or the View →
Show/Hide Table Panel menu option. Like other Panels, the browser can be undocked by

pressing the little icon in the top right corner.

To swap between displaying node, edge, and network Data Tables use the tabs on the bottom

of the Table Panel. By default, the Table Panel displays columns for all nodes and edges in the

selected network. To display columns for only selected nodes/edges, click the Change Table

Mode button at the top left. To change the columns that are displayed, click the Show

Column button and choose the columns that are to be displayed (select various columns

by clicking on them, and then click elsewhere on the screen to close the column list).

Most column values can be edited by double-clicking the cell (only the ID cannot be edited).

Newline characters can be inserted into String columns either by pressing Enter or by typing

“\n”. Once finished editing, click outside of the editing cell in the Table Panel or press Shift-

Enter to save your edits. Pressing Esc while editing will undo any changes.

Rows in the panel can be sorted alphabetically by specific column by clicking on a column

heading. A new column can be created using the Create New column button, and must

be one of four types - integer, string, real number (floating point), or boolean. Columns can be

deleted using the Delete Columns... button. NOTE: Deleting columns removes them

from Cytoscape, not just the Table Panel! To remove columns from the panel without

deleting them, simply unselect the column using the Select Columns button.

Import Data Table from Public Databases

It is also possible to import node data columns from public databases via web services, for

example from BioMart (http://www.biomart.org).

Basic Operation

1. Load a network, for example galFiltered.sif.

2. Select File → Import → Table → Public Databases....

3. You will first be asked to select from a set of web services. For this example, we will choose

ENSEMBL GENES 73 (SANGER UK).

http://www.biomart.org/#

1. In the Import Data Table from Web Services dialog, select a Data Source. Since

galFiltered.sif is a yeast network, select ENSEMBL GENES - SACCHAROMYCES

CEREVISIAE.

2. For Key Column in Cytoscape, select shared name for Column and Ensembl Gene ID for

Data Type.

The type of identifier selected under Data Type must match what is used in the selected

Column in the network.

1. Select the data columns you want to import.

2. Select Import.

When import is complete, you can see the newly imported data columns in the Table Panel.

Ontology and Annotation Import

Annotations in Cytoscape are stored as a set of ontologies (e.g. the Gene Ontology, or GO). An

ontology consists of a set of controlled vocabulary terms that annotate the objects. For

example, using the Gene Ontology, the Saccharomyces Cerevisiae CDC55 gene has a

biological process described as “protein biosynthesis”, to which GO has assigned the number

6412 (a GO ID).

GO 8150 biological_process

GO 7582 physiological processes

GO 8152 metabolism

GO 44238 primary metabolism

GO 19538 protein metabolism

GO 6412 protein biosynthesis

Graphical View of GO Term 6412: protein biosynthesis

Cytoscape can use this ontology DAG (Directed Acyclic Graph) to annotate objects in

networks. The Ontology Server (originally called “BioDataServer

(http://www.ncbi.nlm.nih.gov/pubmed/12066840)”) is a Cytoscape feature which allows you

to load, navigate, and assign annotation terms to nodes and edges in a network. Cytoscape 2.4

now has an enhanced GUI for loading ontology and associated annotation, enabling you to

load both local and remote files.

Ontology and Annotation File Format

The standard file formats used in the Cytoscape Ontology Server are OBO and Gene

Association. The GO website details these file formats:

Ontologies and Definitions: http://www.geneontology.org/GO.downloads.shtml#ont

Current Annotations: http://www.geneontology.org/GO.current.annotations.shtml

Default List of Ontologies

Cytoscape provides a list of ontologies available in OBO format. If an Internet connection is

available, Cytoscape will import ontology and annotation files directly from the remote

source. The table below lists the included ontologies.

Default List of Ontologies

O N T O L O GY N A M E D E S C R I PT I O N

G e n e O n t o l o g y F u l l This data source contains a full-size GO DAG, which contains all GO
terms. This OBO file is written in version 1.2 format.

G e n e r i c G O s l i m A subset of general GO Terms, including higer-level terms only.

Y e a s t G O s l i m A subset of GO Terms for annotating Yeast data sets maintained by SGD.

A structured controlled vocabulary of concrete and abstract (generic)

http://www.ncbi.nlm.nih.gov/pubmed/12066840
http://www.geneontology.org/GO.downloads.shtml#ont
http://www.geneontology.org/GO.current.annotations.shtml

M o l e c u l e r o l e (I N O H
P r o t e i n n a m e / f a m i l y
n a m e o n t o l o g y)

protein names. This ontology is a INOH pathway annotation ontology, one
of a set of ontologies intended to be used in pathway data annotation to
ease data integration. This ontology is used to annotate protein names,
protein family names, and generic/concrete protein names in the INOH
pathway data. INOH is part of the BioPAX working group.

E v e n t (I N O H p a t h w a y
o n t o l o g y)

A structured controlled vocabulary of pathway-centric biological
processes. This ontology is a INOH pathway annotation ontology, one of a
set of ontologies intended to be used in pathway data annotation to ease
data integration. This ontology is used to annotate biological processes,
pathways, and sub-pathways in the INOH pathway data. INOH is part of
the BioPAX working group.

P r o t e i n ‐ p r o t e i n
i n t e r a c t i o n

A structured controlled vocabulary for the annotation of experiments
concerned with protein-protein interactions.

P A T O

PATO is an ontology of phenotypic qualities, intended for use in a number
of applications, primarily phenotype annotation. For more information,
please visit the PATO wiki.

M o u s e p a t h o l o g y The Mouse Pathology Ontology (MPATH) is an ontology for mutant
mouse pathology. This is Version 1.

H u m a n d i s e a s e

This ontology is a comprehensive hierarchical controlled vocabulary for
human disease representation. For more information, please visit the
Disease Ontology website.

Although Cytoscape can import all kinds of ontologies in OBO format, annotation files are

associated with specific ontologies. Therefore, you need to provide the correct ontology-

specific annotation file to annotate nodes/edges/networks in Cytoscape. For example, while

you can annotate human network data using the GO Full ontology with human Gene

Association files, you cannot use a combination of the human Disease Ontology file and

human Gene Association files, because the Gene Association file is only compatible with GO.

Gene Association File

The Gene Association files provide annotation only for the Gene Ontology. It is a species-

specific annotation file for GO terms. Gene Association files will only work with Gene

Ontology annotation.

Sample Gene Association File (gene_association.sgd - annotation file for yeast):

Sample Gene Association File

SGD S000003916 AAD10 GO:0006081 SGD_REF:S000042151|PMID:10572264 ISS P aryl‐alcohol
dehydrogenase
(putative)

YJR155W gene taxon:4932

SGD S000005275 AAD14 GO:0008372 SGD_REF:S000069584 ND C aryl‐alcohol
dehydrogenase
(putative)

YNL331C gene taxon:4932

http://www.bioontology.org/wiki/index.php/PATO:Main_Page
http://diseaseontology.sourceforge.net/

Import Ontology and Annotation

Cytoscape provides a graphical user interface to import both ontology and annotation files at

the same time.

Note: All data sources in the preset list are remote URLs, meaning a network connection is

required.

Select File → Import → Ontology and Annotation... to open the “Import Ontology and

Annotation” interface. From the Annotation drop-down list, select a gene association file

for your network. For example, if you want to annotate the yeast network, select “Gene

Association file for Saccharomyces cerevisiae”.

* Select an Ontology data (OBO file) from the Ontology drop-down list. If the file is not loaded

yet, it will be shown in red. The first three files are Gene Ontology files. You can load other

ontologies, but you need your own annotation file to annotate networks.

Once you click the Import button, Cytoscape will start loading OBO and Gene Association

files from the remote sources. If you choose GO Full it may take a while since it is a large data

file.

When Cytoscape finishes importing files, the import window will be automatically closed.

All columns mapped by this function have the prefix “annotation” and look like this:

annotation.[column_name].

Note: Cytoscape supports both OBO formats: version 1.0 and 1.2.

Column Data Functions and Equations

Column Formulas

Introduction

Column data values may be formulas. A typical example is =ABS($otherColumn + LOG(10.2)).

Formulas are modeled after Excel(tm) but only support references to other columns at the

same node, edge or network. Since Cytoscape column names may contain embedded spaces,

optional braces around the column name (required if the name is not simply a letter followed

by one or more letters or digits) is allowed e.g. ${a name with spaces}. Backslashes, opening

braces and dollar signs in column names have to be escaped with a leading backslash. For

example the column name ex$am{p\le would have to be written as ${ex\$am\{p\\le}. Finally,

column names are case sensitive.

String constants are written with double-quotes “. In order to embed a double-quote or a

backslash in a string they have to be escaped with a leading backslash, therefore the string “\

must be written as “\“\\“. Formula results must be compatible with the type of the column that

they have been assigned to. The rules are rather lax though, for example anything can be

interpreted as a string and all numeric values will be accepted for a boolean (or logical)

column data where non-zero will be interpreted as true and zero as false. For integer

columns, floating point values will be converted using the rules of the Excel(tm) INT function.

Parentheses can be used for grouping and to change evaluation order. The operator

precedence rules follow those of standard arithmetic.

Operators

Currently supported operators are the four basic arithmetic operators and the ^

exponentiation operator. +, -, *, and \ are left-associative and ^ is right-associative. The string

concatenation operator is &. Supported boolean or logical operators are the comparison

operators <, >, <=, >=, =, and <> (not equal).

Supported Functions

Currently we support the following functions:

Cytoscape-specific functions

Degree – the degree of a node.

InDegree – the indegree of a node.

OutDegree – the outdegree of a node.

SourceID – the ID of the source node of an edge.

TargetID – the ID of the target of an edge.

Numeric Functions

Abs – Returns the absolute value of a number.

ACos – Returns the arccosine of a number.

ASin – Returns the arcsine of a number.

ATan2 – Returns the arctangent of two numbers x and y.

Average – Returns the average of a group of numbers.

Cos – Returns the cosine of an angle given in radians.

Cosh – Returns the hyperbolic sine of its argument.

Count – Returns the number of numeric values in a list.

Degrees – Returns its argument converted from radians to degrees.

Exp – Returns e raised to a specified number.

Ln – Returns the natural logarithm of a number.

Log – Returns the logarithm of a number to a specified base.

Max – Returns the maximum of a group of numbers.

Median – Returns the median of a list of numbers.

Min – Returns the minimum of a group of numbers.

Mod – Calculates the modulus of a number.

Pi – Returns an approximation of the value of p.

Radians – Returns its argument converted from degrees to radians.

Round – Rounds a number to a specified number of decimal places.

Sin – Returns the sine of an angle given in radians.

Sinh – Returns the hyperbolic sine of its argument.

Sqrt – Calculates the square root of a number.

Tan – returns the tangent of its argument in radians.

Tanh – returns the hyperbolic tangent of its argument in radians.

Trunc – Truncates a number.

String Functions

Concatenate – Concatenates two or more pieces of text.

Left – Returns a prefix of s string.

Len – Returns the length of a string.

Lower – Converts a string to lowercase.

Mid – Selects a substring of some text.

Right – Returns a suffix of a string.

Substitute – Replaces some text with other text.

Text – Format a number using the Java DecimalFormat class’ conventions.

Upper – Converts a string to uppercase.

Value – Converts a string to a number.

Logical/Boolean Functions

And – Returns the logical conjunction of any number of boolean values.

Not – Returns the logical negation of a boolean value.

Or – Returns the logical disjunction of any number of boolean values.

List Functions

First – Returns the first entry in a list.

Last – Returns the last entry in a list.

Nth – Returns the n-th entry in a list.

Statistical Functions

Largest – the kth largest value in a list.

GeoMean – the geometric mean of a set of numbers.

HarMean – the harmonic mean of a set of numbers.

Mode – the mode of a set of numbers.

NormDist – Returns the pdf or CDF of the normal distribution.

Permut – Returns the number of permutations for a given number of objects.

StDev - sample standard deviation.

Var – sample variance.

Miscellaneous Functions

Combin - Returns the number of combinations for a given number of objects.

If – Returns one of two alternatives based on a boolean value.

ListToString – Returns a string representation of a list.

Now – Returns a string representation of the current date and time.

Today – returns a string representation of the current date.

Pitfalls

The possibly biggest problem is the referencing of other columns that have null values. This is

not allowed and leads to errors. In order to mitigate this problem we support the following

optional syntax for column references: ${columnName:defaultValue}. The interpretation is

that if columnName is null, then the default value will be used, otherwise the value of the

referenced value will be used instead. The referenced column must still be a defined column

and not an arbitrary name! The other potential problem is when there are circular column

reference dependencies. Circular dependencies will be detected at formula evaluation time

and lead to a run-time error.

Useful Tips

When working with formulas it can be very helpful to open the Developer’s Log Console.

Formula evaluation errors will be logged there.

The Formula Builder

In order to ease the creation of formulas as well as to facilitate discovery of built-in functions

we provide a Function Builder in the Table Panel. After selecting a non-list column cell, you

can invoke it by clicking on . This should bring up the Function Builder which looks like

this:

Select a function on the left hand side of the dialog - here, we’ve selected the ABS function.

Next to the list of functions, you can specify one or more arguments. This can either be a

column (selected from the drop-down list) or a constant specified in the box below. If you

select a column, the value of that column (in the row containing the formula) will be used, and

the function result will be updated dynamically when that value changes. Click Add to add an

argument - you can add one or more depending on how many arguments the function accepts.

At the bottom of the dialog is a preview of the current formula. Under Apply to, you can select

whether the formula will apply to the current cell only, the cell selection, or the entire column.

Click OK when you are satisfied with the result, or Cancel to discard any changes.

The Function Builder is a useful tool for discovery of the list of built-in functions, which has

the return type matching the data type of the column. Arguments can either be selected from

a list of named columns, or constant values can be entered in a text entry field. A major

shortcoming at this time is that the Formula Builder won’t let you compose functions with

function calls as arguments. If you need the most general functionality, please type the

expression directly into a cell.

A Note for App Writers

It is relatively easy to add your own built-in formula functions. A simple function can probably

be implemented in 15 to 20 minutes. It can then be registered via the parser and becomes

immediately available to the user. It will of course also show up in the drop-down list in the

Function Builder.

Finding and Filtering Nodes and Edges

Search Bar

You can search for nodes and edges by column value directly through Cytoscape’s tool bar.

For example, to select nodes or edges with a column value that starts with “STE”, type ste* in

the search bar. The search is case-insensitive. The * is a wildcard character that matches

zero or more characters, while ”?” matches exactly one character. So ste? would match

“STE2” but would not match “STE12”. Searching for ste* would match both.

To search a specific column, you can prefix your search term with the column name followed

by a : . For example, to select nodes and edges that have a “COMMON” column value that

starts with “STE”, use common:ste* . If you don’t specify a particular column, all columns will be

searched.

Columns with names that contain spaces, quotes, or characters other than letters and

numbers currently do not work when searching a specific column. This will be fixed in a future

release.

To search for column values that contain special characters you need to escape those

characters using a “\”. For example, to search for “GO:1232”, use the query GO\:1232 . The

complete list of special characters is:

+ ‐ & | ! () { } [] ^ " ~ * ? : \

Note: Escaping characters only works when searching all columns. It currently does not work

for column-specific searching. This will be fixed in a future release.

Filters

Cytoscape 3 provides a new user interface for filtering nodes and edges. These tools can be

found in the Select panel:

There are two types of filters. On the Filter tab are narrowing filters, which can be combined

into a tree. On the Chain tab are chainable filters, which can be combined in a linear chain.

Narrowing Filters

Narrowing filters are applied to the entire network, and are used to select a subset of nodes

or edges in a network based on user-specified constraints. For example, you can find edges

with a weight between 0 and 5.5, or nodes with degree less than 3. A filter can contain an

arbitrary number of sub-filters.

To add a filter click on the “+” button. To delete a filter (and all its sub-filters) click the “x”

button. To move a filter grab the handle with the mouse and drag and drop the filter on

its intended destination. Dropping a filter on top of another filter will group the filters into a

composite filter.

Interactive Filter Application Mode

Due to the nature of narrowing filters, Cytoscape can apply them to a network efficiently and

interactively. Some filters even provide slider controls to quickly explore different thresholds.

This is the default behavior on smaller networks. For larger networks, Cytoscape

automatically disables this interactivity. You can override this by manually checking the Apply

when filter changes box above the Apply button:

Cytoscape comes packaged with the following narrowing filters:

Column Filter

This filter will match nodes or edges that have particular column values. For numeric columns

sliders are provided to set minimum and maximum values, or the values may be entered

manually.

From string columns, a variety of matching options are provided:

For example, column values can be checked to see if they contain or match exactly the text

entered in the text box. More complex matching criteria can be specified by using a Java-style

regular expression.

By default string matching is case insensitive. Case sensitive matching requires the use of a

regular expression that starts with “(?-i)”. For example to match the text “ABC” in a case

sensitive way use the following regular expression: “(?-i)ABC”.

Cytoscape uses Java regular expression syntax.

Degree Filter

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

The degree filter matches nodes with a degree that falls within the given minimum and

maximum values, inclusive. You can choose whether the filter operates on the in-degree, out-

degree or overall (in + out) degree.

Topology Filter

The topology filter matches nodes having a certain number of neighbors which are within a

fixed distance away, and which match a sub-filter. The thresholds for the neighborhood size

and distance can be set independently, and the sub-filter is applied to each such neighbor

node.

The topology filter will successfully match a node if the sub-filter matches against the

required number of neighbor nodes.

Grouping and Organizing Filters

By default, nodes and edges need to satisfy the constraints of all your filters. You can change

this so that instead, only the constraints of at least one filter needs to be met in order to

match a node or edge. This behavior is controlled by the Match all/any drop-down box. This

appears once your filter has more than one sub-filter. For example, suppose you wanted to

match nodes with column COMMON containing ste or cdc , but you only want nodes with

degree 5 or more, you’d first construct a filter that looks like this:

This filter will match nodes where COMMON contains ste and cdc . To change this to a

logical or operation, drag either of the column filters by its handle onto the other column

filter to create a new group. Now change the group’s matching behavior to Match any:

You can also reorder filters by dropping them in-between existing filters.

Chainable Filters

Chainable filters are combined in an ordered list. The nodes and edges in the output of a filter

become the input of the next filter in the chain. The first filter in the chain gets its input from

the current selection or from a filter on the Filter tab. The output of the last filter becomes the

new selection.

You can specify the input to the first filter in the chain by selecting a Start with, where

Current selection refers to the nodes and edges currently selected. You can also choose a

narrowing filter, which produces a different set of selected nodes and edges.

Chainable filters can be reordered by dragging one by the handle and dropping it between

existing filters.

Cytoscape currently bundles the following chainable filters:

Edge Interaction Transformer

This transformer will go through all the input edges and selectively add their source nodes,

target nodes, or both, to the output. This is useful for adding nodes that are connected to

edges that match a particular filter.

Output options:

Add (default): Automatically includes all input nodes and edges in the output, and adds

source or target nodes from input edges to the output.

Replace with: Does not automatically include input nodes and edges in the output. Only

outputs nodes that match the filter.

A sub-filter may be added as well. When a sub-filter is present the source/target nodes must

match the filter to be included in the output.

Node Adjacency Transformer

This transformer is used to add nodes and edges that are adjacent to the input nodes. A sub-

filter may be specified as well.

Note that pressing the Apply button repeatedly may cause the selection to continuously

expand. This allows adjacent nodes that are at greater distances to be added.

Output options:

Add (default): Automatically includes all input nodes and edges in the output, and adds

selected adjacent nodes and edges.

Replace with: Only outputs the adjacent nodes/edges.

Select options:

Adjacent nodes: Output nodes that are adjacent to the input nodes.

Adjacent edges: Output edges that are adjacent (incident) to the input nodes.

Adjacent nodes and edges (default): Output both nodes and edges that are adjacent to the

input nodes.

Edge direction options. (Hidden by default, click the small arrow icon to reveal.):

Incoming: Only include adjacent nodes/edges when the adjacent edge is incoming.

Outgoing: Only include adjacent nodes/edges when the adjacent edge is outgoing.

Incoming and Outgoing (default): Ignore the directionality of adjacent edges.

Sub-filter options. (Available when a sub-filter has been added.):

Adjacent nodes (default): The sub-filter is only applied to adjacent nodes. (Edges to the

adjacent nodes are still included in the output.)

Adjacent edges: The sub-filter is only applied to adjacent edges. (Nodes connected to the

adjacent edges are still included in the output.)

Adjacent nodes and edges: Both the adjacent edge and its connected node must match the

filter. Note that for a filter to match an edge and a node at the same time it should be a

compound filter that is set to “Match any (OR)”.

Working with Narrowing and Chainable Filters

The name of active filter appears in the drop-down box at the top of Select panel. Beside this

is the options button which will allow you to rename, remove or export the active filter. It also

lets you create a new filter, or import filters.

At the bottom of the Select panel, there is an Apply button that will re-apply the active filter.

On the opposite side of the progress bar is the cancel button, which will let you interrupt a

long-running filter.

The Select Menu

The Select → Nodes and Select → Edges menus provide several mechanisms for selecting

nodes and edges. Most options are fairly straightforward; however, some need extra

explanation.

Select → Nodes → From ID List File... selects nodes based on node identifiers found in a

specified file. The file format is simply one node id per line:

Node1
Node2
Node3
...

Navigation and Layout

Basic Network Navigation

Cytoscape uses a Zoomable User Interface for navigating and viewing networks. ZUIs use two

mechanisms for navigation: zooming and panning. Zooming increases or decreases the

magnification of a view based on how much or how little a user wants to see. Panning allows

users to move the focus of a screen to different parts of a view.

Zoom

Cytoscape provides four mechanisms for zooming: toolbar buttons, menu options, keyboard

shortcuts and the scroll wheel.

Use the zooming buttons located on the toolbar to zoom in and out of the interaction network

shown in the current network display. Zoom icons are detailed below:

From Left to Right:

Zoom In

Menu option: View → Zoom In

Keyboard shortcut: Ctrl‐Plus (Command‐Plus on Mac OS X)

Zoom Out

Menu option: View → Zoom Out

Keyboard shortcut: Ctrl‐Minus (Command‐Minus on Mac OS X)

Zoom Out to Display all of Current Network

Menu option: View → Fit Content

Keyboard shortcut: Ctrl‐0 (Command‐0 on Mac OS X)

Zoom Selected Region

http://en.wikipedia.org/wiki/Zooming_User_Interface

Menu option: View → Fit Selected

Keyboard shortcut: Ctrl‐9 (Command‐9 on Mac OS X)

Using the scroll wheel, you can zoom in by scrolling up and zoom out by scrolling downwards.

These directions are reversed on Macs with natural scrolling enabled (the default for Mac OS

X Lion and newer versions).

Pan

There are two ways to pan the network:

Left-Click and Drag - You can pan the network view by holding down the left mouse button

and moving the mouse.

Dragging Box on Network Overview - You can also pan the view by left-clicking and

dragging the blue box in the overview panel in the lower part of the view.

Other Mouse Behaviors

Select

Click the left mouse button on a node or edge to select that element.

Hold down the Shift or Ctrl key (Command on Macs) and left-click a node or edge to add

it to the selection. Doing the same on a selected element unselects it.

Hold down the left mouse button on the canvas background and drag the mouse while

holding down the Shift or Ctrl key (Command on Macs) to select groups of nodes/edges.

Context

Click the right mouse button (or Ctrl+left mouse button on Macs) on a node/edge to launch a

context-sensitive menu with additional information about the node/edge.

Node Context Menu

This menu can change based on the current context. For nodes, it typically shows:

Add

Edit

Select

Group

Nested Networks

file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Quick_Tour_of_Cytoscape.html#the-network-overview-window

Apps

External Links

Preferences

Edges usually have the following menu:

Edit

Select

Apps

External Links

Preferences

Apps can contribute their own items into node and edge context menus. These additions

usually appear in the Apps section of the context menu.

Nested Network Node Context Menu

Add Nested Network: Lets the user select any network in Cytoscape as the current node’s

nested network. If the current node already has a nested network it will be replaced.

Remove Nested Network: Removes the currently associated nested network from a node.

The associated network is not deleted. Only the association between the node and the

network is removed.

Go to Nested Network: The current node’s nested network will be the current network

view and have the focus. Should a network view for the nested network not exist, it will be

created.

More information about nested networks can be found in the Nested Networks section.

Automatic Layout Algorithms

The Layout menu has an array of features for organizing the network visually according to one

of several algorithms, aligning and rotating groups of nodes, and adjusting the size of the

network. Cytoscape layouts have three different sources, which are reflected in the Layout

menu.

With the exception of the yFiles layouts (explained below), Cytoscape Layouts have the

option to operate on only the selected nodes, and all provide a Settings... panel to change the

parameters of the algorithm. Most of the Cytoscape layouts also partition the graph before

performing the layout. In addition, many of these layouts include the option to take either

node or edge columns into account. A few of the layout algorithms are:

file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Nested_Networks.html#nested-networks

Grid Layout

The grid layout is a simple layout the arranges all of the nodes in a square grid. This is the

default layout and is always available as part of the Cytoscape core. It is available by selecting

Layout → Grid Layout. A sample screen shot is shown above.

Edge-weighted Spring-Embedded Layout

The spring-embedded layout is based on a “force-directed” paradigm as implemented by

Kamada and Kawai (1988). Network nodes are treated like physical objects that repel each

other, such as electrons. The connections between nodes are treated like metal springs

attached to the pair of nodes. These springs repel or attract their end points according to a

force function. The layout algorithm sets the positions of the nodes in a way that minimizes

the sum of forces in the network. This algorithm can be applied to the entire network or a

portion of it by selecting the appropriate options from Layout → Edge-weighted Spring

Embedded.

Attribute Circle Layout

The Attribute Circle layout is a quick, useful layout, particularly for small networks, that will

locate all of the nodes in the network around a circle. The node order is determined by a user-

selected node column. The result is that all nodes with the same value for that column are

located together around the circle. Using Layout → Attribute Circle Layout → column to put

all nodes around a circle using column to position them. The sample screen shot above shows

the a subset of the galFiltered network organized by node degree.

Group Attributes Layout

The Group Attributes layout is similar to the Attribute Circle layout described above except

that instead of a single circle with all of the nodes, each set of nodes that share the same value

for the column are laid out in a separate circle. The same network shown above (network

generated by PSICQUIC Client) is shown above, using Layout → Group Attributes Layout →
taxonomy.

Prefuse Force Directed Layout

The force-directed layout is a layout based on the “force-directed” paradigm. This layout is

based on the algorithm implemented as part of the prefuse toolkit (http://www.prefuse.org/)

provided by Jeff Heer. The algorithm is very fast and with the right parameters can provide a

very visually pleasing layout. The Force Directed Layout will also accept a numeric edge

column to use as a weight for the length of the spring, although this will often require more

use of the Settings... dialog to achieve the best layout. This algorithm is available by selecting

http://www.prefuse.org/

Layout → Prefuse Force-Directed Layout → (unweighted) or the edge column you want to

use as a weight. A sample screen shot showing a portion of the galFiltered network provided

in sample data is provided above.

yFiles Layouts

yFiles layouts are a set of commercial layout algorithms which are provided courtesy of

yWorks (http://www.yworks.com). Due to license restrictions, the detailed parameters for

these layouts are not available (there are no yFiles entries in the Layout → Settings...). The

main layout algorithms provided by yFiles are:

yFiles Organic Layout

http://www.yworks.com/

The organic layout algorithm is a kind of spring-embedded algorithm that combines elements

of the other algorithms to show the clustered structure of a graph. This algorithm is available

by selecting Layout → yFiles Layouts → Organic.

yFiles Circular Layout

This algorithm produces layouts that emphasize group and tree structures within a network.

It partitions the network by analyzing its connectivity structure, and arranges the partitions

as separate circles. The circles themselves are arranged in a radial tree layout fashion. This

algorithm is available by selecting Layout → yFiles Layouts → Circular.

yFiles Hierarchical Layout

The hierarchical layout algorithm is good for representing main direction or “flow” within a

network. Nodes are placed in hierarchically arranged layers and the ordering of the nodes

within each layer is chosen in such a way that minimizes the number of edge crossings. This

algorithm is available by selecting Layout → yFiles Layouts → Hierarchical.

Layout Parameters

Many layouts have adjustable parameters that are exposed through the Layouts → Settings...

menu option. The Layout Settings dialog, which allows you to choose which layout algorithm

settings to adjust, is shown below. The settings presented vary by algorithm and only those

algorithms that allow access to their parameters will appear in the drop-down menu at the top

of the dialog. Once you’ve modified a parameter, clicking the Execute Layout button will apply

the layout.

Edge Bend and Automatic Edge Bundling

From Cytoscape 3.0, Edge Bend is a regular edge property and can be used as a part of a Style.

Just like any other edge property, you can select a Default Value, a Mapping and use Bypass

for select nodes. In the Styles tab, select the Bend property from the Properties drop-down

and click on either the Default Value, Mapping or Bypass cell to bring up the Edge Bend

Editor. In the editor, you can add as many handles as you want to the edge using Alt-Click on

Windows, Option-Click on Mac, or Ctrl-Alt-Click on Linux.

To clear all edge bends, select Layout → Clear All Edge Bends.

In addition to adding handles manually, you can use the Bundle Edges function to bundle all or

selected edges automatically.

1. Select Layout → Bundle Edges → All Nodes and Edges.

2. Set parameters.

Details of the algorithm is described in this paper

(http://www.win.tue.nl/~dholten/papers/forcebundles_eurovis.pdf).

3. Press OK to run. Edge bundling may take a long time if the number of edges is large.

If it takes too long, try decreasing Maximum Iterations.

For large, dense networks, try setting Maximum iterations in the range of 500 - 1000.

Note: The handle locations will be optimized for current location of nodes. If you move node

positions, you need to run the function again to get proper result.

Manual Layout

The simplest method to manually organize a network is to click on a node and drag it. If you

select multiple nodes, all of the selected nodes will be moved together.

Rotate

http://www.win.tue.nl/~dholten/papers/forcebundles_eurovis.pdf

Selecting the Layout → Rotate option will show the Rotate window in the Tool Panel. This

function will either rotate the entire network or a selected portion of the network. The image

below shows a network with selected nodes rotated.

Before

After

Scale

Selecting the Layout → Scale option will open the Scale window in the Tool Panel. This

function will scale the position of the entire network or of the selected portion of the

network. Note that only the position of the nodes will be scaled, not the node sizes. Node size

can be adjusted using Styles. The image below shows selected nodes scaled.

Before

file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Styles.html#styles

After

Align, Distribute and Stack

Selecting the Layout → Align/Distribute option will open the Align and Distribute window in

the Tool Panel. Align provides different options for either vertically or horizontally aligning

selected nodes against a line. The differences are in what part of the node gets aligned, e.g. the

center of the node, the top of the node, the left side of the node. Distribute evenly distributes

selected nodes between the two most distant nodes along either the vertical or horizontal

axis. The differences are again a function what part of the node is used as a reference point for

the distribution. Stack vertically or horizontally stacks selected nodes with the full

complement of alignment options. The table below provides a description of what each

button does.

Align Options

B UT T O N B E FO R E A FT E R D E S C R I PT I O N O F A L I GN O PT I O N S

Vertical Align Top - The tops of the selected nodes are
aligned with the top-most node.

Vertical Align Center - The centers of the selected nodes
are aligned along a line defined by the midpoint between
the top and bottom-most nodes.

Vertical Align Bottom - The bottoms of the selected nodes
are aligned with the bottom-most node.

Horizontal Align Left - The left hand sides of the selected
nodes are aligned with the left-most node.

Horizontal Align Center - The centers of the selected
nodes are aligned along a line defined by the midpoint
between the left and right-most nodes.

Horizontal Align Right - The right hand sides of the
selected nodes are aligned with the right-most node.

Distribute Options

B UT T O N B E FO R E A FT E R D E S C R I PT I O N O F A L I GN O PT I O N S

Vertical Distribute Top - The tops of the selected nodes
are distributed evenly between the top-most and bottom-
most nodes, which should stay stationary.

Vertical Distribute Center - The centers of the selected
nodes are distributed evenly between the top-most and
bottom-most nodes, which should stay stationary.

Vertical Distribute Bottom - The bottoms of the selected
nodes are distributed evenly between the top-most and
bottom-most nodes, which should stay stationary.

Horizontal Distribute Left - The left hand sides of the
selected nodes are distributed evenly between the left-
most and right-most nodes, which should stay stationary.

Horizontal Distribute Center - The centers of the selected
nodes are distributed evenly between the left-most and
right-most nodes, which should stay stationary.

Horizontal Distribute Right - The right hand sides of the
selected nodes are distributed evenly between the left-
most and right-most nodes, which should stay stationary.

Stack Options

B UT T O N B E FO R E A FT E R D E S C R I PT I O N O F A L I GN O PT I O N S

Vertical Stack Left - Vertically stacked below top-most
node with the left-hand sides of the selected nodes
aligned.

Vertical Stack Center - Vertically stacked below top-most
node with the centers of selected nodes aligned.

Vertical Stack Right - Vertically stacked below top-most
node with the right-hand sides of the selected nodes
aligned.

Horizontal Stack Top - Horizontally stacked to the right of
the left-most node with the tops of the selected nodes
aligned.

Horizontal Stack Center - Horizontally stacked to the right
of the left-most node with the centers of selected nodes
aligned.

Horizontal Stack Bottom - Horizontal Stack Center -
Horizontally stacked to the right of the left-most node
with the bottoms of the selected nodes aligned.

Node Movement and Placement

In addition to the ability to click on a node and drag it to a new position, Cytoscape now has

the ability to move nodes using the arrow keys on the keyboard. By selecting one or more

nodes using the mouse and clicking one of the arrow keys (←, ↑, →, ↓) the selected nodes will

move one pixel in the chosen direction. If an arrow key is pressed while holding the Shift key

down, the selected nodes will 15 pixels in the chosen direction.

Styles

What are Styles?

One of Cytoscape’s strengths in network visualization is the ability to allow users to encode

any table data (name, type, degree, weight, expression data, etc.) as a property (such as color,

size of node, transparency, or font type) of the network. A set of these encoded or mapped

table data sets is called a Style and can be created or edited in the Style panel of the Control

Panel. In this interface, the appearance of your network is easily customized. For example, you

can:

Specify a default color and shape for all nodes.

Set node sizes based on the degree of connectivity of the nodes. You can visually see the

hub of a network...

...or, set the font size of the node labels instead.

Visualize gene expression data along a color gradient.

Encode specific physical entities as different node shapes.

Use specific line types to indicate different types of interactions.

Control edge transparency (opacity) using edge weights.

Control multiple edge properties using edge score.

Browse extremely-dense networks by controlling the opacity of nodes.

Show highly-connected region by edge bundling and opacity.

Add photo/image/graphics on top of nodes.

Cytoscape 3 has several sample styles. Below are a few examples of these applied to the

galFiltered.sif network :

Introduction to the Style Interface

The Style interface is located under the Style panel of the Control Panel.

This interface allows you to create/delete/view/switch between different styles using the

Current Style options. The panel displays the mapping details for a given style and is used to

edit these details as well.

At the top of the interface, there is a drop-down menu for selecting a pre-defined style.

There is also an Options drop-down with options to rename, remove, create and copy a

Style, and an option to create a legend for the selected Style.

The main area of the interface is composed of three tabs, for Node, Edge and Network.

Each tab contains a list of properties relevant to the current style. At the top of the list a

Properties drop-down allows you to add additional properties to the list.

Each property entry in the list has 3 columns:

The Default Value shows just that, the default value for the property. Clicking on the

Default Value column for any property allows you to change the default value.

Mapping displays the type of mapping currently in use for the property. Clicking on the

Mapping column for any property expands the property entry to show the interface

for editing the mapping. Details on the mapping types provided here.

Bypass displays any style bypass for a selected node or edge. Note that a node/edge or

subset of nodes/edges must be selected to activate the Bypass column. Clicking on the

Bypass column for selected node(s)/edge(s) allows you to enter a bypass for that

property for selected node(s)/edge(s).

The Default Value is used when no mapping is defined for a property, or for nodes/edges not

covered by a mapping for a particular property. If a Mapping is defined for a property, this

defines the style for all or a subset of nodes/edges, depending on how the mapping is defined.

A Bypass on a specific set of nodes/edges will bypass and override both the default value and

defined mapping.

Introduction to Style

The Cytoscape distribution includes several predefined styles to get you started. To examine a

few styles, try out the following example:

Step 1. Load some sample data

Load a sample session file: From the main menu, select File → Open..., and select the file

sampleData/galFiltered.cys.

The session file includes a network, some annotations, and sample styles. By default, the

style galFiltered Style is selected. Gene expression values for each node are colored along

a color gradient between blue and yellow (where blue represents a low expression ratio

and yellow represents a high expression ratio, using thresholds set for the gal1RGexp

experiment bundled with Cytoscape in the sampleData/galExpData.csv file). Also, node

size is mapped to the degree of the node (number of edges connected to the node) and you

can see the hubs of the network as larger nodes. See the sample screenshot below:

file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Styles.html#how-mappings-work

Step 2. Switch between different styles

You can change the style by making a selection from the Current Style drop-down list, found

at the top of the Style panel.

For example, if you select Sample1, a new style will be applied to your network, and you will

see a white background and round blue nodes. If you zoom in closer, you can see that protein-

DNA interactions (specified with the label “pd”) are drawn with dashed edges, whereas

protein-protein interactions (specified with the label “pp”) are drawn with solid edges (see

sample screenshot below).

Finally, if you select Solid, you can see the graphics below:

This style does not have mappings except node/edge labels, but you can modify the network

graphics by editing the Default Value for any property.

Additional sample styles are available in the sampleStyles.xml file in the sampleData directory.

You can import the sample file from File → Import → Styles....

List of Node, Edge and Network Properties

Cytoscape allows a wide variety of properties to be controlled. These are summarized in the

tables below.

Node Properties

N O D E PR O PE R T I E S D E S C R I PT I O N

B o r d e r L i n e T y p e The type of line used for the border of the node.

B o r d e r T r a n s p a r e n c y The opacity of the color of the border of the node. Zero means totally
transparent, and 255 means totally opaque.

B o r d e r W i d t h The width of the node border.

L a b e l The text used for the node label.

L a b e l F o n t F a c e The font used for the node label.

L a b e l F o n t S i z e The size of the font used for the node label.

L a b e l P o s i t i o n The position of the node label relative to the node.

L a b e l T r a n s p a r e n c y The opacity of the node label. Zero means totally transparent, and
255 means totally opaque.

L a b e l W i d t h

The maximum width of the node label. If the node label is wider than
the specified width, Cytoscape will automatically wrap the label on
space characters. Cytoscape will not hyphenate words, meaning that
if a single word (i.e. no spaces) is longer than maximum width, the
word will be displayed beyond the maximum width.

N e s t e d N e t w o r k I m a g e
V i s i b l e

A boolean value that indicates whether a nested network should be
visualized (assuming a nested network is present for the specified
node).

P a d d i n g (C o m p o u n d N o d e) Internal padding of the compound node (a node that contains other
nodes).

P a i n t

The color of the whole node, including its border, label and selected
paint. This property can be added to the list from the drop-down
menu Properties → Paint → Paint.

B o r d e r P a i n t

The color of the border of the node. This property can be added to
the list from the drop-down menu Properties → Paint → Border
Paint.

I m a g e / C h a r t 1 ‐ 9

A user-defined graphic (image, chart or gradient) that is displayed on
the node. These properties (maximum of nine) can be added to the list
from the drop-down menu Properties → Paint → Custom Paint n →
Image/Chart n.

I m a g e / C h a r t P o s i t i o n 1 ‐ 9

The position of each graphic (image, chart or gradient). These
properties (maximum of nine) can be added to the list from the drop-
down menu Properties → Paint → Custom Paint n → Image/Chart
Position n.

F i l l C o l o r
The color of the node. This property can be added to the list from the
drop-down menu Properties → Paint → Fill Color.

L a b e l C o l o r
The color of the node label. This property can be added to the list
from the drop-down menu Properties → Paint → Label Color.

S e l e c t e d P a i n t

The fill color of the node when selected. This property can be added
to the list from the drop-down menu Properties → Paint → Selected
Paint.

S h a p e The shape of the node.

S h a p e (C o m p o u n d N o d e) The shape of the compound node (a node that contains other nodes).

S i z e

The size of the node. Width and height will be equal. This property is
mutually exclusive of Node Height and Node Width. It can be added
to the list from the drop-down menu Properties → Size → Size.

I m a g e / C h a r t S i z e 1 ‐ 9
The size of the related node Image/Chart. It can be added to the list
from the drop-down menu Properties → Size → Image/Chart Size n.

H e i g h t

The height of the node. Height will be independent of width. This
property is mutually exclusive of Node Size. It can be added to the list
from the drop-down menu Properties → Size → Height.

W i d t h
The width of the node. Width will be independent of height. This
property is mutually exclusive of Node Size. It can be added to the list
from the drop-down menu Properties → Size → Width.

F i t C u s t o m G r a p h i c s t o
n o d e

Toggle to fit Image/Chart size to node size. It can be added to the list
from the drop-down menu Properties → Size → Fit Custom Graphics
to node.

L o c k n o d e w i d t h a n d
h e i g h t

Toggle to ignore Width and Height, and to use Size for both values. It
can be added to the list from the drop-down menu Properties → Size
→ Lock node width and height.

T o o l t i p The text of the tooltip that appears when a mouse hovers over the
node.

T r a n s p a r e n c y The opacity of the color of the node. Zero means totally transparent,
and 255 means totally opaque.

V i s i b l e Hides the node if set to false. By default, this value is set to true.

X L o c a t i o n X location of the node. Default value of this will be ignored. The value
will be used only when mapping function is defined.

Y L o c a t i o n Y location of the node. Default value of this will be ignored. The value
will be used only when mapping function is defined.

Z L o c a t i o n Z location of the node. Default value of this will be ignored. The value
will be used only when mapping function is defined.

Edge Properties

E D GE PR O PE R T I E S D E S C R I PT I O N

B e n d The edge bend. Defines how the edge is rendered. Users can add
multiple handles to define how to bend the edge line.

C u r v e d If Edge Bend is defined, edges will be rendered as straight or curved
lines. If this value is set to true, edges will be drawn as curved lines.

L a b e l The text used for the edge label.

L a b e l F o n t F a c e The font used for the edge label.

L a b e l F o n t S i z e The size of the font used for the edge label.

L a b e l T r a n s p a r e n c y The opacity of the color of the edge label. Zero means totally
transparent, and 255 means totally opaque.

L i n e T y p e The type of stoke used to render the line (solid, dashed, etc.)

P a i n t

The color of the whole edge (including the stroke and arrows) when it
is selected or unselected. This property can be added to the list from
the drop-down menu Properties → Paint → Paint.

C o l o r (S e l e c t e d)

The color of the whole edge (stroke and arrows) when selected. This
property can be added to the list from the drop-down menu
Properties → Paint → Color (Selected) → Color (Selected).

S o u r c e A r r o w S e l e c t e d
P a i n t

The selected color of the arrow on the source node end of the edge. It
can be added to the list from the drop-down menu Properties →
Paint → Color (Selected) → Source Arrow Selected Paint.

S t r o k e C o l o r (S e l e c t e d)

The color of the edge line when selected. It can be added to the list
from the drop-down menu Properties → Paint → Color (Selected) →
Stroke Color (Selected).

T a r g e t A r r o w S e l e c t e d
P a i n t

The selected color of the arrow on the target node end of the edge. It
can be found in the drop-down menu Properties → Paint → Color
(Selected) → Target Arrow Selected Paint.

C o l o r (U n s e l e c t e d)

The color of the whole edge (stroke and arrows) when it is not
selected. It can be found in the drop-down menu Properties → Paint
→ Color (Unselected) → Color (Unselected).

S o u r c e A r r o w U n s e l e c t e d
P a i n t

The color of the arrow on the source node end of the edge. It can be
found in the drop-down menu Properties → Paint → Color
(Unselected) → Source Arrow Unselected Paint.

S t r o k e C o l o r (U n s e l e c t e d)

The color of the edge line. It can be found in the drop-down menu
Properties → Paint → Color (Unselected) → Stroke Color
(Unselected).

T a r g e t A r r o w U n s e l e c t e d
P a i n t

The color of the arrow on the target node end of the edge. It can be
found in the drop-down menu Properties → Paint → Color
(Unselected) → Target Arrow Unselected Paint.

L a b e l C o l o r
The color of the edge label. It can be found in the drop-down menu
Properties → Paint → Label Color.

S o u r c e A r r o w S h a p e The shape of the arrow on the source node end of the edge.

T a r g e t A r r o w S h a p e The shape of the arrow on the target node end of the edge.

T o o l t i p The text of the tooltip that appears when a mouse hovers over the
edge.

T r a n s p a r e n c y The opacity of the of the edge. Zero means totally transparent, and
255 means totally opaque.

V i s i b l e Hides the edge if set to false. By default, this value is set to true.

W i d t h The width of the edge line.

E d g e c o l o r t o a r r o w s

If true then Color (Unselected) is used for the whole edge, including
its line and arrows. It can be found in the drop-down menu Properties
→ Paint → Color (Unselected) → Edge color to arrows.

Network Properties

N E T W O R K PR O PE R T I E S D E S C R I PT I O N

B a c k g r o u n d P a i n t The background color of the network view.

C e n t e r X L o c a t i o n The X location of network view center.

C e n t e r Y L o c a t i o n The Y location of network view center.

E d g e S e l e c t i o n Edges are selectable or not. If this is false, users cannot select edges.

N o d e S e l e c t i o n Nodes are selectable or not. If this is false, users cannot select nodes.

S c a l e F a c t o r The zoom level of the network view.

S i z e
The size (width and height) of the network view. It can be found in the
drop-down menu Properties → Size → Size.

H e i g h t
The height of the network view. It can be found in the drop-down
menu Properties → Size → Height.

W i d t h
The width of the network view. It can be found in the drop-down
menu Properties → Size → Width.

T i t l e The title of the network view.

Available Shapes and Line Styles

Available Shapes and Line Styles

A V A I L A B L E
S H A PE S A N D L I N E

S T Y L E S
S A M PL E

N o d e S h a p e s

L i n e T y p e s

A r r o w S h a p e s

How Mappings Work

For each property, you can specify a default value or define a dynamic mapping. Cytoscape

currently supports three different types of mappings:

1. Passthrough Mapping

The values of network column data are passed directly through to properties. A

passthrough mapping is typically used to specify node/edge labels. For example, a

passthrough mapping can label all nodes with their common gene names.

2. Discrete Mapping

Discrete column data are mapped to discrete properties. For example, a discrete

mapping can map different types of molecules to different node shapes, such as

rectangles for gene products and ellipses for metabolites.

3. Continuous Mapping

Continuous data are mapped to properties. Depending on the property, there are three

kinds of continuous mapping:

i. Continuous-to-Continuous Mapping: for example, you can map a continuous

numerical value to node size.

ii. Color Gradient Mapping: This is a special case of continuous-to-continuous

mapping. Continuous numerical values are mapped to a color gradient.

iii. Continuous-to-Discrete Mapping: for example, all values below 0 are mapped to

square nodes, and all values above 0 are mapped to circular nodes.

However, note that there is no way to smoothly morph between circular nodes and

square nodes.

The table below shows mapping support for each property.

Legend

Legend

S Y M B O L D E S C R I PT I O N

‐ Mapping is not supported for the specified property.

+ Mapping is fully supported for the specified property.

o Mapping is partially supported for the specified property. Support for "continuous to
continuous" mapping is not supported.

Node Mappings

Node Mappings

N O D E PR O PE R T Y PA S S T H R O UGH
M A PP I N G D I S C R E T E M A PP I N G C O N T I N UO US

M A PP I N G

C o l o r

F i l l C o l o r + + +

T r a n s p a r e n c y + + +

B o r d e r P a i n t + + +

B o r d e r T r a n s p a r e n c y + + +

L a b e l C o l o r + + +

L a b e l T r a n s p a r e n c y + + +

S i z e / W i d t h / H e i g h t + + +

N u m e r i c

L a b e l F o n t S i z e + + +

B o r d e r W i d t h + + +

L a b e l W i d t h + + +

P a d d i n g (C o m p o u n d
N o d e) + + +

I m a g e / C h a r t S i z e + + +

O t h e r

B o r d e r L i n e T y p e + + o

S h a p e + + o

S h a p e (C o m p o u n d
N o d e) + + o

L a b e l + + o

T o o l t i p + + o

L a b e l F o n t F a c e + + o

L a b e l P o s i t i o n - + o

N e s t e d N e t w o r k I m a g e
V i s i b l e + + o

I m a g e / C h a r t o + o

I m a g e / C h a r t P o s i t i o n - + o

Edge Mappings

Edge Mappings

E D GE PR O PE R T Y PA S S T H R O UGH
M A PP I N G D I S C R E T E M A PP I N G C O N T I N UO US

M A PP I N G

C o l o r

C o l o r + + +

T r a n s p a r e n c y + + +

T a r g e t A r r o w C o l o r + + +

S o u r c e A r r o w C o l o r + + +

L a b e l C o l o r + + +

L a b e l T r a n s p a r e n c y + + +

N u m e r i c

W i d t h + + +

L a b e l F o n t S i z e + + +

L a b e l W i d t h + + +

L i n e T y p e + + o

B e n d - + o

O t h e r

C u r v e d + + o

S o u r c e A r r o w S h a p e + + o

T a r g e t A r r o w S h a p e + + o

L a b e l + + o

T o o l t i p + + o

L a b e l F o n t F a c e - + o

Text Passthrough Mapping

In Cytoscape 2.8.0 and later versions, the Passthrough Mapping can recognize some text

representations of values. This means, if you have a string column named Node Size Values,

you can directly map those values as the Node Size by setting “Node Size Values” as

controlling column with Node Size “Passthrough Mapping”. The following value types are

supported:

Colors: Standard color names supported by all browsers or RGB representation in hex

Numerical Values: Automatically mapped to the specified property.

Images: URL String. If the URL is valid and an actual image data exists there, Cytoscape

automatically downloads the image and maps it to the node.

Examples

Color Passthrough Mapping

http://www.w3schools.com/html/html_colornames.asp

Node Size Passthrough Mapping

Image Passthrough Mapping

Images, Charts and Gradients

Cytoscape allows you to set custom graphics to nodes. Using the Style interface, you can map

Image/Chart properties to nodes like any other property. Cytoscape provides a set of images

and you can also add your own images in the Image Manager, as well as remove or modify

existing ones.

Taxonomy Icon (http://biosciencedbc.jp/taxonomy_icon/taxonomy_icon.cgi?lng=en) set used

in this section is created by Database Center for Life Science (DBCLS) and is distributed under

Creative Commons License (CC BY 2.1.)

Managing Images

http://biosciencedbc.jp/taxonomy_icon/taxonomy_icon.cgi?lng=en
http://creativecommons.org/licenses/by/2.1/jp/deed.en

The Image Manager is available under the menu option View → Open Image Manager...:

You can add images by drag-and-drop of image files and URLs. If you want to add images

from a web browser or local file system, you can drag images from them and drop those

images onto the list of images on the left.

Note: When you drag and drop images from web browser, make sure that you are

actually dragging the URL for the image. In some cases, images are linked to an HTML

page or scripts, and in such cases, this drag and drop feature may not work.

If you want to add one or more images from a folder, press the + button on the bottom of

the Image Manager window and then select the images you want to add.

To remove images from the current session’s image library, simply select one or more

images from the list and press the Remove Selected Images button (trash icon).

Images can be resized by defining specific Width and Height values. If the Aspect Ratio

box is checked, the width-height ratio is always synchronized. You can resize the image to

the original size by pressing the Original button.

Using Graphics in Styles

Node graphics are used and defined like any other property, through the Style interface.

There are nine Image/Chart properties.

Cytoscape provides three kinds of graphics (selectable via tabs on the Graphics dialog):

Images: You can select one of the provided images or add your own (click the Open

Image Manager... button to add more images to the list).

Charts: The following chart types are available: Bar , Box, Heat Map, Line,

Pie, Ring.

Gradients: You can also set Linear and Radial gradients to nodes.

To add a graphic, first add one Image/Chart property to the properties list in the Style

interface (on the Node tab, select Properties → Paint → Custom Paint n → Image/Chart

n). Next, click the Default Value column of the Image/Chart property to bring up the

Graphics dialog. Select an image, a chart or a gradient and then click Apply.

By default, graphics are automatically resized to be consistent with the Node Size

property.

To remove an image, chart or gradient, click the Remove Graphics button on the Graphics

dialog.

Graphics Positions

Each Image/Chart property is associated with a position. You can edit its position by using the

UI available in the Default Value column for the Image/Chart Position property that has the

same number. For instance, the Image/Chart Position 2 value modifies the position of

Image/Chart 2.

Note: Setting graphics positions for Linear or Radial gradients has no effect, as they are

always centered on the node.

Z-Ordering

The number that appears with the Image/Chart property represents an ordering of layers.

Basic node color and shape are always rendered first, then node Image/Chart 1, 2, ..., through

9.

Saving and Loading Images

In general, saving and loading images is automatic. When you quit Cytoscape, all of the images

in the Image Manager will be saved automatically. There are two types of saving:

1. To a session file

When you save the current session to a file, the images used in the current styles will

be saved to that file. For example, if you have a style with a discrete mapping for

Image/Chart 1, all images used in the style will be saved to the session file. Other

images will not be saved in your session file. This is because your image library can be

huge when you add thousands of images to the Image Manager and it takes a very long

time to save and load the session file.

2. Automatic saving to CytoscapeConfiguration/images3 directory

When you select File → Quit (Windows and Linux) or Cytoscape → Quit Cytoscape

(Mac OS X), all of the images in the Image Manager will be saved automatically to your

Cytoscape settings directory. Usually, they are saved in

YOUR_HOME_DIRECTORY/CytoscapeConfiguration/images3 .

In any case, images will be saved automatically to your system or session and will be restored

when you restart Cytoscape or load a session.

Styles Tutorials

The following tutorials demonstrate some of the basic Style features. Each tutorial is

independent of the others.

Tutorial 1: Creating a Basic Style and Setting Default Values

The goal of this tutorial is to learn how to create a new Style and set some default values.

1. Load a sample network: From the main menu, select File → Import → Network → File...,

and select sampleData/galFiltered.sif .

2. Create some node/edge statistics: The Network Analyzer calculates some basic statistics

for nodes and edges. From the main menu, select Tools → Network Analyzer → Network

Analysis → Analyze Network, and click OK. Once the result is displayed, simply close the

window. All statistics are stored as regular table data.

3. Select the Style panel in the Control Panel.

4. Create a new style: Click the Options drop-down, and select Create New Style.

Enter a name for your new style when prompted.

Since no mappings are set up yet, only default values are defined for some of the properties.

From this panel, you can create node/edge mappings for all properties.

1. Change the default node color and shape: To set the default node shape to triangles, click

the Default Value column for the Shape property. A list of available node shapes will be

shown. Select the Triangle item and click the Apply button. You can edit other default

values in the same way. In the example shown below, the node shape is set to Round

Rectangle, while Fill Color is set to white. The new Style is automatically applied to the

current network, as shown below.

Tutorial 2: Creating a New Style with a Discrete Mapping

Now you have a network with a new Style. The following section demonstrates how to create

a new style that has a discrete mapping. The goal is to draw protein-DNA interactions as

dashed lines, and protein-protein interactions as solid lines.

1. Find the property: In the Edge tab of the Style panel, find the Stroke Color (Unselected)

property. If it is not already visible in the properties sheet, add it by selecting the drop-

down item Properties → Paint → Color (Unselected) → Stroke Color (Unselected).

2. Choose a data column to map to: Expand the entry for Stroke Color (Unselected) by

clicking the arrow icon on the right. Click the Column entry and select “interaction” from

the drop-down list that appears.

3. Set the mapping type: Under Mapping Type, select “Discrete Mapping”. All available

column values for “interaction” will be displayed, as shown below.

4. Set the mapped values: Click the empty cell next to “pd” (protein-DNA interactions). On

the right side of the cell, click on the ... button that appears. A popup window will appear;

select green or similar, and the change will immediately appear on the network window.

Repeat step 4 for “pp” (protein-protein interactions), but select a darker color. Then repeat

steps 3 through 4 for the Line Type property, by selecting the correct line style (“Dash” or

“Solid”) from the list.

Now your network should show “pd” interactions as dashed green lines and “pp” interactions

as solid lines. A sample screenshot is provided below.

Tutorial 3: Creating a New Style with a Continuous Mapping

At this point, you have a network with some edge mappings. Next, let’s create mappings for

nodes. The following section demonstrates how to create a new style using a continuous

mapping. The goal is to superimpose node statistics (in this example, node degree) onto a

network and display it along a color gradient.

1. Find the property: In the Node tab of the Style panel, find the Fill Color property. If it is

not already visible in the properties sheet, add it by selecting the drop-down item

Properties → Paint → Fill Color.

2. Set the node table column: Expand the entry for Fill Color by clicking the arrow icon on

the right. Click the Column entry and select “Degree” from the drop-down list that

appears.

3. Set the mapping type: Set the “Continuous Mapping” option as the Mapping Type. This

automatically creates a default mapping.

4. Define the points where colors will change: Double-click on the black-and-white gradient

rectangle next to Current Mapping to open the Continuous Mapping Editor. Note the two

smaller triangles at the top of the gradient.

5. Define the colors between points: Double-click on the larger leftmost triangle (facing left)

and a color palette will appear. Set the color white and repeat for the smaller left-side

triangle. For the triangle on the right, set the color green and then choose the same color

for the smaller right-side triangle.

The color gradients will immediately appear on the network. All nodes with degree 1 will be

set to white, and all values between 1 and 18 will be painted with a white/green color gradient

(see the sample screenshot below).

Repeat for other properties: You can create more continuous mappings for other numeric

table data. For example, edge data table column “EdgeBetweenness” is a number, so you

can use it for continuous mapping. The following is an example visualization which mapps

Edge Width to “EdgeBetweenness”.

Tutorial 4: Setting Automatic Values to a Discrete Mapping

The goal of this section is to learn how to generate automatic values for discrete mappings.

1. Switch the Current Style to Minimal. Now your network looks like the following:

2. Create a discrete mapping for Fill Color. Select “AverageShortestPathLength” (generated

by the Network Analyzer) as the controlling property.

3. Right-click the Fill Color cell, then select Mapping Value Generators → Rainbow.

Cytoscape will automatically generate different colors for all the property values as shown

below:

4. Create a discrete mapping for Label Font Size. Select “AverageShortestPathLength” as

controlling property (Column field).

5. Right-click the Label Font Size cell, then select Mapping Value Generators → Number

Series. Type 3 for the first value and click OK. Enter 3 for increment.

6. Apply Layout → yFiles Layouts → Organic. The final view is shown below:

This mapping generator utility is useful for categorical data. The following example shows a

discrete mapping that maps the species column to node color.

Tutorial 5: Using Images in Styles

This tutorial is a quick introduction to the node image feature. You can assign up to nine

images per node as a part of a Style.

1. In this first example, we will use the presets that Cytoscape 3 has. In general, you can use

any type of bitmap graphics. User images should be added to the Image Manager before

using them in a Style.

2. If you are continuing from the previous tutorials, skip to the next step. Otherwise, load a

network and run the Network Analyzer (Tools → Network Analyzer → Network Analysis

→ Analyze Network...). This creates several new table columns (statistics for nodes and

edges).

3. Click the Style panel in the Control Panel, and select the Solid style.

4. If the property Image/Chart 1 is not in the properties sheet yet, add it from the drop-down

Properties → Paint → Custom Paint 1 → Image/Chart 1.

5. Click the Default Value cell of the Image/Chart 1 entry in order to open the Graphics

dialog.

6. Select any of the images from the list and click Apply.

7. Click the Default Value cell of node Transparency and set the value to zero.

8. Set the Default Value of node Size to 80.

9. Set the Default Value of node Label Font Size to 10, to increase readability.

10. Also change the edge Width to 6. Now your network looks like the following:

11. Open the Image Manager under View → Open Image Manager.... Drag and Drop this

 icon to the image list which automatically adds it to the manager.

12. Create a Continuous Mapping for Image/Chart 2 and select “BetweennessCentrality” as

its controlling property. Double-click the Current Mapping value cell to open the

Continuos Mapping Editor.

13. In the Continuos Mapping Editor, add a handle position by clicking in the Add button, and

move the handle to 0.2. Double-click the region over 0.2 and set the new icon you have

just added in the last step.

14. Add the property Image/Chart Position 2 from the drop-down option Properties → Paint

→ Custom Paint 2 → Image/Chart Position 2. Click its Default Value cell to move the

position of the graphics to upper left.

Now the important nodes in the network (nodes with high betweenness centrality) are

annotated with the icon:

http://en.wikipedia.org/wiki/Betweenness_centrality

Tutorial 6: Creating Node Charts

The goal of this tutorial is to learn how to create and customize node charts from data stored

in the Node tables.

1. Start a new session and load a sample network. From the main menu, select File → Import

→ Network → File..., and select sampleData/galFiltered.sif .

2. Create some node/edge statistics using the Network Analyzer. Network Analyzer

calculates some basic statistics for nodes and edges. From the main menu, select Tools →
Network Analyzer → Network Analysis → Analyze Network..., and click OK. Once the

result is displayed, simply close the window. All statistics are stored as regular table data.

3. Select the Style panel in the Control Panel.

4. Create a new style: Click the Options drop-down, and select Create New Style.

Enter a name for your new style when prompted.

5. If the property Image/Chart 1 is not in the properties sheet yet, add it from the drop-down

Properties → Paint → Custom Paint 1 → Image/Chart 1.

6. Click the Default Value cell of the Image/Chart 1 entry in order to open the Graphics

dialog.

7. Click the Charts tab and make sure the Bar Chart option is selected.

8. Select data columns: Now you have to choose the columns in the Node table that contains

the data you want to be displayed as charts. The Available Columns list displays all node

columns that can be used as chart data (i.e. single or list columns of numerical types).

First click the Remove All button to remove the current selected columns (by default,

Cytoscape selects the first column in the Available Columns list).

Now select all centrality and coefficient columns from Available Columns list and click

the Add Selected button.

9. Click the Apply button to create bar charts with the selected data columns and default

options.

10. The network view doesn’t look so good yet, so let’s make a few changes to its Style before

we continue. In the example shown below, the node Shape is set to Rectangle, while the

node Fill Color is set to white.

11. Focus on one node to see the chart details. For example search for and then focus on node

“YMR043W”.

12. Change other chart options: Click the Default Value cell of the Image/Chart 1 property

again in order to open the Graphics dialog, and then select the Options tab on the Bar

Chart editor.

On this panel, you can:

Choose another Color Scheme or set all the colors individually (just click on each

color).

Show/Hide Value and Domain Labels and also set the Domain Label Position.

Change the chart Orientation.

Show/Hide Axes.

Change the line width and color for axes and bars.

Increase or reduce the separation between bars (up to 50% of the total chart width).

Note: Other charts provide different options.

13. Check both Show Domain Axis and Show Range Axis and apply the graphics again. Now

the node chart should look like this:

14. The default domain labels are not very useful, so let’s set better labels:

On the Node Table (Table Panel), create a new List Column of type String and name it

“domain_labels”.

Edit any of the cells of the created column (double-click it) and type

["Bet. Cent.","Closen. Cent","Clust. Coeff.","Topol. Coeff."] .

Right-click the same cell and select the option Apply to entire column.

Open the chart editor again and select the Options panel.

Select “domain_labels” on the Domain Labels Column drop-down button.

Select “Up 45^o^” on the Domain Labels Position drop-down button. The labels

should look like this now:

Advanced Topics

Discrete Mappings

Several utility functions are available for Discrete Mappings. You can use these functions by

right-clicking on any property entry (shown below).

Automatic Value Generators

Mapping Value Generators - Functions in this menu category are value generators for

discrete mappings. Users can set values for discrete mappings automatically by selecting

these functions.

Rainbow and Rainbow OSC - These functions try to assign as diverse a set of colors as

possible for each data value.

Random Numbers and Random Colors - Randomized numbers and colors.

Number Series - Set a series of numbers to the specified mapping. Requires a starting

number and increment.

Fit label width - This function is only for node Width and Size. When a discrete

mapping for node Width or Size is available, you can fit the size of each node to its label

automatically by selecting this function. See the example below:

Edit Selected Values at Once

You can set multiple values at once. First, you need to select discrete mapping rows in which

you want to change values then right-click and select Edit → Edit Selected Discrete Mapping

Values. A dialog pops up and you can enter the new value for the selected rows.

Working with Continuous Mapping Editors

There are three kinds of Continuous Mapping Editors. Each of them are associated with a

specific property type:

Editor Type

E D I T O R T Y PE S UPPO R T E D D A T A
T Y PE PR O PE R T I E S

C o l o r G r a d i e n t E d i t o r Color node/edge/border/label colors

C o n t i n u o u s ‐ C o n t i n u o u s E d i t o r Numbers size/width/transparency

C o n t i n u o u s ‐ D i s c r e t e E d i t o r All others font/shape/text/graphics/position/etc.

Range Settings Panel

Each continuous mapping editor has a range settings section (labelled Edit Handle Positions

and Values) with the following fields and buttons.

1. Handle Position - This box displays the current value for the selected slider handle. You

can also directly type the value in this box to move the slider to an exact location.

2. Set Min and Max... - Click this button to set the overall range of this editor. The first time

you open the editor, the Min and Max values are set by the range of the data column you

selected (i.e. the minimum and maximum values of the mapped column). Once you change

this, you can restore the default numbers by clicking Reset button.

3. Add - Adds a new handle to the editor.

4. Delete - Deletes the selected handle from the slider widget.

5. Handle Value (e.g. Node Fill Color) - Click this button to edit the value (e.g. a color)

assigned to the selected handle.

Gradient Editor

The Gradient Editor is an editor for creating continuous mappings for colors. To change the

color of each region, just double-click the handles (small triangles on the top). A Color

gradient will be created only when the editor has two or more handles (see the example

below).

Gradient Editor

1 H A N D L E (N O GR A D I E N T) 2 H A N D L E S

Continuous-Continuous Editor

The Continuous-Continuous Editor is for creating mappings between numerical data and

numerical properties (e.g. size, transparency). To change the value assigned on the Y-axis (the

property shown in the example above is edge Width), drag the small squares or double-click

them to directly type an exact value.

Continuous-Discrete Editor

The Continuous-Discrete Editor is used to create mappings from numerical column values to

discrete properties, such as fonts, shapes, or line styles. To edit a value for a specific region,

double-click the icon on the track.

Managing Styles

All Cytoscape Style settings are initially loaded from a default file that cannot be altered by

users. When users make changes to the properties, a session_syle.xml file is saved in the

session file. This means that if you save your session, you will not lose your properties. No

other style files are saved during normal operation.

Saving Styles

Styles are automatically saved with the session they were created in. Before Cytoscape exits,

you will be prompted to make sure you save the session before quitting. It is also possible to

save your styles in a file separate from the session file. To do this, navigate to the menu option

File → Export → Styles..., and save the selected styles to a file. This feature can be used to

share styles with other users.

You can also change the default list of styles for all future sessions of Cytoscape. To do this,

click the Options drop-down in the Style section, and select Make Current Styles

Default. This will save the current styles as a default_vizmap.xml file to your

CytoscapeConfiguration directory (found in your home directory). These styles will then be

loaded each time Cytoscape is started.

Style File Formats

The Cytoscape-native Style format is Style XML. If you want to share Style files with other

Cytoscape users, you need to export them to this format.

From version 3.1.0 on, Cytoscape can also export Cytoscape.js compatible JSON file. Since

Cytoscape.js is an independent JavaScript library, and there are some differences between

Cytoscape and Cytoscape.js, not all properties are mapped to JSON. The following properties

are not supported by the exporter:

Custom Graphics and their locations

Edge Bends

Nested Networks

Network Background (Note: This can be set manually as standard CSS in Cytoscape.js)

The Continuous-Discrete Editor is used to create mappings from numerical data values to

discrete properties, such as fonts, shapes, or line styles. To edit a value for a specific region,

double-click on the icon on the track.

Importing Styles

http://cytoscape.github.io/cytoscape.js/#style

To import existing styles, navigate to the menu option File → Import → Styles... and select a

styles.xml (Cytoscape 3 format) file. Imported properties will supplement existing properties

or override existing ones if the properties have the same name. You can also specify a style file

using the -V command line option. Properties loaded from the command line will override any

default properties. Note that legacy .props files can only be loaded via the File → Import →
Styles... menu, but not by command line.

App Manager

What are Apps?

Cytoscape’s capabilities are not fixed. They can be expanded with apps. They can extend

Cytoscape in a variety of ways. One app can have the ability to import data from an online

database. Another app could provide a new method for analyzing networks. You can install

apps after you have installed Cytoscape. Most apps were made by Cytoscape users like you.

If you’re familiar with Cytoscape 2.x, you probably know that Cytoscape apps were called

plugins. Starting in Cytoscape 3.0, we are calling them apps. Cytoscape 2.x plugins cannot be

used in Cytoscape 3.0.

Installing Apps

You can install apps through the App Store or within Cytoscape. In this section, we’ll talk

about installing apps through Cytoscape. You can learn how to install apps through the App

Store here (http://apps3.nrnb.org/help/getstarted_app_install).

To install apps within Cytoscape, go to the menu bar and choose Apps → App Manager. At the

top of the App Manager window, make sure you have the Install tab selected.

http://apps.cytoscape.org/
http://apps3.nrnb.org/help/getstarted_app_install

There are four ways you can find apps:

If you know the name of an app you’re looking for, enter it in the Search field. The App

Manager will list the apps whose names or descriptions match the Search field in the

middle panel.

If you’re not sure what sort of app you and want to see everything, click the all apps folder.

In the middle pane, you will see a list of all the apps.

If you want to install a collection of apps for a specific use case, click on the collections

folder. This will display the available collections in the middle pane. A collection is simply

an app that installs other apps for a specific use case.

If you have a general idea of what sort of app you’re looking for, double-click on the apps

by tag folder, then click on one of the tags that interests you. The apps with that tag are

listed in the middle pane.

When you click on an app (or collection) in the middle panel, the App Manager shows its short

description and icon in the right panel. If you want more information, click the View on App

Store button on the bottom-right. If you want to go ahead and install, click the Install button.

If you’ve downloaded an app to your computer, you can install it by clicking the Install from

File button on the bottom-left.

Managing your Installed Apps

You can see a list of all apps you have installed by clicking the Currently Installed tab at the

top. When you click on an app in the list, you’ll see a description of your app at the bottom. At

the bottom, you’ll see a couple buttons where you can:

Uninstall an app. This deletes the app from your computer. If you want to reinstall the app,

you will have to find it again in the Install from App Store tab or in the App Store site and

reinstall it there.

Disable an app. This temporarily disables the app. The app stays on your computer, but

Cytoscape does not load it. You can enable the app by first selecting the disabled app in the

list, then click Enable.

Note that uninstalling or disabling a collection will not uninstall or disable any apps installed

by the collection.

Command Tool

The Command Line Tool provides a simple command-line interface to Cytoscape using the

Commands API. Any app that registers commands will be available through the Command

Tool. The Command Tool provides two main functions: first, a Command Line Dialog is

available from Tools → Command Line Dialog, that allows the user to type commands into

Cytoscape and see the results in a “Reply Log”.

Second, and arguably more useful, it will read script files and execute them. Each line in the

script file is a command that is sent to a app. Script files may be entered on the Cytoscape

command line using the “-S” flag to Cytoscape, through the File → Run Script File... menu

item, or through Tools → Execute Command File.

Cytoscape commands consist of three parts: a command class, or namespace; a command

within that namespace; and a series of arguments or options provided as a series of

name=value pairs. For example, to import an XGMML format file from the Command Line

Dialog or a command script, you would use:

network import file filePath="path‐to‐file"

where network is the namespace, import file is the command, and there is only one argument:

filePath=”path-to-file”. If there were more arguments they would appear on the same line

separated by spaces.

The Command Tool also uses the Command API to provide help. “help” by itself will list all of

the command classes (or namespaces) and “help “ followed by a namespace will list all of the

commands supported by that namespace. Details of a specific command are available by

typing “help “ followed by the namespace and command (e.g. “help layout force-directed”). The

Command Tool registers the “command” namespace and supports a single command: run,

which takes a file argument. Here is the help for the command run command from the

command namespace:

help command run
 command run file=<File>

Similarly, the help for the “network import file” example from above is:

help network import file
 network import file arguments:
 dataTypeList=<String>: List of column data types ordered by column index
 (e.g. "string,int,long,double,boolean,intlist" or just "s,i,l,d,b,il")
 defaultInteraction=<String>: Default interaction type
 delimiters=<ListMultipleSelection [,,;, ,\t]>: Text Delimiters
 delimitersForDataList=<ListSingleSelection (\||\|/|,)>:
 Text Delimiters for data list type
 file=<File>: Data Table file
 firstRowAsColumnNames=true|false: First row used for column names
 indexColumnSourceInteraction=<int>: Column for source interaction
 indexColumnTargetInteraction=<int>: Column for target interaction
 indexColumnTypeInteraction=<int>: Column for interaction type
 NetworkViewRendererList=<ListSingleSelection ()>: Network View Renderer
 RootNetworkList=<ListSingleSelection (‐‐ Create new network collection
 ‐‐|Network)>: Network Collection
 startLoadRow=<int>: Start Load Row
 TargetColumnList=<ListSingleSelection ()>: Node Identifier Mapping Column

Merge

Cytoscape allows for merging of both network and table data, through Tools → Merge.

Merge Networks

The Advanced Network Merge interface is available from Tools → Merge → Networks... and

allows for merging of two or more networks.

Basic Operations

With the buttons select either “union”, “intersection” or “difference”.

Networks available for merge are listed under Networks to merge. Select a network from

the list and click the right arrow to transfer the network to Selected networks. Click

Merge to continue. The merged network will be displayed as a separate network.

Advanced Options

The Advanced Network Merge interface includes an expandable Advanced Network Merge

panel, where you can specify the details of how to merge the networks. The options available

here are:

Matching columns: This specifies the network columns that should be used for merging.

Typically, the “name” column or some other column containing identifier information is

used here.

How to merge columns?: A table lets the user specify for each of the individual network

columns, what the corresponding column in the merged network should be named and its

data type.

Merge Tables

NetworkAnalyzer

NetworkAnalyzer computes a comprehensive set of topological parameters for undirected

and directed networks, including:

Number of nodes, edges and connected components.

Network diameter, radius and clustering coefficient, as well as the characteristic path

length.

Charts for topological coefficients, betweenness, and closeness.

Distributions of degrees, neighborhood connectiveness, average clustering coefficients,

shortest path lengths, number of shared neighbors and stress centrality.

NetworkAnalyzer also constructs the intersection, union and difference of two networks. It

supports the extraction of connected components as separate networks and the removal of

self-loops.

Network Analysis

Analyze Network

To run NetworkAnalyzer, select Tools → NetworkAnalyzer → Network Analysis → Analyze

Network.

The NetworkAnalyzer will determine whether your network contains directed or undirected

edges. At this point, you can choose to ignore edge direction information.

When results are calculated, they will appear in the Results Panel.

The results have multiple tabs. Details on the network parameters can be found here.

Simple Parameters

Node Degree Distribution

Avg. Clustering Coefficient Distribution

Topological Coefficients

Shortest Path Distribution

Shared Neighbors Distribution

Neighborhood Connectivity Distribution

Betweenness Centrality

Closeness Centrality

Stress Centrality Distribution

You can also save the statistics for later use by using the Save Statistics button.

Analyze Subset of Nodes

An exhaustive topological analysis of very large networks can be a time consuming task. The

computation of local parameters for the nodes is significantly faster than the computation of

global (path-related) parameters. Examples of local parameters are node degree,

neighborhood connectivity, topological and clustering coefficients. Betweenness and

closeness centralities, as well as stress, are global parameters.

NetworkAnalyzer provides the Analyze Subset of Nodes option for computing local

parameters for a subset of nodes. If one or more nodes in the network are selected before

starting an analysis, only the sub-network induced by the selected nodes is analyzed.

Moreover, only local parameters are computed. Shared neighbors distribution and shortest

path lengths distribution, among others, are not displayed in the results.

http://med.bioinf.mpi-inf.mpg.de/netanalyzer/help/2.7/index.html#complex
file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Network_Analyzer.html#networkanalyzerdemo

Batch Analysis

The Batch Analysis option is used to perform topological analysis on all networks stored in

specific directory, using all possible interpretations for every network. Batch analysis consists

of three simple steps:

Selecting directories: The user selects the input and output directories. The input

directory should contain network files that can be loaded into Cytoscape. Sub-directories

of the input directory are not considered. The output directory is the one that will contain

all analysis results after the batch analysis. In order to avoid file overwriting,

NetworkAnalyzer requires that the output directory is empty (contains no files) before the

batch analysis starts.

Analysis: NetworkAnalyzer scans the input directory and loads all supported networks

into Cytoscape, one at a time. Each loaded network is inspected and then it is analyzed

considering all possible interpretations for it. The analysis step is complete after all

networks are analyzed. Note that depending on the number of networks and their sizes,

this might be a very time-consuming step.

Inspection of results: After the analysis is complete, the button Show Results is enabled,

and it displays the results dialog. The dialog contains a table of all topological analyses

performed. Every row in the results table lists the loaded network, its interpretation and

the resulting network statistics file that was saved in the output directory. By clicking on a

network name and on statistics file name, the user can load the network and topology

analysis results, respectively.

Load Network Statistics

Existing network statistics can be loaded from a file saved previously in NetworkAnalyzer.

Plot Parameters

The Plot Parameters dialog offers a possibility to plot two parameters against each other. The

parameters to be plotted can be chosen from two drop-down menus. The Table Column 1

menu provides the values for the domain/category axis, and the Table Column 2 menu

specifies the values for the range/value axis. The plot is updated each time a different

parameter is selected in one of the menus.

Generate Style from Statistics

file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Network_Analyzer.html#networkanalyzerdemo

NetworkAnalyzer computed parameters can be visualized as node/edge size and color, if the

Store node / edge parameters in node / edge table option in NetworkAnalyzer Settings is

enabled. Parameters loaded from a .netstats file cannot be visualized because the network

itself is not stored in the network statistics file. If, after performing topological analysis, the

network is modified by introducing or removing nodes or edges, it is recommended (and

sometimes required) to run NetworkAnalyzer again before visualizing any parameters.

The visualization is initiated by the Generate Style from Statistics... menu option. There are

two ways of mapping computed parameters.

Map to node / edge size: The computed parameter is mapped to the size of the nodes or

edges. Mapping can be straight or inverse, that is, low parameter values can be mapped to

small sizes or to large sizes. The smallest node size is set to 10 and the largest one to 100.

Regarding edges, size reflects the edge line width and varies between 1 and 8. Refer to the

Styles section for details.

Map to node / edge color: A computed parameter is mapped to the color of the nodes or

edges. Two mapping styles are possible - mapping low parameter values to bright colors or

to dark colors. By default, the brightest color is green and the darkest color is red. The

mapping also uses a middle (intermediate) color, which allows for fine-grained perception

of differing values through the color gradient. The default middle color is yellow.

NetworkAnalyzer Settings

The following settings can be configured by the user:

Store node / edge parameters in node / edge table: For every node in a network,

NetworkAnalyzer computes its degree (in- and out-degrees for directed networks), its

clustering coefficient, the number of self-loops, and a variety of other parameters.

file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Styles.html#styles

NetworkAnalyzer also computes edge betweenness for each edge in the network. If the

respective options are enabled, NetworkAnalyzer can stores the computed values as

columns of the corresponding nodes and edges. This enables the users to use the values in

Styles or to select nodes or edges based on the values. A complete list of the computed

node and edge columns is available here.

Use expandable dialog interface for the display of network statistics: If this option is

enabled, analysis results are presented in a window in which all charts are placed below

each other in expandable boxes. If this option is disabled, analysis results are presented in

a window that contains tabs for the group of simple parameters and for every complex

parameter (default). Users who wish to simultaneously view two or more complex

parameters of one network, should enable this option.

NetworkAnalyzer allows the user to change the default colors of parameter visualization.

Background color for parameter visualization: The color of the background in the

network view. It is initially set to the default Cytoscape background color.

Bright color to map parameters: This color defines the brightest color that parameters

can be mapped to. By default its value is green.

Middle color: This color defines the intermediate color, that parameters can be

mapped to. By default its value is yellow.

Dark color: This color defines the darkest color that parameters can be mapped to. By

default its value is red.

Location of the help documents: URL of the original help web page for NetworkAnalyzer.

This also enables the local download and storage of this help page.

Subnetwork Creation

NetworkAnalyzer allows for the creation of sub-networks of connected components. The

user selects a number of connected components from a list and each selected component is

visualized as a sub-network. To create sub-networks from connected components, select

Tools → NetworkAnalyzer → Subnetwork Creation → Extract Connected Components.

http://med.bioinf.mpi-inf.mpg.de/netanalyzer/help/2.7/index.html#attributes

NetworkAnalyzerDemo: Computation and Visualization of
Topological Parameters and Centrality Measures for Biological
Networks

Yassen Assenov , Nadezhda Doncheva , Thomas Lengauer , and Mario Albrecht

1 Department of Computational Biology and Applied Algorithmics, Max Planck Institute for

Informatics, Campus E1.4, 66123 Saarbrücken, Germany

NetworkAnalyzer is a versatile and highly customizable Cytoscape plugin that requires no

expert knowledge in graph theory from the user. It computes and displays a comprehensive

set of topological parameters and centrality measures for undirected and directed networks,

which includes the number of nodes, edges, and connected components, the network

diameter, radius, density, centralization, heterogeneity, clustering coefficient, and the

characteristic path length. In addition, NetworkAnalyzer shows charts of the distribution of

node degrees, neighborhood connectivities, average clustering coefficients, and shortest path

lengths. NetworkAnalyzer also contains extra functionality, for instance, for constructing the

intersection or union of two networks.

1 1 1 1

The NetworkAnalyzer plugin and a comprehensive online documentation with a tutorial are

available at http://med.bioinf.mpi-inf.mpg.de/networkanalyzer/.

Data keywords: network, graph, topology

Cytoscape keywords: Network Analysis

Cytoscape Preferences

Managing Properties

The Cytoscape properties editor, accessed via Edit → Preferences → Properties..., is used to

specify default properties. Any changes made to these properties will be saved in .props files

under the CytoscapeConfiguration subdirectory of the user’s home directory.

Cytoscape properties are configurable using the Add, Modify and Delete buttons as seen

below.

http://med.bioinf.mpi-inf.mpg.de/networkanalyzer/

App properties may also be edited in the same way as editing Cytoscape properties. For

example, to edit the properties of Linkout, select ‘linkout’ from the combobox of the

Preferences Editor. Some apps may store properties inside session files in addition to (or

instead of) storing them in the CytoscapeConfiguration directory.

Managing Bookmarks

Cytoscape contains a pre-defined list of bookmarks, which point to sample network files

located on the Cytoscape web server. Users may add, modify, and delete bookmarks through

the Bookmark manager, accessed by going to Edit → Preferences → Bookmarks....

There are currently several types of bookmarks (based on data categories), including network

and table. Network bookmarks are URLs pointing to Cytoscape network files. These are

normal networks that can be loaded into Cytoscape. Table bookmarks are URLs pointing to

data table files.

Managing Proxy Servers

You can define and configure a proxy server for Cytoscape by going to Edit → Preferences →
Proxy Settings....

After the proxy server is set, all network traffic related to loading a network from URL will

pass through the proxy server. Cytoscape apps use this capability as well. The proxy settings

are saved in cytoscape3.props . Each time you click the OK button after making a change to the

proxy settings, an attempt is made to connect to a well known site on the Internet (e.g.,

google.com) using your settings. For both success and failure you are notified and for failure

you are given an opportunity to change your proxy settings.

If you no longer need to use a proxy to connect to the Internet, simply set the Proxy type to

“direct” and click the OK button.

Managing Group View

The configuration of Cytoscape group view may also be edited through Edit → Preferences →
Group Preferences....

Managing OpenCL Settings

You can choose between one or more OpenCL drivers installed on your system by going to

Edit → Preferences → OpenCL Settings....

OpenCL is a library that enables Cytoscape to use your system’s graphics processing unit

(GPU) to accelerate certain layouts and other calculations. If no choices are presented,

consult the support web page for your system’s graphics card.

Linkout

Linkout provides a mechanism to link nodes and edges to external web resources within

Cytoscape. Right-clicking on a node or edge in Cytoscape opens a popup menu with a list of

web links.

The external links are specified in a linkout.props file which is internal to Cytoscape. The

defaults include a number of links such as Entrez, SGD, iHOP, and Google, as well as a number

of species-specific links. In addition to the default links, users can customize the External

Links menu and add (or remove) links by editing the linkout properties (found under Edit →
Preferences → Properties...).

External links are listed as ‘key’-‘value’ pairs in the linkout.props file where key specifies the

name of the link and value is the search URL. The LinkOut menus are organized in a

hierarchical structure that is specified in the key. Linkout key terms specific for nodes start

with the keyword nodelinkouturl , for edges this is edgelinkouturl .

For example, the following entry:

nodelinkouturl.Model Organism DB.SGD (yeast)=http://www.yeastgenome.org/cgi‐bin/locus.fpl?
locus=%ID%

places the SGD link under the Model Organism DB submenu. This link will appear in

Cytoscape as:

In a similar fashion one can add new submenus.

The %ID% string in the URL is a place-holder for the node label. When the popup menu is

generated this marker is substituted with the node label. In the above example, the generated

SGD link for the YNL050C protein is:

http://www.yeastgenome.org/cgi‐bin/locus.fpl?locus=YNL050C

If you want to query based on a different column, you need to specify a different node label

using Styles.

For edges the mechanism is much the same; however here the placeholders %ID1% and %ID2%

reflect the source and target node label respectively.

Currently there is no mechanism to check whether the constructed URL query is correct and

if the node label is meaningful. Similarly, there is no ID mapping between various identifiers.

For example, a link to NCBI Entrez from a network that uses Ensembl gene identifiers as node

labels will produce a link to Entrez using the Ensembl ID, which results in an incorrect link. It is

the user’s responsibility to ensure that the node label that is used as the search term in the

URL link will result in a meaningful link.

Adding and Removing Links

The default links are defined in a linkout.props file contained inside the Linkout JAR bundle

under the framework/system/org/cytoscape/linkout-impl subdirectory of the Cytoscape

installation. These links are normal Java properties and can be edited by going to Edit →
Preferences → Properties... and selecting linkout from the box (shown below). Linkouts can

be modified, added or removed using this dialog; however, note that the modifications would

not be stored in the file. To change a URL permanently, you would need to edit the

linkout.props file directly.

In addition, new links can be defined when starting Cytoscape from command line by

specifying individual properties. The formatting of the command is

cytoscape.sh ‐P [context_menu_definition]=[link] . context_menu_definition specifies the

context menu for showing the linkout menu item. The structure of this definition is ”.”

separated and the first item needs to be either nodelinkouturl or edgelinkouturl. The former

will add the linkout item as a node context menu and the latter will add it as an edge context

menu. The rest of the definition would define the hierarchy of the menu.

For instance this command:

cytoscape.sh ‐P nodelinkouturl.yeast.SGD=http://db.yeastgenome.org/cgi‐bin/locus.pl?
locus\=%ID%

will add this menu item:

To remove a link from the menu, simply delete the property using Edit → Preferences →
Properties... and selecting commandline. Linkouts added in the command line will be available

for the running instance of Cytoscape.

Panels

Panels are floatable/dockable panels designed to cut down on the number of pop-up windows

within Cytoscape and to create a more unified user experience. They are named based on

their functions – Control Panel, Table Panel, Tool Panel and Result Panel. The following

screenshot shows the file galFiltered.sif loaded into Cytoscape, with a force-directed

layout, Rotate tools showing in the Tool Panel, and with results from Network Analyzer (Tools

→ Network Analysis → Analyze Network). The Control Panel (at the left-hand side of the

screen) contains the Network Manager, Network Overview, Styles and Select tabs. On the

bottom of the panel, there is another panel called Tool Panel. In the Table Panel, the Node

Table is shown. In addition, analysis results from Network Analyzer are shown in Result Panel

(at the right-hand side).

The user can then choose to resize, hide or float Panels. For example, in the screenshot below,

the Network, Table and Results panels are floating and the Tool Panel is hidden:

Basic Usage

Cytoscape includes four Panels: the Control Panel on the left, Tool Panel on the bottom of the

Control Panel, the Table Panel on the bottom right, and the Result Panel on the right. By

default, only the Control Panel and the Data Panel will appear. The Result Panel may appear,

depending on the mix of Cytoscape apps that you currently have installed. The Tool Panel will

appear when you select the following commands under the Layout menu: Rotate, Scale, and

Align and Distribute.

All panels can be shown or hidden using the View → Show/Hide functions.

In addition, Panels can be floated or docked using icon buttons at the top right corner of each

Panel. The Float Window control will undock any panel which is useful when you want

assign the network panel as much screen space as possible. To dock the window again, click

the Dock Window icon . Clicking the Hide Panel icon will hide the panel; this can be

shown again by choosing View → Show and selecting the relevant panel.

Rendering Engine

What is Level of Detail (LOD)?

Cytoscape 3.0 retains the rendering engine found in version 2.8. It is to be able to display

large networks (> 10,000 nodes), yet retain interactive speed. To accomplish this goal, a

technique involving level of detail (LOD) is being used. Based on the number of objects (nodes

and edges) being rendered, an appropriate level of detail is chosen. For example, by default,

node labels (if present) are only rendered when less than 200 nodes are visible because

drawing text is a relatively expensive operation. This can create some unusual behavior. If the

screen currently contains 198 nodes, node labels will be displayed. If you pan across the

network, such that now 201 nodes are displayed, the node labels will disappear. As another

example, if the sum of rendered edges and rendered nodes is greater than or equal to a

default value of 4000, a very coarse level of detail is chosen, where edges are always straight

lines, nodes are always rectangles, and no anti-aliasing is done. The default values used to

determine these thresholds can be changed by setting properties under Edit | Preferences |

Properties....

Low LOD vs High LOD

Levels of Detail

N E T W O R K W I T H L O W L O D N E T W O R K W I T H H I GH L O D

With low LOD values, all nodes are displayed as square and anti-aliasing is turned off. With

high LOD values, anti-aliasing is turned on and nodes are displayed as actual shape user

specified in the Style.

Parameters for Controlling LOD

NOTE: The greater these thresholds become, the slower performance will become. If you

work with small networks (a few hundred nodes), this shouldn’t be a problem, but for large

networks it will produce noticeable slowing. The various thresholds are described below.

LOD Thresholds

PA R A M E T E R D E S C R I PT I O N

If the sum of rendered nodes and rendered edges equals to or

exceeds this number, a very coarse level of detail will be chosen

R E N D E R . C O A R S E D E T A I L T H R E S H O L D
exceeds this number, a very coarse level of detail will be chosen
and all other detail parameters will be ignored. If the total
number of nodes and edges is below this threshold, anti-alias
will be turned on; this value defaults to 4000.

R E N D E R . N O D E B O R D E R T H R E S H O L D

If the number of rendered nodes equals to or exceeds this
number, node borders will not be rendered; this value defaults
to 400.

R E N D E R . N O D E L A B E L T H R E S H O L D

If the number of rendered nodes equals to or exceeds this
number, node labels will not be rendered; this value defaults to
200.

R E N D E R . E D G E A R R O W T H R E S H O L D

If the number of rendered edges equals to or exceeds this
number, edge arrows will not be rendered; this value defaults
to 600.

R E N D E R . E D G E L A B E L T H R E S H O L D

If the number of rendered edges equals to or exceeds this
number, edge labels will not be rendered; this value defaults to
200.

When printing networks or exporting to formats such as PostScript, the highest level of detail

is always chosen, regardless of what is currently being displayed on the screen.

Force to Display Detail

If you want to display every detail of the network regardless of LOD values, you can toggle to

full details mode by View | Show Graphics Details (or CTR+SHIFT+F on Windows/Linux,

Command+SHIFT+F for Mac). This option forces the display of all graphics details. If the

network is large, this option slows down rendering speed. To hide details, select the menu

item again (View | Hide Graphics Details).

Publish Your Data

Publish Your Visualizations

When you finish your data analysis and visualization, you need to publish your data to share

the results. Cytoscape has several options to do it, with most options suitable for Cytoscape

users and other options suitable for programmers wanting to create unusual or complex

network viewers. They’re further explained below.

A session file

A static image

An interactive web application

CyNetShare

Full web application

http://idekerlab.github.io/cy-net-share/

Simple network view (for web application developers)

As a Session File

The easiest way to share your results with others is simply saving everything as a session file

(which is a zipped session archive). You can save your current session by clicking Save Session

icon. You can save to a thumb drive, a shared file system, or even a cloud drive directory such

as Dropbox – if you save to a shared drive, beware not to have two people work on the same

session file with Cytoscape at the same time, as unpredictable results may occur.

As a Static Image

Cytoscape can generate publication-quality images from network views. By selecting File |

Export | Network View as Graphics..., you can export the current network view into the

following formats:

JPG

PNG

PS (Post Script)

SVG

PDF

We recommend using PDF for publications because it is a standard vector graphics format,

and it is easy to edit in other applications such as Adobe Illustrator.

Known Issues

For PDF export, there is an option to Export Texts as Fonts. This option does not work for

two-byte characters such as Chinese or Japanese. To avoid corrupted texts in the exported

images, please uncheck this option when you publish networks including those non-English

characters.

As an Interactive Web Application (New in 3.2.0)

The Web is an excellent platform for data sharing and collaboration, and Cytoscape provides a

number of ways to publish your network on the web, with each choice representing tradeoffs

between ease, simplicity, and customization options. All solutions leverage the cytoscape.js

drawing library, and so enable not only viewing but also Cytoscape-style interactive browsing

of networks and attributes.

The simplest choice is CyNetShare, where you save your network (and optionally a style) on a

public file system, then interactively view the network in a browser. Like Google Maps, you

can generate and publish a URL that allows collaborators to also view your network.

Alternatively, Cytoscape can generate an entire web site showing a single page containing the

viewer with your network pre-loaded. You can load this directly onto your own web server to

become part of your web site.

Finally, Cytoscape can generate the skeleton of a web site for further customization by

JavaScript programmers.

These features are available as Export menu items under the File menu, and are described in

sections below.

For example, here is a network in Cytoscape:

Here is the same network as an interactive web visualization:

file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Publish_Your_Data.html#sharing-via-cynetshare
https://en.wikipedia.org/wiki/JavaScript

Note that web browsers can render small networks (e.g., 1000 nodes) quickly and effectively,

but attempting to render large ones (e.g., 5000 nodes) will take a very long time.

A word about exporting styles styles to interactive web applications: Our web applications

are based on the cytoscape.js display library, which renders a subset of Cytoscape styles. For

more information, see the Export Styles to Cytoscape.js section below.

Sharing via CyNetShare

CyNetShare is a browser-based web application that renders JSON-formatted networks and

attributes saved in public directories. Optionally, you can specify visual styles that the web

application will use to draw your network as it appears in Cytoscape. CyNetShare is similar to

Google Maps in that once you have loaded your network and have tweaked its appearance to

suit, you can have CyNetShare generate a new URL that you can e-mail or post as a link on

your own web site. That URL will bring up CyNetShare preloaded with your network for

anyone to see.

To use CyNetShare:

1. Select File | Export | Network and View... to export your network to a public directory.

Choose the Cytoscape.js JSON (*.cyjs) export file format.

2. Optionally, select File | Export | Style... to export your style settings. Choose the Style for

cytoscape.js (*.json) export file format.

http://idekerlab.github.io/cy-net-share/
http://idekerlab.github.io/cy-net-share/
http://idekerlab.github.io/cy-net-share/
http://idekerlab.github.io/cy-net-share/
http://idekerlab.github.io/cy-net-share/

3. Use your public directory system to determine direct URLs for the files you exported.

4. Start CyNetShare

5. Enter the network’s URL as the Graph URL.

6. Optionally, enter the style’s URL.

7. Click the Visualize button.

The CyNetShare User Guide is provided on the CyNetShare web page:

CyNetShare

Note that if you specify a style URL, the style is added to the list of styles available in

CyNetShare‘s Visual Style dropdown, and you can apply the style by selecting it in the list.

CyNetShare’s initial display uses the visual style named “default” – use the Visual Style

dropdown to choose the style in effect when Cytoscape generated the .cyjs and .json files.

Note that the mechanics of generating a URL for a file in a public directory system is a fast

moving topic. Until recently, systems like Dropbox (and others) allowed users to create a URL

that resolved directly to a file – a “direct” URL would be appropriate for use with CyNetShare.

As of this writing, some public directory systems (e.g., Dropbox) generate “shareable” URLs

instead, which resolve to a web page that allows file download – a “shareable” URL makes

CyNetShare hang. Systems that offer “shareable” URLs may offer “direct” URLs as part of

their premium (or Pro) package. To tell if your public directory system generates a “direct”

URL, have it generate a URL for a file, then paste the URL into the address field of a browser

and observe whether the browser displays the file itself (good!) or a download page for the file

(bad!).

Hint: if Dropbox generates a “shareable” link that looks like

https://www.dropbox.com/s/w5e7towcchuvdeu/cynetworm.cyjs?dl=0 , you may be able to create a

“direct” link by changing the dl=0 to dl=1 :

https://www.dropbox.com/s/w5e7towcchuvdeu/cynetworm.cyjs?dl=1 .

A simple strategy for always getting a “direct” URL is to store your file in a public directory

served up by a web server, if you have access to one – a URL served by a web server might

appear as: http://myserver.com/~mypublicdir/netstyle.json.

Alternately, you can use Gist to create a shareable document having a “direct” URL. To try this:

1. Use Cytoscape to generate your network as a .cyjs file on your local disk

2. Use an editor to open the file and copy its contents to the clipboard

3. Use a web browser to surf to Gist

http://idekerlab.github.io/cy-net-share/
http://idekerlab.github.io/cy-net-share/
http://idekerlab.github.io/cy-net-share/
http://idekerlab.github.io/cy-net-share/
http://idekerlab.github.io/cy-net-share/
http://idekerlab.github.io/cy-net-share/
http://idekerlab.github.io/cy-net-share/
http://myserver.com/~mypublicdir/netstyle.json
http://gist.github.com/
http://gist.github.com/

4. Paste the contents into a Gist document

5. Select Create public Gist

6. Select Raw to place the “direct” URL into your browser’s address field

7. Use that URL with CyNetShare

Generating a Full Web Application

The full page export option is designed for users who want to publish their network as a

complete single-page application. Cytoscape creates a zip archive containing a complete

JavaScript-based web application that works as a basic viewer (like CyNetShare) for

Cytoscape-generated network visualizations. You can unzip the archive onto a web server (or

your PC) and view the network via a web browser on PCs and tablets.

http://idekerlab.github.io/cy-net-share/
http://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/JavaScript
http://idekerlab.github.io/cy-net-share/

To generate an entire web page as a zip archive, select File | Export | Network View(s) as Web

Page

To view the web page, unzip the archive into a folder on your PC or web server. The folder will

contain an index.html file, the network data, and other files. You can open the index.html file

in your browser (usually from your browser’s File | Open menu item.)

Depending on your browser’s security settings, you may not be able to open the index.html

file directly if it is stored on your PC – you may need to start a web server on your PC. An easy

way to set up a local web server is by running the Python simple HTTP server. If you have

Python installed on your machine, just go into the web archive folder and type:

python ‐m SimpleHTTPServer 8000

and use your browser to open:

http://localhost:8000/

Testing the archive on your PC will serve as an easy test of the web page, but to publish it to

collaborators, you should unzip your archive onto a web server.

Here is an example exported file from Cytoscape:

Example full export deployed to web server

Archive file

http://chianti.ucsd.edu/~kono/webapp/cytoscape-export-full/
http://cl.ly/XjMs/cytoscape_full_export.zip

Note that because Cytoscape uses the latest HTML5-based web technologies, it cannot

support older or non-conformant web browsers such as Internet Explorer. We strongly

recommend using the latest version of modern web browsers such as Google Chrome, Mozilla

Firefox, or Apple Safari.

Generating a Simple Network View (For Web Application Developers)

The Simple Network View export option is designed for users who want to publish their data

as a complete single-page application, but are interested in customizing the web viewer

application themselves. Cytoscape creates a zip archive containing a partial JavaScript-based

web application based on the cytoscape.js library and including simple “boilerplate” code and

the current network view. The user can create a custom viewer by customizing this code.

To generate an entire web page as a zip archive, select File | Export | Network View(s) as Web

Page ..., and choose the Simple viewer for current network only format.

http://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/JavaScript

For instructions on testing the customized web application, see Generating a Full Web

Application above.

Customize Export Template (For Web Application Developers)

The code generated by Cytoscape for the Full Web Application and the Simple Network View

web applications is minimalistic. While you can directly modify this code yourself to create

your own page design or add new features, the modifications will apply to a single exported

network. If you are a web application developer, you can change the application code

generated for all exports by editing HTML5 template code resource files in your

~/CytoscapeConfiguration/web directory:

In this folder, you can find full and simple sub directories corresponding to Full Web

Application and the Simple Network View described above.

Requirements

To build these project, you need the following tools installed:

Node.js

gulp

grunt

Full Export Template

This is an AngularJS based web application built with grunt (at least for now – we have plans

to migrate to gulp). Source code and more documentations are available here:

* https://github.com/idekerlab/cyjs-full-export

To build the project into dist directory, type:

grunt

Simple Export Template

This template is generated by a simple gulp project. The source code is available here:

https://github.com/idekerlab/cyjs-export-simple

To build the project into dist directory, type:

gulp

Use Your Custom Templates for Export

Once you have your own builds, you can deploy your templates by replacing the contents of

full and simple with your own builds.

Cytoscape.js and Cytoscape

What is Cytoscape.js?

https://github.com/idekerlab/cyjs-full-export
http://gulpjs.com/
https://github.com/idekerlab/cyjs-export-simple

Cytoscape.js is a JavaScript library for interactive network visualization. It is a building block

for web applications and is NOT a complete web application. If you have network data sets

and want to share visualizations created with Cytoscape, you can build your own website

using Cytoscape.js and this new Export to Cytoscape.js feature.

Examples

A network visualized with Cytoscape 3.1.0

http://cytoscape.github.io/cytoscape.js/

Same network exported to Cytoscape.js (Rendered with Google Chrome and Cytoscape.js

2.0.3)

Interactive example (galFiltered.sif rendered with Cytoscape.js 2.0.3)

Differences and Shared Concepts

Although Cytoscape and Cytoscape.js are two completely independent software packages,

they are sharing higher level concepts. The following is the list of similarities and differences

between the two:

Cytoscape

Desktop application for network visualization written in Java programming language

Needs desktop or laptop computers to run

Users have to install Java runtime

High performance application for large scale network analysis and visualization

Expandable by Apps

Use Styles to map data to network properties, such as node color, edge width, node shape,

etc.

Cytoscape.js

http://chianti.ucsd.edu/~kono/dist/
http://www.java.com/
http://apps.cytoscape.org/

A JavaScript library for network visualization, NOT a complete web application nor

mobile app

Runs on most of modern web browsers, including tablets and smart phones

No plugins are required to run. Modern web browser is the only requirement

Need to write code to set up your web site or web application

Expandable by Extensions

Use CSS-based Styles to map data to network properties

In a long term, Cytoscape and Cytoscape.js will be more integrated, and as the first step

Cytoscape now supports reading and writing Cytoscape.js network/table JSON files. In

addition, Cytoscape can convert Styles to Cytoscape.js Style object.

Data Exchange between Cytoscape and Cytoscape.js

Since Cytoscape.js is a JavaScript library, its basic data exchange format is JSON (JavaScript

Object Notation). All of these import/export functions are part of standard Cytoscape user

interface, and you can read/write Cytoscape.js JSON files just like other standard files such as

SIF.

Export Network and Table to Cytoscape.js

Cytoscape.js stores network data (graph) and its data table in the same object. Cytoscape

writes such data complex as JSON, i.e., both network and data tables will be exported as a

single JSON file. You can select a network and export it from File | Export | Network.

Cytoscape only supports one of the Cytoscape.js supported JSON formats, which is:

{
 elements:{
 nodes:[],
 edges:[]
 }
}

SUID will be used as unique identifier for nodes and edges in the JSON. For more information

about this format, please visit Cytoscape.js web site.

Important Note about Data Compatibility

http://en.wikipedia.org/wiki/JavaScript
http://cytoscape.github.io/cytoscape.js/#extensions
http://www.json.org/
http://cytoscape.github.io/cytoscape.js/

Cytoscape creates JSON file directly from data table and tries to extract as much data as

possible from the original table. However, since table column names will be directly converted

into JavaScript variable names, invalid characters will be replaced by underscore (_):

Original Data Table Column Names:

Gene Name
KEGG.pathway

The Names above will be replaced to:

Gene_Name
KEGG_pathway

You should be careful when you plan to use this feature for data roundtrip: from Cytoscape to

Cytoscape.js back to Cytoscape. For such use cases, we strongly recommend to use

JavaScript-safe characters only in your table column names. Naming your columns only with

alphanumeric characters and underscore (_) is the best practice. (For actual data entries, all

characters are allowed. This restriction is only for table column names.)

Export Styles to Cytoscape.js

Cytoscape and Cytoscape.js are sharing a concept called Style. This is a collection of mappings

from data point to network property. oCytoscape can export its Styles into CSS-based

Cytoscape.js JSON.

You can export all Styles into one JSON file from File | Export | Style and select Cytoscape.js

JSON as its format.

Limitations

Cytoscape.js does not support all of Cytoscape Network Properties. Those properties will be

ignored or simplified when you export to JSON Style file.

Currently, the following Visual Properties will not be exported to Cytoscape.js JSON:

Custom Graphics and its positions

Edge Bends

https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/JavaScript

Tooltips

Node Label Width

Node Border Line Type

Arrow Colors (they are always same as edge color)

Cytoscape.js and Cytoscape Compatibility

Cytoscape’s network rendering system is designed for desktop use, while the browser-based

renderer incorporates web technologies (e.g., cytoscape.js and Cascaded Style Sheets). As a

result, most but not all networks will render the same in the browser as in Cytoscape.

Cytoscape visual styles not supported in the web browser are ignored. A complete

compatibility list is available here.

Import Cytoscape.js data into Cytoscape

Cytoscape.js network JSON files can be loaded from standard Cytoscape file menu: File |

Import | Network Both File and URL are supported.

Build Your Own Web Application with Cytoscape.js

Although Cytoscape can export networks, tables, and Style as Cytoscape.js-compatible JSON,

users have to write some JavaScript code to visualize the data files with Cytoscape.js. Details

of web application development with Cytoscape.js is beyond the scope of this document. If

you need examples and tutorials about web application development with Cytoscape.js,

please visit the following web site:

https://github.com/cytoscape/cyjs-sample/wiki

Questions?

If you have questions and comments about web application development with Cytoscape and

Cytoscape.js, please send yours to our mailing list.

Programmatic Access to Cytoscape Features (Scripting)

Programmatic Access to Cytoscape Features

In this chapter, you will learn how to use Cytoscape from the command line and scripts. These

features replace the Scripting module in past versions of Cytoscape.

https://docs.google.com/spreadsheets/d/1iTDKGjro1-L7HGz1ftozqDKRxjQVSPF28jQLt7XGrSg/edit#gid=0
https://en.wikipedia.org/wiki/JavaScript
https://github.com/cytoscape/cyjs-sample/wiki
https://groups.google.com/forum/#!forum/cytoscape-discuss

Topics

Commands

RESTful API

Command REST API

cyREST

Background

Cytoscape’s intuitive graphical user interface is useful for interactive network data

integration, analysis, and visualization. It provides great features for exploratory data

analysis, but what happens if you have hundreds of data files or need to ask someone to

execute your data analysis workflows? It is virtually impossible to apply the same operations

to hundreds of networks manually using a GUI. More importantly, although you can save your

results as session files, you cannot save your workflows if you perform your data analysis with

point-and-click GUI operations. Cytoscape has several options that support scripting and

automating your workflows: Commands and RESTful API.

The Command feature allows you to script a number of Cytoscape commands and menu

items, and commands can have parameter values that would normally be provided by a user

via Cytoscape dialog box. For example, session open file=”C:\myfile.cys” loads a session from a

file similarly to the File | Open menu item. You can create a command script file that

Cytoscape can execute via the Tools | Execute Command File menu item or on the Cytoscape

command line at startup.

The RESTful API feature allows you to access Cytoscape from a separate application, thereby

orchestrating Cytoscape operations from that application. The application may be written in a

general programming language (e.g., Python) that keeps its own data structures, performs

complex flow control, or directly manipulates Cytoscape nodes, edges, attributes, and visual

styles.

The Command feature is useful for executing sequences of commands, whereas the RESTful

API feature is useful when Cytoscape is to be used as a service relative to an application.

Commands

Commands is the built-in Cytoscape feature to automate your workflow as simple script. You

can learn more about this feature in this section:

Command Tool

RESTful API

In some cases, you may need to use fully featured programming languages, such as Python, R,

Ruby, or JavaScript to script your workflow. Such languages enable complex control and data

structures, and Cytoscape would be called as a service. For such use cases, accessing

Cytoscape via REST API is the right option.

Cytoscape offers two flavors of REST-style control: REST Commands and cyREST. REST

Commands uses a REST interface to issue script commands. cyREST uses a REST interface to

access the Cytoscape data model as a document via a formal API.

1. REST API for Commands

In addition to running Command scripts, Command module has REST API to enable command

execution from another program.

By default, this feature is disabled. To enable the REST API server for Commands, please

follow these steps:

1. Open a terminal session:

file:///C:/Users/Barry%20Demchak/Desktop/Doc/cytoscape-working-copy-3.4.0/Command_Tool.html#command-tool
https://en.wikipedia.org/wiki/JavaScript

PowerShell or Command (For windows)

Terminal or iTerm2 (For Mac)

Terminal (For Linux)

2. Start Cytoscape from command-line. You must specify a TCP/IP port number as a

parameter – in this example, port 8888 will be opened for Command:

For Mac/Linux

./cytoscape.sh ‐R 8888

For Windows

./cytoscape.bat ‐R 8888

3. To test the Command interface, open the following URL with your web browser:

http://localhost:8888/v1/commands

4. If you see list of available commands, you are ready to use Command API

2. cyREST

https://en.wikipedia.org/wiki/Windows_PowerShell
https://www.iterm2.com/

cyREST is a language-agnostic, programmer-friendly RESTful API module for Cytoscape. If

you want to build your own workflow with R, Python or other programming languages along

with Cytoscape, this is the option for you. You can use popular tools, including

IPython/Jupyter Notebook and RStudio as your orchestration tool for your data visualization

workflow with Cytoscape.

http://apps.cytoscape.org/apps/cyrest
http://www.r-project.org/
https://www.python.org/

(Sample Jupyter Notebook written with cyREST and py2cytoscape)

Currently, cyREST is available as an App for Cytoscape 3.2.1 and later, and requires the Java 8

(or later) virtual machine. As of Cytoscape v3.3, cyREST is installed automatically with

Cytoscape. Please visit the link below for more information.

cyREST App Store page

http://nbviewer.ipython.org/github/idekerlab/py2cytoscape/blob/develop/examples/New_wrapper_api_sample.ipynb
https://github.com/idekerlab/py2cytoscape
http://apps.cytoscape.org/apps/cyrest

Cytoscape Privacy Policy

We respect the privacy of all Cytoscape users, and we do not collect any information on

Cytoscape users except in the situations listed below. In no case do we attempt to tie any of

this information back to a user, nor do we give, share, sell, or transfer this information to any

third party unless required by law. We use this information only in the aggregate to generate

statistics to assist in securing continued funding for Cytoscape.

On the Cytoscape download web page, we log the date, time, browser signature, and IP

address to which we deliver Cytoscape.

For a news feed fetched for display on the Cytoscape Welcome screen, we log the date

and time the news was fetched, the browser signature, and the IP address for the

workstation running Cytoscape.

This policy may change from time to time, and if it does, we will notify you via the Cytoscape

Welcome screen news feed and via our normal mass notification media. We will also update

this section of the user manual.

Note that some internal Cytoscape Apps and Apps available through the Cytoscape App Store

connect with third party services via the Internet. Once an App links to such a service, you are

subject to the privacy policy of that service.

A Python Book

A Python Book: Beginning Python, Advanced
Python, and Python Exercises

Author:

Dave Kuhlman
Contact:

dkuhlman@davekuhlman.org
Address:

http://www.davekuhlman.org

Page 1

A Python Book

Revision

1.3a
Date

December 15, 2013
Copyright

Copyright (c) 2009 Dave Kuhlman. All Rights Reserved. This document is subject
to the provisions of the Open Source MIT License
http://www.opensource.org/licenses/mitlicense.php.

Abstract

This document is a selflearning document for a course in Python programming.
This course contains (1) a part for beginners, (2) a discussion of several advanced
topics that are of interest to Python programmers, and (3) a Python workbook with
lots of exercises.

Page 2

A Python Book

Contents
1 Part 1 Beginning Python...10

1.1 Introductions Etc...10
1.1.1 Resources...11
1.1.2 A general description of Python..12
1.1.3 Interactive Python..15

1.2 Lexical matters..15
1.2.1 Lines..15
1.2.2 Comments..16
1.2.3 Names and tokens..16
1.2.4 Blocks and indentation..16
1.2.5 Doc strings...17
1.2.6 Program structure..17
1.2.7 Operators...18
1.2.8 Also see...19
1.2.9 Code evaluation...19

1.3 Statements and inspection preliminaries...20
1.4 Builtin datatypes...21

1.4.1 Numeric types..21
1.4.2 Tuples and lists..21
1.4.3 Strings..24

1.4.3.1 The new string.format method...26
1.4.3.2 Unicode strings..27

1.4.4 Dictionaries..29
1.4.5 Files...32
1.4.6 Other builtin types..35

1.4.6.1 The None value/type..35
1.4.6.2 Boolean values...36
1.4.6.3 Sets and frozensets...36

1.5 Functions and Classes A Preview..36
1.6 Statements...37

1.6.1 Assignment statement..37
1.6.2 import statement..39
1.6.3 print statement...41
1.6.4 if: elif: else: statement...43
1.6.5 for: statement...44
1.6.6 while: statement...48

Page 3

A Python Book

1.6.7 continue and break statements...48
1.6.8 try: except: statement...49
1.6.9 raise statement...51
1.6.10 with: statement...52

1.6.10.1 Writing a context manager...52
1.6.10.2 Using the with: statement..53

1.6.11 del..54
1.6.12 case statement..55

1.7 Functions, Modules, Packages, and Debugging..55
1.7.1 Functions...55

1.7.1.1 The def statement...55
1.7.1.2 Returning values..55
1.7.1.3 Parameters..56
1.7.1.4 Arguments..56
1.7.1.5 Local variables...57
1.7.1.6 Other things to know about functions..57
1.7.1.7 Global variables and the global statement...58
1.7.1.8 Doc strings for functions...60
1.7.1.9 Decorators for functions..60

1.7.2 lambda...61
1.7.3 Iterators and generators...62
1.7.4 Modules...67

1.7.4.1 Doc strings for modules...68
1.7.5 Packages..68

1.8 Classes...69
1.8.1 A simple class..69
1.8.2 Defining methods..70
1.8.3 The constructor..70
1.8.4 Member variables..70
1.8.5 Calling methods...71
1.8.6 Adding inheritance..71
1.8.7 Class variables...72
1.8.8 Class methods and static methods...72
1.8.9 Properties...74
1.8.10 Interfaces...75
1.8.11 Newstyle classes...75
1.8.12 Doc strings for classes...77
1.8.13 Private members..77

1.9 Special Tasks...77
1.9.1 Debugging tools...77

Page 4

A Python Book

1.9.2 File input and output..78
1.9.3 Unit tests..80

1.9.3.1 A simple example..80
1.9.3.2 Unit test suites..81
1.9.3.3 Additional unittest features..83
1.9.3.4 Guidance on Unit Testing..85

1.9.4 doctest..85
1.9.5 The Python database API..87
1.9.6 Installing Python packages..88

1.10 More Python Features and Exercises..89
2 Part 2 Advanced Python..90

2.1 Introduction Python 201 (Slightly) Advanced Python Topics.......................90
2.2 Regular Expressions..90

2.2.1 Defining regular expressions...90
2.2.2 Compiling regular expressions..91
2.2.3 Using regular expressions..91
2.2.4 Using match objects to extract a value..92
2.2.5 Extracting multiple items..93
2.2.6 Replacing multiple items...94

2.3 Iterator Objects..96
2.3.1 Example A generator function..98
2.3.2 Example A class containing a generator method......................................100
2.3.3 Example An iterator class...102
2.3.4 Example An iterator class that uses yield...104
2.3.5 Example A list comprehension...105
2.3.6 Example A generator expression..105

2.4 Unit Tests..106
2.4.1 Defining unit tests..106

2.4.1.1 Create a test class...106
2.5 Extending and embedding Python..109

2.5.1 Introduction and concepts..109
2.5.2 Extension modules...110
2.5.3 SWIG...112
2.5.4 Pyrex..115
2.5.5 SWIG vs. Pyrex...120
2.5.6 Cython...120
2.5.7 Extension types..122
2.5.8 Extension classes...122

2.6 Parsing...122
2.6.1 Special purpose parsers...123

Page 5

A Python Book

2.6.2 Writing a recursive descent parser by hand...124
2.6.3 Creating a lexer/tokenizer with Plex...131
2.6.4 A survey of existing tools..141
2.6.5 Creating a parser with PLY...141
2.6.6 Creating a parser with pyparsing...148

2.6.6.1 Parsing commadelimited lines..148
2.6.6.2 Parsing functors...149
2.6.6.3 Parsing names, phone numbers, etc...150
2.6.6.4 A more complex example..151

2.7 GUI Applications..153
2.7.1 Introduction...153
2.7.2 PyGtk...153

2.7.2.1 A simple message dialog box..153
2.7.2.2 A simple text input dialog box...156
2.7.2.3 A file selection dialog box...158

2.7.3 EasyGUI..160
2.7.3.1 A simple EasyGUI example..161
2.7.3.2 An EasyGUI file open dialog example..161

2.8 Guidance on Packages and Modules...161
2.8.1 Introduction...161
2.8.2 Implementing Packages...162
2.8.3 Using Packages..162
2.8.4 Distributing and Installing Packages...162

2.9 End Matter...164
2.9.1 Acknowledgements and Thanks..164
2.9.2 See Also...164

3 Part 3 Python Workbook...165
3.1 Introduction...165
3.2 Lexical Structures..165

3.2.1 Variables and names..165
3.2.2 Line structure...167
3.2.3 Indentation and program structure...168

3.3 Execution Model...169
3.4 Builtin Data Types...170

3.4.1 Numbers..170
3.4.1.1 Literal representations of numbers..171
3.4.1.2 Operators for numbers...173
3.4.1.3 Methods on numbers..175

3.4.2 Lists...175
3.4.2.1 Literal representation of lists...176

Page 6

A Python Book

3.4.2.2 Operators on lists...178
3.4.2.3 Methods on lists...178
3.4.2.4 List comprehensions..180

3.4.3 Strings..182
3.4.3.1 Characters..183
3.4.3.2 Operators on strings...184
3.4.3.3 Methods on strings...185
3.4.3.4 Raw strings..187
3.4.3.5 Unicode strings..188

3.4.4 Dictionaries..190
3.4.4.1 Literal representation of dictionaries...190
3.4.4.2 Operators on dictionaries...191
3.4.4.3 Methods on dictionaries...192

3.4.5 Files...195
3.4.6 A few miscellaneous data types..197

3.4.6.1 None...197
3.4.6.2 The booleans True and False...197

3.5 Statements...198
3.5.1 Assignment statement..198
3.5.2 print statement...200
3.5.3 if: statement exercises..201
3.5.4 for: statement exercises...202
3.5.5 while: statement exercises...205
3.5.6 break and continue statements...206
3.5.7 Exceptions and the try:except: and raise statements...................................207

3.6 Functions...210
3.6.1 Optional arguments and default values...211
3.6.2 Passing functions as arguments...213
3.6.3 Extra args and keyword args...214

3.6.3.1 Order of arguments (positional, extra, and keyword args)..................216
3.6.4 Functions and ducktyping and polymorphism...216
3.6.5 Recursive functions...217
3.6.6 Generators and iterators...219

3.7 Objectoriented programming and classes..223
3.7.1 The constructor..224
3.7.2 Inheritance Implementing a subclass...225
3.7.3 Classes and polymorphism..227
3.7.4 Recursive calls to methods..228
3.7.5 Class variables, class methods, and static methods.....................................230

3.7.5.1 Decorators for classmethod and staticmethod.....................................233

Page 7

A Python Book

3.8 Additional and Advanced Topics..234
3.8.1 Decorators and how to implement them..234

3.8.1.1 Decorators with arguments..235
3.8.1.2 Stacked decorators...236
3.8.1.3 More help with decorators...238

3.8.2 Iterables...239
3.8.2.1 A few preliminaries on Iterables..239
3.8.2.2 More help with iterables..240

3.9 Applications and Recipes..240
3.9.1 XML SAX, minidom, ElementTree, Lxml..241
3.9.2 Relational database access...249
3.9.3 CSV comma separated value files...255
3.9.4 YAML and PyYAML..256
3.9.5 Json..258

4 Part 4 Generating Python Bindings for XML...260
4.1 Introduction...260
4.2 Generating the code...261
4.3 Using the generated code to parse and export an XML document.....................263
4.4 Some command line options you might want to know.......................................263
4.5 The graphical frontend...264
4.6 Adding applicationspecific behavior...265

4.6.1 Implementing custom subclasses..265
4.6.2 Using the generated "API" from your application......................................266
4.6.3 A combined approach..267

4.7 Special situations and uses..269
4.7.1 Generic, typeindependent processing...269

4.7.1.1 Step 1 generate the bindings..270
4.7.1.2 Step 2 add applicationspecific code..270
4.7.1.3 Step 3 write a test/driver harness...274
4.7.1.4 Step 4 run the test application..276

4.8 Some hints...276
4.8.1 Children defined with maxOccurs greater than 1..276
4.8.2 Children defined with simple numeric types...277
4.8.3 The type of an element's character content..277
4.8.4 Constructors and their default values..277

Page 8

A Python Book

Preface

This book is a collection of materials that I've used when conducting Python training and
also materials from my Web site that are intended for selfinstruction.

You may prefer a machine readable copy of this book. You can find it in various formats
here:

● HTML – http://www.davekuhlman.org/python_book_01.html
● PDF http://www.davekuhlman.org /python_book_01.pdf
● ODF/OpenOffice http://www.davekuhlman.org /python_book_01.odt

And, let me thank the students in my Python classes. Their questions and suggestions
were a great help in the preparation of these materials.

Page 9

A Python Book

1 Part 1 Beginning Python

1.1 Introductions Etc
Introductions

Practical matters: restrooms, breakroom, lunch and break times, etc.

Starting the Python interactive interpreter. Also, IPython and Idle.

Running scripts

Editors Choose an editor which you can configure so that it indents with 4 spaces, not
tab characters. For a list of editors for Python, see:
http://wiki.python.org/moin/PythonEditors. A few possible editors:

● SciTE http://www.scintilla.org/SciTE.html.
● MS Windows only (1) TextPad http://www.textpad.com; (2) UltraEdit

http://www.ultraedit.com/.
● Jed See http://www.jedsoft.org/jed/.
● Emacs See http://www.gnu.org/software/emacs/ and

http://www.xemacs.org/faq/xemacsfaq.html.
● jEdit Requires a bit of customization for Python See http://jedit.org.
● Vim http://www.vim.org/
● Geany http://www.geany.org/
● And many more.

Interactive interpreters:

● python
● ipython
● Idle

IDEs Also see
http://en.wikipedia.org/wiki/List_of_integrated_development_environments_for_Python:

● PyWin MS Windows only. Available at:
http://sourceforge.net/projects/pywin32/.

● WingIDE See http://wingware.com/wingide/.
● Eclipse http://eclipse.org/. There is a plugin that supports Python.
● Kdevelop Linux/KDE See http://www.kdevelop.org/.
● Eric Linux KDE? See http://ericide.pythonprojects.org/index.html
● Emacs and SciTE will evaluate a Python buffer within the editor.

Page 10

A Python Book

1.1.1 Resources
Where else to get help:

● Python home page http://www.python.org
● Python standard documentation http://www.python.org/doc/.

You will also find links to tutorials there.
● FAQs http://www.python.org/doc/faq/.
● The Python Wiki http://wiki.python.org/
● The Python Package Index Lots of Python packages

https://pypi.python.org/pypi
● Special interest groups (SIGs) http://www.python.org/sigs/
● Other python related mailing lists and lists for specific applications (for example,

Zope, Twisted, etc). Try: http://dir.gmane.org/search.php?match=python.
● http://sourceforge.net Lots of projects. Search for "python".
● USENET comp.lang.python. Can also be accessed through Gmane:

http://dir.gmane.org/gmane.comp.python.general.
● The Python tutor email list http://mail.python.org/mailman/listinfo/tutor

Local documentation:

● On MS Windows, the Python documentation is installed with the standard
installation.

● Install the standard Python documentation on your machine from
http://www.python.org/doc/.

● pydoc. Example, on the command line, type: pydoc re.
● Import a module, then view its .__doc__ attribute.
● At the interactive prompt, use help(obj). You might need to import it first.

Example:
>>> import urllib
>>> help(urllib)

● In IPython, the question mark operator gives help. Example:
In [13]: open?
Type: builtin_function_or_method
Base Class: <type 'builtin_function_or_method'>
String Form: <builtin function open>
Namespace: Python builtin
Docstring:
 open(name[, mode[, buffering]]) > file object

 Open a file using the file() type, returns a file
object.
Constructor Docstring:
 x.__init__(...) initializes x; see
x.__class__.__doc__ for signature

Page 11

A Python Book

Callable: Yes
Call def: Calling definition not available.Call
docstring:
 x.__call__(...) <==> x(...)

1.1.2 A general description of Python
Python is a highlevel general purpose programming language:

● Because code is automatically compiled to byte code and executed, Python is
suitable for use as a scripting language, Web application implementation
language, etc.

● Because Python can be extended in C and C++, Python can provide the speed
needed for even compute intensive tasks.

● Because of its strong structuring constructs (nested code blocks, functions,
classes, modules, and packages) and its consistent use of objects and
objectoriented programming, Python enables us to write clear, logical
applications for small and large tasks.

Important features of Python:

● Builtin high level data types: strings, lists, dictionaries, etc.
● The usual control structures: if, ifelse, ifelifelse, while, plus a powerful

collection iterator (for).
● Multiple levels of organizational structure: functions, classes, modules, and

packages. These assist in organizing code. An excellent and large example is the
Python standard library.

● Compile on the fly to byte code Source code is compiled to byte code without a
separate compile step. Source code modules can also be "precompiled" to byte
code files.

● Objectoriented Python provides a consistent way to use objects: everything is
an object. And, in Python it is easy to implement new object types (called classes
in objectoriented programming).

● Extensions in C and C++ Extension modules and extension types can be written
by hand. There are also tools that help with this, for example, SWIG, sip, Pyrex.

● Jython is a version of Python that "plays well with" Java. See: The Jython Project
 http://www.jython.org/Project/.

Some things you will need to know:

● Python uses indentation to show block structure. Indent one level to show the
beginning of a block. Outdent one level to show the end of a block. As an
example, the following Cstyle code:

if (x)
{

Page 12

A Python Book

 if (y)
 {
 f1()
 }
 f2()
}

in Python would be:
if x:
 if y:
 f1()
 f2()

And, the convention is to use four spaces (and no hard tabs) for each level of indentation.
Actually, it's more than a convention; it's practically a requirement. Following that
"convention" will make it so much easier to merge your Python code with code from
other sources.

An overview of Python:

● A scripting language Python is suitable (1) for embedding, (2) for writing small
unstructured scripts, (3) for "quick and dirty" programs.

● Not a scripting language (1) Python scales. (2) Python encourages us to write
code that is clear and wellstructured.

● Interpreted, but also compiled to bytecode. Modules are automatically compiled
(to .pyc) when imported, but may also be explicitly compiled.

● Provides an interactive command line and interpreter shell. In fact, there are
several.

● Dynamic For example:
○ Types are bound to values, not to variables.
○ Function and method lookup is done at runtime.
○ Values are inspectable.
○ There is an interactive interpreter, more than one, in fact.
○ You can list the methods supported by any given object.

● Strongly typed at runtime, not compiletime. Objects (values) have a type, but
variables do not.

● Reasonably high level High level builtin data types; high level control
structures (for walking lists and iterators, for example).

● Objectoriented Almost everything is an object. Simple object definition. Data
hiding by agreement. Multiple inheritance. Interfaces by convention.
Polymorphism.

● Highly structured Statements, functions, classes, modules, and packages enable
us to write large, wellstructured applications. Why structure? Readability,
locateability, modifiability.

● Explicitness

Page 13

A Python Book

● Firstclass objects:
○ Definition: Can (1) pass to function; (2) return from function; (3) stuff into a

data structure.
○ Operators can be applied to values (not variables). Example: f(x)[3]

● Indented block structure "Python is pseudocode that runs."
● Embedding and extending Python Python provides a welldocumented and

supported way (1) to embed the Python interpreter in C/C++ applications and (2)
to extend Python with modules and objects implemented in C/C++.
○ In some cases, SWIG can generate wrappers for existing C/C++ code

automatically. See http://www.swig.org/
○ Cython enables us to generate C code from Python and to "easily" create

wrappers for C/C++ functions. See
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/

○ To embed and extend Python with Java, there is Jython. See
http://www.jython.org/

● Automatic garbage collection. (But, there is a gc module to allow explicit control
of garbage collection.)

● Comparison with other languages: compiled languages (e.g. C/C++); Java; Perl,
Tcl, and Ruby. Python excells at: development speed, execution speed, clarity and
maintainability.

● Varieties of Python:
○ CPython Standard Python 2.x implemented in C.
○ Jython Python for the Java environment http://www.jython.org/
○ PyPy Python with a JIT compiler and stackless mode http://pypy.org/
○ Stackless Python with enhanced thread support and microthreads etc.

http://www.stackless.com/
○ IronPython Python for .NET and the CLR http://ironpython.net/
○ Python 3 The new, new Python. This is intended as a replacement for

Python 2.x. http://www.python.org/doc/. A few differences (from Python
2.x):
■ The print statement changed to the print function.
■ Strings are unicode by default.
■ Classes are all "new style" classes.
■ Changes to syntax for catching exceptions.
■ Changes to integers no long integer; integer division with automatic

convert to float.
■ More pervasive use of iterables (rather than collections).
■ Etc.
For a more information about differences between Python 2.x and Python 3.x,
see the description of the various fixes that can be applied with the 2to3 tool:

Page 14

A Python Book

http://docs.python.org/3/library/2to3.html#fixers
The migration tool, 2to3, eases the conversion of 2.x code to 3.x.

● Also see The Zen of Python http://www.python.org/peps/pep0020.html. Or, at
the Python interactive prompt, type:

>>> import this

1.1.3 Interactive Python
If you execute Python from the command line with no script (no arguments), Python
gives you an interactive prompt. This is an excellent facility for learning Python and for
trying small snippets of code. Many of the examples that follow were developed using
the Python interactive prompt.

Start the Python interactive interpreter by typing python with no arguments at the
command line. For example:

$ python
Python 2.6.1 (r261:67515, Jan 11 2009, 15:19:23)
[GCC 4.3.2] on linux2
Type "help", "copyright", "credits" or "license" for more
information.
>>> print 'hello'
hello
>>>

You may also want to consider using IDLE. IDLE is a graphical integrated development
environment for Python; it contains a Python shell. It is likely that Idle was installed for
you when you installed Python. You will find a script to start up IDLE in the
Tools/scripts directory of your Python distribution. IDLE requires Tkinter.

In addition, there are tools that will give you a more powerful and fancy Python
interactive interpreter. One example is IPython, which is available at
http://ipython.scipy.org/.

1.2 Lexical matters

1.2.1 Lines
● Python does what you want it to do most of the time so that you only have to add

extra characters some of the time.
● Statement separator is a semicolon, but is only needed when there is more than

one statement on a line. And, writing more than one statement on the same line is
considered bad form.

● Continuation lines A backslash as last character of the line makes the

Page 15

A Python Book

following line a continuation of the current line. But, note that an opening
"context" (parenthesis, square bracket, or curly bracket) makes the backslash
unnecessary.

1.2.2 Comments
Everything after "#" on a line is ignored. No block comments, but doc strings are a
comment in quotes at the beginning of a module, class, method or function. Also, editors
with support for Python often provide the ability to comment out selected blocks of code,
usually with "##".

1.2.3 Names and tokens
● Allowed characters: az AZ 09 underscore, and must begin with a letter or

underscore.
● Names and identifiers are case sensitive.
● Identifiers can be of unlimited length.
● Special names, customizing, etc. Usually begin and end in double underscores.
● Special name classes Single and double underscores.

○ Single leading single underscore Suggests a "private" method or variable
name. Not imported by "from module import *".

○ Single trailing underscore Use it to avoid conflicts with Python keywords.
○ Double leading underscores Used in a class definition to cause name

mangling (weak hiding). But, not often used.
● Naming conventions Not rigid, but:

○ Modules and packages all lower case.
○ Globals and constants Upper case.
○ Classes Bumpy caps with initial upper.
○ Methods and functions All lower case with words separated by underscores.
○ Local variables Lower case (with underscore between words) or bumpy

caps with initial lower or your choice.
○ Good advice Follow the conventions used in the code on which you are

working.
● Names/variables in Python do not have a type. Values have types.

1.2.4 Blocks and indentation
Python represents block structure and nested block structure with indentation, not with
begin and end brackets.

The empty block Use the pass noop statement.

Benefits of the use of indentation to indicate structure:

Page 16

A Python Book

● Reduces the need for a coding standard. Only need to specify that indentation is 4
spaces and no hard tabs.

● Reduces inconsistency. Code from different sources follow the same indentation
style. It has to.

● Reduces work. Only need to get the indentation correct, not both indentation and
brackets.

● Reduces clutter. Eliminates all the curly brackets.
● If it looks correct, it is correct. Indentation cannot fool the reader.

Editor considerations The standard is 4 spaces (no hard tabs) for each indentation level.
You will need a text editor that helps you respect that.

1.2.5 Doc strings
Doc strings are like comments, but they are carried with executing code. Doc strings can
be viewed with several tools, e.g. help(), obj.__doc__, and, in IPython, a question
mark (?) after a name will produce help.

A doc string is written as a quoted string that is at the top of a module or the first lines
after the header line of a function or class.

We can use triplequoting to create doc strings that span multiple lines.

There are also tools that extract and format doc strings, for example:

● pydoc Documentation generator and online help system
http://docs.python.org/lib/modulepydoc.html.

● epydoc Epydoc: Automatic API Documentation Generation for Python
http://epydoc.sourceforge.net/index.html

● Sphinx Can also extract documentation from Python doc strings. See
http://sphinxdoc.org/index.html.

See the following for suggestions and more information on doc strings: Docstring
conventions http://www.python.org/dev/peps/pep0257/.

1.2.6 Program structure
● Execution def, class, etc are executable statements that add something to the

current namespace. Modules can be both executable and importable.
● Statements, data structures, functions, classes, modules, packages.
● Functions
● Classes
● Modules correspond to files with a "*.py" extension. Packages correspond to a

directory (or folder) in the file system; a package contains a file named
"__init__.py". Both modules and packages can be imported (see section import

Page 17

A Python Book

statement).
● Packages A directory containing a file named "__init__.py". Can provide

additional initialization when the package or a module in it is loaded (imported).

1.2.7 Operators
● See: http://docs.python.org/ref/operators.html. Python defines the following

operators:
+ * ** / // %
<< >> & | ^ ~
< > <= >= == != <>

The comparison operators <> and != are alternate spellings of the same operator.
!= is the preferred spelling; <> is obsolescent.

● Logical operators:
and or is not in

● There are also (1) the dot operator, (2) the subscript operator [], and the
function/method call operator ().

● For information on the precedences of operators, see the table at
http://docs.python.org/2/reference/expressions.html#operatorprecedence, which
is reproduced below.

● For information on what the different operators do, the section in the "Python
Language Reference" titled "Special method names" may be of help:
http://docs.python.org/2/reference/datamodel.html#specialmethodnames
The following table summarizes the operator precedences in Python, from lowest
precedence (least binding) to highest precedence (most binding). Operators on the
same line have the same precedence. Unless the syntax is explicitly given,
operators are binary. Operators on the same line group left to right (except for
comparisons, including tests, which all have the same precedence and chain from
left to right see section 5.9 and exponentiation, which groups from right to
left):

Operator Description
======================== ==================
lambda Lambda expression
or Boolean OR
and Boolean AND
not x Boolean NOT
in, not in Membership tests
is, is not Identity tests
<, <=, >, >=, <>, !=, == Comparisons
| Bitwise OR
^ Bitwise XOR
& Bitwise AND
<<, >> Shifts

Page 18

A Python Book

+, Addition and subtraction
*, /, % Multiplication, division,
remainder
+x, x Positive, negative
~x Bitwise not
** Exponentiation
x.attribute Attribute reference
x[index] Subscription
x[index:index] Slicing
f(arguments...) Function call
(expressions...) Binding or tuple display
[expressions...] List display
{key:datum...} Dictionary display
`expressions...` String conversion

● Note that most operators result in calls to methods with special names, for
example __add__, __sub__, __mul__, etc. See Special method names
http://docs.python.org/2/reference/datamodel.html#specialmethodnames
Later, we will see how these operators can be emulated in classes that you define
yourself, through the use of these special names.

1.2.8 Also see
For more on lexical matters and Python styles, see:

● Code Like a Pythonista: Idiomatic Python
http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html.

● Style Guide for Python Code http://www.python.org/dev/peps/pep0008/
● The flake8 style checking program. See https://pypi.python.org/pypi/flake8. Also

see the pylint code checker: https://pypi.python.org/pypi/pylint.

1.2.9 Code evaluation
Understanding the Python execution model How Python evaluates and executes your
code.

Evaluating expressions.

Creating names/variables Binding The following all create names (variables) and
bind values (objects) to them: (1) assignment, (2) function definition, (3) class definition,
(4) function and method call, (5) importing a module, ...

First class objects Almost all objects in Python are first class. Definition: An object is
first class if: (1) we can put it in a structured object; (2) we can pass it to a function; (3)
we can return it from a function.

References Objects (or references to them) can be shared. What does this mean?

● The object(s) satisfy the identity test operator is.

Page 19

A Python Book

● The builtin function id() returns the same value.
● The consequences for mutable objects are different from those for immutable

objects.
● Changing (updating) a mutable object referenced through one variable or

container also changes that object referenced through other variables or
containers, because it is the same object.

● del() The builtin function del() removes a reference, not (necessarily) the
object itself.

1.3 Statements and inspection preliminaries
print Example:

print obj
print "one", "two", 'three'

for: Example:

stuff = ['aa', 'bb', 'cc']
for item in stuff:
 print item

Learn what the type of an object is Example:

type(obj)

Learn what attributes an object has and what it's capabilities are Example:

dir(obj)
value = "a message"
dir(value)

Get help on a class or an object Example:

help(str)
help("")
value = "abc"
help(value)
help(value.upper)

In IPython (but not standard Python), you can also get help at the interactive prompt by
typing "?" and "??" after an object. Example:

In [48]: a = ''
In [49]: a.upper?
Type: builtin_function_or_method
String Form:<builtin method upper of str object at 0x7f1c426e0508>
Docstring:
S.upper() > string

Page 20

A Python Book

Return a copy of the string S converted to uppercase.

1.4 Builtin datatypes
For information on builtin data types, see section Builtin Types
http://docs.python.org/lib/types.html in the Python standard documentation.

1.4.1 Numeric types
The numeric types are:

● Plain integers Same precision as a C long, usually a 32bit binary number.
● Long integers Define with 100L. But, plain integers are automatically

promoted when needed.
● Floats Implemented as a C double. Precision depends on your machine. See

sys.float_info.
● Complex numbers Define with, for example, 3j or complex(3.0, 2.0).

See 2.3.4 Numeric Types int, float, long, complex
http://docs.python.org/lib/typesnumeric.html.

Python does mixed arithmetic.

Integer division truncates. This is changed in Python 3. Use float(n) to force coercion
to a float. Example:

In [8]: a = 4
In [9]: b = 5
In [10]: a / b
Out[10]: 0 # possibly wrong?
In [11]: float(a) / b
Out[11]: 0.8

Applying the function call operator (parentheses) to a type or class creates an instance of
that type or class.

Scientific and heavily numeric programming High level Python is not very efficient for
numerical programming. But, there are libraries that help Numpy and SciPy See:
SciPy: Scientific Tools for Python http://scipy.org/

1.4.2 Tuples and lists
List A list is a dynamic array/sequence. It is ordered and indexable. A list is mutable.

List constructors: [], list().

range() and xrange():

Page 21

A Python Book

● range(n) creates a list of n integers. Optional arguments are the starting integer
and a stride.

● xrange is like range, except that it creates an iterator that produces the items
in the list of integers instead of the list itself.

Tuples A tuple is a sequence. A tuple is immutable.

Tuple constructors: (), but really a comma; also tuple().

Tuples are like lists, but are not mutable.

Python lists are (1) heterogeneous (2) indexable, and (3) dynamic. For example, we can
add to a list and make it longer.

Notes on sequence constructors:

● To construct a tuple with a single element, use (x,); a tuple with a single
element requires a comma.

● You can spread elements across multiple lines (and no need for backslash
continuation character "\").

● A comma can follow the last element.
The length of a tuple or list (or other container): len(mylist).

Operators for lists:

● Try: list1 + list2, list1 * n, list1 += list2, etc.
● Comparison operators: <, ==, >=, etc.
● Test for membership with the in operator. Example:

In [77]: a = [11, 22, 33]
In [78]: a
Out[78]: [11, 22, 33]
In [79]: 22 in a
Out[79]: True
In [80]: 44 in a
Out[80]: False

Subscription:

● Indexing into a sequence
● Negative indexes Effectively, length of sequence plus (minus) index.
● Slicing Example: data[2:5]. Default values: beginning and end of list.
● Slicing with strides Example: data[::2].

Operations on tuples No operations that change the tuple, since tuples are immutable.
We can do iteration and subscription. We can do "contains" (the in operator) and get the
length (the len() operator). We can use certain boolean operators.

Operations on lists Operations similar to tuples plus:

● Append mylist.append(newitem).

Page 22

A Python Book

● Insert mylist.insert(index, newitem). Note on efficiency: The
insert method is not as fast as the append method. If you find that you need
to do a large number of mylist.insert(0, obj) (that is, inserting at the
beginning of the list) consider using a deque instead. See:
http://docs.python.org/2/library/collections.html#collections.deque. Or, use
append and reverse.

● Extend mylist.extend(anotherlist). Also can use + and +=.
● Remove mylist.remove(item) and mylist.pop(). Note that

append() together with pop() implements a stack.
● Delete del mylist[index].
● Pop Get last (rightmost) item and remove from list mylist.pop().

List operators +, *, etc.

For more operations and operators on sequences, see:
http://docs.python.org/2/library/stdtypes.html#sequencetypesstrunicodelisttuplebyte
arraybufferxrange.

Exercises:

● Create an empty list. Append 4 strings to the list. Then pop one item off the end
of the list. Solution:

In [25]: a = []
In [26]: a.append('aaa')
In [27]: a.append('bbb')
In [28]: a.append('ccc')
In [29]: a.append('ddd')
In [30]: print a
['aaa', 'bbb', 'ccc', 'ddd']
In [31]: a.pop()
Out[31]: 'ddd'

● Use the for statement to print the items in the list. Solution:
In [32]: for item in a:
 : print item
 :
aaa
bbb
ccc

● Use the string join operation to concatenate the items in the list. Solution:
In [33]: '||'.join(a)
Out[33]: 'aaa||bbb||ccc'

● Use lists containing three (3) elements to create and show a tree:
In [37]: b = ['bb', None, None]
In [38]: c = ['cc', None, None]
In [39]: root = ['aa', b, c]

Page 23

A Python Book

In [40]:
In [40]:
In [40]: def show_tree(t):
 : if not t:
 : return
 : print t[0]
 : show_tree(t[1])
 : show_tree(t[2])
 :
 :
In [41]: show_tree(root)
aa
bb
cc

Note that we will learn a better way to represent tree structures when we cover
implementing classes in Python.

1.4.3 Strings
Strings are sequences. They are immutable. They are indexable. They are iterable.

For operations on strings, see http://docs.python.org/lib/stringmethods.html or use:

>>> help(str)

Or:

>>> dir("abc")

String operations (methods).

String operators, e.g. +, <, <=, ==, etc..

Constructors/literals:

● Quotes: single and double. Escaping quotes and other special characters with a
backslash.

● Triple quoting Use triple single quotes or double quotes to define multiline
strings.

● str() The constructor and the name of the type/class.
● 'aSeparator'.join(aList)
● Many more.

Escape characters in strings \t, \n, \\, etc.

String formatting See:
http://docs.python.org/2/library/stdtypes.html#stringformattingoperations

Examples:

In [18]: name = 'dave'

Page 24

A Python Book

In [19]: size = 25
In [20]: factor = 3.45
In [21]: print 'Name: %s Size: %d Factor: %3.4f' % (name, size,
factor,)
Name: dave Size: 25 Factor: 3.4500
In [25]: print 'Name: %s Size: %d Factor: %08.4f' % (name, size,
factor,)
Name: dave Size: 25 Factor: 003.4500

If the righthand argument to the formatting operator is a dictionary, then you can
(actually, must) use the names of keys in the dictionary in your format strings. Examples:

In [115]: values = {'vegetable': 'chard', 'fruit': 'nectarine'}
In [116]: 'I love %(vegetable)s and I love %(fruit)s.' % values
Out[116]: 'I love chard and I love nectarine.'

Also consider using the right justify and left justify operations. Examples:
mystring.rjust(20), mystring.ljust(20, ':').

In Python 3, the str.format method is preferred to the string formatting operator.
This method is also available in Python 2.7. It has benefits and advantages over the string
formatting operator. You can start learning about it here:
http://docs.python.org/2/library/stdtypes.html#stringmethods

Exercises:

● Use a literal to create a string containing (1) a single quote, (2) a double quote, (3)
both a single and double quote. Solutions:

"Some 'quoted' text."
'Some "quoted" text.'
'Some "quoted" \'extra\' text.'

● Write a string literal that spans multiple lines. Solution:
"""This string
spans several lines
because it is a little long.
"""

● Use the string join operation to create a string that contains a colon as a
separator. Solution:

>>> content = []
>>> content.append('finch')
>>> content.append('sparrow')
>>> content.append('thrush')
>>> content.append('jay')
>>> contentstr = ':'.join(content)
>>> print contentstr
finch:sparrow:thrush:jay

● Use string formatting to produce a string containing your last and first names,

Page 25

A Python Book

separated by a comma. Solution:
>>> first = 'Dave'
>>> last = 'Kuhlman'
>>> full = '%s, %s' % (last, first,)
>>> print full
Kuhlman, Dave

Incrementally building up large strings from lots of small strings the old way Since
strings in Python are immutable, appending to a string requires a reallocation. So, it is
faster to append to a list, then use join. Example:

In [25]: strlist = []
In [26]: strlist.append('Line #1')
In [27]: strlist.append('Line #2')
In [28]: strlist.append('Line #3')
In [29]: str = '\n'.join(strlist)
In [30]: print str
Line #1
Line #2
Line #3

Incrementally building up large strings from lots of small strings the new way The
+= operation on strings has been optimized. So, when you do this str1 += str2,
even many times, it is efficient.

The translate method enables us to map the characters in a string, replacing those in
one table by those in another. And, the maketrans function in the string module,
makes it easy to create the mapping table:

import string

def test():
 a = 'axbycz'
 t = string.maketrans('abc', '123')
 print a
 print a.translate(t)

test()

1.4.3.1 The new string.format method

The new way to do string formatting (which is standard in Python 3 and perhaps
preferred for new code in Python 2) is to use the string.format method. See here:

● http://docs.python.org/2/library/stdtypes.html#str.format
● http://docs.python.org/2/library/string.html#formatstringsyntax
● http://docs.python.org/2/library/string.html#formatspecificationminilanguage

Some examples:

Page 26

A Python Book

In [1]: 'aaa {1} bbb {0} ccc {1} ddd'.format('xx', 'yy',)
Out[1]: 'aaa yy bbb xx ccc yy ddd'
In [2]: 'number: {0:05d} ok'.format(25)
Out[2]: 'number: 00025 ok'
In [4]: 'n1: {num1} n2: {num2}'.format(num2=25, num1=100)
Out[4]: 'n1: 100 n2: 25'
In [5]: 'n1: {num1} n2: {num2} again: {num1}'.format(num2=25,
num1=100)
Out[5]: 'n1: 100 n2: 25 again: 100'
In [6]: 'number: {:05d} ok'.format(25)
Out[6]: 'number: 00025 ok'
In [7]: values = {'name': 'dave', 'hobby': 'birding'}
In [8]: 'user: {name} activity: {hobby}'.format(**values)
Out[8]: 'user: dave activity: birding'

1.4.3.2 Unicode strings

Representing unicode:

In [96]: a = u'abcd'
In [97]: a
Out[97]: u'abcd'
In [98]: b = unicode('efgh')
In [99]: b
Out[99]: u'efgh'

Convert to unicode: a_string.decode(encoding). Examples:

In [102]: 'abcd'.decode('utf8')
Out[102]: u'abcd'
In [103]:
In [104]: 'abcd'.decode(sys.getdefaultencoding())
Out[104]: u'abcd'

Convert out of unicode: a_unicode_string.encode(encoding). Examples:

In [107]: a = u'abcd'
In [108]: a.encode('utf8')
Out[108]: 'abcd'
In [109]: a.encode(sys.getdefaultencoding())
Out[109]: 'abcd'
In [110]: b = u'Sel\xe7uk'
In [111]: print b.encode('utf8')
Selçuk

Test for unicode type Example:

In [122]: import types
In [123]: a = u'abcd'
In [124]: type(a) is types.UnicodeType
Out[124]: True
In [125]:

Page 27

A Python Book

In [126]: type(a) is type(u'')
Out[126]: True

Or better:

In [127]: isinstance(a, unicode)
Out[127]: True

An example with a character "c" with a hachek:

In [135]: name = 'Ivan Krsti\xc4\x87'
In [136]: name.decode('utf8')
Out[136]: u'Ivan Krsti\u0107'
In [137]:
In [138]: len(name)
Out[138]: 12
In [139]: len(name.decode('utf8'))
Out[139]: 11

You can also create a unicode character by using the unichr() builtin function:

In [2]: a = 'aa' + unichr(170) + 'bb'
In [3]: a
Out[3]: u'aa\xaabb'
In [6]: b = a.encode('utf8')
In [7]: b
Out[7]: 'aa\xc2\xaabb'
In [8]: print b
aaªbb

Guidance for use of encodings and unicode If you are working with a multibyte
character set:

1. Convert/decode from an external encoding to unicode early
(my_string.decode(encoding)).

2. Do your work in unicode.
3. Convert/encode to an external encoding late

(my_string.encode(encoding)).
For more information, see:

● Unicode In Python, Completely Demystified http://farmdev.com/talks/unicode/
● PEP 100: Python Unicode Integration

http://www.python.org/dev/peps/pep0100/
● In the Python standard library:

○ codecs Codec registry and base classes
http://docs.python.org/2/library/codecs.html#modulecodecs

○ Standard Encodings
http://docs.python.org/2/library/codecs.html#standardencodings

If you are reading and writing multibyte character data from or to a file, then look at the

Page 28

A Python Book

codecs.open() in the codecs module
http://docs.python.org/2/library/codecs.html#codecs.open.

Handling multibyte character sets in Python 3 is easier, I think, but different. One hint is
to use the encoding keyword parameter to the open builtin function. Here is an
example:

def test():
 infile = open('infile1.txt', 'r', encoding='utf8')
 outfile = open('outfile1.txt', 'w', encoding='utf8')
 for line in infile:
 line = line.upper()
 outfile.write(line)
 infile.close()
 outfile.close()

test()

1.4.4 Dictionaries
A dictionary is a collection, whose values are accessible by key. It is a collection of
namevalue pairs.

The order of elements in a dictionary is undefined. But, we can iterate over (1) the keys,
(2) the values, and (3) the items (keyvalue pairs) in a dictionary. We can set the value of
a key and we can get the value associated with a key.

Keys must be immutable objects: ints, strings, tuples, ...

Literals for constructing dictionaries:

d1 = {}
d2 = {key1: value1, key2: value2, }

Constructor for dictionaries dict() can be used to create instances of the class dict.
Some examples:

dict({'one': 2, 'two': 3})
dict({'one': 2, 'two': 3}.items())
dict({'one': 2, 'two': 3}.iteritems())
dict(zip(('one', 'two'), (2, 3)))
dict([['two', 3], ['one', 2]])
dict(one=2, two=3)
dict([(['one', 'two'][i2], i) for i in (2, 3)])

For operations on dictionaries, see http://docs.python.org/lib/typesmapping.html or use:

>>> help({})

Or:

Page 29

A Python Book

>>> dir({})

Indexing Access or add items to a dictionary with the indexing operator []. Example:

In [102]: dict1 = {}
In [103]: dict1['name'] = 'dave'
In [104]: dict1['category'] = 38
In [105]: dict1
Out[105]: {'category': 38, 'name': 'dave'}

Some of the operations produce the keys, the values, and the items (pairs) in a dictionary.
Examples:

In [43]: d = {'aa': 111, 'bb': 222}
In [44]: d.keys()
Out[44]: ['aa', 'bb']
In [45]: d.values()
Out[45]: [111, 222]
In [46]: d.items()
Out[46]: [('aa', 111), ('bb', 222)]

When iterating over large dictionaries, use methods iterkeys(), itervalues(),
and iteritems(). Example:

In [47]:
In [47]: d = {'aa': 111, 'bb': 222}
In [48]: for key in d.iterkeys():
 : print key
 :
 :
aa
bb

To test for the existence of a key in a dictionary, use the in operator or the
mydict.has_key(k) method. The in operator is preferred. Example:

>>> d = {'tomato': 101, 'cucumber': 102}
>>> k = 'tomato'
>>> k in d
True
>>> d.has_key(k)
True

You can often avoid the need for a test by using method get. Example:

>>> d = {'tomato': 101, 'cucumber': 102}
>>> d.get('tomato', 1)
101
>>> d.get('chard', 1)
1
>>> if d.get('eggplant') is None:
... print 'missing'

Page 30

A Python Book

...
missing

Dictionary "view" objects provide dynamic (automatically updated) views of the keys or
the values or the items in a dictionary. View objects also support set operations. Create
views with mydict.viewkeys(), mydict.viewvalues(), and
mydict.viewitems(). See:
http://docs.python.org/2/library/stdtypes.html#dictionaryviewobjects.

The dictionary setdefault method provides a way to get the value associated with a
key from a dictionary and to set that value if the key is missing. Example:

In [106]: a
Out[106]: {}
In [108]: a.setdefault('cc', 33)
Out[108]: 33
In [109]: a
Out[109]: {'cc': 33}
In [110]: a.setdefault('cc', 44)
Out[110]: 33
In [111]: a
Out[111]: {'cc': 33}

Exercises:

● Write a literal that defines a dictionary using both string literals and variables
containing strings. Solution:

>>> first = 'Dave'
>>> last = 'Kuhlman'
>>> name_dict = {first: last, 'Elvis': 'Presley'}
>>> print name_dict
{'Dave': 'Kuhlman', 'Elvis': 'Presley'}

● Write statements that iterate over (1) the keys, (2) the values, and (3) the items in
a dictionary. (Note: Requires introduction of the for statement.) Solutions:

>>> d = {'aa': 111, 'bb': 222, 'cc': 333}
>>> for key in d.keys():
... print key
...
aa
cc
bb
>>> for value in d.values():
... print value
...
111
333
222
>>> for item in d.items():
... print item

Page 31

A Python Book

...
('aa', 111)
('cc', 333)
('bb', 222)
>>> for key, value in d.items():
... print key, '::', value
...
aa :: 111
cc :: 333
bb :: 222

Additional notes on dictionaries:

● You can use iterkeys(), itervalues(), iteritems() to obtain
iterators over keys, values, and items.

● A dictionary itself is iterable: it iterates over its keys. So, the following two lines
are equivalent:

for k in myDict: print k
for k in myDict.iterkeys(): print k

● The in operator tests for a key in a dictionary. Example:
In [52]: mydict = {'peach': 'sweet', 'lemon': 'tangy'}
In [53]: key = 'peach'
In [54]: if key in mydict:
 : print mydict[key]
 :
sweet

1.4.5 Files
Open a file with the open factory method. Example:

In [28]: f = open('mylog.txt', 'w')
In [29]: f.write('message #1\n')
In [30]: f.write('message #2\n')
In [31]: f.write('message #3\n')
In [32]: f.close()
In [33]: f = file('mylog.txt', 'r')
In [34]: for line in f:
 : print line,
 :
message #1
message #2
message #3
In [35]: f.close()

Notes:

● Use the (builtin) open(path, mode) function to open a file and create a file
object. You could also use file(), but open() is recommended.

Page 32

A Python Book

● A file object that is open for reading a text file supports the iterator protocol and,
therefore, can be used in a for statement. It iterates over the lines in the file. This
is most likely only useful for text files.

● open is a factory method that creates file objects. Use it to open files for reading,
writing, and appending. Examples:

infile = open('myfile.txt', 'r') # open for reading
outfile = open('myfile.txt', 'w') # open for (over)
writing
log = open('myfile.txt', 'a') # open for
appending to existing content

● When you have finished with a file, close it. Examples:
infile.close()
outfile.close()

● You can also use the with: statement to automatically close the file. Example:
with open('tmp01.txt', 'r') as infile:
 for x in infile:
 print x,

The above works because a file is a context manager: it obeys the context
manager protocol. A file has methods __enter__ and __exit__, and the
__exit__ method automatically closes the file for us. See the section on the
with: statement.

● In order to open multiple files, you can nest with: statements, or use a single
with: statement with multiple "expression as target" clauses. Example:

def test():
 #
 # use multiple nested with: statements.
 with open('small_file.txt', 'r') as infile:
 with open('tmp_outfile.txt', 'w') as outfile:
 for line in infile:
 outfile.write('line: %s' %
line.upper())
 print infile
 print outfile
 #
 # use a single with: statement.
 with open('small_file.txt', 'r') as infile, \
 open('tmp_outfile.txt', 'w') as outfile:
 for line in infile:
 outfile.write('line: %s' % line.upper())
 print infile
 print outfile

test()

● file is the file type and can be used as a constructor to create file objects. But,

Page 33

A Python Book

open is preferred.
● Lines read from a text file have a newline. Strip it off with something like:

line.rstrip('\n').
● For binary files you should add the binary mode, for example: rb, wb. For more

about modes, see the description of the open() function at Builtin Functions
http://docs.python.org/lib/builtinfuncs.html.

● Learn more about file objects and the methods they provide at: 2.3.9 File Objects
 http://docs.python.org/2/library/stdtypes.html#fileobjects.

You can also append to an existing file. Note the "a" mode in the following example:

In [39]: f = open('mylog.txt', 'a')
In [40]: f.write('message #4\n')
In [41]: f.close()
In [42]: f = file('mylog.txt', 'r')
In [43]: for line in f:
 : print line,
 :
message #1
message #2
message #3
message #4
In [44]: f.close()

For binary files, add "b" to the mode. Not strictly necessary on UNIX, but needed on MS
Windows. And, you will want to make your code portable across platforms. Example:

In [62]: import zipfile
In [63]: outfile = open('tmp1.zip', 'wb')
In [64]: zfile = zipfile.ZipFile(outfile, 'w', zipfile.ZIP_DEFLATED)
In [65]: zfile.writestr('entry1', 'my heroes have always been
cowboys')
In [66]: zfile.writestr('entry2', 'and they still are it seems')
In [67]: zfile.writestr('entry3', 'sadly in search of and')
In [68]: zfile.writestr('entry4', 'on step in back of')
In [69]:
In [70]: zfile.writestr('entry4', 'one step in back of')
In [71]: zfile.writestr('entry5', 'themselves and their slow moving
ways')
In [72]: zfile.close()
In [73]: outfile.close()
In [75]:
$
$ unzip lv tmp1.zip
Archive: tmp1.zip
 Length Method Size Ratio Date Time CRC32 Name

 34 Defl:N 36 6% 052908 17:04 f6b7d921 entry1
 27 Defl:N 29 7% 052908 17:07 10da8f3d entry2
 22 Defl:N 24 9% 052908 17:07 3fd17fda entry3
 18 Defl:N 20 11% 052908 17:08 d55182e6 entry4

Page 34

A Python Book

 19 Defl:N 21 11% 052908 17:08 1a892acd entry4
 37 Defl:N 39 5% 052908 17:09 e213708c entry5

 157 169 8% 6 files

Exercises:

● Read all of the lines of a file into a list. Print the 3rd and 5th lines in the file/list.
Solution:

In [55]: f = open('tmp1.txt', 'r')
In [56]: lines = f.readlines()
In [57]: f.close()
In [58]: lines
Out[58]: ['the\n', 'big\n', 'brown\n', 'dog\n',
'had\n', 'long\n', 'hair\n']
In [59]: print lines[2]
brown

In [61]: print lines[4]
had

More notes:

● Strip newlines (and other whitespace) from a string with methods strip(),
lstrip(), and rstrip().

● Get the current position within a file by using myfile.tell().
● Set the current position within a file by using myfile.seek(). It may be

helpful to use os.SEEK_CUR and os.SEEK_END. For example:
○ f.seek(2, os.SEEK_CUR) advances the position by two
○ f.seek(3, os.SEEK_END) sets the position to the third to last.
○ f.seek(25) sets the position relative to the beginning of the file.

1.4.6 Other builtin types
Other builtin data types are described in section Builtin Types
http://docs.python.org/lib/types.html in the Python standard documentation.

1.4.6.1 The None value/type

The unique value None is used to indicate "no value", "nothing", "nonexistence", etc.
There is only one None value; in other words, it's a singleton.

Use is to test for None. Example:

>>> flag = None
>>>
>>> if flag is None:
... print 'clear'

Page 35

A Python Book

...
clear
>>> if flag is not None:
... print 'hello'
...
>>>

1.4.6.2 Boolean values

True and False are the boolean values.

The following values also count as false, for example, in an if: statement: False,
numeric zero, None, the empty string, an empty list, an empty dictionary, any empty
container, etc. All other values, including True, act as true values.

1.4.6.3 Sets and frozensets

A set is an unordered collection of immutable objects. A set does not contain duplicates.

Sets support several set operations, for example: union, intersection, difference, ...

A frozenset is like a set, except that a frozenset is immutable. Therefore, a frozenset is
hashable and can be used as a key in a dictionary, and it can be added to a set.

Create a set with the set constructor. Examples:

>>> a = set()
>>> a
set([])
>>> a.add('aa')
>>> a.add('bb')
>>> a
set(['aa', 'bb'])
>>> b = set([11, 22])
>>> b
set([11, 22])
>>> c = set([22, 33])
>>> b.union(c)
set([33, 11, 22])
>>> b.intersection(c)
set([22])

For more information on sets, see: Set Types set, frozenset
http://docs.python.org/lib/typesset.html

1.5 Functions and Classes A Preview
Structured code Python programs are made up of expressions, statements, functions,
classes, modules, and packages.

Page 36

A Python Book

Python objects are firstclass objects.

Expressions are evaluated.

Statements are executed.

Functions (1) are objects and (2) are callable.

Objectoriented programming in Python. Modeling "real world" objects. (1)
Encapsulation; (2) data hiding; (3) inheritance. Polymorphism.

Classes (1) encapsulation; (2) data hiding; (3) inheritance.

An overview of the structure of a typical class: (1) methods; (2) the constructor; (3) class
(static) variables; (4) super/subclasses.

1.6 Statements

1.6.1 Assignment statement
Form target = expression.

Possible targets:

● Identifier
● Tuple or list Can be nested. Left and right sides must have equivalent structure.

Example:
>>> x, y, z = 11, 22, 33
>>> [x, y, z] = 111, 222, 333
>>> a, (b, c) = 11, (22, 33)
>>> a, B = 11, (22, 33)

This feature can be used to simulate an enum:
In [22]: LITTLE, MEDIUM, LARGE = range(1, 4)
In [23]: LITTLE
Out[23]: 1
In [24]: MEDIUM
Out[24]: 2

● Subscription of a sequence, dictionary, etc. Example:
In [10]: a = range(10)
In [11]: a
Out[11]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
In [12]: a[3] = 'abc'
In [13]: a
Out[13]: [0, 1, 2, 'abc', 4, 5, 6, 7, 8, 9]
In [14]:
In [14]: b = {'aa': 11, 'bb': 22}
In [15]: b

Page 37

A Python Book

Out[15]: {'aa': 11, 'bb': 22}
In [16]: b['bb'] = 1000
In [17]: b['cc'] = 2000
In [18]: b
Out[18]: {'aa': 11, 'bb': 1000, 'cc': 2000}

● A slice of a sequence Note that the sequence must be mutable. Example:
In [1]: a = range(10)
In [2]: a
Out[2]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
In [3]: a[2:5] = [11, 22, 33, 44, 55, 66]
In [4]: a
Out[4]: [0, 1, 11, 22, 33, 44, 55, 66, 5, 6, 7, 8, 9]

● Attribute reference Example:
>>> class MyClass:
... pass
...
>>> anObj = MyClass()
>>> anObj.desc = 'pretty'
>>> print anObj.desc
pretty

There is also augmented assignment. Examples:

>>> index = 0
>>> index += 1
>>> index += 5
>>> index += f(x)
>>> index = 1
>>> index *= 3

Things to note:

● Assignment to a name creates a new variable (if it does not exist in the
namespace) and a binding. Specifically, it binds a value to the new name. Calling
a function also does this to the (formal) parameters within the local namespace.

● In Python, a language with dynamic typing, the data type is associated with the
value, not the variable, as is the case in statically typed languages.

● Assignment can also cause sharing of an object. Example:
obj1 = A()
obj2 = obj1

Check to determine that the same object is shared with id(obj) or the is
operator. Example:

In [23]: a = range(10)
In [24]: a
Out[24]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
In [25]: b = a
In [26]: b

Page 38

A Python Book

Out[26]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
In [27]: b[3] = 333
In [28]: b
Out[28]: [0, 1, 2, 333, 4, 5, 6, 7, 8, 9]
In [29]: a
Out[29]: [0, 1, 2, 333, 4, 5, 6, 7, 8, 9]
In [30]: a is b
Out[30]: True
In [31]: print id(a), id(b)
31037920 31037920

● You can also do multiple assignment in a single statement. Example:
In [32]: a = b = 123
In [33]: a
Out[33]: 123
In [34]: b
Out[34]: 123
In [35]:
In [35]:
In [35]: a = b = [11, 22]
In [36]: a is b
Out[36]: True

● You can interchange (swap) the value of two variables using assignment and
packing/unpacking:

>>> a = 111
>>> b = 222
>>> a, b = b, a
>>> a
222
>>> b
111

1.6.2 import statement
Make module (or objects in the module) available.

What import does:

● Evaluate the content of a module.
● Likely to create variables in the local (module) namespace.
● Evaluation of a specific module only happens once during a given run of the

program. Therefore, a module is shared across an application.
● A module is evaluated from top to bottom. Later statements can replace values

created earlier. This is true of functions and classes, as well as (other) variables.
● Which statements are evaluated? Assignment, class, def, ...
● Use the following idiom to make a module both runable and importable:

if __name__ == '__main__':

Page 39

A Python Book

 # import pdb; pdb.set_trace()
 main() # or "test()" or some other function
defined in module

Notes:
○ The above condition will be true only when the module is run as a script and

will not be true when the module is imported.
○ The line containing pdb can be copied any place in your program and

uncommented, and then the program will drop into the Python debugger
when that location is reached.

Where import looks for modules:

● sys.path shows where it looks.
● There are some standard places.
● Add additional directories by setting the environment variable PYTHONPATH.
● You can also add paths by modifying sys.path, for example:

import sys
sys.path.insert(0, '/path/to/my/module')

● Packages need a file named __init__.py.
● Extensions To determine what extensions import looks for, do:

>>> import imp
>>> imp.get_suffixes()
[('.so', 'rb', 3), ('module.so', 'rb', 3), ('.py', 'U',
1), ('.pyc', 'rb', 2)]

Forms of the import statement:

● import A Names in the local (module) namespace are accessible with the dot
operator.

● import A as B Import the module A, but bind the module object to the
variable B.

● import A1, A2 Not recommended
● from A import B
● from A import B1, B2
● from A import B as C
● from A import * Not recommended: clutters and mixes namespaces.
● from A.B import C (1) Possibly import object C from module B in

package A or (2) possibly import module C from subpackage B in package A.
● import A.B.C To reference attributes in C, must use fullyqualified name,

for example use A.B.C.D to reference D inside of C.
More notes on the import statement:

● The import statement and packages A file named __init__.py is required in
a package. This file is evaluated the first time either the package is imported or a

Page 40

A Python Book

file in the package is imported. Question: What is made available when you do
import aPackage? Answer: All variables (names) that are global inside the
__init__.py module in that package. But, see notes on the use of __all__:
The import statement http://docs.python.org/ref/import.html

● The use of if __name__ == "__main__": Makes a module both
importable and executable.

● Using dots in the import statement From the Python language reference manual:
"Hierarchical module names:when the module names contains
one or more dots, the module search path is carried out
differently. The sequence of identifiers up to the last dot is used
to find a package; the final identifier is then searched inside
the package. A package is generally a subdirectory of a
directory on sys.path that has a file __init__.py."

See: The import statement http://docs.python.org/ref/import.html
Exercises:

● Import a module from the standard library, for example re.
● Import an element from a module from the standard library, for example import

compile from the re module.
● Create a simple Python package with a single module in it. Solution:

1. Create a directory named simplepackage in the current directory.
2. Create an (empty) __init__.py in the new directory.
3. Create an simple.py in the new directory.
4. Add a simple function name test1 in simple.py.
5. Import using any of the following:

>>> import simplepackage.simple
>>> from simplepackage import simple
>>> from simplepackage.simple import test1
>>> from simplepackage.simple import test1 as mytest

1.6.3 print statement
print sends output to sys.stdout. It adds a newline, unless an extra comma is
added.

Arguments to print:

● Multiple items Separated by commas.
● End with comma to suppress carriage return.
● Use string formatting for more control over output.
● Also see various "prettyprinting" functions and methods, in particular, pprint.

See 3.27 pprint Data pretty printer

Page 41

A Python Book

http://docs.python.org/lib/modulepprint.html.
String formatting Arguments are a tuple. Reference: 2.3.6.2 String Formatting
Operations http://docs.python.org/lib/typesseqstrings.html.

Can also use sys.stdout. Note that a carriage return is not automatically added.
Example:

>>> import sys
>>> sys.stdout.write('hello\n')

Controlling the destination and format of print Replace sys.stdout with an instance
of any class that implements the method write taking one parameter. Example:

import sys

class Writer:
 def __init__(self, file_name):
 self.out_file = file(file_name, 'a')
 def write(self, msg):
 self.out_file.write('[[%s]]' % msg)
 def close(self):
 self.out_file.close()

def test():
 writer = Writer('outputfile.txt')
 save_stdout = sys.stdout
 sys.stdout = writer
 print 'hello'
 print 'goodbye'
 writer.close()
 # Show the output.
 tmp_file = file('outputfile.txt')
 sys.stdout = save_stdout
 content = tmp_file.read()
 tmp_file.close()
 print content

test()

There is an alternative form of the print statement that takes a filelike object, in
particular an object that has a write method. For example:

In [1]: outfile = open('tmp.log', 'w')
In [2]: print >> outfile, 'Message #1'
In [3]: print >> outfile, 'Message #2'
In [4]: print >> outfile, 'Message #3'
In [5]: outfile.close()
In [6]:
In [6]: infile = open('tmp.log', 'r')
In [7]: for line in infile:
 ...: print 'Line:', line.rstrip('\n')
 ...:

Page 42

A Python Book

Line: Message #1
Line: Message #2
Line: Message #3
In [8]: infile.close()

Future deprecation warning There is no print statement in Python 3. There is a print
builtin function.

1.6.4 if: elif: else: statement
A template for the if: statement:

if condition1:
 statements
elif condition2:
 statements
elif condition3:
 statements
else:
 statements

The elif and else clauses are optional.

Conditions Expressions Anything that returns a value. Compare with eval() and
exec.

Truth values:

● False False, None, numeric zero, the empty string, an empty collection (list
or tuple or dictionary or ...).

● True True and everything else.
Operators:

● and and or Note that both and and or do short circuit evaluation.
● not
● is and is not The identical object. Cf. a is b and id(a) == id(b).

Useful to test for None, for example:
if x is None:
 ...
if x is not None:
 ...

● in and not in Can be used to test for existence of a key in a dictionary or for
the presence of a value in a collection.
The in operator tests for equality, not identity.
Example:

>>> d = {'aa': 111, 'bb': 222}
>>> 'aa' in d

Page 43

A Python Book

True
>>> 'aa' not in d
False
>>> 'xx' in d
False

● Comparison operators, for example ==, !=, <, <=, ...
There is an if expression. Example:

>>> a = 'aa'
>>> b = 'bb'
>>> x = 'yes' if a == b else 'no'
>>> x
'no'

Notes:

● The elif: clauses and the else: clause are optional.
● The if:, elif:, and else: clauses are all header lines in the sense that they

are each followed by an indented block of code and each of these header lines
ends with a colon. (To put an empty block after one of these, or any other,
statement header line, use the pass statement. It's effectively a noop.)

● Parentheses around the condition in an if: or elif: are not required and are
considered bad form, unless the condition extends over multiple lines, in which
case parentheses are preferred over use of a line continuation character (backslash
at the end of the line).

Exercises:

● Write an if statement with an and operator.
● Write an if statement with an or operator.
● Write an if statement containing both and and or operators.

1.6.5 for: statement
Iterate over a sequence or an "iterable" object.

Form:

for x in y:
 block

Iterator Some notes on what it means to be iterable:

● An iterable is something that can be used in an iterator context, for example, in a
for: statement, in a list comprehension, and in a generator expression.

● Sequences and containers are iterable. Examples: tuples, lists, strings,
dictionaries.

● Instances of classes that obey the iterator protocol are iterable. See

Page 44

A Python Book

http://docs.python.org/lib/typeiter.html.
● We can create an iterator object with builtin functions such as iter() and

enumerate(). See Builtin Functions
http://docs.python.org/lib/builtinfuncs.html in the Python standard library
reference.

● Functions that use the yield statement, produce an iterator, although it's actually
called a generator.

● An iterable implements the iterator interface and satisfies the iterator protocol.
The iterator protocol: __iter__() and next() methods. See 2.3.5 Iterator
Types (http://docs.python.org/lib/typeiter.html).

Testing for "iterability":

● If you can use an object in a for: statement, it's iterable.
● If the expresion iter(obj) does not produce a TypeError exception, it's

iterable.
Some ways to produce iterators:

● iter() and enumerate() See:
http://docs.python.org/lib/builtinfuncs.html.

● some_dict.iterkeys(), some_dict.itervalues(),
some_dict.iteritems().

● Use a sequence in an iterator context, for example in a for statement. Lists,
tuples, dictionaries, and strings can be used in an iterator context to produce an
iterator.

● Generator expressions Latest Python only. Syntactically like list
comprehensions, but (1) surrounded by parentheses instead of square brackets and
(2) use lazy evaluation.

● A class that implements the iterator protocol Example:
class A(object):
 def __init__(self):
 self.data = [11,22,33]
 self.idx = 0
 def __iter__(self):
 return self
 def next(self):
 if self.idx < len(self.data):
 x = self.data[self.idx]
 self.idx +=1
 return x
 else:
 raise StopIteration

def test():
 a = A()
 for x in a:

Page 45

A Python Book

 print x

test()

Note that the iterator protocol changes in Python 3.
● A function containing a yield statement. See:

○ Yield expressions
http://docs.python.org/2/reference/expressions.html#yieldexpressions

○ The yield statement
http://docs.python.org/2/reference/simple_stmts.html#theyieldstatement

● Also see itertools module in the Python standard library for much more help
with iterators: itertools — Functions creating iterators for efficient looping
http://docs.python.org/2/library/itertools.html#moduleitertools

The for: statement can also do unpacking. Example:

In [25]: items = ['apple', 'banana', 'cherry', 'date']
In [26]: for idx, item in enumerate(items):
 : print '%d. %s' % (idx, item,)
 :
0. apple
1. banana
2. cherry
3. date

The for statement can also have an optional else: clause. The else: clause is
executed if the for statement completes normally, that is if a break statement is not
executed.

Helpful functions with for:

● enumerate(iterable) Returns an iterable that produces pairs (tuples)
containing count (index) and value. Example:

>>> for idx, value in enumerate([11,22,33]):
... print idx, value
...
0 11
1 22
2 33

● range([start,] stop[, step]) and xrange([start,] stop[,
step]).

List comprehensions Since list comprehensions create lists, they are useful in for
statements, although, when the number of elements is large, you should consider using a
generator expression instead. A list comprehension looks a bit like a for: statement, but
is inside square brackets, and it is an expression, not a statement. Two forms (among
others):

● [f(x) for x in iterable]

Page 46

A Python Book

● [f(x) for x in iterable if t(x)]
Generator expressions A generator expression looks similar to a list comprehension,
except that it is surrounded by parentheses rather than square brackets. Example:

In [28]: items = ['apple', 'banana', 'cherry', 'date']
In [29]: gen1 = (item.upper() for item in items)
In [30]: for x in gen1:
 : print 'x:', x
 :
x: APPLE
x: BANANA
x: CHERRY
x: DATE

Exercises:

● Write a list comprehension that returns all the keys in a dictionary whose
associated values are greater than zero.
○ The dictionary: {'aa': 11, 'cc': 33, 'dd': 55, 'bb': 22}
○ Solution: [x[0] for x in my_dict.iteritems() if x[1] >

0]
● Write a list comprehension that produces even integers from 0 to 10. Use a for

statement to iterate over those values. Solution:
for x in [y for y in range(10) if y % 2 == 0]:
 print 'x: %s' % x

● Write a list comprehension that iterates over two lists and produces all the
combinations of items from the lists. Solution:

In [19]: a = range(4)
In [20]: b = [11,22,33]
In [21]: a
Out[21]: [0, 1, 2, 3]
In [22]: b
Out[22]: [11, 22, 33]
In [23]: c = [(x, y) for x in a for y in b]
In [24]: print c
[(0, 11), (0, 22), (0, 33), (1, 11), (1, 22), (1, 33),
(2, 11), (2, 22), (2, 33), (3, 11), (3, 22), (3, 33)]

But, note that in the previous exercise, a generator expression would often be better. A
generator expression is like a list comprehension, except that, instead of creating the
entire list, it produces a generator that can be used to produce each of the elements.

The break and continue statements are often useful in a for statement. See continue
and break statements

The for statement can also have an optional else: clause. The else: clause is
executed if the for statement completes normally, that is if a break statement is not
executed. Example:

Page 47

A Python Book

for item in data1:
 if item > 100:
 value1 = item
 break
else:
 value1 = 'not found'
print 'value1:', value1

When run, it prints:

value1: not found

1.6.6 while: statement
Form:

while condition:
 block

The while: statement is not often used in Python because the for: statement is
usually more convenient, more idiomatic, and more Pythonic.

Exercises:

● Write a while statement that prints integers from zero to 5. Solution:
count = 0
while count < 5:
 count += 1
 print count

The break and continue statements are often useful in a while statement. See
continue and break statements

The while statement can also have an optional else: clause. The else: clause is
executed if the while statement completes normally, that is if a break statement is not
executed.

1.6.7 continue and break statements
The break statement exits from a loop.

The continue statement causes execution to immediately continue at the start of the
loop.

Can be used in for: and while:.

When the for: statement or the while: statement has an else: clause, the block in
the else: clause is executed only if a break statement is not executed.

Exercises:

Page 48

A Python Book

● Using break, write a while statement that prints integers from zero to 5.
Solution:

count = 0
while True:
 count += 1
 if count > 5:
 break
 print count

Notes:
○ A for statement that uses range() or xrange() would be better than a

while statement for this use.
● Using continue, write a while statement that processes only even integers

from 0 to 10. Note: % is the modulo operator. Solution:
count = 0
while count < 10:
 count += 1
 if count % 2 == 0:
 continue
 print count

1.6.8 try: except: statement
Exceptions are a systematic and consistent way of processing errors and "unusual" events
in Python.

Caught and uncaught exceptions Uncaught exceptions terminate a program.

The try: statement catches an exception.

Almost all errors in Python are exceptions.

Evaluation (execution model) of the try statement When an exception occurs in the
try block, even if inside a nested function call, execution of the try block ends and the
except clauses are searched for a matching exception.

Tracebacks Also see the traceback module:
http://docs.python.org/lib/moduletraceback.html

Exceptions are classes.

Exception classes subclassing, args.

An exception class in an except: clause catches instances of that exception class and
all subclasses, but not superclasses.

Builtin exception classes See:

● Module exceptions.

Page 49

A Python Book

● Builtin exceptions http://docs.python.org/lib/moduleexceptions.html.
User defined exception classes subclasses of Exception.

Example:

try:
 raise RuntimeError('this silly error')
except RuntimeError, exp:
 print "[[[%s]]]" % exp

Reference: http://docs.python.org/lib/moduleexceptions.html

You can also get the arguments passed to the constructor of an exception object. In the
above example, these would be:

exp.args

Why would you define your own exception class? One answer: You want a user of your
code to catch your exception and no others.

Catching an exception by exception class catches exceptions of that class and all its
subclasses. So:

except SomeExceptionClass, exp:

matches and catches an exception if SomeExceptionClass is the exception class or a base
class (superclass) of the exception class. The exception object (usually an instance of
some exception class) is bound to exp.

A more "modern" syntax is:

except SomeExceptionClass as exp:

So:

class MyE(ValueError):
 pass

try:
 raise MyE()
except ValueError:
 print 'caught exception'

will print "caught exception", because ValueError is a base class of MyE.

Also see the entries for "EAFP" and "LBYL" in the Python glossary:
http://docs.python.org/3/glossary.html.

Exercises:

● Write a very simple, empty exception subclass. Solution:
class MyE(Exception):

Page 50

A Python Book

 pass

● Write a try:except: statement that raises your exception and also catches it.
Solution:

try:
 raise MyE('hello there dave')
except MyE, e:
 print e

1.6.9 raise statement
Throw or raise an exception.

Forms:

● raise instance
● raise MyExceptionClass(value) preferred.
● raise MyExceptionClass, value

The raise statement takes:

● An (instance of) a builtin exception class.
● An instance of class Exception or
● An instance of a builtin subclass of class Exception or
● An instance of a userdefined subclass of class Exception or
● One of the above classes and (optionally) a value (for example, a string or a

tuple).
See http://docs.python.org/ref/raise.html.

For a list of builtin exceptions, see http://docs.python.org/lib/moduleexceptions.html.

The following example defines an exception subclass and throws an instance of that
subclass. It also shows how to pass and catch multiple arguments to the exception:

class NotsobadError(Exception):
 pass

def test(x):
 try:
 if x == 0:
 raise NotsobadError('a moderately bad error', 'not too
bad')
 except NotsobadError, e:
 print 'Error args: %s' % (e.args,)

test(0)

Which prints out the following:

Error args: ('a moderately bad error', 'not too bad')

Page 51

A Python Book

Notes:

● In order to pass in multiple arguments with the exception, we use a tuple, or we
pass multiple arguments to the constructor.

The following example does a small amount of processing of the arguments:

class NotsobadError(Exception):
 """An exception class.
 """
 def get_args(self):
 return '::::'.join(self.args)

def test(x):
 try:
 if x == 0:
 raise NotsobadError('a moderately bad error', 'not too
bad')
 except NotsobadError, e:
 print 'Error args: {{{%s}}}' % (e.get_args(),)

test(0)

1.6.10 with: statement
The with statement enables us to use a context manager (any object that satisfies the
context manager protocol) to add code before (on entry to) and after (on exit from) a
block of code.

1.6.10.1 Writing a context manager

A context manager is an instance of a class that satisfies this interface:

class Context01(object):
 def __enter__(self):
 pass
 def __exit__(self, exc_type, exc_value, traceback):
 pass

Here is an example that uses the above context manager:

class Context01(object):
 def __enter__(self):
 print 'in __enter__'
 return 'some value or other' # usually we want to return
self
 def __exit__(self, exc_type, exc_value, traceback):
 print 'in __exit__'

Notes:

Page 52

A Python Book

● The __enter__ method is called before our block of code is entered.
● Usually, but not always, we will want the __enter__ method to return self,

that is, the instance of our context manager class. We do this so that we can write:
with MyContextManager() as obj:
 pass

and then use the instance (obj in this case) in the nested block.
● The __exit__ method is called when our block of code is exited either

normally or because of an exception.
● If an exception is supplied, and the method wishes to suppress the exception (i.e.,

prevent it from being propagated), it should return a true value. Otherwise, the
exception will be processed normally upon exit from this method.

● If the block exits normally, the value of exc_type, exc_value, and
traceback will be None.

For more information on the with: statement, see Context Manager Types
http://docs.python.org/2/library/stdtypes.html#contextmanagertypes.

See module contextlib for strange ways of writing context managers:
http://docs.python.org/2/library/contextlib.html#modulecontextlib

1.6.10.2 Using the with: statement

Here are examples:

example 1
with Context01():
 print 'in body'

example 2
with Context02() as a_value:
 print 'in body'
 print 'a_value: "%s"' % (a_value,)
 a_value.some_method_in_Context02()

example 3
with open(infilename, 'r') as infile, open(outfilename, 'w') as
outfile:
 for line in infile:
 line = line.rstrip()
 outfile.write('%s\n' % line.upper())

Notes:

● In the form with ... as val, the value returned by the __enter__
method is assigned to the variable (val in this case).

● In order to use more than one context manager, you can nest with: statements,
or separate uses of of the context managers with commas, which is usually

Page 53

A Python Book

preferred. See example 3 above.

1.6.11 del
The del statement can be used to:

● Remove names from namespace.
● Remove items from a collection.

If name is listed in a global statement, then del removes name from the global
namespace.

Names can be a (nested) list. Examples:

>>> del a
>>> del a, b, c

We can also delete items from a list or dictionary (and perhaps from other objects that we
can subscript). Examples:

In [9]:d = {'aa': 111, 'bb': 222, 'cc': 333}
In [10]:print d
{'aa': 111, 'cc': 333, 'bb': 222}
In [11]:del d['bb']
In [12]:print d
{'aa': 111, 'cc': 333}
In [13]:
In [13]:a = [111, 222, 333, 444]
In [14]:print a
[111, 222, 333, 444]
In [15]:del a[1]
In [16]:print a
[111, 333, 444]

And, we can delete an attribute from an instance. Example:

In [17]:class A:
 : pass
 :
In [18]:a = A()
In [19]:a.x = 123
In [20]:dir(a)
Out[20]:['__doc__', '__module__', 'x']
In [21]:print a.x
123
In [22]:del a.x
In [23]:dir(a)
Out[23]:['__doc__', '__module__']
In [24]:print a.x

exceptions.AttributeError Traceback (most recent call last)

Page 54

A Python Book

/home/dkuhlman/a1/Python/Test/<console>

AttributeError: A instance has no attribute 'x'

1.6.12 case statement
There is no case statement in Python. Use the if: statement with a sequence of elif:
clauses. Or, use a dictionary of functions.

1.7 Functions, Modules, Packages, and Debugging

1.7.1 Functions

1.7.1.1 The def statement

The def statement is used to define functions and methods.

The def statement is evaluated. It produces a function/method (object) and binds it to a
variable in the current namespace.

Although the def statement is evaluated, the code in its nested block is not executed.
Therefore, many errors may not be detected until each and every path through that code is
tested. Recommendations: (1) Use a Python code checker, for example flake8 or
pylint; (2) Do thorough testing and use the Python unittest framework. Pythonic
wisdom: If it's not tested, it's broken.

1.7.1.2 Returning values

The return statement is used to return values from a function.

The return statement takes zero or more values, separated by commas. Using commas
actually returns a single tuple.

The default value is None.

To return multiple values, use a tuple or list. Don't forget that (assignment) unpacking
can be used to capture multiple values. Returning multiple items separated by commas is
equivalent to returning a tuple. Example:

In [8]: def test(x, y):
 ...: return x * 3, y * 4
 ...:
In [9]: a, b = test(3, 4)
In [10]: print a
9

Page 55

A Python Book

In [11]: print b
16

1.7.1.3 Parameters

Default values Example:

In [53]: def t(max=5):
 : for val in range(max):
 : print val
 :
 :
In [54]: t(3)
0
1
2
In [55]: t()
0
1
2
3
4

Giving a parameter a default value makes that parameter optional.

Note: If a function has a parameter with a default value, then all "normal" arguments
must proceed the parameters with default values. More completely, parameters must be
given from left to right in the following order:

1. Normal arguments.
2. Arguments with default values.
3. Argument list (*args).
4. Keyword arguments (**kwargs).

List parameters *args. It's a tuple.

Keyword parameters **kwargs. It's a dictionary.

1.7.1.4 Arguments

When calling a function, values may be passed to a function with positional arguments or
keyword arguments.

Positional arguments must placed before (to the left of) keyword arguments.

Passing lists to a function as multiple arguments some_func(*aList). Effectively,
this syntax causes Python to unroll the arguments. Example:

def fn1(*args, **kwargs):
 fn2(*args, **kwargs)

Page 56

A Python Book

1.7.1.5 Local variables

Creating local variables Any binding operation creates a local variable. Examples are
(1) parameters of a function; (2) assignment to a variable in a function; (3) the import
statement; (4) etc. Contrast with accessing a variable.

Variable lookup The LGB/LEGB rule The local, enclosing, global, builtin scopes
are searched in that order. See: http://www.python.org/dev/peps/pep0227/

The global statement Inside a function, we must use global when we want to set
the value of a global variable. Example:

def fn():
 global Some_global_variable, Another_global_variable
 Some_global_variable = 'hello'
 ...

1.7.1.6 Other things to know about functions

● Functions are firstclass You can store them in a structure, pass them to a
function, and return them from a function.

● Function calls can take keyword arguments. Example:
>>> test(size=25)

● Formal parameters to a function can have default values. Example:
>>> def test(size=0):
 ...

Do not use mutable objects as default values.
● You can "capture" remaining arguments with *args, and **kwargs. (Spelling

is not significant.) Example:
In [13]: def test(size, *args, **kwargs):
 : print size
 : print args
 : print kwargs
 :
 :
In [14]: test(32, 'aa', 'bb', otherparam='xyz')
32
('aa', 'bb')
{'otherparam': 'xyz'}

● Normal arguments must come before default arguments which must come before
keyword arguments.

● A function that does not explicitly return a value, returns None.
● In order to set the value of a global variable, declare the variable with global.

Exercises:

Page 57

A Python Book

● Write a function that takes a single argument, prints the value of the argument,
and returns the argument as a string. Solution:

>>> def t(x):
... print 'x: %s' % x
... return '[[%s]]' % x
...
>>> t(3)
x: 3
'[[3]]'

● Write a function that takes a variable number of arguments and prints them all.
Solution:

>>> def t(*args):
... for arg in args:
... print 'arg: %s' % arg
...
>>> t('aa', 'bb', 'cc')
arg: aa
arg: bb
arg: cc

● Write a function that prints the names and values of keyword arguments passed to
it. Solution:

>>> def t(**kwargs):
... for key in kwargs.keys():
... print 'key: %s value: %s' % (key,
kwargs[key],)
...
>>> t(arg1=11, arg2=22)
key: arg1 value: 11
key: arg2 value: 22

1.7.1.7 Global variables and the global statement

By default, assignment in a function or method creates local variables.

Reference (not assignment) to a variable, accesses a local variable if it has already been
created, else accesses a global variable.

In order to assign a value to a global variable, declare the variable as global at the
beginning of the function or method.

If in a function or method, you both reference and assign to a variable, then you must
either:

1. Assign to the variable first, or
2. Declare the variable as global.

The global statement declares one or more variables, separated by commas, to be
global.

Page 58

A Python Book

Some examples:

In [1]:
In [1]: X = 3
In [2]: def t():
 ...: print X
 ...:
In [3]:
In [3]: t()
3
In [4]: def s():
 ...: X = 4
 ...:
In [5]:
In [5]:
In [5]: s()
In [6]: t()
3
In [7]: X = 1
In [8]: def u():
 ...: global X
 ...: X = 5
 ...:
In [9]:
In [9]: u()
In [10]: t()
5
In [16]: def v():
 : x = X
 : X = 6
 : return x
 :
In [17]:
In [17]: v()

Traceback (most recent call last):
 File "<ipython console>", line 1, in <module>
 File "<ipython console>", line 2, in v
UnboundLocalError: local variable 'X' referenced before assignment
In [18]: def w():
 : global X
 : x = X
 : X = 7
 : return x
 :
In [19]:
In [19]: w()
Out[19]: 5
In [20]: X
Out[20]: 7

Page 59

A Python Book

1.7.1.8 Doc strings for functions

Add docstrings as a triplequoted string beginning with the first line of a function or
method. See epydoc for a suggested format.

1.7.1.9 Decorators for functions

A decorator performs a transformation on a function. Examples of decorators that are
builtin functions are: @classmethod, @staticmethod, and @property. See:
http://docs.python.org/2/library/functions.html#builtinfunctions

A decorator is applied using the "@" character on a line immediately preceeding the
function definition header. Examples:

class SomeClass(object):

 @classmethod
 def HelloClass(cls, arg):
 pass
 ## HelloClass = classmethod(HelloClass)

 @staticmethod
 def HelloStatic(arg):
 pass
 ## HelloStatic = staticmethod(HelloStatic)

#
Define/implement a decorator.
def wrapper(fn):
 def inner_fn(*args, **kwargs):
 print '>>'
 result = fn(*args, **kwargs)
 print '<<'
 return result
 return inner_fn

#
Apply a decorator.
@wrapper
def fn1(msg):
 pass
fn1 = wrapper(fn1)

Notes:

● The decorator form (with the "@" character) is equivalent to the form
(commented out) that calls the decorator function explicitly.

● The use of classmethods and staticmethod will be explained later in the
section on objectoriented programming.

● A decorator is implemented as a function. Therefore, to learn about some specific

Page 60

A Python Book

decorator, you should search for the documentation on or the implementation of
that function. Remember that in order to use a function, it must be defined in the
current module or imported by the current module or be a builtin.

● The form that explicitly calls the decorator function (commented out in the
example above) is equivalent to the form using the "@" character.

1.7.2 lambda
Use a lambda, as a convenience, when you need a function that both:

● is anonymous (does not need a name) and
● contains only an expression and no statements.

Example:

In [1]: fn = lambda x, y, z: (x ** 2) + (y * 2) + z
In [2]: fn(4, 5, 6)
Out[2]: 32
In [3]:
In [3]: format = lambda obj, category: 'The "%s" is a "%s".' % (obj,
category,)
In [4]: format('pine tree', 'conifer')
Out[4]: 'The "pine tree" is a "conifer".'

A lambda can take multiple arguments and can return (like a function) multiple values.
Example:

In [79]: a = lambda x, y: (x * 3, y * 4, (x, y))
In [80]:
In [81]: a(3, 4)
Out[81]: (9, 16, (3, 4))

Suggestion: In some cases, a lambda may be useful as an event handler.

Example:

class Test:
 def __init__(self, first='', last=''):
 self.first = first
 self.last = last
 def test(self, formatter):
 """
 Test for lambdas.
 formatter is a function taking 2 arguments, first and last
 names. It should return the formatted name.
 """
 msg = 'My name is %s' % (formatter(self.first, self.last),)
 print msg

def test():
 t = Test('Dave', 'Kuhlman')

Page 61

A Python Book

 t.test(lambda first, last: '%s %s' % (first, last,))
 t.test(lambda first, last: '%s, %s' % (last, first,))

test()

A lambda enables us to define "functions" where we do not need names for those
functions. Example:

In [45]: a = [
 : lambda x: x,
 : lambda x: x * 2,
 :]
In [46]:
In [46]: a
Out[46]: [<function __main__.<lambda>>, <function __main__.<lambda>>]
In [47]: a[0](3)
Out[47]: 3
In [48]: a[1](3)
Out[48]: 6

Reference: http://docs.python.org/2/reference/expressions.html#lambda

1.7.3 Iterators and generators
Concepts:

iterator

And iterator is something that satisfies the iterator protocol. Clue: If it's an iterator,
you can use it in a for: statement.

generator

A generator is a class or function that implements an iterator, i.e. that implements the
iterator protocol.

the iterator protocol

An object satisfies the iterator protocol if it does the following:

○ It implements a __iter__ method, which returns an iterator object.
○ It implements a next function, which returns the next item from the

collection, sequence, stream, etc of items to be iterated over
○ It raises the StopIteration exception when the items are exhausted and

the next() method is called.
yield

The yield statement enables us to write functions that are generators. Such
functions may be similar to coroutines, since they may "yield" multiple times and are
resumed.

Page 62

A Python Book

For more information on iterators, see the section on iterator types in the Python Library
Reference http://docs.python.org/2/library/stdtypes.html#iteratortypes.

For more on the yield statement, see:
http://docs.python.org/2/reference/simple_stmts.html#theyieldstatement

Actually, yield is an expression. For more on yield expressions and on the next()
and send() generator methods, as well as others, see: Yield expression
http://docs.python.org/2/reference/expressions.html#yieldexpressions in the Python
language reference manual.

A function or method containing a yield statement implements a generator. Adding the
yield statement to a function or method turns that function or method into one which,
when called, returns a generator, i.e. an object that implements the iterator protocol.

A generator (a function containing yield) provides a convenient way to implement a
filter. But, also consider:

● The filter() builtin function
● List comprehensions with an if clause

Here are a few examples:

def simplegenerator():
 yield 'aaa' # Note 1
 yield 'bbb'
 yield 'ccc'

def list_tripler(somelist):
 for item in somelist:
 item *= 3
 yield item

def limit_iterator(somelist, max):
 for item in somelist:
 if item > max:
 return # Note 2
 yield item

def test():
 print '1.', '' * 30
 it = simplegenerator()
 for item in it:
 print item
 print '2.', '' * 30
 alist = range(5)
 it = list_tripler(alist)
 for item in it:
 print item
 print '3.', '' * 30
 alist = range(8)

Page 63

A Python Book

 it = limit_iterator(alist, 4)
 for item in it:
 print item
 print '4.', '' * 30
 it = simplegenerator()
 try:
 print it.next() # Note 3
 print it.next()
 print it.next()
 print it.next()
 except StopIteration, exp: # Note 4
 print 'reached end of sequence'

if __name__ == '__main__':
 test()

Notes:

1. The yield statement returns a value. When the next item is requested and the
iterator is "resumed", execution continues immediately after the yield
statement.

2. We can terminate the sequence generated by an iterator by using a return
statement with no value.

3. To resume a generator, use the generator's next() or send() methods.
send() is like next(), but provides a value to the yield expression.

4. We can alternatively obtain the items in a sequence by calling the iterator's
next() method. Since an iterator is a firstclass object, we can save it in a data
structure and can pass it around for use at different locations and times in our
program.

1. When an iterator is exhausted or empty, it throws the StopIteration
exception, which we can catch.

And here is the output from running the above example:

$ python test_iterator.py
1.
aaa
bbb
ccc
2.
0
3
6
9
12
3.
0
1
2
3

Page 64

A Python Book

4
4.
aaa
bbb
ccc
reached end of sequence

An instance of a class which implements the __iter__ method, returning an iterator, is
iterable. For example, it can be used in a for statement or in a list comprehension, or in
a generator expression, or as an argument to the iter() builtin method. But, notice
that the class most likely implements a generator method which can be called directly.

Examples The following code implements an iterator that produces all the objects in a
tree of objects:

class Node:
 def __init__(self, data, children=None):
 self.initlevel = 0
 self.data = data
 if children is None:
 self.children = []
 else:
 self.children = children
 def set_initlevel(self, initlevel): self.initlevel = initlevel
 def get_initlevel(self): return self.initlevel
 def addchild(self, child):
 self.children.append(child)
 def get_data(self):
 return self.data
 def get_children(self):
 return self.children
 def show_tree(self, level):
 self.show_level(level)
 print 'data: %s' % (self.data,)
 for child in self.children:
 child.show_tree(level + 1)
 def show_level(self, level):
 print ' ' * level,
 #
 # Generator method #1
 # This generator turns instances of this class into iterable
objects.
 #
 def walk_tree(self, level):
 yield (level, self,)
 for child in self.get_children():
 for level1, tree1 in child.walk_tree(level+1):
 yield level1, tree1
 def __iter__(self):
 return self.walk_tree(self.initlevel)

Page 65

A Python Book

#
Generator method #2
This generator uses a support function (walk_list) which calls
this function to recursively walk the tree.
If effect, this iterates over the support function, which
iterates over this function.
#
def walk_tree(tree, level):
 yield (level, tree)
 for child in walk_list(tree.get_children(), level+1):
 yield child

def walk_list(trees, level):
 for tree in trees:
 for tree in walk_tree(tree, level):
 yield tree

#
Generator method #3
This generator is like method #2, but calls itself (as an
iterator),
rather than calling a support function.
#
def walk_tree_recur(tree, level):
 yield (level, tree,)
 for child in tree.get_children():
 for level1, tree1 in walk_tree_recur(child, level+1):
 yield (level1, tree1,)

def show_level(level):
 print ' ' * level,

def test():
 a7 = Node('777')
 a6 = Node('666')
 a5 = Node('555')
 a4 = Node('444')
 a3 = Node('333', [a4, a5])
 a2 = Node('222', [a6, a7])
 a1 = Node('111', [a2, a3])
 initLevel = 2
 a1.show_tree(initLevel)
 print '=' * 40
 for level, item in walk_tree(a1, initLevel):
 show_level(level)
 print 'item:', item.get_data()
 print '=' * 40
 for level, item in walk_tree_recur(a1, initLevel):
 show_level(level)
 print 'item:', item.get_data()

Page 66

A Python Book

 print '=' * 40
 a1.set_initlevel(initLevel)
 for level, item in a1:
 show_level(level)
 print 'item:', item.get_data()
 iter1 = iter(a1)
 print iter1
 print iter1.next()
 print iter1.next()
 print iter1.next()
 print iter1.next()
 print iter1.next()
 print iter1.next()
 print iter1.next()
print iter1.next()
 return a1

if __name__ == '__main__':
 test()

Notes:

● An instance of class Node is "iterable". It can be used directly in a for
statement, a list comprehension, etc. So, for example, when an instance of Node
is used in a for statement, it produces an iterator.

● We could also call the Node.walk_method directly to obtain an iterator.
● Method Node.walk_tree and functions walk_tree and

walk_tree_recur are generators. When called, they return an iterator. They
do this because they each contain a yield statement.

● These methods/functions are recursive. They call themselves. Since they are
generators, they must call themselves in a context that uses an iterator, for
example in a for statement.

1.7.4 Modules
A module is a Python source code file.

A module can be imported. When imported, the module is evaluated, and a module object
is created. The module object has attributes. The following attributes are of special
interest:

● __doc__ The doc string of the module.
● __name__ The name of the module when the module is imported, but the

string "__main__" when the module is executed.
● Other names that are created (bound) in the module.

A module can be run.

To make a module both importable and runable, use the following idiom (at the end of

Page 67

A Python Book

the module):

def main():
 o
 o
 o

if __name__ == '__main__':
 main()

Where Python looks for modules:

● See sys.path.
● Standard places.
● Environment variable PYTHONPATH.

Notes about modules and objects:

● A module is an object.
● A module (object) can be shared.
● A specific module is imported only once in a single run. This means that a single

module object is shared by all the modules that import it.

1.7.4.1 Doc strings for modules

Add docstrings as a triplequoted string at or near the top of the file. See epydoc for a
suggested format.

1.7.5 Packages
A package is a directory on the file system which contains a file named __init__.py.

The __init__.py file:

● Why is it there? It makes modules in the directory "importable".
● Can __init__.py be empty? Yes. Or, just include a comment.
● When is it evaluated? It is evaluated the first time that an application imports

anything from that directory/package.
● What can you do with it? Any code that should be executed exactly once and

during import. For example:
○ Perform initialization needed by the package.
○ Make variables, functions, classes, etc available. For example, when the

package is imported rather than modules in the package. You can also expose
objects defined in modules contained in the package.

● Define a variable named __all__ to specify the list of names that will be
imported by from my_package import *. For example, if the following is
present in my_package/__init__.py:

Page 68

A Python Book

__all__ = ['func1', 'func2',]

Then, from my_package import * will import func1 and func2, but
not other names defined in my_package.
Note that __all__ can be used at the module level, as well as at the package
level.

For more information, see the section on packages in the Python tutorial:
http://docs.python.org/2/tutorial/modules.html#packages.

Guidance and suggestions:

● "Flat is better" Use the __init__.py file to present a "flat" view of the API
for your code. Enable your users to do import mypackage and then
reference:
○ mypackage.item1
○ mypackage.item2
○ mypackage.item3
○ Etc.
Where item1, item2, etc compose the API you want your users to use, even
though the implementation of these items may be buried deep in your code.

● Use the __init__.py module to present a "clean" API. Present only the items
that you intend your users to use, and by doing so, "hide" items you do not intend
them to use.

1.8 Classes
Classes model the behavior of objects in the "real" world. Methods implement the
behaviors of these types of objects. Member variables hold (current) state. Classes enable
us to implement new data types in Python.

The class: statement is used to define a class. The class: statement creates a class
object and binds it to a name.

1.8.1 A simple class

In [104]: class A:
 : pass
 :
In [105]: a = A()

To define a new style class (recommended), inherit from object or from another class
that does. Example:

In [21]: class A(object):
 : pass
 :

Page 69

A Python Book

In [22]:
In [22]: a = A()
In [23]: a
Out[23]: <__main__.A object at 0x82fbfcc>

1.8.2 Defining methods
A method is a function defined in class scope and with first parameter self:

In [106]: class B(object):
 : def show(self):
 : print 'hello from B'
 :
In [107]: b = B()
In [108]: b.show()
hello from B

A method as we describe it here is more properly called an instance method, in order to
distinguish it from class methods and static methods.

1.8.3 The constructor
The constructor is a method named __init__.

Exercise: Define a class with a member variable name and a show method. Use print
to show the name. Solution:

In [109]: class A(object):
 : def __init__(self, name):
 : self.name = name
 : def show(self):
 : print 'name: "%s"' % self.name
 :
In [111]: a = A('dave')
In [112]: a.show()
name: "dave"

Notes:

● The self variable is explicit. It references the current object, that is the object
whose method is currently executing.

● The spelling ("self") is optional, but everyone spells it that way.

1.8.4 Member variables
Defining member variables Member variables are created with assignment. Example:

class A(object):
 def __init__(self, name):

Page 70

A Python Book

 self.name = name

A small gotcha Do this:

In [28]: class A(object):
 : def __init__(self, items=None):
 : if items is None:
 : self.items = []
 : else:
 : self.items = items

Do not do this:

In [29]: class B:
 : def __init__(self, items=[]): # wrong. list ctor
evaluated only once.
 : self.items = items

In the second example, the def statement and the list constructor are evaluated only
once. Therefore, the item member variable of all instances of class B, will share the same
value, which is most likely not what you want.

1.8.5 Calling methods
● Use the instance and the dot operator.
● Calling a method defined in the same class or a superclass:

○ From outside the class Use the instance:
some_object.some_method()
an_array_of_of_objects[1].another_method()

○ From within the same class Use self:
self.a_method()

○ From with a subclass when the method is in the superclass and there is a
method with the same name in the current class Use the class (name) or use
super:

SomeSuperClass.__init__(self, arg1, arg2)
super(CurrentClass,
self).__init__(arg1, arg2)

● Calling a method defined in a specific superclass Use the class (name).

1.8.6 Adding inheritance
Referencing superclasses Use the builtin super or the explicit name of the
superclass. Use of super is preferred. For example:

In [39]: class B(A):

Page 71

A Python Book

 : def __init__(self, name, size):
 : super(B, self).__init__(name)
 : # A.__init__(self, name) # an older alternative
form
 : self.size = size

The use of super() may solve problems searching for the base class when using
multiple inheritance. A better solution is to not use multiple inheritance.

You can also use multiple inheritance. But, it can cause confusion. For example, in the
following, class C inherits from both A and B:

class C(A, B):
 ...

Python searches superclasses MRO (method resolution order). If only single inheritance
is involved, there is little confusion. If multiple inheritance is being used, the search order
of super classes can get complex see here:
http://www.python.org/download/releases/2.3/mro

For more information on inheritance, see the tutorial in the standard Python
documentation set: 9.5 Inheritance and 9.5.1 Multiple Inheritance.

Watch out for problems with inheriting from multiple classes that have a common base
class.

1.8.7 Class variables
● Also called static data.
● A class variable is shared by instances of the class.
● Define at class level with assignment. Example:

class A(object):
 size = 5
 def get_size(self):
 return A.size

● Reference with classname.variable.
● Caution: self.variable = x creates a new member variable.

1.8.8 Class methods and static methods
Instance (plain) methods:

● An instance method receives the instance as its first argument.
Class methods:

● A class method receives the class as its first argument.
● Define class methods with builtin function classmethod() or with decorator

Page 72

A Python Book

@classmethod.
● See the description of classmethod() builtin function at "Builtin

Functions": http://docs.python.org/2/library/functions.html#classmethod
Static methods:

● A static method receives neither the instance nor the class as its first argument.
● Define static methods with builtin function staticmethod() or with

decorator @staticmethod.
● See the description of staticmethod() builtin function at "Builtin

Functions": http://docs.python.org/2/library/functions.html#staticmethod
Notes on decorators:

● A decorator of the form @afunc is the same as m = afunc(m). So, this:
@afunc
def m(self): pass

is the same as:
def m(self): pass
m = afunc(m)

● You can use decorators @classmethod and @staticmethod (instead of the
classmethod() and staticmethod() builtin functions) to declare class
methods and static methods.

Example:

class B(object):

 Count = 0

 def dup_string(x):
 s1 = '%s%s' % (x, x,)
 return s1
 dup_string = staticmethod(dup_string)

 @classmethod
 def show_count(cls, msg):
 print '%s %d' % (msg, cls.Count,)

def test():
 print B.dup_string('abcd')
 B.show_count('here is the count: ')

An alternative way to implement "static methods" Use a "plain", modulelevel
function. For example:

In [1]: def inc_count():
 ...: A.count += 1
 ...:
In [2]:

Page 73

A Python Book

In [2]: def dec_count():
 ...: A.count = 1
 ...:
In [3]:
In [3]: class A:
 ...: count = 0
 ...: def get_count(self):
 ...: return A.count
 ...:
In [4]:
In [4]: a = A()
In [5]: a.get_count()
Out[5]: 0
In [6]:
In [6]:
In [6]: inc_count()
In [7]: inc_count()
In [8]: a.get_count()
Out[8]: 2
In [9]:
In [9]: b = A()
In [10]: b.get_count()
Out[10]: 2

1.8.9 Properties
The property builtin function enables us to write classes in a way that does not require a
user of the class to use getters and setters. Example:

class TestProperty(object):
 def __init__(self, description):
 self._description = description
 def _set_description(self, description):
 print 'setting description'
 self._description = description
 def _get_description(self):
 print 'getting description'
 return self._description
 description = property(_get_description, _set_description)

The property builtin function is also a decorator. So, the following is equivalent to
the above example:

class TestProperty(object):
 def __init__(self, description):
 self._description = description

 @property
 def description(self):
 print 'getting description'
 return self._description

Page 74

A Python Book

 @description.setter
 def description(self, description):
 print 'setting description'
 self._description = description

Notes:

● We mark the instance variable as private by prefixing it with and underscore.
● The name of the instance variable and the name of the property must be different.

If they are not, we get recursion and an error.
For more information on properties, see Builtin Functions properties
http://docs.python.org/2/library/functions.html#property

1.8.10 Interfaces
In Python, to implement an interface is to implement a method with a specific name and a
specific arguments.

"Duck typing" If it walks like a duck and quacks like a duck ...

One way to define an "interface" is to define a class containing methods that have a
header and a doc string but no implementation.

Additional notes on interfaces:

● Interfaces are not enforced.
● A class does not have to implement all of an interface.

1.8.11 Newstyle classes
A newstyle class is one that subclasses object or a class that subclasses object (that
is, another newstyle class).

You can subclass Python's builtin datatypes.

● A simple example the following class extends the list datatype:
class C(list):
 def get_len(self):
 return len(self)

c = C((11,22,33))
c.get_len()

c = C((11,22,33,44,55,66,77,88))
print c.get_len()
Prints "8".

● A slightly more complex example the following class extends the dictionary

Page 75

A Python Book

datatype:
class D(dict):
 def __init__(self, data=None, name='no_name'):
 if data is None:
 data = {}
 dict.__init__(self, data)
 self.name = name
 def get_len(self):
 return len(self)
 def get_keys(self):
 content = []
 for key in self:
 content.append(key)
 contentstr = ', '.join(content)
 return contentstr
 def get_name(self):
 return self.name

def test():
 d = D({'aa': 111, 'bb':222, 'cc':333})
 # Prints "3"
 print d.get_len()
 # Prints "'aa, cc, bb'"
 print d.get_keys()
 # Prints "no_name"
 print d.get_name()

Some things to remember about newstyle classes:

● In order to be newstyle, a class must inherit (directly or indirectly) from
object. Note that if you inherit from a builtin type, you get this automatically.

● Newstyle classes unify types and classes.
● You can subclass (builtin) types such as dict, str, list, file, etc.
● The builtin types now provide factory functions: dict(), str(), int(),

file(), etc.
● The builtin types are introspectable Use x.__class__,

dir(x.__class__), isinstance(x, list), etc.
● Newstyle classes give you properties and descriptors.
● Newstyle classes enable you to define static methods. Actually, all classes enable

you to do this.
● A newstyle class is a userdefined type. For an instance of a newstyle class x,

type(x) is the same as x.__class__.
For more on newstyle classes, see: http://www.python.org/doc/newstyle/

Exercises:

● Write a class and a subclass of this class.
○ Give the superclass one member variable, a name, which can be entered when

Page 76

A Python Book

an instance is constructed.
○ Give the subclass one member variable, a description; the subclass constructor

should allow entry of both name and description.
○ Put a show() method in the superclass and override the show() method in

the subclass.
Solution:

class A(object):
 def __init__(self, name):
 self.name = name
 def show(self):
 print 'name: %s' % (self.name,)

class B(A):
 def __init__(self, name, desc):
 A.__init__(self, name)
 self.desc = desc
 def show(self):
 A.show(self)
 print 'desc: %s' % (self.desc,)

1.8.12 Doc strings for classes
Add docstrings as a (triplequoted) string beginning with the first line of a class. See
epydoc for a suggested format.

1.8.13 Private members
Add an leading underscore to a member name (method or data variable) to "suggest" that
the member is private.

1.9 Special Tasks

1.9.1 Debugging tools
pdb The Python debugger:

● Start the debugger by running an expression:
pdb.run('expression')

Example:
if __name__ == '__main__':
 import pdb
 pdb.run('main()')

● Start up the debugger at a specific location with the following:

Page 77

A Python Book

import pdb; pdb.set_trace()

Example:
if __name__ == '__main__':
 import pdb
 pdb.set_trace()
 main()

● Get help from within the debugger. For example:
(Pdb) help
(Pdb) help next

Can also embed IPython into your code. See
http://ipython.scipy.org/doc/manual/manual.html.

ipdb Also consider using ipdb (and IPython). The ipdb debugger interactive
prompt has some additional features, for example, it does tab name completion.

Inspecting:

● import inspect
● See http://docs.python.org/lib/moduleinspect.html.
● Don't forget to try dir(obj) and type(obj) and help(obj), first.

Miscellaneous tools:

● id(obj)
● globals() and locals().
● dir(obj) Returns interesting names, but list is not necessarily complete.
● obj.__class__
● cls.__bases__
● obj.__class__.__bases__
● obj.__doc__. But usually, help(obj) is better. It produces the doc string.
● Customize the representation of your class. Define the following methods in your

class:
○ __repr__() Called by (1) repr(), (2) interactive interpreter when

representation is needed.
○ __str__() Called by (1) str(), (2) string formatting.

pdb is implemented with the cmd module in the Python standard library. You can
implement similar command line interfaces by using cmd. See: cmd Support for
lineoriented command interpreters http://docs.python.org/lib/modulecmd.html.

1.9.2 File input and output
Create a file object. Use open().

This example reads and prints each line of a file:

Page 78

A Python Book

def test():
 f = file('tmp.py', 'r')
 for line in f:
 print 'line:', line.rstrip()
 f.close()

test()

Notes:

● A text file is an iterable. It iterates over the lines in a file. The following is a
common idiom:

infile = file(filename, 'r')
for line in infile:
 process_a_line(line)
infile.close()

● string.rstrip() strips newline and other whitespace from the right side of
each line. To strip newlines only, but not other whitespace, try rstrip('\n').

● Other ways of reading from a file/stream object: my_file.read(),
my_file.readline(), my_file.readlines(),

This example writes lines of text to a file:

def test():
 f = file('tmp.txt', 'w')
 for ch in 'abcdefg':
 f.write(ch * 10)
 f.write('\n')
 f.close()

test()

Notes:

● The write method, unlike the print statement, does not automatically add
newline characters.

● Must close file in order to flush output. Or, use my_file.flush().
And, don't forget the with: statement. It makes closing files automatic. The following
example converts all the vowels in an input file to upper case and writes the converted
lines to an output file:

import string

def show_file(infilename, outfilename):
 tran_table = string.maketrans('aeiou', 'AEIOU')
 with open(infilename, 'r') as infile, open(outfilename, 'w') as
outfile:
 for line in infile:
 line = line.rstrip()
 outfile.write('%s\n' % line.translate(tran_table))

Page 79

A Python Book

1.9.3 Unit tests
For more documentation on the unit test framework, see unittest Unit testing
framework http://docs.python.org/2/library/unittest.html#moduleunittest

For help and more information do the following at the Python interactive prompt:

>>> import unittest
>>> help(unittest)

And, you can read the source: Lib/unittest.py in the Python standard library.

1.9.3.1 A simple example

Here is a very simple example. You can find more information about this primitive way
of structuring unit tests in the library documentation for the unittest module Basic
example http://docs.python.org/lib/minimalexample.html

import unittest

class UnitTests02(unittest.TestCase):

 def testFoo(self):
 self.failUnless(False)

class UnitTests01(unittest.TestCase):

 def testBar01(self):
 self.failUnless(False)

 def testBar02(self):
 self.failUnless(False)

def main():
 unittest.main()

if __name__ == '__main__':
 main()

Notes:

● The call to unittest.main() runs all tests in all test fixtures in the module. It
actually creates an instance of class TestProgram in module
Lib/unittest.py, which automatically runs tests.

● Test fixtures are classes that inherit from unittest.TestCase.
● Within a test fixture (a class), the tests are any methods whose names begin with

the prefix "test".
● In any test, we check for success or failure with inherited methods such as

failIf(), failUnless(), assertNotEqual(), etc. For more on these

Page 80

A Python Book

methods, see the library documentation for the unittest module TestCase
Objects http://docs.python.org/lib/testcaseobjects.html.

● If you want to change (1) the test method prefix or (2) the function used to sort
(the order of) execution of tests within a test fixture, then you can create your own
instance of class unittest.TestLoader and customize it. For example:

def main():
 my_test_loader = unittest.TestLoader()
 my_test_loader.testMethodPrefix = 'check'
 my_test_loader.sortTestMethodsUsing = my_cmp_func
 unittest.main(testLoader=my_test_loader)

if __name__ == '__main__':
 main()

But, see the notes in section Additional unittest features for instructions on a
(possibly) better way to do this.

1.9.3.2 Unit test suites

Here is another, not quite so simple, example:

#!/usr/bin/env python

import sys, popen2
import getopt
import unittest

class GenTest(unittest.TestCase):

 def test_1_generate(self):
 cmd = 'python ../generateDS.py f o out2sup.py s out2sub.py
people.xsd'
 outfile, infile = popen2.popen2(cmd)
 result = outfile.read()
 outfile.close()
 infile.close()
 self.failUnless(len(result) == 0)

 def test_2_compare_superclasses(self):
 cmd = 'diff out1sup.py out2sup.py'
 outfile, infile = popen2.popen2(cmd)
 outfile, infile = popen2.popen2(cmd)
 result = outfile.read()
 outfile.close()
 infile.close()
 #print 'len(result):', len(result)
 # Ignore the differing lines containing the date/time.
 #self.failUnless(len(result) < 130 and
result.find('Generated') > 1)

Page 81

A Python Book

 self.failUnless(check_result(result))

 def test_3_compare_subclasses(self):
 cmd = 'diff out1sub.py out2sub.py'
 outfile, infile = popen2.popen2(cmd)
 outfile, infile = popen2.popen2(cmd)
 result = outfile.read()
 outfile.close()
 infile.close()
 # Ignore the differing lines containing the date/time.
 #self.failUnless(len(result) < 130 and
result.find('Generated') > 1)
 self.failUnless(check_result(result))

def check_result(result):
 flag1 = 0
 flag2 = 0
 lines = result.split('\n')
 len1 = len(lines)
 if len1 <= 5:
 flag1 = 1
 s1 = '\n'.join(lines[:4])
 if s1.find('Generated') > 1:
 flag2 = 1
 return flag1 and flag2

Make the test suite.
def suite():
 # The following is obsolete. See Lib/unittest.py.
 #return unittest.makeSuite(GenTest)
 loader = unittest.TestLoader()
 # or alternatively
 # loader = unittest.defaultTestLoader
 testsuite = loader.loadTestsFromTestCase(GenTest)
 return testsuite

Make the test suite and run the tests.
def test():
 testsuite = suite()
 runner = unittest.TextTestRunner(sys.stdout, verbosity=2)
 runner.run(testsuite)

USAGE_TEXT = """
Usage:
 python test.py [options]
Options:
 h, help Display this help message.
Example:
 python test.py

Page 82

A Python Book

"""

def usage():
 print USAGE_TEXT
 sys.exit(1)

def main():
 args = sys.argv[1:]
 try:
 opts, args = getopt.getopt(args, 'h', ['help'])
 except:
 usage()
 relink = 1
 for opt, val in opts:
 if opt in ('h', 'help'):
 usage()
 if len(args) != 0:
 usage()
 test()

if __name__ == '__main__':
 main()
 #import pdb
 #pdb.run('main()')

Notes:

● GenTest is our test suite class. It inherits from unittest.TestCase.
● Each method in GenTest whose name begins with "test" will be run as a test.
● The tests are run in alphabetic order by method name.
● Defaults in class TestLoader for the test name prefix and sort comparison

function can be overridden. See 5.3.8 TestLoader Objects
http://docs.python.org/lib/testloaderobjects.html.

● A test case class may also implement methods named setUp() and
tearDown() to be run before and after tests. See 5.3.5 TestCase Objects
http://docs.python.org/lib/testcaseobjects.html. Actually, the first test method in
our example should, perhaps, be a setUp() method.

● The tests use calls such as self.failUnless() to report errors. These are
inherited from class TestCase. See 5.3.5 TestCase Objects
http://docs.python.org/lib/testcaseobjects.html.

● Function suite() creates an instance of the test suite.
● Function test() runs the tests.

1.9.3.3 Additional unittest features

And, the following example shows several additional features. See the notes that follow

Page 83

A Python Book

the code:

import unittest

class UnitTests02(unittest.TestCase):
 def testFoo(self):
 self.failUnless(False)
 def checkBar01(self):
 self.failUnless(False)

class UnitTests01(unittest.TestCase):
 # Note 1
 def setUp(self):
 print 'setting up UnitTests01'
 def tearDown(self):
 print 'tearing down UnitTests01'
 def testBar01(self):
 print 'testing testBar01'
 self.failUnless(False)
 def testBar02(self):
 print 'testing testBar02'
 self.failUnless(False)

def function_test_1():
 name = 'mona'
 assert not name.startswith('mo')

def compare_names(name1, name2):
 if name1 < name2:
 return 1
 elif name1 > name2:
 return 1
 else:
 return 0

def make_suite():
 suite = unittest.TestSuite()
 # Note 2
 suite.addTest(unittest.makeSuite(UnitTests01,
sortUsing=compare_names))
 # Note 3
 suite.addTest(unittest.makeSuite(UnitTests02, prefix='check'))
 # Note 4
 suite.addTest(unittest.FunctionTestCase(function_test_1))
 return suite

def main():
 suite = make_suite()
 runner = unittest.TextTestRunner()
 runner.run(suite)

if __name__ == '__main__':

Page 84

A Python Book

 main()

Notes:

1. If you run this code, you will notice that the setUp and tearDown methods in
class UnitTests01 are run before and after each test in that class.

2. We can control the order in which tests are run by passing a compare function to
the makeSuite function. The default is the cmp builtin function.

3. We can control which methods in a test fixture are selected to be run by passing
the optional argument prefix to the makeSuite function.

4. If we have an existing function that we want to "wrap" and run as a unit test, we
can create a test case from a function with the FunctionTestCase function. If
we do that, notice that we use the assert statement to test and possibly cause
failure.

1.9.3.4 Guidance on Unit Testing

Why should we use unit tests? Many reasons, including:

● Without unit tests, corner cases may not be checked. This is especially important,
since Python does relatively little compile time error checking.

● Unit tests facilitate a frequent and short design and implement and release
development cycle. See ONLamp.com Extreme Python
http://www.onlamp.com/pub/a/python/2001/03/28/pythonnews.html and What is
XP http://www.xprogramming.com/what_is_xp.htm.

● Designing the tests before writing the code is "a good idea".
Additional notes:

● In a test class, instance methods setUp and tearDown are run automatically
before each and after each individual test.

● In a test class, class methods setUpClass and tearDownClass are run
automatically once before and after all the tests in a class.

● Module level functions setUpModule and tearDownModule are run before
and after any tests in a module.

● In some cases you can also run tests directly from the command line. Do the
following for help:

$ python m unittest help

1.9.4 doctest
For simple test harnesses, consider using doctest. With doctest you can (1) run a
test at the Python interactive prompt, then (2) copy and paste that test into a doc string in
your module, and then (3) run the tests automatically from within your module under

Page 85

A Python Book

doctest.

There are examples and explanation in the standard Python documentation: 5.2 doctest
Test interactive Python examples http://docs.python.org/lib/moduledoctest.html.

A simple way to use doctest in your module:

1. Run several tests in the Python interactive interpreter. Note that because
doctest looks for the interpreter's ">>>" prompt, you must use the standard
interpreter, and not, for example, IPython. Also, make sure that you include a line
with the ">>>" prompt after each set of results; this enables doctest to
determine the extent of the test results.

2. Use copy and paste, to insert the tests and their results from your interactive
session into the docstrings.

3. Add the following code at the bottom of your module:
def _test():
 import doctest
 doctest.testmod()

if __name__ == "__main__":
 _test()

Here is an example:

def f(n):
 """
 Print something funny.

 >>> f(1)
 10
 >>> f(2)
 10
 >>> f(3)
 0
 """
 if n == 1:
 return 10
 elif n == 2:
 return 10
 else:
 return 0

def test():
 import doctest, test_doctest
 doctest.testmod(test_doctest)

if __name__ == '__main__':
 test()

And, here is the output from running the above test with the v flag:

Page 86

A Python Book

$ python test_doctest.py v
Running test_doctest.__doc__
0 of 0 examples failed in test_doctest.__doc__
Running test_doctest.f.__doc__
Trying: f(1)
Expecting: 10
ok
Trying: f(2)
Expecting: 10
ok
Trying: f(3)
Expecting: 0
ok
0 of 3 examples failed in test_doctest.f.__doc__
Running test_doctest.test.__doc__
0 of 0 examples failed in test_doctest.test.__doc__
2 items had no tests:
 test_doctest
 test_doctest.test
1 items passed all tests:
 3 tests in test_doctest.f
3 tests in 3 items.
3 passed and 0 failed.
Test passed.

1.9.5 The Python database API
Python database API defines a standard interface for access to a relational database.

In order to use this API you must install the database adapter (interface module) for your
particular database, e.g. PostgreSQL, MySQL, Oracle, etc.

You can learn more about the Python DBAPI here:
http://www.python.org/dev/peps/pep0249/

The following simple example uses sqlite3 http://docs.python.org/2/library/sqlite3.html

#!/usr/bin/env python

"""
Create a relational database and a table in it.
Add some records.
Read and display the records.
"""

import sys
import sqlite3

def create_table(db_name):
 con = sqlite3.connect(db_name)
 cursor = con.cursor()
 cursor.execute('''CREATE TABLE plants

Page 87

A Python Book

 (name text, desc text, cat int)''')
 cursor.execute(
 '''INSERT INTO plants VALUES ('tomato', 'red and juicy',
1)''')
 cursor.execute(
 '''INSERT INTO plants VALUES ('pepper', 'green and crunchy',
2)''')
 cursor.execute('''INSERT INTO plants VALUES ('pepper', 'purple',
2)''')
 con.commit()
 con.close()

def retrieve(db_name):
 con = sqlite3.connect(db_name)
 cursor = con.cursor()
 cursor.execute('''select * from plants''')
 rows = cursor.fetchall()
 print rows
 print '' * 40
 cursor.execute('''select * from plants''')
 for row in cursor:
 print row
 con.close()

def test():
 args = sys.argv[1:]
 if len(args) != 1:
 sys.stderr.write('\nusage: test_db.py <db_name>\n\n')
 sys.exit(1)
 db_name = args[0]
 create_table(db_name)
 retrieve(db_name)

test()

1.9.6 Installing Python packages
Simple:

$ python setup.py build
$ python setup.py install # as root

More complex:

● Look for a README or INSTALL file at the root of the package.
● Type the following for help:

$ python setup.py cmd help
$ python setup.py helpcommands
$ python setup.py help [cmd1 cmd2 ...]

● And, for even more details, see Installing Python Modules

Page 88

A Python Book

http://docs.python.org/inst/inst.html
pip is becoming popular for installing and managing Python packages. See:
https://pypi.python.org/pypi/pip

Also, consider using virtualenv, especially if you suspect or worry that installing
some new package will alter the behavior of a package currently installed on your
machine. See: https://pypi.python.org/pypi/virtualenv. virtualenv creates a directory
and sets up a Python environment into which you can install and use Python packages
without changing your usual Python installation.

1.10 More Python Features and Exercises
[As time permits, explain more features and do more exercises as requested by class
members.]

Thanks to David Goodger for the following list or references. His "Code Like a
Pythonista: Idiomatic Python"
(http://python.net/~goodger/projects/pycon/2007/idiomatic/) is worth a careful reading:

● "Python Objects", Fredrik Lundh, http://www.effbot.org/zone/pythonobjects.htm
● "How to think like a Pythonista", Mark Hammond,

http://python.net/crew/mwh/hacks/objectthink.html
● "Python main() functions", Guido van Rossum,

http://www.artima.com/weblogs/viewpost.jsp?thread=4829
● "Python Idioms and Efficiency", http://jaynes.colorado.edu/PythonIdioms.html
● "Python track: python idioms",

http://www.cs.caltech.edu/courses/cs11/material/python/misc/python_idioms.html
● "Be Pythonic", Shalabh Chaturvedi, http://shalabh.infogami.com/Be_Pythonic2
● "Python Is Not Java", Phillip J. Eby,

http://dirtsimple.org/2004/12/pythonisnotjava.html
● "What is Pythonic?", Martijn Faassen,

http://faassen.ntree.net/blog/view/weblog/2005/08/06/0
● "Sorting MiniHOWTO", Andrew Dalke,

http://wiki.python.org/moin/HowTo/Sorting
● "Python Idioms", http://www.gungfu.de/facts/wiki/Main/PythonIdioms
● "Python FAQs", http://www.python.org/doc/faq/

Page 89

A Python Book

2 Part 2 Advanced Python

2.1 Introduction Python 201 (Slightly) Advanced Python Topics
This document is intended as notes for a course on (slightly) advanced Python topics.

2.2 Regular Expressions
For more help on regular expressions, see:

● re Regular expression operations http://docs.python.org/library/re.html
● Regular Expression HOWTO http://docs.python.org/howto/regex.html

2.2.1 Defining regular expressions
A regular expression pattern is a sequence of characters that will match sequences of
characters in a target.

The patterns or regular expressions can be defined as follows:

● Literal characters must match exactly. For example, "a" matches "a".
● Concatenated patterns match concatenated targets. For example, "ab" ("a"

followed by "b") matches "ab".
● Alternate patterns (separated by a vertical bar) match either of the alternative

patterns. For example, "(aaa)|(bbb)" will match either "aaa" or "bbb".
● Repeating and optional items:

○ "abc*" matches "ab" followed by zero or more occurances of "c", for example,
"ab", "abc", "abcc", etc.

○ "abc+" matches "ab" followed by one or more occurances of "c", for example,
"abc", "abcc", etc, but not "ab".

○ "abc?" matches "ab" followed by zero or one occurances of "c", for example,
"ab" or "abc".

● Sets of characters Characters and sequences of characters in square brackets
form a set; a set matches any character in the set or range. For example, "[abc]"
matches "a" or "b" or "c". And, for example, "[_az09]" matches an underscore
or any lowercase letter or any digit.

● Groups Parentheses indicate a group with a pattern. For example, "ab(cd)*ef" is
a pattern that matches "ab" followed by any number of occurances of "cd"
followed by "ef", for example, "abef", "abcdef", "abcdcdef", etc.

● There are special names for some sets of characters, for example "\d" (any digit),

Page 90

A Python Book

"\w" (any alphanumeric character), "\W" (any nonalphanumeric character), etc.
More more information, see Python Library Reference: Regular Expression
Syntax http://docs.python.org/library/re.html#regularexpressionsyntax

Because of the use of backslashes in patterns, you are usually better off defining regular
expressions with raw strings, e.g. r"abc".

2.2.2 Compiling regular expressions
When a regular expression is to be used more than once, you should consider compiling
it. For example:

import sys, re

pat = re.compile('aa[bc]*dd')

while 1:
 line = raw_input('Enter a line ("q" to quit):')
 if line == 'q':
 break
 if pat.search(line):
 print 'matched:', line
 else:
 print 'no match:', line

Comments:

● We import module re in order to use regular expresions.
● re.compile() compiles a regular expression so that we can reuse the

compiled regular expression without compiling it repeatedly.

2.2.3 Using regular expressions
Use match() to match at the beginning of a string (or not at all).

Use search() to search a string and match the first string from the left.

Here are some examples:

>>> import re
>>> pat = re.compile('aa[09]*bb')
>>> x = pat.match('aa1234bbccddee')
>>> x
<_sre.SRE_Match object at 0x401e9608>
>>> x = pat.match('xxxxaa1234bbccddee')
>>> x
>>> type(x)
<type 'NoneType'>
>>> x = pat.search('xxxxaa1234bbccddee')
>>> x

Page 91

A Python Book

<_sre.SRE_Match object at 0x401e9608>

Notes:

● When a match or search is successful, it returns a match object. When it fails, it
returns None.

● You can also call the corresponding functions match and search in the re module,
e.g.:

>>> x = re.search(pat, 'xxxxaa1234bbccddee')
>>> x
<_sre.SRE_Match object at 0x401e9560>

For a list of functions in the re module, see Module Contents
http://docs.python.org/library/re.html#modulecontents.

2.2.4 Using match objects to extract a value
Match objects enable you to extract matched substrings after performing a match. A
match object is returned by successful match. The part of the target available in the match
object is the portion matched by groups in the pattern, that is the portion of the pattern
inside parentheses. For example:

In [69]: mo = re.search(r'height: (\d*) width: (\d*)', 'height: 123
width: 456')
In [70]: mo.groups()
Out[70]: ('123', '456')

Here is another example:

import sys, re

Targets = [
 'There are <<25>> sparrows.',
 'I see <<15>> finches.',
 'There is nothing here.',
]

def test():
 pat = re.compile('<<([09]*)>>')
 for line in Targets:
 mo = pat.search(line)
 if mo:
 value = mo.group(1)
 print 'value: %s' % value
 else:
 print 'no match'

test()

When we run the above, it prints out the following:

Page 92

A Python Book

value: 25
value: 15
no match

Explanation:

● In the regular expression, put parentheses around the portion of the regular
expression that will match what you want to extract. Each pair of parentheses
marks off a group.

● After the search, check to determine if there was a successful match by checking
for a matching object. "pat.search(line)" returns None if the search fails.

● If you specify more than one group in your regular expression (more that one pair
of parentheses), then you can use "value = mo.group(N)" to extract the value
matched by the Nth group from the matching object. "value = mo.group(1)"
returns the first extracted value; "value = mo.group(2)" returns the second; etc. An
argument of 0 returns the string matched by the entire regular expression.

In addition, you can:

● Use "values = mo.groups()" to get a tuple containing the strings matched by all
groups.

● Use "mo.expand()" to interpolate the group values into a string. For example,
"mo.expand(r'value1: \1 value2: \2')"inserts the values of the first and second
group into a string. If the first group matched "aaa" and the second matched
"bbb", then this example would produce "value1: aaa value2: bbb". For example:

In [76]: mo = re.search(r'h: (\d*) w: (\d*)', 'h: 123
w: 456')
In [77]: mo.expand(r'Height: \1 Width: \2')
Out[77]: 'Height: 123 Width: 456'

2.2.5 Extracting multiple items
You can extract multiple items with a single search. Here is an example:

import sys, re

pat = re.compile('aa([09]*)bb([09]*)cc')

while 1:
 line = raw_input('Enter a line ("q" to quit):')
 if line == 'q':
 break
 mo = pat.search(line)
 if mo:
 value1, value2 = mo.group(1, 2)
 print 'value1: %s value2: %s' % (value1, value2)
 else:
 print 'no match'

Page 93

A Python Book

Comments:

● Use multiple parenthesized substrings in the regular expression to indicate the
portions (groups) to be extracted.

● "mo.group(1, 2)" returns the values of the first and second group in the string
matched.

● We could also have used "mo.groups()" to obtain a tuple that contains both
values.

● Yet another alternative would have been to use the following: print
mo.expand(r'value1: \1 value2: \2').

2.2.6 Replacing multiple items
A simple way to perform multiple replacements using a regular expression is to use the
re.subn() function. Here is an example:

In [81]: re.subn(r'\d+', '***', 'there are 203 birds sitting in 2
trees')
Out[81]: ('there are *** birds sitting in *** trees', 2)

For more complex replacements, use a function instead of a constant replacement string:

import re

def repl_func(mo):
 s1 = mo.group(1)
 s2 = '*' * len(s1)
 return s2

def test():
 pat = r'(\d+)'
 in_str = 'there are 2034 birds in 21 trees'
 out_str, count = re.subn(pat, repl_func, in_str)
 print 'in: "%s"' % in_str
 print 'out: "%s"' % out_str
 print 'count: %d' % count

test()

And when we run the above, it produces:

in: "there are 2034 birds in 21 trees"
out: "there are **** birds in ** trees"
count: 2

Notes:

● The replacement function receives one argument, a match object.
● The re.subn() function returns a tuple containing two values: (1) the string

after replacements and (2) the number of replacements performed.

Page 94

A Python Book

Here is an even more complex example You can locate substrings (slices) of a match
and replace them:

import sys, re

pat = re.compile('aa([09]*)bb([09]*)cc')

while 1:
 line = raw_input('Enter a line ("q" to quit): ')
 if line == 'q':
 break
 mo = pat.search(line)
 if mo:
 value1, value2 = mo.group(1, 2)
 start1 = mo.start(1)
 end1 = mo.end(1)
 start2 = mo.start(2)
 end2 = mo.end(2)
 print 'value1: %s start1: %d end1: %d' % (value1, start1,
end1)
 print 'value2: %s start2: %d end2: %d' % (value2, start2,
end2)
 repl1 = raw_input('Enter replacement #1: ')
 repl2 = raw_input('Enter replacement #2: ')
 newline = (line[:start1] + repl1 + line[end1:start2] +
 repl2 + line[end2:])
 print 'newline: %s' % newline
 else:
 print 'no match'

Explanation:

● Alternatively, use "mo.span(1)" instead of "mo.start(1)" and "mo.end(1)" in order
to get the start and end of a submatch in a single operation. "mo.span(1)"returns a
tuple: (start, end).

● Put together a new string with string concatenation from pieces of the original
string and replacement values. You can use string slices to get the substrings of
the original string. In our case, the following gets the start of the string, adds the
first replacement, adds the middle of the original string, adds the second
replacement, and finally, adds the last part of the original string:

newline = line[:start1] + repl1 + line[end1:start2] +
repl2 + line[end2:]

You can also use the sub function or method to do substitutions. Here is an example:

import sys, re

pat = re.compile('[09]+')

print 'Replacing decimal digits.'

Page 95

A Python Book

while 1:
 target = raw_input('Enter a target line ("q" to quit): ')
 if target == 'q':
 break
 repl = raw_input('Enter a replacement: ')
 result = pat.sub(repl, target)
 print 'result: %s' % result

Here is another example of the use of a function to insert calculated replacements.

import sys, re, string

pat = re.compile('[am]+')

def replacer(mo):
 return string.upper(mo.group(0))

print 'Uppercasing am.'
while 1:
 target = raw_input('Enter a target line ("q" to quit): ')
 if target == 'q':
 break
 result = pat.sub(replacer, target)
 print 'result: %s' % result

Notes:

● If the replacement argument to sub is a function, that function must take one
argument, a match object, and must return the modified (or replacement) value.
The matched substring will be replaced by the value returned by this function.

● In our case, the function replacer converts the matched value to upper case.
This is also a convenient use for a lambda instead of a named function, for example:

import sys, re, string

pat = re.compile('[am]+')

print 'Uppercasing am.'
while 1:
 target = raw_input('Enter a target line ("q" to quit): ')
 if target == 'q':
 break
 result = pat.sub(
 lambda mo: string.upper(mo.group(0)),
 target)
 print 'result: %s' % result

2.3 Iterator Objects
Note 1: You will need a sufficiently recent version of Python in order to use iterators and
generators. I believe that they were introduced in Python 2.2.

Page 96

A Python Book

Note 2: The iterator protocol has changed slightly in Python version 3.0.

Goals for this section:

● Learn how to implement a generator function, that is, a function which, when
called, returns an iterator.

● Learn how to implement a class containing a generator method, that is, a method
which, when called, returns an iterator.

● Learn the iterator protocol, specifically what methods an iterator must support and
what those methods must do.

● Learn how to implement an iterator class, that is, a class whose instances are
iterator objects.

● Learn how to implement recursive iterator generators, that is, an iterator generator
which recursively produces iterator generators.

● Learn that your implementation of an iterator object (an iterator class) can
"refresh" itself and learn at least one way to do this.

Definitions:

● Iterator And iterator is an object that satisfies (implements) the iterator protocol.
● Iterator protocol An object implements the iterator protocol if it implements both

a next() and an __iter__() method which satisfy these rules: (1) the
__iter__() method must return the iterator; (2) the next() method should
return the next item to be iterated over and when finished (there are no more
items) should raise the StopIteration exception. The iterator protocol is
described at Iterator Types
http://docs.python.org/library/stdtypes.html#iteratortypes.

● Iterator class A class that implements (satisfies) the iterator protocol. In
particular, the class implements next() and __iter__() methods as
described above and in Iterator Types
http://docs.python.org/library/stdtypes.html#iteratortypes.

● (Iterator) generator function A function (or method) which, when called, returns
an iterator object, that is, an object that satisfies the iterator protocol. A function
containing a yield statement automatically becomes a generator.

● Generator expression An expression which produces an iterator object.
Generator expressions have a form similar to a list comprehension, but are
enclosed in parentheses rather than square brackets. See example below.

A few additional basic points:

● A function that contains a yield statement is a generator function. When called, it
returns an iterator, that is, an object that provides next() and __iter__()
methods.

● The iterator protocol is described here: Python Standard Library: Iterator Types
http://docs.python.org/library/stdtypes.html#iteratortypes.

Page 97

A Python Book

● A class that defines both a next() method and a __iter__() method satisfies
the iterator protocol. So, instances of such a class will be iterators.

● Python provides a variety of ways to produce (implement) iterators. This section
describes a few of those ways. You should also look at the iter() builtin
function, which is described in The Python Standard Library: Builtin Functions:
iter() http://docs.python.org/library/functions.html#iter.

● An iterator can be used in an iterator context, for example in a for statement, in a
list comprehension, and in a generator expression. When an iterator is used in an
iterator context, the iterator produces its values.

This section attempts to provide examples that illustrate the generator/iterator pattern.

Why is this important?

● Once mastered, it is a simple, convenient, and powerful programming pattern.
● It has many and pervasive uses.
● It helps to lexically separate the producer code from the consumer code. Doing so

makes it easier to locate problems and to modify or fix code in a way that is
localized and does not have unwanted sideeffects.

● Implementing your own iterators (and generators) enables you to define your own
abstract sequences, that is, sequences whose composition are defined by your
computations rather than by their presence in a container. In fact, your iterator can
calculate or retrieve values as each one is requested.

Examples The remainder of this section provides a set of examples which implement
and use iterators.

2.3.1 Example A generator function
This function contains a yield statement. Therefore, when we call it, it produces an
iterator:

def generateItems(seq):
 for item in seq:
 yield 'item: %s' % item

anIter = generateItems([])
print 'dir(anIter):', dir(anIter)
anIter = generateItems([111,222,333])
for x in anIter:
 print x
anIter = generateItems(['aaa', 'bbb', 'ccc'])
print anIter.next()
print anIter.next()
print anIter.next()
print anIter.next()

Running this example produces the following output:

Page 98

A Python Book

dir(anIter): ['__class__', '__delattr__', '__doc__',
'__getattribute__',
'__hash__', '__init__', '__iter__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__setattr__', '__str__', 'gi_frame',
'gi_running', 'next']
item: 111
item: 222
item: 333
item: aaa
item: bbb
item: ccc
Traceback (most recent call last):
 File "iterator_generator.py", line 14, in ?
 print anIter.next()
StopIteration

Notes and explanation:

● The value returned by the call to the generator (function) is an iterator. It obeys
the iterator protocol. That is, dir(anIter) shows that it has both
__iter__() and next() methods.

● Because this object is an iterator, we can use a for statement to iterate over the
values returned by the generator.

● We can also get its values by repeatedly calling the next() method, until it
raises the StopIteration exception. This ability to call the next method enables us
to pass the iterator object around and get values at different locations in our code.

● Once we have obtained all the values from an iterator, it is, in effect, "empty" or
"exhausted". The iterator protocol, in fact, specifies that once an iterator raises the
StopIteration exception, it should continue to do so. Another way to say this is
that there is no "rewind" operation. But, you can call the the generator function
again to get a "fresh" iterator.

An alternative and perhaps simpler way to create an interator is to use a generator
expression. This can be useful when you already have a collection or iterator to work
with.

Then following example implements a function that returns a generator object. The effect
is to generate the objects in a collection which excluding items in a separte collection:

DATA = [
 'lemon',
 'lime',
 'grape',
 'apple',
 'pear',
 'watermelon',
 'canteloupe',
 'honeydew',
 'orange',

Page 99

A Python Book

 'grapefruit',
]

def make_producer(collection, excludes):
 gen = (item for item in collection if item not in excludes)
 return gen

def test():
 iter1 = make_producer(DATA, ('apple', 'orange', 'honeydew',))
 print '%s' % iter1
 for fruit in iter1:
 print fruit

test()

When run, this example produces the following:

$ python workbook063.py
<generator object <genexpr> at 0x7fb3d0f1bc80>
lemon
lime
grape
pear
watermelon
canteloupe
grapefruit

Notes:

● A generator expression looks almost like a list comprehension, but is surrounded
by parentheses rather than square brackets. For more on list comprehensions see
section Example A list comprehension.

● The make_producer function returns the object produced by the generator
expression.

2.3.2 Example A class containing a generator method
Each time this method is called, it produces a (new) iterator object. This method is
analogous to the iterkeys and itervalues methods in the dictionary builtin object:

#
A class that provides an iterator generator method.
#
class Node:
 def __init__(self, name='<noname>', value='<novalue>',
children=None):
 self.name = name
 self.value = value
 self.children = children
 if children is None:
 self.children = []

Page 100

A Python Book

 else:
 self.children = children
 def set_name(self, name): self.name = name
 def get_name(self): return self.name
 def set_value(self, value): self.value = value
 def get_value(self): return self.value
 def iterchildren(self):
 for child in self.children:
 yield child
 #
 # Print information on this node and walk over all children and
 # grandchildren ...
 def walk(self, level=0):
 print '%sname: %s value: %s' % (
 get_filler(level), self.get_name(), self.get_value(),)
 for child in self.iterchildren():
 child.walk(level + 1)

#
An function that is the equivalent of the walk() method in
class Node.
#
def walk(node, level=0):
 print '%sname: %s value: %s' % (
 get_filler(level), node.get_name(), node.get_value(),)
 for child in node.iterchildren():
 walk(child, level + 1)

def get_filler(level):
 return ' ' * level

def test():
 a7 = Node('gilbert', '777')
 a6 = Node('fred', '666')
 a5 = Node('ellie', '555')
 a4 = Node('daniel', '444')
 a3 = Node('carl', '333', [a4, a5])
 a2 = Node('bill', '222', [a6, a7])
 a1 = Node('alice', '111', [a2, a3])
 # Use the walk method to walk the entire tree.
 print 'Using the method:'
 a1.walk()
 print '=' * 30
 # Use the walk function to walk the entire tree.
 print 'Using the function:'
 walk(a1)

test()

Running this example produces the following output:

Using the method:
name: alice value: 111

Page 101

A Python Book

 name: bill value: 222
 name: fred value: 666
 name: gilbert value: 777
 name: carl value: 333
 name: daniel value: 444
 name: ellie value: 555
==============================
Using the function:
name: alice value: 111
 name: bill value: 222
 name: fred value: 666
 name: gilbert value: 777
 name: carl value: 333
 name: daniel value: 444
 name: ellie value: 555

Notes and explanation:

● This class contains a method iterchildren which, when called, returns an iterator.
● The yield statement in the method iterchildren makes it into a generator.
● The yield statement returns one item each time it is reached. The next time the

iterator object is "called" it resumes immediately after the yield statement.
● A function may have any number of yield statements.
● A for statement will iterate over all the items produced by an iterator object.
● This example shows two ways to use the generator, specifically: (1) the walk

method in the class Node and (2) the walk function. Both call the generator
iterchildren and both do pretty much the same thing.

2.3.3 Example An iterator class
This class implements the iterator protocol. Therefore, instances of this class are iterators.
The presence of the next() and __iter__() methods means that this class
implements the iterator protocol and makes instances of this class iterators.

Note that when an iterator is "exhausted" it, normally, cannot be reused to iterate over the
sequence. However, in this example, we provide a refresh method which enables us to
"rewind" and reuse the iterator instance:

#
An iterator class that does *not* use ``yield``.
This iterator produces every other item in a sequence.
#
class IteratorExample:
 def __init__(self, seq):
 self.seq = seq
 self.idx = 0
 def next(self):
 self.idx += 1
 if self.idx >= len(self.seq):

Page 102

A Python Book

 raise StopIteration
 value = self.seq[self.idx]
 self.idx += 1
 return value
 def __iter__(self):
 return self
 def refresh(self):
 self.idx = 0

def test_iteratorexample():
 a = IteratorExample('edcba')
 for x in a:
 print x
 print ''
 a.refresh()
 for x in a:
 print x
 print '=' * 30
 a = IteratorExample('abcde')
 try:
 print a.next()
 print a.next()
 print a.next()
 print a.next()
 print a.next()
 print a.next()
 except StopIteration, e:
 print 'stopping', e

test_iteratorexample()

Running this example produces the following output:

d
b

d
b
==============================
b
d
stopping

Notes and explanation:

● The next method must keep track of where it is and what item it should produce
next.

● Alert: The iterator protocol has changed slightly in Python 3.0. In particular, the
next() method has been renamed to __next__(). See: Python Standard
Library: Iterator Types
http://docs.python.org/3.0/library/stdtypes.html#iteratortypes.

Page 103

A Python Book

2.3.4 Example An iterator class that uses yield
There may be times when the next method is easier and more straightforward to
implement using yield. If so, then this class might serve as an model. If you do not feel
the need to do this, then you should ignore this example:

#
An iterator class that uses ``yield``.
This iterator produces every other item in a sequence.
#
class YieldIteratorExample:
 def __init__(self, seq):
 self.seq = seq
 self.iterator = self._next()
 self.next = self.iterator.next
 def _next(self):
 flag = 0
 for x in self.seq:
 if flag:
 flag = 0
 yield x
 else:
 flag = 1
 def __iter__(self):
 return self.iterator
 def refresh(self):
 self.iterator = self._next()
 self.next = self.iterator.next

def test_yielditeratorexample():
 a = YieldIteratorExample('edcba')
 for x in a:
 print x
 print ''
 a.refresh()
 for x in a:
 print x
 print '=' * 30
 a = YieldIteratorExample('abcde')
 try:
 print a.next()
 print a.next()
 print a.next()
 print a.next()
 print a.next()
 print a.next()
 except StopIteration, e:
 print 'stopping', e

test_yielditeratorexample()

Running this example produces the following output:

Page 104

A Python Book

d
b

d
b
==============================
b
d
stopping

Notes and explanation:

● Because the _next method uses yield, calling it (actually, calling the iterator
object it produces) in an iterator context causes it to be "resumed" immediately
after the yield statement. This reduces bookkeeping a bit.

● However, with this style, we must explicitly produce an iterator. We do this by
calling the _next method, which contains a yield statement, and is therefore a
generator. The following code in our constructor (__init__) completes the
setup of our class as an iterator class:

self.iterator = self._next()
self.next = self.iterator.next

Remember that we need both __iter__() and next() methods in
YieldIteratorExample to satisfy the iterator protocol. The __iter__()
method is already there and the above code in the constructor creates the next()
method.

2.3.5 Example A list comprehension
A list comprehension looks a bit like an iterator, but it produces a list. See: The Python
Language Reference: List displays
http://docs.python.org/reference/expressions.html#listdisplays for more on list
comprehensions.

Here is an example:

In [4]: def f(x):
 ...: return x * 3
 ...:
In [5]: list1 = [11, 22, 33]
In [6]: list2 = [f(x) for x in list1]
In [7]: print list2
[33, 66, 99]

2.3.6 Example A generator expression
A generator expression looks quite similar to a list comprehension, but is enclosed in

Page 105

A Python Book

parentheses rather than square brackets. Unlike a list comprehension, a generator
expression does not produce a list; it produces an generator object. A generator object is
an iterator.

For more on generator expressions, see The Python Language Reference: Generator
expressions http://docs.python.org/reference/expressions.html#generatorexpressions.

The following example uses a generator expression to produce an iterator:

mylist = range(10)

def f(x):
 return x*3

genexpr = (f(x) for x in mylist)

for x in genexpr:
 print x

Notes and explanation:

● The generator expression (f(x) for x in mylist) produces an iterator object.
● Notice that we can use the iterator object later in our code, can save it in a data

structure, and can pass it to a function.

2.4 Unit Tests
Unit test and the Python unit test framework provide a convenient way to define and run
tests that ensure that a Python application produces specified results.

This section, while it will not attempt to explain everything about the unit test framework,
will provide examples of several straightforward ways to construct and run tests.

Some assumptions:

● We are going to develop a software project incrementally. We will not implement
and release all at once. Therefore, each time we add to our existing code base, we
need a way to verify that our additions (and fixes) have not caused new problems
in old code.

● Adding new code to existing code will cause problems. We need to be able to
check/test for those problems at each step.

● As we add code, we need to be able to add tests for that new code, too.

2.4.1 Defining unit tests

2.4.1.1 Create a test class.

In the test class, implement a number of methods to perform your tests. Name your test

Page 106

A Python Book

methods with the prefix "test". Here is an example:

import unittest

class MyTest(unittest.TestCase):
 def test_one(self):
 # some test code
 pass
 def test_two(self):
 # some test code
 pass

Create a test harness. Here is an example:

import unittest

make the test suite.
def suite():
 loader = unittest.TestLoader()
 testsuite = loader.loadTestsFromTestCase(MyTest)
 return testsuite

Make the test suite; run the tests.
def test():
 testsuite = suite()
 runner = unittest.TextTestRunner(sys.stdout, verbosity=2)
 result = runner.run(testsuite)

Here is a more complete example:

import sys, StringIO, string
import unittest
import webserv_example_heavy_sub

A comparison function for caseinsenstive sorting.
def mycmpfunc(arg1, arg2):
 return cmp(string.lower(arg1), string.lower(arg2))

class XmlTest(unittest.TestCase):
 def test_import_export1(self):
 inFile = file('test1_in.xml', 'r')
 inContent = inFile.read()
 inFile.close()
 doc = webserv_example_heavy_sub.parseString(inContent)
 outFile = StringIO.StringIO()
 outFile.write('<?xml version="1.0" ?>\n')
 doc.export(outFile, 0)
 outContent = outFile.getvalue()
 outFile.close()
 self.failUnless(inContent == outContent)

make the test suite.
def suite():

Page 107

A Python Book

 loader = unittest.TestLoader()
 # Change the test method prefix: test > trial.
 #loader.testMethodPrefix = 'trial'
 # Change the comparison function that determines the order of
tests.
 #loader.sortTestMethodsUsing = mycmpfunc
 testsuite = loader.loadTestsFromTestCase(XmlTest)
 return testsuite

Make the test suite; run the tests.
def test_main():
 testsuite = suite()
 runner = unittest.TextTestRunner(sys.stdout, verbosity=2)
 result = runner.run(testsuite)

if __name__ == "__main__":
 test_main()

Running the above script produces the following output:

test_import_export (__main__.XmlTest) ... ok

Ran 1 test in 0.035s

OK

A few notes on this example:

● This example tests the ability to parse an xml document test1_in.xml and export
that document back to XML. The test succeeds if the input XML document and
the exported XML document are the same.

● The code which is being tested parses an XML document returned by a request to
Amazon Web services. You can learn more about Amazon Web services at:
http://www.amazon.com/webservices. This code was generated from an XML
Schema document by generateDS.py. So we are in effect, testing generateDS.py.
You can find generateDS.py at:
http://http://www.davekuhlman.org/#generatedspy.

● Testing for success/failure and reporting failures Use the methods listed at
http://www.python.org/doc/current/lib/testcaseobjects.html to test for and report
success and failure. In our example, we used "self.failUnless(inContent ==
outContent)" to ensure that the content we parsed and the content that we
exported were the same.

● Add additional tests by adding methods whose names have the prefix "test". If
you prefer a different prefix for tests names, add something like the following to
the above script:

loader.testMethodPrefix = 'trial'

Page 108

A Python Book

● By default, the tests are run in the order of their names sorted by the cmp
function. So, if needed, you can control the order of execution of tests by
selecting their names, for example, using names like test_1_checkderef,
test_2_checkcalc, etc. Or, you can change the comparison function by adding
something like the following to the above script:

loader.sortTestMethodsUsing = mycmpfunc

As a bit of motivation for creating and using unit tests, while developing this example, I
discovered several errors (or maybe "special features") in generateDS.py.

2.5 Extending and embedding Python

2.5.1 Introduction and concepts
Extending vs. embedding They are different but related:

● Extending Python means to implement an extension module or an extension type.
An extension module creates a new Python module which is implemented in
C/C++. From Python code, an extension module appears to be just like a module
implemented in Python code. An extension type creates a new Python (builtin)
type which is implemented in C/C++. From Python code, an extension type
appears to be just like a builtin type.

● Embedding Python, by contrast, is to put the Python interpreter within an
application (i.e. link it in) so that the application can run Python scripts. The
scripts can be executed or triggered in a variety of ways, e.g. they can be bound to
keys on the keyboard or to menu items, they can be triggered by external events,
etc. Usually, in order to make the embedded Python interpreter useful, Python is
also extended with functions from the embedding application, so that the scripts
can call functions that are implemented by the embedding C/C++ application.

Documentation The two important sources for information about extending and
embedding are the following:

● Extending and Embedding the Python Interpreter
http://www.python.org/doc/current/ext/ext.html

● Python/C API Reference Manual
http://www.python.org/doc/current/api/api.html

Types of extensions:

● Extension modules From the Python side, it appears to be a Python module.
Usually it exports functions.

● Extension types Used to implement a new Python data type.
● Extension classes From the Python side, it appears to be a class.

Page 109

A Python Book

Tools There are several tools that support the development of Python extensions:

● SWIG Learn about SWIG at: http://www.swig.org
● Pyrex Learn about Pyrex at:

http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/
● There is also Cython, which seems to be an advanced version of, or at least an

alternative to Pyrex. See: Cython C Extensions for Python
http://www.cython.org/

2.5.2 Extension modules
Writing an extension module by hand What to do:

● Create the "init" function The name of this function must be "init" followed by
the name of the module. Every extension module must have such a function.

● Create the function table This table maps function names (referenced from
Python code) to function pointers (implemented in C/C++).

● Implement each wrapper function.
Implementing a wrapper function What to do:

1. Capture the arguments with PyArg_ParseTuple. The format string specifies how
arguments are to be converted and captured. See 1.7 Extracting Parameters in
Extension Functions. Here are some of the most commonly used types:
○ Use "i", "s", "f", etc to convert and capture simple types such as integers,

strings, floats, etc.
○ Use "O" to get a pointer to Python "complex" types such as lists, tuples,

dictionaries, etc.
○ Use items in parentheses to capture and unpack sequences (e.g. lists and

tuples) of fixed length. Example:
if (!PyArg_ParseTuple(args, "(ii)(ii)", &x, &y,
&width, &height))
{
 return NULL;
} /* if */

A sample call might be:
lowerLeft = (x1, y1)
extent = (width1, height1)
scan(lowerLeft, extent)

○ Use ":aName" (colon) at the end of the format string to provide a function
name for error messages. Example:

if (!PyArg_ParseTuple(args, "O:setContentHandler",
&pythonInstance))
{

Page 110

A Python Book

 return NULL;
} /* if */

○ Use ";an error message" (semicolon) at the end of the format string to provide
a string that replaces the default error message.

○ Docs are available at: http://www.python.org/doc/current/ext/parseTuple.html.
2. Write the logic.
3. Handle errors and exceptions You will need to understand how to (1) clearing

errors and exceptions and (2) Raise errors (exceptions).
○ Many functions in the Python C API raise exceptions. You will need to check

for and clear these exceptions. Here is an example:
char * message;
int messageNo;

message = NULL;
messageNo = 1;
/* Is the argument a string?
*/
if (! PyArg_ParseTuple(args, "s", &message))
{
 /* It's not a string. Clear the error.
 * Then try to get a message number (an
integer).
 */
 PyErr_Clear();
 if (! PyArg_ParseTuple(args, "i", &messageNo))
 {
 o
 o
 o

○ You can also raise exceptions in your C code that can be caught (in a
"try:except:" block) back in the calling Python code. Here is an example:

if (n == 0)
{
 PyErr_SetString(PyExc_ValueError, "Value must
not be zero");
 return NULL;
}

See Include/pyerrors.h in the Python source distribution for more
exception/error types.

○ And, you can test whether a function in the Python C API that you have called
has raised an exception. For example:

if (PyErr_Occurred())
{
 /* An exception was raised.
 * Do something about it.

Page 111

A Python Book

 */
 o
 o
 o

For more documentation on errors and exceptions, see:
http://www.python.org/doc/current/api/exceptionHandling.html.

4. Create and return a value:
○ For each builtin Python type there is a set of API functions to create and

manipulate it. See the "Python/C API Reference Manual" for a description of
these functions. For example, see:
■ http://www.python.org/doc/current/api/intObjects.html
■ http://www.python.org/doc/current/api/stringObjects.html
■ http://www.python.org/doc/current/api/tupleObjects.html
■ http://www.python.org/doc/current/api/listObjects.html
■ http://www.python.org/doc/current/api/dictObjects.html
■ Etc.

○ The reference count You will need to follow Python's rules for reference
counting that Python uses to garbage collect objects. You can learn about
these rules at http://www.python.org/doc/current/ext/refcounts.html. You will
not want Python to garbage collect objects that you create too early or too late.
With respect to Python objects created with the above functions, these new
objects are owned and may be passed back to Python code. However, there
are situations where your C/C++ code will not automatically own a reference,
for example when you extract an object from a container (a list, tuple,
dictionary, etc). In these cases you should increment the reference count with
Py_INCREF.

2.5.3 SWIG
Note: Our discussion and examples are for SWIG version 1.3

SWIG will often enable you to generate wrappers for functions in an existing C function
library. SWIG does not understand everything in C header files. But it does a fairly
impressive job. You should try it first before resorting to the hard work of writing
wrappers by hand.

More information on SWIG is at http://www.swig.org.

Here are some steps that you can follow:

1. Create an interface file Even when you are wrapping functions defined in an
existing header file, creating an interface file is a good idea. Include your existing
header file into it, then add whatever else you need. Here is an extremely simple
example of a SWIG interface file:

Page 112

A Python Book

%module MyLibrary

%{
#include "MyLibrary.h"
%}

%include "MyLibrary.h"

Comments:
○ The "%{" and "%}" brackets are directives to SWIG. They say: "Add the code

between these brackets to the generated wrapper file without processing it.
○ The "%include" statement says: "Copy the file into the interface file here. In

effect, you are asking SWIG to generate wrappers for all the functions in this
header file. If you want wrappers for only some of the functions in a header
file, then copy or reproduce function declarations for the desired functions
here. An example:

%module MyLibrary

%{
#include "MyLibrary.h"
%}

int calcArea(int width, int height);
int calcVolume(int radius);

This example will generate wrappers for only two functions.
○ You can find more information about the directives that are used in SWIG

interface files in the SWIG User Manual, in particular at:
■ http://www.swig.org/Doc1.3/Preprocessor.html
■ http://www.swig.org/Doc1.3/Python.html

2. Generate the wrappers:
swig python MyLibrary.i

3. Compile and link the library. On Linux, you can use something like the following:
gcc c MyLibrary.c
gcc c I/usr/local/include/python2.3 MyLibrary_wrap.c
gcc shared MyLibrary.o MyLibrary_wrap.o o
_MyLibrary.so

Note that we produce a shared library whose name is the module name prefixed
with an underscore. SWIG also generates a .py file, without the leading
underscore, which we will import from our Python code and which, in turn,
imports the shared library.

4. Use the extension module in your python code:
Python 2.3b1 (#1, Apr 25 2003, 20:36:09)
[GCC 2.95.4 20011002 (Debian prerelease)] on linux2

Page 113

A Python Book

Type "help", "copyright", "credits" or "license" for
more information.
>>> import MyLibrary
>>> MyLibrary.calcArea(4.0, 5.0)
20.0

Here is a makefile that will execute swig to generate wrappers, then compile and link the
extension.

CFLAGS = I/usr/local/include/python2.3

all: _MyLibrary.so

_MyLibrary.so: MyLibrary.o MyLibrary_wrap.o

gcc shared MyLibrary.o MyLibrary_wrap.o o _MyLibrary.so

MyLibrary.o: MyLibrary.c

gcc c MyLibrary.c o MyLibrary.o

MyLibrary_wrap.o: MyLibrary_wrap.c

gcc c ${CFLAGS} MyLibrary_wrap.c o MyLibrary_wrap.o

MyLibrary_wrap.c: MyLibrary.i

swig python MyLibrary.i

clean:

rm f MyLibrary.py MyLibrary.o MyLibrary_wrap.c

MyLibrary_wrap.o _MyLibrary.so

Here is an example of running this makefile:

$ make f MyLibrary_makefile clean
rm f MyLibrary.py MyLibrary.o MyLibrary_wrap.c \
 MyLibrary_wrap.o _MyLibrary.so
$ make f MyLibrary_makefile
gcc c MyLibrary.c o MyLibrary.o
swig python MyLibrary.i
gcc c I/usr/local/include/python2.3 MyLibrary_wrap.c o
MyLibrary_wrap.o
gcc shared MyLibrary.o MyLibrary_wrap.o o _MyLibrary.so

And, here are C source files that can be used in our example.

MyLibrary.h:

/* MyLibrary.h
*/

Page 114

A Python Book

float calcArea(float width, float height);
float calcVolume(float radius);

int getVersion();

int getMode();

MyLibrary.c:

/* MyLibrary.c
*/

float calcArea(float width, float height)
{
 return (width * height);
}

float calcVolume(float radius)
{
 return (3.14 * radius * radius);
}

int getVersion()
{
 return 123;
}

int getMode()
{
 return 1;
}

2.5.4 Pyrex
Pyrex is a useful tool for writing Python extensions. Because the Pyrex language is
similar to Python, writing extensions in Pyrex is easier than doing so in C. Cython
appears to be the a newer version of Pyrex.

More information is on Pyrex and Cython is at:

● Pyrex http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/
● Cython C Extensions for Python http://www.cython.org/

Here is a simple function definition in Pyrex:

python_201_pyrex_string.pyx

import string

def formatString(object s1, object s2):
 s1 = string.strip(s1)
 s2 = string.strip(s2)

Page 115

A Python Book

 s3 = '<<%s||%s>>' % (s1, s2)
 s4 = s3 * 4
 return s4

And, here is a make file:

CFLAGS = DNDEBUG O3 Wall Wstrictprototypes fPIC \
 I/usr/local/include/python2.3

all: python_201_pyrex_string.so

python_201_pyrex_string.so: python_201_pyrex_string.o
 gcc shared python_201_pyrex_string.o o
python_201_pyrex_string.so

python_201_pyrex_string.o: python_201_pyrex_string.c
 gcc c ${CFLAGS} python_201_pyrex_string.c o
python_201_pyrex_string.o

python_201_pyrex_string.c: python_201_pyrex_string.pyx
 pyrexc python_201_pyrex_string.pyx

clean:
 rm f python_201_pyrex_string.so python_201_pyrex_string.o \
 python_201_pyrex_string.c

Here is another example. In this one, one function in the .pyx file calls another. Here is
the implementation file:

python_201_pyrex_primes.pyx

def showPrimes(int kmax):
 plist = primes(kmax)
 for p in plist:
 print 'prime: %d' % p

cdef primes(int kmax):
 cdef int n, k, i
 cdef int p[1000]
 result = []
 if kmax > 1000:
 kmax = 1000
 k = 0
 n = 2
 while k < kmax:
 i = 0
 while i < k and n % p[i] <> 0:
 i = i + 1
 if i == k:
 p[k] = n
 k = k + 1
 result.append(n)
 n = n + 1

Page 116

A Python Book

 return result

And, here is a make file:

#CFLAGS = DNDEBUG g O3 Wall Wstrictprototypes fPIC #
I/usr/local/include/python2.3 CFLAGS = DNDEBUG
I/usr/local/include/python2.3

all: python_201_pyrex_primes.so

python_201_pyrex_primes.so: python_201_pyrex_primes.o

gcc shared python_201_pyrex_primes.o o python_201_pyrex_primes.so

python_201_pyrex_primes.o: python_201_pyrex_primes.c

gcc c ${CFLAGS} python_201_pyrex_primes.c o python_201_pyrex_primes.o

python_201_pyrex_primes.c: python_201_pyrex_primes.pyx

pyrexc python_201_pyrex_primes.pyx

clean:

rm f python_201_pyrex_primes.so python_201_pyrex_primes.o

python_201_pyrex_primes.c

Here is the output from running the makefile:

$ make f python_201_pyrex_makeprimes clean
rm f python_201_pyrex_primes.so python_201_pyrex_primes.o \
 python_201_pyrex_primes.c
$ make f python_201_pyrex_makeprimes
pyrexc python_201_pyrex_primes.pyx
gcc c DNDEBUG I/usr/local/include/python2.3
python_201_pyrex_primes.c o python_201_pyrex_primes.o
gcc shared python_201_pyrex_primes.o o python_201_pyrex_primes.so

Here is an interactive example of its use:

$ python
Python 2.3b1 (#1, Apr 25 2003, 20:36:09)
[GCC 2.95.4 20011002 (Debian prerelease)] on linux2
Type "help", "copyright", "credits" or "license" for more
information.
>>> import python_201_pyrex_primes
>>> dir(python_201_pyrex_primes)
['__builtins__', '__doc__', '__file__', '__name__', 'showPrimes']
>>> python_201_pyrex_primes.showPrimes(5)
prime: 2
prime: 3
prime: 5
prime: 7

Page 117

A Python Book

prime: 11

This next example shows how to use Pyrex to implement a new extension type, that is a
new Python builtin type. Notice that the class is declared with the cdef keyword, which
tells Pyrex to generate the C implementation of a type instead of a class.

Here is the implementation file:

python_201_pyrex_clsprimes.pyx

"""An implementation of primes handling class
for a demonstration of Pyrex.
"""

cdef class Primes:
 """A class containing functions for
 handling primes.
 """

 def showPrimes(self, int kmax):
 """Show a range of primes.
 Use the method primes() to generate the primes.
 """
 plist = self.primes(kmax)
 for p in plist:
 print 'prime: %d' % p

 def primes(self, int kmax):
 """Generate the primes in the range 0 kmax.
 """
 cdef int n, k, i
 cdef int p[1000]
 result = []
 if kmax > 1000:
 kmax = 1000
 k = 0
 n = 2
 while k < kmax:
 i = 0
 while i < k and n % p[i] <> 0:
 i = i + 1
 if i == k:
 p[k] = n
 k = k + 1
 result.append(n)
 n = n + 1
 return result

And, here is a make file:

CFLAGS = DNDEBUG I/usr/local/include/python2.3

all: python_201_pyrex_clsprimes.so

Page 118

A Python Book

python_201_pyrex_clsprimes.so: python_201_pyrex_clsprimes.o
 gcc shared python_201_pyrex_clsprimes.o o
python_201_pyrex_clsprimes.so

python_201_pyrex_clsprimes.o: python_201_pyrex_clsprimes.c
 gcc c ${CFLAGS} python_201_pyrex_clsprimes.c o
python_201_pyrex_clsprimes.o

python_201_pyrex_clsprimes.c: python_201_pyrex_clsprimes.pyx
 pyrexc python_201_pyrex_clsprimes.pyx

clean:
 rm f python_201_pyrex_clsprimes.so
python_201_pyrex_clsprimes.o \
 python_201_pyrex_clsprimes.c

Here is output from running the makefile:

$ make f python_201_pyrex_makeclsprimes clean
rm f python_201_pyrex_clsprimes.so python_201_pyrex_clsprimes.o \
 python_201_pyrex_clsprimes.c
$ make f python_201_pyrex_makeclsprimes
pyrexc python_201_pyrex_clsprimes.pyx
gcc c DNDEBUG I/usr/local/include/python2.3
python_201_pyrex_clsprimes.c o python_201_pyrex_clsprimes.o
gcc shared python_201_pyrex_clsprimes.o o
python_201_pyrex_clsprimes.so

And here is an interactive example of its use:

$ python
Python 2.3b1 (#1, Apr 25 2003, 20:36:09)
[GCC 2.95.4 20011002 (Debian prerelease)] on linux2
Type "help", "copyright", "credits" or "license" for more
information.
>>> import python_201_pyrex_clsprimes
>>> dir(python_201_pyrex_clsprimes)
['Primes', '__builtins__', '__doc__', '__file__', '__name__']
>>> primes = python_201_pyrex_clsprimes.Primes()
>>> dir(primes)
['__class__', '__delattr__', '__doc__', '__getattribute__',
'__hash__',
'__init__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__setattr__', '__str__', 'primes', 'showPrimes']
>>> primes.showPrimes(4)
prime: 2
prime: 3
prime: 5
prime: 7

Documentation Also notice that Pyrex preserves the documentation for the module, the
class, and the methods in the class. You can show this documentation with pydoc, as

Page 119

A Python Book

follows:

$ pydoc python_201_pyrex_clsprimes

Or, in Python interactive mode, use:

$ python
Python 2.3b1 (#1, Apr 25 2003, 20:36:09)
[GCC 2.95.4 20011002 (Debian prerelease)] on linux2
Type "help", "copyright", "credits" or "license" for more
information.
>>> import python_201_pyrex_clsprimes
>>> help(python_201_pyrex_clsprimes)

2.5.5 SWIG vs. Pyrex
Choose SWIG when:

● You already have an existing C or C++ implementation of the code you want to
call from Python. In this case you want SWIG to generate the wrappers. But note
that Cython promises to enable you to quickly wrap and call functions
implemented in C.

● You want to write the implementation in C or C++ by hand. Perhaps, because you
think you can do so quickly, for example, or because you believe that you can
make it highly optimized. Then, you want to be able to generate the Python
(extension) wrappers for it quickly.

Choose Pyrex when:

● You do not have a C/C++ implementation and you want an easier way to write
that C implementation. Writing Pyrex code, which is a lot like Python, is easier
than writing C or C++ code by hand).

● You start to write the implementation in C, then find that it requires lots of calls to
the Python C API, and you want to avoid having to learn how to do that.

2.5.6 Cython
Here is a simple example that uses Cython to wrap a function implemented in C.

First the C header file:

/* test_c_lib.h */

int calculate(int width, int height);

And, the C implementation file:

/* test_c_lib.c */

Page 120

A Python Book

#include "test_c_lib.h"

int calculate(int width, int height)
{
 int result;
 result = width * height * 3;
 return result;
}

Here is a Cython file that calls our C function:

test_c.pyx

Declare the external C function.
cdef extern from "test_c_lib.h":
 int calculate(int width, int height)

def test(w, h):
 # Call the external C function.
 result = calculate(w, h)
 print 'result from calculate: %d' % result

We can compile our code using this script (on Linux):

#!/bin/bash x
cython test_c.pyx
gcc c fPIC I/usr/local/include/python2.6 o test_c.o test_c.c
gcc c fPIC I/usr/local/include/python2.6 o test_c_lib.o
test_c_lib.c
gcc shared fPIC I/usr/local/include/python2.6 o test_c.so
test_c.o test_c_lib.o

Here is a small Python file that uses the wrapper that we wrote in Cython:

run_test_c.py

import test_c

def test():
 test_c.test(4, 5)
 test_c.test(12, 15)

if __name__ == '__main__':
 test()

And, when we run it, we see the following:

$ python run_test_c.py
result from calculate: 60
result from calculate: 540

Page 121

A Python Book

2.5.7 Extension types
The goal A new builtin data type for Python.

Existing examples Objects/listobject.c, Objects/stringobject.c, Objects/dictobject.c, etc
in the Python source code distribution.

In older versions of the Python source code distribution, a template for the C code was
provided in Objects/xxobject.c. Objects/xxobject.c is no longer included in the Python
source code distribution. However:

● The discussion and examples for creating extension types have been expanded.
See: Extending and Embedding the Python Interpreter, 2. Defining New Types
http://docs.python.org/extending/newtypes.html.

● In the Tools/framer directory of the Python source code distribution there is an
application that will generate a skeleton for an extension type from a specification
object written in Python. Run Tools/framer/example.py to see it in action.

And, you can use Pyrex to generate a new builtin type. To do so, implement a
Python/Pyrex class and declare the class with the Pyrex keyword cdef. In fact, you may
want to use Pyrex to generate a minimal extension type, and then edit that generated code
to insert and add functionality by hand. See the Pyrex section for an example.

Pyrex also goes some way toward giving you access to (existing) C structs and functions
from Python.

2.5.8 Extension classes
Extension classes the easy way SWIG shadow classes.

Start with an implementation of a C++ class and its header file.

Use the following SWIG flags:

swig c++ python mymodule.i

More information is available with the SWIG documentation at:
http://www.swig.org/Doc1.3/Python.html.

Extension classes the Pyrex way An alternatie is to use Pyrex to compile a class
definition that does not have the cdef keyword. Using cdef on the class tells Pyrex to
generate an extension type instead of a class. You will have to determine whether you
want an extension class or an extension type.

2.6 Parsing
Python is an excellent language for text analysis.

Page 122

A Python Book

In some cases, simply splitting lines of text into words will be enough. In these cases use
string.split().

In other cases, regular expressions may be able to do the parsing you need. If so, see the
section on regular expressions in this document.

However, in some cases, more complex analysis of input text is required. This section
describes some of the ways that Python can help you with this complex parsing and
analysis.

2.6.1 Special purpose parsers
There are a number of special purpose parsers which you will find in the Python standard
library:

● ConfigParser parser Configuration file parser
http://docs.python.org/library/configparser.html

● getopt Parser for command line options
http://docs.python.org/library/getopt.html

● optparse More powerful command line option parser
http://docs.python.org/library/optparse.html

● urlparse Parse URLs into components
http://docs.python.org/library/urlparse.html

● csv CSV (comma separated values) File Reading and Writing
http://docs.python.org/library/csv.html#modulecsv

● os.path Common pathname manipulations
http://docs.python.org/library/os.path.html

XML parsers and XML tools There is lots of support for parsing and processing XML
in Python. Here are a few places to look for support:

● The Python standard library Structured Markup Processing Tools
http://docs.python.org/library/markup.html.

● In particular, you may be interested in xml.dom.minidom Lightweight DOM
implementation http://docs.python.org/library/xml.dom.minidom.html.

● ElementTree You can think of ElementTree as an enhanced DOM (document
object model). Many find it easier to use than minidom. ElementTree is in the
Python standard library, and documentation is here: ElementTree Overview
http://effbot.org/zone/elementindex.htm.

● Lxml mimics the ElementTree API, but has additional capabilities. Find out about
Lxml at lxml http://codespeak.net/lxml/index.html Note that lxml also has
support for XPath and XSLT.

● Dave's support for Python and XML http://www.rexx.com/~dkuhlman.

Page 123

A Python Book

2.6.2 Writing a recursive descent parser by hand
For simple grammars, this is not so hard.

You will need to implement:

● A recognizer method or function for each production rule in your grammar. Each
recognizer method begins looking at the current token, then consumes as many
tokens as needed to recognize it's own production rule. It calls the recognizer
functions for any nonterminals on its righthand side.

● A tokenizer Something that will enable each recognizer function to get tokens,
one by one. There are a variety of ways to do this, e.g. (1) a function that
produces a list of tokens from which recognizers can pop tokens; (2) a generator
whose next method returns the next token; etc.

As an example, we'll implement a recursive descent parser written in Python for the
following grammer:

Prog ::= Command | Command Prog
Command ::= Func_call
Func_call ::= Term '(' Func_call_list ')'
Func_call_list ::= Func_call | Func_call ',' Func_call_list
Term = <word>

Here is an implementation of a recursive descent parser for the above grammar:

#!/usr/bin/env python

"""
A recursive descent parser example.

Usage:
 python rparser.py [options] <inputfile>
Options:
 h, help Display this help message.
Example:
 python rparser.py myfile.txt

The grammar:
 Prog ::= Command | Command Prog
 Command ::= Func_call
 Func_call ::= Term '(' Func_call_list ')'
 Func_call_list ::= Func_call | Func_call ',' Func_call_list
 Term = <word>
"""

import sys
import string
import types
import getopt

Page 124

A Python Book

#
To use the IPython interactive shell to inspect your running
application, uncomment the following lines:
#
from IPython.Shell import IPShellEmbed
ipshell = IPShellEmbed((),
banner = '>>>>>>>> Into IPython >>>>>>>>',
exit_msg = '<<<<<<<< Out of IPython <<<<<<<<')
#
Then add the following line at the point in your code where
you want to inspect runtime values:
#
ipshell('some message to identify where we are')
#
For more information see: http://ipython.scipy.org/moin/
#

#
Constants
#

AST node types
NoneNodeType = 0
ProgNodeType = 1
CommandNodeType = 2
FuncCallNodeType = 3
FuncCallListNodeType = 4
TermNodeType = 5

Token types
NoneTokType = 0
LParTokType = 1
RParTokType = 2
WordTokType = 3
CommaTokType = 4
EOFTokType = 5

Dictionary to map node type values to node type names
NodeTypeDict = {
 NoneNodeType: 'NoneNodeType',
 ProgNodeType: 'ProgNodeType',
 CommandNodeType: 'CommandNodeType',
 FuncCallNodeType: 'FuncCallNodeType',
 FuncCallListNodeType: 'FuncCallListNodeType',
 TermNodeType: 'TermNodeType',
 }

#
Representation of a node in the AST (abstract syntax tree).
#
class ASTNode:
 def __init__(self, nodeType, *args):
 self.nodeType = nodeType

Page 125

A Python Book

 self.children = []
 for item in args:
 self.children.append(item)
 def show(self, level):
 self.showLevel(level)
 print 'Node Type %s' % NodeTypeDict[self.nodeType]
 level += 1
 for child in self.children:
 if isinstance(child, ASTNode):
 child.show(level)
 elif type(child) == types.ListType:
 for item in child:
 item.show(level)
 else:
 self.showLevel(level)
 print 'Child:', child
 def showLevel(self, level):
 for idx in range(level):
 print ' ',

#
The recursive descent parser class.
Contains the "recognizer" methods, which implement the grammar
rules (above), one recognizer method for each production rule.
#
class ProgParser:
 def __init__(self):
 pass

 def parseFile(self, infileName):
 self.infileName = infileName
 self.tokens = None
 self.tokenType = NoneTokType
 self.token = ''
 self.lineNo = 1
 self.infile = file(self.infileName, 'r')
 self.tokens = genTokens(self.infile)
 try:
 self.tokenType, self.token, self.lineNo =
self.tokens.next()
 except StopIteration:
 raise RuntimeError, 'Empty file'
 result = self.prog_reco()
 self.infile.close()
 self.infile = None
 return result

 def parseStream(self, instream):
 self.tokens = genTokens(instream, '<instream>')
 try:
 self.tokenType, self.token, self.lineNo =
self.tokens.next()
 except StopIteration:

Page 126

A Python Book

 raise RuntimeError, 'Empty file'
 result = self.prog_reco()
 return result

 def prog_reco(self):
 commandList = []
 while 1:
 result = self.command_reco()
 if not result:
 break
 commandList.append(result)
 return ASTNode(ProgNodeType, commandList)

 def command_reco(self):
 if self.tokenType == EOFTokType:
 return None
 result = self.func_call_reco()
 return ASTNode(CommandNodeType, result)

 def func_call_reco(self):
 if self.tokenType == WordTokType:
 term = ASTNode(TermNodeType, self.token)
 self.tokenType, self.token, self.lineNo =
self.tokens.next()
 if self.tokenType == LParTokType:
 self.tokenType, self.token, self.lineNo =
self.tokens.next()
 result = self.func_call_list_reco()
 if result:
 if self.tokenType == RParTokType:
 self.tokenType, self.token, self.lineNo = \
 self.tokens.next()
 return ASTNode(FuncCallNodeType, term,
result)
 else:
 raise ParseError(self.lineNo, 'missing right
paren')
 else:
 raise ParseError(self.lineNo, 'bad func call
list')
 else:
 raise ParseError(self.lineNo, 'missing left paren')
 else:
 return None

 def func_call_list_reco(self):
 terms = []
 while 1:
 result = self.func_call_reco()
 if not result:
 break
 terms.append(result)
 if self.tokenType != CommaTokType:

Page 127

A Python Book

 break
 self.tokenType, self.token, self.lineNo =
self.tokens.next()
 return ASTNode(FuncCallListNodeType, terms)

#
The parse error exception class.
#
class ParseError(Exception):
 def __init__(self, lineNo, msg):
 RuntimeError.__init__(self, msg)
 self.lineNo = lineNo
 self.msg = msg
 def getLineNo(self):
 return self.lineNo
 def getMsg(self):
 return self.msg

def is_word(token):
 for letter in token:
 if letter not in string.ascii_letters:
 return None
 return 1

#
Generate the tokens.
Usage:
gen = genTokens(infile)
tokType, tok, lineNo = gen.next()
...
def genTokens(infile):
 lineNo = 0
 while 1:
 lineNo += 1
 try:
 line = infile.next()
 except:
 yield (EOFTokType, None, lineNo)
 toks = line.split()
 for tok in toks:
 if is_word(tok):
 tokType = WordTokType
 elif tok == '(':
 tokType = LParTokType
 elif tok == ')':
 tokType = RParTokType
 elif tok == ',':
 tokType = CommaTokType
 yield (tokType, tok, lineNo)

def test(infileName):
 parser = ProgParser()
 #ipshell('(test) #1\nCtrlD to exit')

Page 128

A Python Book

 result = None
 try:
 result = parser.parseFile(infileName)
 except ParseError, exp:
 sys.stderr.write('ParseError: (%d) %s\n' % \
 (exp.getLineNo(), exp.getMsg()))
 if result:
 result.show(0)

def usage():
 print __doc__
 sys.exit(1)

def main():
 args = sys.argv[1:]
 try:
 opts, args = getopt.getopt(args, 'h', ['help'])
 except:
 usage()
 relink = 1
 for opt, val in opts:
 if opt in ('h', 'help'):
 usage()
 if len(args) != 1:
 usage()
 inputfile = args[0]
 test(inputfile)

if __name__ == '__main__':
 #import pdb; pdb.set_trace()
 main()

Comments and explanation:

● The tokenizer is a Python generator. It returns a Python generator that can
produce "(tokType, tok, lineNo)" tuples. Our tokenizer is so simpleminded that
we have to separate all of our tokens with whitespace. (A little later, we'll see how
to use Plex to overcome this limitation.)

● The parser class (ProgParser) contains the recognizer methods that implement the
production rules. Each of these methods recognizes a syntactic construct defined
by a rule. In our example, these methods have names that end with "_reco".

● We could have, alternatively, implemented our recognizers as global functions,
instead of as methods in a class. However, using a class gives us a place to "hang"
the variables that are needed across methods and saves us from having to use
("evil") global variables.

● A recognizer method recognizes terminals (syntactic elements on the righthand
side of the grammar rule for which there is no grammar rule) by (1) checking the
token type and the token value, and then (2) calling the tokenizer to get the next
token (because it has consumed a token).

Page 129

A Python Book

● A recognizer method checks for and processes a nonterminal (syntactic elements
on the righthand side for which there is a grammar rule) by calling the recognizer
method that implements that nonterminal.

● If a recognizer method finds a syntax error, it raises an exception of class
ParserError.

● Since our example recursive descent parser creates an AST (an abstract syntax
tree), whenever a recognizer method successfully recognizes a syntactic construct,
it creates an instance of class ASTNode to represent it and returns that instance to
its caller. The instance of ASTNode has a node type and contains child nodes
which were constructed by recognizer methods called by this one (i.e. that
represent nonterminals on the righthand side of a grammar rule).

● Each time a recognizer method "consumes a token", it calls the tokenizer to get
the next token (and token type and line number).

● The tokenizer returns a token type in addition to the token value. It also returns a
line number for error reporting.

● The syntax tree is constructed from instances of class ASTNode.
● The ASTNode class has a show method, which walks the AST and produces

output. You can imagine that a similar method could do code generation. And,
you should consider the possibility of writing analogous tree walk methods that
perform tasks such as optimization, annotation of the AST, etc.

And, here is a sample of the data we can apply this parser to:

aaa ()
bbb (ccc ())
ddd (eee () , fff (ggg () , hhh () , iii ()))

And, if we run the parser on the this input data, we see:

$ python workbook045.py workbook045.data
Node Type ProgNodeType
 Node Type CommandNodeType
 Node Type FuncCallNodeType
 Node Type TermNodeType
 Child: aaa
 Node Type FuncCallListNodeType
 Node Type CommandNodeType
 Node Type FuncCallNodeType
 Node Type TermNodeType
 Child: bbb
 Node Type FuncCallListNodeType
 Node Type FuncCallNodeType
 Node Type TermNodeType
 Child: ccc
 Node Type FuncCallListNodeType
 Node Type CommandNodeType
 Node Type FuncCallNodeType
 Node Type TermNodeType

Page 130

A Python Book

 Child: ddd
 Node Type FuncCallListNodeType
 Node Type FuncCallNodeType
 Node Type TermNodeType
 Child: eee
 Node Type FuncCallListNodeType
 Node Type FuncCallNodeType
 Node Type TermNodeType
 Child: fff
 Node Type FuncCallListNodeType
 Node Type FuncCallNodeType
 Node Type TermNodeType
 Child: ggg
 Node Type FuncCallListNodeType
 Node Type FuncCallNodeType
 Node Type TermNodeType
 Child: hhh
 Node Type FuncCallListNodeType
 Node Type FuncCallNodeType
 Node Type TermNodeType
 Child: iii
 Node Type FuncCallListNodeType

2.6.3 Creating a lexer/tokenizer with Plex
Lexical analysis The tokenizer in our recursive descent parser example was (for
demonstration purposes) overly simple. You can always write more complex tokenizers
by hand. However, for more complex (and real) tokenizers, you may want to use a tool to
build your tokenizer.

In this section we'll describe Plex and use it to produce a tokenizer for our recursive
descent parser.

You can obtain Plex at http://www.cosc.canterbury.ac.nz/~greg/python/Plex/.

In order to use it, you may want to add Plex1.1.4/Plex to your PYTHONPATH.

Here is a simple example from the Plex tutorial:

#!/usr/bin/env python

"""
Sample Plex lexer

Usage:
 python plex_example.py inputfile
"""

import sys
import Plex

Page 131

A Python Book

def count_lines(scanner, text):
 scanner.line_count += 1
 print '' * 60

def test(infileName):
 letter = Plex.Range("AZaz")
 digit = Plex.Range("09")
 name = letter + Plex.Rep(letter | digit)
 number = Plex.Rep1(digit)
 space = Plex.Any(" \t")
 endline = Plex.Str('\n')
 #comment = Plex.Str('"') + Plex.Rep(Plex.AnyBut('"')) +
Plex.Str('"')
 resword = Plex.Str("if", "then", "else", "end")
 lexicon = Plex.Lexicon([
 (endline, count_lines),
 (resword, 'keyword'),
 (name, 'ident'),
 (number, 'int'),
 (Plex.Any("+*/=<>"), 'operator'),
 (space, Plex.IGNORE),
 #(comment, 'comment'),
 (Plex.Str('('), 'lpar'),
 (Plex.Str(')'), 'rpar'),
 # comments surrounded by (* and *)
 (Plex.Str("(*"), Plex.Begin('comment')),
 Plex.State('comment', [
 (Plex.Str("*)"), Plex.Begin('')),
 (Plex.AnyChar, Plex.IGNORE),
]),
])
 infile = open(infileName, "r")
 scanner = Plex.Scanner(lexicon, infile, infileName)
 scanner.line_count = 0
 while True:
 token = scanner.read()
 if token[0] is None:
 break
 position = scanner.position()
 posstr = ('(%d, %d)' % (position[1],
position[2],)).ljust(10)
 tokstr = '"%s"' % token[1]
 tokstr = tokstr.ljust(20)
 print '%s tok: %s tokType: %s' % (posstr, tokstr, token[0],)
 print 'line_count: %d' % scanner.line_count

def usage():
 print __doc__
 sys.exit(1)

def main():
 args = sys.argv[1:]

Page 132

A Python Book

 if len(args) != 1:
 usage()
 infileName = args[0]
 test(infileName)

if __name__ == '__main__':
 #import pdb; pdb.set_trace()
 main()

Here is a bit of data on which we can use the above lexer:

mass = (height * (* some comment *) width * depth) / density
totalmass = totalmass + mass

And, when we apply the above test program to this data, here is what we see:

$ python plex_example.py plex_example.data
(1, 0) tok: "mass" tokType: ident
(1, 5) tok: "=" tokType: operator
(1, 7) tok: "(" tokType: lpar
(1, 8) tok: "height" tokType: ident
(1, 15) tok: "*" tokType: operator
(1, 36) tok: "width" tokType: ident
(1, 42) tok: "*" tokType: operator
(1, 44) tok: "depth" tokType: ident
(1, 49) tok: ")" tokType: rpar
(1, 51) tok: "/" tokType: operator
(1, 53) tok: "density" tokType: ident

(2, 0) tok: "totalmass" tokType: ident
(2, 10) tok: "=" tokType: operator
(2, 12) tok: "totalmass" tokType: ident
(2, 22) tok: "+" tokType: operator
(2, 24) tok: "mass" tokType: ident

line_count: 2

Comments and explanation:

● Create a lexicon from scanning patterns.
● See the Plex tutorial and reference (and below) for more information on how to

construct the patterns that match various tokens.
● Create a scanner with a lexicon, an input file, and an input file name.
● The call "scanner.read()" gets the next token. It returns a tuple containing (1) the

token value and (2) the token type.
● The call "scanner.position()" gets the position of the current token. It returns a

tuple containing (1) the input file name, (2) the line number, and (3) the column
number.

● We can execute a method when a given token is found by specifying the function
as the token action. In our example, the function is count_lines. Maintaining a line

Page 133

A Python Book

count is actually unneeded, since the position gives us this information. However,
notice how we are able to maintain a value (in our case line_count) as an
attribute of the scanner.

And, here are some comments on constructing the patterns used in a lexicon:

● Plex.Range constructs a pattern that matches any character in the range.
● Plex.Rep constructs a pattern that matches a sequence of zero or more items.
● Plex.Rep1 constructs a pattern that matches a sequence of one or more items.
● pat1 + pat2 constructs a pattern that matches a sequence containing pat1

followed by pat2.
● pat1 | pat2 constructs a pattern that matches either pat1 or pat2.
● Plex.Any constructs a pattern that matches any one character in its argument.

Now let's revisit our recursive descent parser, this time with a tokenizer built with Plex.
The tokenizer is trivial, but will serve as an example of how to hook it into a parser:

#!/usr/bin/env python

"""
A recursive descent parser example using Plex.
This example uses Plex to implement a tokenizer.

Usage:
 python python_201_rparser_plex.py [options] <inputfile>
Options:
 h, help Display this help message.
Example:
 python python_201_rparser_plex.py myfile.txt

The grammar:

 Prog ::= Command | Command Prog
 Command ::= Func_call
 Func_call ::= Term '(' Func_call_list ')'
 Func_call_list ::= Func_call | Func_call ',' Func_call_list
 Term = <word>

"""

import sys, string, types
import getopt
import Plex

from IPython.Shell import IPShellEmbed
ipshell = IPShellEmbed((),
banner = '>>>>>>>> Into IPython >>>>>>>>',
exit_msg = '<<<<<<<< Out of IPython <<<<<<<<')

#
Constants
#

Page 134

A Python Book

AST node types
NoneNodeType = 0
ProgNodeType = 1
CommandNodeType = 2
FuncCallNodeType = 3
FuncCallListNodeType = 4
TermNodeType = 5

Token types
NoneTokType = 0
LParTokType = 1
RParTokType = 2
WordTokType = 3
CommaTokType = 4
EOFTokType = 5

Dictionary to map node type values to node type names
NodeTypeDict = {
 NoneNodeType: 'NoneNodeType',
 ProgNodeType: 'ProgNodeType',
 CommandNodeType: 'CommandNodeType',
 FuncCallNodeType: 'FuncCallNodeType',
 FuncCallListNodeType: 'FuncCallListNodeType',
 TermNodeType: 'TermNodeType',
 }

#
Representation of a node in the AST (abstract syntax tree).
#
class ASTNode:
 def __init__(self, nodeType, *args):
 self.nodeType = nodeType
 self.children = []
 for item in args:
 self.children.append(item)
 def show(self, level):
 self.showLevel(level)
 print 'Node Type %s' % NodeTypeDict[self.nodeType]
 level += 1
 for child in self.children:
 if isinstance(child, ASTNode):
 child.show(level)
 elif type(child) == types.ListType:
 for item in child:
 item.show(level)
 else:
 self.showLevel(level)
 print 'Child:', child
 def showLevel(self, level):
 for idx in range(level):
 print ' ',

Page 135

A Python Book

#
The recursive descent parser class.
Contains the "recognizer" methods, which implement the grammar
rules (above), one recognizer method for each production rule.
#
class ProgParser:
 def __init__(self):
 self.tokens = None
 self.tokenType = NoneTokType
 self.token = ''
 self.lineNo = 1
 self.infile = None
 self.tokens = None

 def parseFile(self, infileName):
 self.tokens = None
 self.tokenType = NoneTokType
 self.token = ''
 self.lineNo = 1
 self.infile = file(infileName, 'r')
 self.tokens = genTokens(self.infile, infileName)
 try:
 self.tokenType, self.token, self.lineNo =
self.tokens.next()
 except StopIteration:
 raise RuntimeError, 'Empty file'
 result = self.prog_reco()
 self.infile.close()
 self.infile = None
 return result

 def parseStream(self, instream):
 self.tokens = None
 self.tokenType = NoneTokType
 self.token = ''
 self.lineNo = 1
 self.tokens = genTokens(self.instream, '<stream>')
 try:
 self.tokenType, self.token, self.lineNo =
self.tokens.next()
 except StopIteration:
 raise RuntimeError, 'Empty stream'
 result = self.prog_reco()
 self.infile.close()
 self.infile = None
 return result

 def prog_reco(self):
 commandList = []
 while 1:
 result = self.command_reco()
 if not result:
 break

Page 136

A Python Book

 commandList.append(result)
 return ASTNode(ProgNodeType, commandList)

 def command_reco(self):
 if self.tokenType == EOFTokType:
 return None
 result = self.func_call_reco()
 return ASTNode(CommandNodeType, result)

 def func_call_reco(self):
 if self.tokenType == WordTokType:
 term = ASTNode(TermNodeType, self.token)
 self.tokenType, self.token, self.lineNo =
self.tokens.next()
 if self.tokenType == LParTokType:
 self.tokenType, self.token, self.lineNo =
self.tokens.next()
 result = self.func_call_list_reco()
 if result:
 if self.tokenType == RParTokType:
 self.tokenType, self.token, self.lineNo = \
 self.tokens.next()
 return ASTNode(FuncCallNodeType, term,
result)
 else:
 raise ParseError(self.lineNo, 'missing right
paren')
 else:
 raise ParseError(self.lineNo, 'bad func call
list')
 else:
 raise ParseError(self.lineNo, 'missing left paren')
 else:
 return None

 def func_call_list_reco(self):
 terms = []
 while 1:
 result = self.func_call_reco()
 if not result:
 break
 terms.append(result)
 if self.tokenType != CommaTokType:
 break
 self.tokenType, self.token, self.lineNo =
self.tokens.next()
 return ASTNode(FuncCallListNodeType, terms)

#
The parse error exception class.
#
class ParseError(Exception):
 def __init__(self, lineNo, msg):

Page 137

A Python Book

 RuntimeError.__init__(self, msg)
 self.lineNo = lineNo
 self.msg = msg
 def getLineNo(self):
 return self.lineNo
 def getMsg(self):
 return self.msg

#
Generate the tokens.
Usage example
gen = genTokens(infile)
tokType, tok, lineNo = gen.next()
...
def genTokens(infile, infileName):
 letter = Plex.Range("AZaz")
 digit = Plex.Range("09")
 name = letter + Plex.Rep(letter | digit)
 lpar = Plex.Str('(')
 rpar = Plex.Str(')')
 comma = Plex.Str(',')
 comment = Plex.Str("#") + Plex.Rep(Plex.AnyBut("\n"))
 space = Plex.Any(" \t\n")
 lexicon = Plex.Lexicon([
 (name, 'word'),
 (lpar, 'lpar'),
 (rpar, 'rpar'),
 (comma, 'comma'),
 (comment, Plex.IGNORE),
 (space, Plex.IGNORE),
])
 scanner = Plex.Scanner(lexicon, infile, infileName)
 while 1:
 tokenType, token = scanner.read()
 name, lineNo, columnNo = scanner.position()
 if tokenType == None:
 tokType = EOFTokType
 token = None
 elif tokenType == 'word':
 tokType = WordTokType
 elif tokenType == 'lpar':
 tokType = LParTokType
 elif tokenType == 'rpar':
 tokType = RParTokType
 elif tokenType == 'comma':
 tokType = CommaTokType
 else:
 tokType = NoneTokType
 tok = token
 yield (tokType, tok, lineNo)

def test(infileName):
 parser = ProgParser()

Page 138

A Python Book

 #ipshell('(test) #1\nCtrlD to exit')
 result = None
 try:
 result = parser.parseFile(infileName)
 except ParseError, exp:
 sys.stderr.write('ParseError: (%d) %s\n' % \
 (exp.getLineNo(), exp.getMsg()))
 if result:
 result.show(0)

def usage():
 print __doc__
 sys.exit(1)

def main():
 args = sys.argv[1:]
 try:
 opts, args = getopt.getopt(args, 'h', ['help'])
 except:
 usage()
 for opt, val in opts:
 if opt in ('h', 'help'):
 usage()
 if len(args) != 1:
 usage()
 infileName = args[0]
 test(infileName)

if __name__ == '__main__':
 #import pdb; pdb.set_trace()
 main()

And, here is a sample of the data we can apply this parser to:

Test for recursive descent parser and Plex.
Command #1
aaa()
Command #2
bbb (ccc()) # An end of line comment.
Command #3
ddd(eee(), fff(ggg(), hhh(), iii()))
End of test

And, when we run our parser, it produces the following:

$ python plex_recusive.py plex_recusive.data
Node Type ProgNodeType
 Node Type CommandNodeType
 Node Type FuncCallNodeType
 Node Type TermNodeType
 Child: aaa
 Node Type FuncCallListNodeType
 Node Type CommandNodeType

Page 139

A Python Book

 Node Type FuncCallNodeType
 Node Type TermNodeType
 Child: bbb
 Node Type FuncCallListNodeType
 Node Type FuncCallNodeType
 Node Type TermNodeType
 Child: ccc
 Node Type FuncCallListNodeType
 Node Type CommandNodeType
 Node Type FuncCallNodeType
 Node Type TermNodeType
 Child: ddd
 Node Type FuncCallListNodeType
 Node Type FuncCallNodeType
 Node Type TermNodeType
 Child: eee
 Node Type FuncCallListNodeType
 Node Type FuncCallNodeType
 Node Type TermNodeType
 Child: fff
 Node Type FuncCallListNodeType
 Node Type FuncCallNodeType
 Node Type TermNodeType
 Child: ggg
 Node Type FuncCallListNodeType
 Node Type FuncCallNodeType
 Node Type TermNodeType
 Child: hhh
 Node Type FuncCallListNodeType
 Node Type FuncCallNodeType
 Node Type TermNodeType
 Child: iii
 Node Type FuncCallListNodeType

Comments:

● We can now put comments in our input, and they will be ignored. Comments
begin with a "#" and continue to the end of line. See the definition of comment in
function genTokens.

● This tokenizer does not require us to separate tokens with whitespace as did the
simple tokenizer in the earlier version of our recursive descent parser.

● The changes we made over the earlier version were to:
1. Import Plex.
2. Replace the definition of the tokenizer function genTokens.
3. Change the call to genTokens so that the call passes in the file name, which is

needed to create the scanner.
● Our new version of genTokens does the following:

1. Create patterns for scanning.
2. Create a lexicon (an instance of Plex.Lexicon), which uses the patterns.

Page 140

A Python Book

3. Create a scanner (an instance of Plex.Scanner), which uses the lexicon.
4. Execute a loop that reads tokens (from the scanner) and "yields" each one.

2.6.4 A survey of existing tools
For complex parsing tasks, you may want to consider the following tools:

● kwParsing A parser generator in Python
http://gadfly.sourceforge.net/kwParsing.html

● PLY Python LexYacc http://systems.cs.uchicago.edu/ply/
● PyLR Fast LR parsing in python

http://starship.python.net/crew/scott/PyLR.html
● Yapps The Yapps Parser Generator System

http://theory.stanford.edu/~amitp/Yapps/
And, for lexical analysis, you may also want to look here:

● Using Regular Expressions for Lexical Analysis
http://effbot.org/zone/xmlscanner.htm

● Plex http://www.cosc.canterbury.ac.nz/~greg/python/Plex/.
In the sections below, we give examples and notes about the use of PLY and pyparsing.

2.6.5 Creating a parser with PLY
In this section we will show how to implement our parser example with PLY.

First download PLY. It is available here: PLY (Python LexYacc)
http://www.dabeaz.com/ply/

Then add the PLY directory to your PYTHONPATH.

Learn how to construct lexers and parsers with PLY by reading doc/ply.html in the
distribution of PLY and by looking at the examples in the distribution.

For those of you who want a more complex example, see A Python Parser for the
RELAX NG Compact Syntax, which is implemented with PLY.

Now, here is our example parser. Comments and explanations are below:

#!/usr/bin/env python

"""
A parser example.
This example uses PLY to implement a lexer and parser.

The grammar:

 Prog ::= Command*
 Command ::= Func_call

Page 141

A Python Book

 Func_call ::= Term '(' Func_call_list ')'
 Func_call_list ::= Func_call*
 Term = <word>

Here is a sample "program" to use as input:

 # Test for recursive descent parser and Plex.
 # Command #1
 aaa()
 # Command #2
 bbb (ccc()) # An end of line comment.
 # Command #3
 ddd(eee(), fff(ggg(), hhh(), iii()))
 # End of test
"""

import sys
import types
import getopt
import ply.lex as lex
import ply.yacc as yacc

#
Globals
#

startlinepos = 0

#
Constants
#

AST node types
NoneNodeType = 0
ProgNodeType = 1
CommandNodeType = 2
CommandListNodeType = 3
FuncCallNodeType = 4
FuncCallListNodeType = 5
TermNodeType = 6

Dictionary to map node type values to node type names
NodeTypeDict = {
 NoneNodeType: 'NoneNodeType',
 ProgNodeType: 'ProgNodeType',
 CommandNodeType: 'CommandNodeType',
 CommandListNodeType: 'CommandListNodeType',
 FuncCallNodeType: 'FuncCallNodeType',
 FuncCallListNodeType: 'FuncCallListNodeType',
 TermNodeType: 'TermNodeType',
 }

#

Page 142

A Python Book

Representation of a node in the AST (abstract syntax tree).
#
class ASTNode:
 def __init__(self, nodeType, *args):
 self.nodeType = nodeType
 self.children = []
 for item in args:
 self.children.append(item)
 def append(self, item):
 self.children.append(item)
 def show(self, level):
 self.showLevel(level)
 print 'Node Type: %s' % NodeTypeDict[self.nodeType]
 level += 1
 for child in self.children:
 if isinstance(child, ASTNode):
 child.show(level)
 elif type(child) == types.ListType:
 for item in child:
 item.show(level)
 else:
 self.showLevel(level)
 print 'Value:', child
 def showLevel(self, level):
 for idx in range(level):
 print ' ',

#
Exception classes
#
class LexerError(Exception):
 def __init__(self, msg, lineno, columnno):
 self.msg = msg
 self.lineno = lineno
 self.columnno = columnno
 def show(self):
 sys.stderr.write('Lexer error (%d, %d) %s\n' % \
 (self.lineno, self.columnno, self.msg))

class ParserError(Exception):
 def __init__(self, msg, lineno, columnno):
 self.msg = msg
 self.lineno = lineno
 self.columnno = columnno
 def show(self):
 sys.stderr.write('Parser error (%d, %d) %s\n' % \
 (self.lineno, self.columnno, self.msg))

#
Lexer specification
#
tokens = (
 'NAME',

Page 143

A Python Book

 'LPAR','RPAR',
 'COMMA',
)

Tokens

t_LPAR = r'\('
t_RPAR = r'\)'
t_COMMA = r'\,'
t_NAME = r'[azAZ_][azAZ09_]*'

Ignore whitespace
t_ignore = ' \t'

Ignore comments ('#' to end of line)
def t_COMMENT(t):
 r'\#[^\n]*'
 pass

def t_newline(t):
 r'\n+'
 global startlinepos
 startlinepos = t.lexer.lexpos 1
 t.lineno += t.value.count("\n")

def t_error(t):
 global startlinepos
 msg = "Illegal character '%s'" % (t.value[0])
 columnno = t.lexer.lexpos startlinepos
 raise LexerError(msg, t.lineno, columnno)

#
Parser specification
#
def p_prog(t):
 'prog : command_list'
 t[0] = ASTNode(ProgNodeType, t[1])

def p_command_list_1(t):
 'command_list : command'
 t[0] = ASTNode(CommandListNodeType, t[1])

def p_command_list_2(t):
 'command_list : command_list command'
 t[1].append(t[2])
 t[0] = t[1]

def p_command(t):
 'command : func_call'
 t[0] = ASTNode(CommandNodeType, t[1])

def p_func_call_1(t):
 'func_call : term LPAR RPAR'

Page 144

A Python Book

 t[0] = ASTNode(FuncCallNodeType, t[1])

def p_func_call_2(t):
 'func_call : term LPAR func_call_list RPAR'
 t[0] = ASTNode(FuncCallNodeType, t[1], t[3])

def p_func_call_list_1(t):
 'func_call_list : func_call'
 t[0] = ASTNode(FuncCallListNodeType, t[1])

def p_func_call_list_2(t):
 'func_call_list : func_call_list COMMA func_call'
 t[1].append(t[3])
 t[0] = t[1]

def p_term(t):
 'term : NAME'
 t[0] = ASTNode(TermNodeType, t[1])

def p_error(t):
 global startlinepos
 msg = "Syntax error at '%s'" % t.value
 columnno = t.lexer.lexpos startlinepos
 raise ParserError(msg, t.lineno, columnno)

#
Parse the input and display the AST (abstract syntax tree)
#
def parse(infileName):
 startlinepos = 0
 # Build the lexer
 lex.lex(debug=1)
 # Build the parser
 yacc.yacc()
 # Read the input
 infile = file(infileName, 'r')
 content = infile.read()
 infile.close()
 try:
 # Do the parse
 result = yacc.parse(content)
 # Display the AST
 result.show(0)
 except LexerError, exp:
 exp.show()
 except ParserError, exp:
 exp.show()

USAGE_TEXT = __doc__

def usage():
 print USAGE_TEXT
 sys.exit(1)

Page 145

A Python Book

def main():
 args = sys.argv[1:]
 try:
 opts, args = getopt.getopt(args, 'h', ['help'])
 except:
 usage()
 relink = 1
 for opt, val in opts:
 if opt in ('h', 'help'):
 usage()
 if len(args) != 1:
 usage()
 infileName = args[0]
 parse(infileName)

if __name__ == '__main__':
 #import pdb; pdb.set_trace()
 main()

Applying this parser to the following input:

Test for recursive descent parser and Plex.
Command #1
aaa()
Command #2
bbb (ccc()) # An end of line comment.
Command #3
ddd(eee(), fff(ggg(), hhh(), iii()))
End of test

produces the following output:

Node Type: ProgNodeType
 Node Type: CommandListNodeType
 Node Type: CommandNodeType
 Node Type: FuncCallNodeType
 Node Type: TermNodeType
 Value: aaa
 Node Type: CommandNodeType
 Node Type: FuncCallNodeType
 Node Type: TermNodeType
 Value: bbb
 Node Type: FuncCallListNodeType
 Node Type: FuncCallNodeType
 Node Type: TermNodeType
 Value: ccc
 Node Type: CommandNodeType
 Node Type: FuncCallNodeType
 Node Type: TermNodeType
 Value: ddd
 Node Type: FuncCallListNodeType
 Node Type: FuncCallNodeType

Page 146

A Python Book

 Node Type: TermNodeType
 Value: eee
 Node Type: FuncCallNodeType
 Node Type: TermNodeType
 Value: fff
 Node Type: FuncCallListNodeType
 Node Type: FuncCallNodeType
 Node Type: TermNodeType
 Value: ggg
 Node Type: FuncCallNodeType
 Node Type: TermNodeType
 Value: hhh
 Node Type: FuncCallNodeType
 Node Type: TermNodeType
 Value: iii

Comments and explanation:

● Creating the syntax tree Basically, each rule (1) recognizes a nonterminal, (2)
creates a node (possibly using the values from the righthand side of the rule), and
(3) returns the node by setting the value of t[0]. A deviation from this is the
processing of sequences, discussed below.

● Sequences p_command_list_1 and p_command_list_1 show how to handle
sequences of items. In this case:
○ p_command_list_1 recognizes a command and creates an instance of

ASTNode with type CommandListNodeType and adds the command to it as a
child, and

○ p_command_list_2 recognizes an additional command and adds it (as a child)
to the instance of ASTNode that represents the list.

● Distinguishing between different forms of the same rule In order to process
alternatives to the same production rule differently, we use different functions
with different implementations. For example, we use:
○ p_func_call_1 to recognize and process "func_call : term LPAR RPAR" (a

function call without arguments), and
○ p_func_call_2 to recognize and process "func_call : term LPAR func_call_list

RPAR" (a function call with arguments).
● Reporting errors Our parser reports the first error and quits. We've done this by

raising an exception when we find an error. We implement two exception classes:
LexerError and ParserError. Implementing more than one exception class enables
us to distinguish between different classes of errors (note the multiple except:
clauses on the try: statement in function parse). And, we use an instance of the
exception class as a container in order to "bubble up" information about the error
(e.g. a message, a line number, and a column number).

Page 147

A Python Book

2.6.6 Creating a parser with pyparsing
pyparsing is a relatively new parsing package for Python. It was implemented and is
supported by Paul McGuire and it shows promise. It appears especially easy to use and
seems especially appropriate in particular for quick parsing tasks, although it has features
that make some complex parsing tasks easy. It follows a very natural Python style for
constructing parsers.

Good documentation comes with the pyparsing distribution. See file
HowToUseParsing.html. So, I won't try to repeat that here. What follows is an attempt to
provide several quick examples to help you solve simple parsing tasks as quickly as
possible.

You will also want to look at the samples in the examples directory, which are very
helpful. My examples below are fairly simple. You can see more of the ability of
pyparsing to handle complex tasks in the examples.

Where to get it You can find pyparsing at: Pyparsing Wiki Home
http://pyparsing.wikispaces.com/

How to install it Put the pyparsing module somewhere on your PYTHONPATH.

And now, here are a few examples.

2.6.6.1 Parsing commadelimited lines

Note: This example is for demonstration purposes only. If you really to need to parse
comma delimited fields, you can probably do so much more easily with the CSV (comma
separated values) module in the Python standard library.

Here is a simple grammar for lines containing fields separated by commas:

import sys
from pyparsing import alphanums, ZeroOrMore, Word

fieldDef = Word(alphanums)
lineDef = fieldDef + ZeroOrMore("," + fieldDef)

def test():
 args = sys.argv[1:]
 if len(args) != 1:
 print 'usage: python pyparsing_test1.py <datafile.txt>'
 sys.exit(1)
 infilename = sys.argv[1]
 infile = file(infilename, 'r')
 for line in infile:
 fields = lineDef.parseString(line)
 print fields

Page 148

A Python Book

test()

Here is some sample data:

abcd,defg
11111,22222,33333

And, when we run our parser on this data file, here is what we see:

$ python comma_parser.py sample1.data
['abcd', ',', 'defg']
['11111', ',', '22222', ',', '33333']

Notes and explanation:

● Note how the grammar is constructed from normal Python calls to function and
object/class constructors. I've constructed the parser inline because my example
is simple, but constructing the parser in a function or even a module might make
sense for more complex grammars. pyparsing makes it easy to use these these
different styles.

● Use "+" to specify a sequence. In our example, a lineDef is a fieldDef
followed by

● Use ZeroOrMore to specify repetition. In our example, a lineDef is a
fieldDef followed by zero or more occurances of comma and fieldDef.
There is also OneOrMore when you want to require at least one occurance.

● Parsing comma delimited text happens so frequently that pyparsing provides a
shortcut. Replace:

lineDef = fieldDef + ZeroOrMore("," + fieldDef)

with:
lineDef = delimitedList(fieldDef)

And note that delimitedList takes an optional argument delim used to specify
the delimiter. The default is a comma.

2.6.6.2 Parsing functors

This example parses expressions of the form func(arg1, arg2, arg3):

from pyparsing import Word, alphas, alphanums, nums, ZeroOrMore,
Literal

lparen = Literal("(")
rparen = Literal(")")
identifier = Word(alphas, alphanums + "_")
integer = Word(nums)
functor = identifier
arg = identifier | integer

Page 149

A Python Book

args = arg + ZeroOrMore("," + arg)
expression = functor + lparen + args + rparen

def test():
 content = raw_input("Enter an expression: ")
 parsedContent = expression.parseString(content)
 print parsedContent

test()

Explanation:

● Use Literal to specify a fixed string that is to be matched exactly. In our example,
a lparen is a (.

● Word takes an optional second argument. With a single (string) argument, it
matches any contiguous word made up of characters in the string. With two
(string) arguments it matches a word whose first character is in the first string and
whose remaining characters are in the second string. So, our definition of
identifier matches a word whose first character is an alpha and whose remaining
characters are alphanumerics or underscore. As another example, you can think
of Word("0123456789") as analogous to a regexp containing the pattern "[09]+".

● Use a vertical bar for alternation. In our example, an arg can be either an identifier
or an integer.

2.6.6.3 Parsing names, phone numbers, etc.

This example parses expressions having the following form:

Input format:
[name] [phone] [city, state zip]
Last, first 1112223333 city, ca 99999

Here is the parser:

import sys
from pyparsing import alphas, nums, ZeroOrMore, Word, Group,
Suppress, Combine

lastname = Word(alphas)
firstname = Word(alphas)
city = Group(Word(alphas) + ZeroOrMore(Word(alphas)))
state = Word(alphas, exact=2)
zip = Word(nums, exact=5)

name = Group(lastname + Suppress(",") + firstname)
phone = Combine(Word(nums, exact=3) + "" + Word(nums, exact=3) + ""
+ Word(nums, exact=4))
location = Group(city + Suppress(",") + state + zip)

record = name + phone + location

Page 150

A Python Book

def test():
 args = sys.argv[1:]
 if len(args) != 1:
 print 'usage: python pyparsing_test3.py <datafile.txt>'
 sys.exit(1)
 infilename = sys.argv[1]
 infile = file(infilename, 'r')
 for line in infile:
 line = line.strip()
 if line and line[0] != "#":
 fields = record.parseString(line)
 print fields

test()

And, here is some sample input:

Jabberer, Jerry 1112223333 Bakersfield, CA 95111
Kackler, Kerry 1112223334 Fresno, CA 95112
Louderdale, Larry 1112223335 Los Angeles, CA 94001

Here is output from parsing the above input:

[['Jabberer', 'Jerry'], '1112223333', [['Bakersfield'], 'CA',
'95111']]
[['Kackler', 'Kerry'], '1112223334', [['Fresno'], 'CA', '95112']]
[['Louderdale', 'Larry'], '1112223335', [['Los', 'Angeles'], 'CA',
'94001']]

Comments:

● We use the len=n argument to the Word constructor to restict the parser to
accepting a specific number of characters, for example in the zip code and phone
number. Word also accepts min=n'' and ``max=n to enable you to restrict
the length of a word to within a range.

● We use Group to group the parsed results into sublists, for example in the
definition of city and name. Group enables us to organize the parse results into
simple parse trees.

● We use Combine to join parsed results back into a single string. For example, in
the phone number, we can require dashes and yet join the results back into a
single string.

● We use Suppress to remove unneeded subelements from parsed results. For
example, we do not need the comma between last and first name.

2.6.6.4 A more complex example

This example (thanks to Paul McGuire) parses a more complex structure and produces a
dictionary.

Page 151

A Python Book

Here is the code:

from pyparsing import Literal, Word, Group, Dict, ZeroOrMore, alphas,
nums,\
 delimitedList
import pprint

testData = """
++++++++++
| | A1 | B1 | C1 | D1 | A2 | B2 | C2 | D2 |
+=======+======+======+======+======+======+======+======+======+
min	7	43	7	15	82	98	1	37
max	11	52	10	17	85	112	4	39
ave	9	47	8	16	84	106	3	38
sdev	1	3	1	1	1	3	1	1
++++++++++
"""

Define grammar for datatable
heading = (Literal(
"++++++++++")
+
"| | A1 | B1 | C1 | D1 | A2 | B2 | C2 | D2 |" +
"+=======+======+======+======+======+======+======+======+======+").
suppress()

vert = Literal("|").suppress()
number = Word(nums)
rowData = Group(vert + Word(alphas) + vert +
delimitedList(number,"|") +
vert)
trailing = Literal(
"++++++++++").
suppress()

datatable = heading + Dict(ZeroOrMore(rowData)) + trailing

def main():
 # Now parse data and print results
 data = datatable.parseString(testData)
 print "data:", data
 print "data.asList():",
 pprint.pprint(data.asList())
 print "data keys:", data.keys()
 print "data['min']:", data['min']
 print "data.max:", data.max

if __name__ == '__main__':
 main()

When we run this, it produces the following:

data: [['min', '7', '43', '7', '15', '82', '98', '1', '37'],

Page 152

A Python Book

 ['max', '11', '52', '10', '17', '85', '112', '4', '39'],
 ['ave', '9', '47', '8', '16', '84', '106', '3', '38'],
 ['sdev', '1', '3', '1', '1', '1', '3', '1', '1']]
data.asList():[['min', '7', '43', '7', '15', '82', '98', '1', '37'],
 ['max', '11', '52', '10', '17', '85', '112', '4', '39'],
 ['ave', '9', '47', '8', '16', '84', '106', '3', '38'],
 ['sdev', '1', '3', '1', '1', '1', '3', '1', '1']]
data keys: ['ave', 'min', 'sdev', 'max']
data['min']: ['7', '43', '7', '15', '82', '98', '1', '37']
data.max: ['11', '52', '10', '17', '85', '112', '4', '39']

Notes:

● Note the use of Dict to create a dictionary. The print statements show how to get
at the items in the dictionary.

● Note how we can also get the parse results as a list by using method asList.
● Again, we use suppress to remove unneeded items from the parse results.

2.7 GUI Applications

2.7.1 Introduction
This section will help you to put a GUI (graphical user interface) in your Python
program.

We will use a particular GUI library: PyGTK. We've chosen this because it is reasonably
lightweight and our goal is to embed lightweight GUI interfaces in an (possibly)
existing application.

For simpler GUI needs, consider EasyGUI, which is also described below.

For more heavyweight GUI needs (for example, complete GUI applications), you may
want to explore WxPython. See the WxPython home page at: http://www.wxpython.org/

2.7.2 PyGtk
Information about PyGTK is here: The PyGTK home page http://www.pygtk.org//.

2.7.2.1 A simple message dialog box

In this section we explain how to pop up a simple dialog box from your Python
application.

To do this, do the following:

1. Import gtk into your Python module.
2. Define the dialog and its behavior.

Page 153

A Python Book

3. Create an instance of the dialog.
4. Run the event loop.

Here is a sample that displays a message box:

#!/usr/bin/env python

import sys
import getopt
import gtk

class MessageBox(gtk.Dialog):
 def __init__(self, message="", buttons=(), pixmap=None,
 modal= True):
 gtk.Dialog.__init__(self)
 self.connect("destroy", self.quit)
 self.connect("delete_event", self.quit)
 if modal:
 self.set_modal(True)
 hbox = gtk.HBox(spacing=5)
 hbox.set_border_width(5)
 self.vbox.pack_start(hbox)
 hbox.show()
 if pixmap:
 self.realize()
 pixmap = Pixmap(self, pixmap)
 hbox.pack_start(pixmap, expand=False)
 pixmap.show()
 label = gtk.Label(message)
 hbox.pack_start(label)
 label.show()
 for text in buttons:
 b = gtk.Button(text)
 b.set_flags(gtk.CAN_DEFAULT)
 b.set_data("user_data", text)
 b.connect("clicked", self.click)
 self.action_area.pack_start(b)
 b.show()
 self.ret = None
 def quit(self, *args):
 self.hide()
 self.destroy()
 gtk.main_quit()
 def click(self, button):
 self.ret = button.get_data("user_data")
 self.quit()

create a message box, and return which button was pressed
def message_box(title="Message Box", message="", buttons=(),
pixmap=None,
 modal= True):
 win = MessageBox(message, buttons, pixmap=pixmap, modal=modal)
 win.set_title(title)

Page 154

A Python Book

 win.show()
 gtk.main()
 return win.ret

def test():
 result = message_box(title='Test #1',
 message='Here is your message',
 buttons=('Ok', 'Cancel'))
 print 'result:', result

USAGE_TEXT = """
Usage:
 python simple_dialog.py [options]
Options:
 h, help Display this help message.
Example:
 python simple_dialog.py
"""

def usage():
 print USAGE_TEXT
 sys.exit(1)

def main():
 args = sys.argv[1:]
 try:
 opts, args = getopt.getopt(args, 'h', ['help'])
 except:
 usage()
 relink = 1
 for opt, val in opts:
 if opt in ('h', 'help'):
 usage()
 if len(args) != 0:
 usage()
 test()

if __name__ == '__main__':
 #import pdb; pdb.set_trace()
 main()

Some explanation:

● First, we import gtk
● Next we define a class MessageBox that implements a message box. Here are a

few important things to know about that class:
○ It is a subclass of gtk.Dialog.
○ It creates a label and packs it into the dialog's client area. Note that a Dialog is

a Window that contains a vbox at the top of and an action_area at the bottom
of its client area. The intension is for us to pack miscellaneous widgets into
the vbox and to put buttons such as "Ok", "Cancel", etc into the action_area.

Page 155

A Python Book

○ It creates one button for each button label passed to its constructor. The
buttons are all connected to the click method.

○ The click method saves the value of the user_data for the button that was
clicked. In our example, this value will be either "Ok" or "Cancel".

● And, we define a function (message_box) that (1) creates an instance of the
MessageBox class, (2) sets its title, (3) shows it, (4) starts its event loop so that it
can get and process events from the user, and (5) returns the result to the caller (in
this case "Ok" or "Cancel").

● Our testing function (test) calls function message_box and prints the result.
● This looks like quite a bit of code, until you notice that the class MessageBox and

the function message_box could be put it a utility module and reused.

2.7.2.2 A simple text input dialog box

And, here is an example that displays an text input dialog:

#!/usr/bin/env python

import sys
import getopt
import gtk

class EntryDialog(gtk.Dialog):
 def __init__(self, message="", default_text='', modal=True):
 gtk.Dialog.__init__(self)
 self.connect("destroy", self.quit)
 self.connect("delete_event", self.quit)
 if modal:
 self.set_modal(True)
 box = gtk.VBox(spacing=10)
 box.set_border_width(10)
 self.vbox.pack_start(box)
 box.show()
 if message:
 label = gtk.Label(message)
 box.pack_start(label)
 label.show()
 self.entry = gtk.Entry()
 self.entry.set_text(default_text)
 box.pack_start(self.entry)
 self.entry.show()
 self.entry.grab_focus()
 button = gtk.Button("OK")
 button.connect("clicked", self.click)
 button.set_flags(gtk.CAN_DEFAULT)
 self.action_area.pack_start(button)
 button.show()
 button.grab_default()
 button = gtk.Button("Cancel")

Page 156

A Python Book

 button.connect("clicked", self.quit)
 button.set_flags(gtk.CAN_DEFAULT)
 self.action_area.pack_start(button)
 button.show()
 self.ret = None
 def quit(self, w=None, event=None):
 self.hide()
 self.destroy()
 gtk.main_quit()
 def click(self, button):
 self.ret = self.entry.get_text()
 self.quit()

def input_box(title="Input Box", message="", default_text='',
 modal=True):
 win = EntryDialog(message, default_text, modal=modal)
 win.set_title(title)
 win.show()
 gtk.main()
 return win.ret

def test():
 result = input_box(title='Test #2',
 message='Enter a valuexxx:',
 default_text='a default value')
 if result is None:
 print 'Canceled'
 else:
 print 'result: "%s"' % result

USAGE_TEXT = """
Usage:
 python simple_dialog.py [options]
Options:
 h, help Display this help message.
Example:
 python simple_dialog.py
"""

def usage():
 print USAGE_TEXT
 sys.exit(1)

def main():
 args = sys.argv[1:]
 try:
 opts, args = getopt.getopt(args, 'h', ['help'])
 except:
 usage()
 relink = 1
 for opt, val in opts:
 if opt in ('h', 'help'):
 usage()

Page 157

A Python Book

 if len(args) != 0:
 usage()
 test()

if __name__ == '__main__':
 #import pdb; pdb.set_trace()
 main()

Most of the explanation for the message box example is relevant to this example, too.
Here are some differences:

● Our EntryDialog class constructor creates instance of gtk.Entry, sets its default
value, and packs it into the client area.

● The constructor also automatically creates two buttons: "OK" and "Cancel". The
"OK" button is connect to the click method, which saves the value of the entry
field. The "Cancel" button is connect to the quit method, which does not save the
value.

● And, if class EntryDialog and function input_box look usable and useful, add
them to your utility gui module.

2.7.2.3 A file selection dialog box

This example shows a file selection dialog box:

#!/usr/bin/env python

import sys
import getopt
import gtk

class FileChooser(gtk.FileSelection):
 def __init__(self, modal=True, multiple=True):
 gtk.FileSelection.__init__(self)
 self.multiple = multiple
 self.connect("destroy", self.quit)
 self.connect("delete_event", self.quit)
 if modal:
 self.set_modal(True)
 self.cancel_button.connect('clicked', self.quit)
 self.ok_button.connect('clicked', self.ok_cb)
 if multiple:
 self.set_select_multiple(True)
 self.ret = None
 def quit(self, *args):
 self.hide()
 self.destroy()
 gtk.main_quit()
 def ok_cb(self, b):
 if self.multiple:
 self.ret = self.get_selections()

Page 158

A Python Book

 else:
 self.ret = self.get_filename()
 self.quit()

def file_sel_box(title="Browse", modal=False, multiple=True):
 win = FileChooser(modal=modal, multiple=multiple)
 win.set_title(title)
 win.show()
 gtk.main()
 return win.ret

def file_open_box(modal=True):
 return file_sel_box("Open", modal=modal, multiple=True)
def file_save_box(modal=True):
 return file_sel_box("Save As", modal=modal, multiple=False)

def test():
 result = file_open_box()
 print 'open result:', result
 result = file_save_box()
 print 'save result:', result

USAGE_TEXT = """
Usage:
 python simple_dialog.py [options]
Options:
 h, help Display this help message.
Example:
 python simple_dialog.py
"""

def usage():
 print USAGE_TEXT
 sys.exit(1)

def main():
 args = sys.argv[1:]
 try:
 opts, args = getopt.getopt(args, 'h', ['help'])
 except:
 usage()
 relink = 1
 for opt, val in opts:
 if opt in ('h', 'help'):
 usage()
 if len(args) != 0:
 usage()
 test()

if __name__ == '__main__':
 main()
 #import pdb
 #pdb.run('main()')

Page 159

A Python Book

A little guidance:

● There is a predefined file selection dialog. We subclass it.
● This example displays the file selection dialog twice: once with a title "Open" and

once with a title "Save As".
● Note how we can control whether the dialog allows multiple file selections. And,

if we select the multiple selection mode, then we use get_selections instead of
get_filename in order to get the selected file names.

● The dialog contains buttons that enable the user to (1) create a new folder, (2)
delete a file, and (3) rename a file. If you do not want the user to perform these
operations, then call hide_fileop_buttons. This call is commented out in our
sample code.

Note that there are also predefined dialogs for font selection (FontSelectionDialog) and
color selection (ColorSelectionDialog)

2.7.3 EasyGUI
If your GUI needs are minimalist (maybe a popup dialog or two) and your application is
imperative rather than event driven, then you may want to consider EasyGUI. As the
name suggests, it is extremely easy to use.

How to know when you might be able to use EasyGUI:

● Your application does not need to run in a window containing menus and a menu
bar.

● Your GUI needs amount to little more than displaying a dialog now and then to
get responses from the user.

● You do not want to write an event driven application, that is, one in which your
code sits and waits for the the user to initiate operation, for example, with menu
items.

EasyGUI plus documentation and examples are available at EasyGUI home page at
SourceForge http://easygui.sourceforge.net/

EasyGUI provides functions for a variety of commonly needed dialog boxes, including:

● A message box displays a message.
● A yes/no message box displays "Yes" and "No" buttons.
● A continue/cancel message box displays "Continue" and "Cancel" buttons.
● A choice box displays a selection list.
● An enter box allows entry of a line of text.
● An integer box allows entry of an interger.
● A multiple entry box allows entry into multiple fields.
● Code and text boxes support the display of text in monospaced or porportional

Page 160

A Python Book

fonts.
● File and directory boxes enable the user to select a file or a directory.

See the documentation at the EasyGUI Web site for more features.

For a demonstration of EasyGUI's capabilities, run the easygui.py as a Python script:

$ python easygui.py

2.7.3.1 A simple EasyGUI example

Here is a simple example that prompts the user for an entry, then shows the response in a
message box:

import easygui

def testeasygui():
 response = easygui.enterbox(msg='Enter your name:', title='Name
Entry')
 easygui.msgbox(msg=response, title='Your Response')

testeasygui()

2.7.3.2 An EasyGUI file open dialog example

This example presents a dialog to allow the user to select a file:

import easygui

def test():
 response = easygui.fileopenbox(msg='Select a file')
 print 'file name: %s' % response

test()

2.8 Guidance on Packages and Modules

2.8.1 Introduction
Python has an excellent range of implementation organization structures. These range
from statements and control structures (at a low level) through functions, methods, and
classes (at an intermediate level) and modules and packages at an upper level.

This section provides some guidance with the use of packages. In particular:

● How to construct and implement them.
● How to use them.
● How to distribute and install them.

Page 161

A Python Book

2.8.2 Implementing Packages
A Python package is a collection of Python modules in a disk directory.

In order to be able to import individual modules from a directory, the directory must
contain a file named __init__.py. (Note that requirement does not apply to directories that
are listed in PYTHONPATH.) The __init__.py serves several purposes:

● The presence of the file __init__.py in a directory marks the directory as a Python
package, which enables importing modules from the directory.

● The first time an application imports any module from the directory/package, the
code in the module __init__ is evaluated.

● If the package itself is imported (as opposed to an individual module within the
directory/package), then it is the __init__ that is imported (and evaluated).

2.8.3 Using Packages
One simple way to enable the user to import and use a package is to instruct the use to
import individual modules from the package.

A second, slightly more advanced way to enable the user to import the package is to
expose those features of the package in the __init__ module. Suppose that module mod1
contains functions fun1a and fun1b and suppose that module mod2 contains functions
fun2a and fun2b. Then file __init__.py might contain the following:

from mod1 import fun1a, fun1b
from mod2 import fun2a, fun2b

Then, if the following is evaluated in the user's code:

import testpackages

Then testpackages will contain fun1a, fun1b, fun2a, and fun2b.

For example, here is an interactive session that demostrates importing the package:

>>> import testpackages
>>> print dir(testpackages)
[`__builtins__', `__doc__', `__file__', `__name__',
`__path__',
`fun1a', `fun1b', `fun2a', `fun2b', `mod1', `mod2']

2.8.4 Distributing and Installing Packages
Distutils (Python Distribution Utilities) has special support for distrubuting and installing
packages. Learn more here: Distributing Python Modules
http://docs.python.org/distutils/index.html.

Page 162

A Python Book

As our example, imagine that we have a directory containing the following:

Testpackages
Testpackages/README
Testpackages/MANIFEST.in
Testpackages/setup.py
Testpackages/testpackages/__init__.py
Testpackages/testpackages/mod1.py
Testpackages/testpackages/mod2.py

Notice the subdirectory Testpackages/testpackages containing the file __init__.py.
This is the Python package that we will install.

We'll describe how to configure the above files so that they can be packaged as a single
distribution file and so that the Python package they contain can be installed as a package
by Distutils.

The MANIFEST.in file lists the files that we want included in our distribution. Here is
the contents of our MANIFEST.in file:

include README MANIFEST MANIFEST.in
include setup.py
include testpackages/*.py

The setup.py file describes to Distutils (1) how to package the distribution file and (2)
how to install the distribution. Here is the contents of our sample setup.py:

#!/usr/bin/env python

from distutils.core import setup # [1]

long_description = 'Tests for installing and distributing Python
packages'

setup(name = 'testpackages', # [2]
 version = '1.0a',
 description = 'Tests for Python packages',
 maintainer = 'Dave Kuhlman',
 maintainer_email = 'dkuhlman@rexx.com',
 url = 'http://www.rexx.com/~dkuhlman',
 long_description = long_description,
 packages = ['testpackages'] # [3]
)

Explanation:

1. We import the necessary component from Distutils.
2. We describe the package and its developer/maintainer.
3. We specify the directory that is to be installed as a package. When the user

installs our distribution, this directory and all the modules in it will be installed as
a package.

Page 163

A Python Book

Now, to create a distribution file, we run the following:

python setup.py sdist formats=gztar

which will create a file testpackages1.0a.tar.gz under the directory dist.

Then, you can give this distribution file to a potential user, who can install it by doing the
following:

$ tar xvzf testpackages1.0a.tar.gz
$ cd testpackages1.0a
$ python setup.py build
$ python setup.py install # as root

2.9 End Matter

2.9.1 Acknowledgements and Thanks
● Thanks to the implementors of Python for producing an exceptionally usable and

enjoyable programming language.
● Thanks to Dave Beazley and others for SWIG and PLY.
● Thanks to Greg Ewing for Pyrex and Plex.
● Thanks to James Henstridge for PyGTK.

2.9.2 See Also
● The main Python Web Site http://www.python.org for more information on

Python.
● Python Documentation http://www.python.org/doc/ for lots of documentation

on Python
● Dave's Web Site http://http://www.davekuhlman.org for more software and

information on using Python for XML and the Web.
● The SWIG home page http://www.swig.org for more information on SWIG

(Simplified Wrapper and Interface Generator).
● The Pyrex home page http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/

for more information on Pyrex.
● PLY (Python LexYacc) home page http://www.dabeaz.com/ply/ for more

information on PLY.
● The Plex home page http://www.cosc.canterbury.ac.nz/greg.ewing/python/Plex/

for more information on Plex.
● Distributing Python Modules http://docs.python.org/distutils/index.html for

information on the Python Distribution Utilities (Distutils).

Page 164

A Python Book

3 Part 3 Python Workbook

3.1 Introduction
This document takes a workbook and exercisewithsolutions approach to Python
training. It is hoped that those who feel a need for less explanation and more practical
exercises will find this useful.

A few notes about the exercises:

● I've tried to include solutions for most of the exercises. Hopefully, you will be
able to copy and paste these solutions into your text editor, then extend and
experiment with them.

● I use two interactive Python interpreters (although they are the same Python
underneath). When you see this prompt >>>, it's the standard Python interpreter.
And, when you see this prompt In [1]:, it's IPython
http://ipython.scipy.org/moin/.

The latest version of this document is at my Web site (URL above).

If you have comments or suggestions, please send them my way.

3.2 Lexical Structures

3.2.1 Variables and names
A name is any combination of letters, digits, and the underscore, but the first character
must be a letter or an underscore. Names may be of any length.

Case is significant.

Exercises:

1. Which of the following are valid names?
1. total
2. total_of_all_vegetables
3. bigtitle1
4. _inner_func
5. 1bigtitle
6. bigtitle1

2. Which or the following pairs are the same name:
1. the_last_item and the_last_item

Page 165

A Python Book

2. the_last_item and The_Last_Item
3. itemi and itemj
4. item1 and iteml

Solutions:

1. Items 1, 2, 4, and 6 are valid. Item 3 is not a single name, but is three items
separated by the minus operator. Item 5 is not valid because it begins with a digit.

2. Python names are casesensitive, which means:
1. the_last_item and the_last_item are the same.
2. the_last_item and The_Last_Item are different The second name

has an uppercase characters.
3. itemi and itemj are different.
4. item1 and iteml are different This one may be difficult to see,

depending on the font you are viewing. One name ends with the digit one; the
other ends with the alpha character "el". And this example provides a good
reason to use "1" and "l" judiciously in names.

The following are keywords in Python and should not be used as variable names:

and del from not while
as elif global or with
assert else if pass yield
break except import print
class exec in raise
continue finally is return
def for lambda try

Exercises:

1. Which of the following are valid names in Python?
1. _global
2. global
3. file

Solutions:

1. Do not use keywords for variable names:
1. Valid
2. Not a valid name. "global" is a keyword.
3. Valid, however, "file" is the name of a builtin type, as you will learn later, so

you are advised not to redefine it. Here are a few of the names of builtin
types: "file", "int", "str", "float", "list", "dict", etc. See Builtin Types
http://docs.python.org/lib/types.html for more builtin types..

The following are operators in Python and will separate names:

+ * ** / // %
<< >> & | ^ ~

Page 166

A Python Book

< > <= >= == != <>

and or is not in

Also: () [] . (dot)

But, note that the Python style guide suggests that you place blanks around binary
operators. One exception to this rule is function arguments and parameters for functions:
it is suggested that you not put blanks around the equal sign (=) used to specify keyword
arguments and default parameters.

Exercises:

1. Which of the following are single names and which are names separated by
operators?
1. fruit_collection
2. fruitcollection

Solutions:

1. Do not use a dash, or other operator, in the middle of a name:
1. fruit_collection is a single name
2. fruitcollection is two names separated by a dash.

3.2.2 Line structure
In Python, normally we write one statement per line. In fact, Python assumes this.
Therefore:

● Statement separators are not normally needed.
● But, if we want more than one statement on a line, we use a statement separator,

specifically a semicolon.
● And, if we want to extend a statement to a second or third line and so on, we

sometimes need to do a bit extra.
Extending a Python statement to a subsequent line Follow these two rules:

1. If there is an open context, nothing special need be done to extend a statement
across multiple lines. An open context is an open parenthesis, an open square
bracket, or an open curly bracket.

2. We can always extend a statement on a following line by placing a back slash as
the last character of the line.

Exercises:

1. Extend the following statement to a second line using parentheses:
total_count = tree_count + vegetable_count +
fruit_count

2. Extend the following statement to a second line using the backslash line

Page 167

A Python Book

continuation character:
total_count = tree_count + vegetable_count +
fruit_count

Solutions:

1. Parentheses create an open context that tells Python that a statement extends to
the next line:

total_count = (tree_count +
 vegetable_count + fruit_count)

2. A backslash as the last character on line tells Python that the current statement
extends to the next line:

total_count = tree_count + \
 vegetable_count + fruit_count

For extending a line on a subsequent line, which is better, parentheses or a backslash?
Here is a quote:

"The preferred way of wrapping long lines is by using Python's implied
line continuation inside parentheses, brackets and braces. If necessary,
you can add an extra pair of parentheses around an expression, but
sometimes using a backslash looks better."

 PEP 8: Style Guide for Python Code
http://www.python.org/dev/peps/pep0008/

3.2.3 Indentation and program structure
Python uses indentation to indicate program structure. That is to say, in order to nest a
block of code inside a compound statement, you indent that nested code. This is different
from many programming languages which use some sort of begin and end markers, for
example curly brackets.

The standard coding practice for Python is to use four spaces per indentation level and to
not use hard tabs. (See the Style Guide for Python Code.) Because of this, you will want
to use a text editor that you can configure so that it will use four spaces for indentation.
See here for a list of Pythonfriendly text editors: PythonEditors.

Exercises:

1. Given the following, nest the print statement inside the if statement:
if x > 0:

print x

2. Nest these two lines:

Page 168

A Python Book

z = x + y
print z

inside the following function definition statement:
def show_sum(x, y):

Solutions:

1. Indentation indicates that one statement is nested inside another statement:
if x > 0:
 print x

2. Indentation indicates that a block of statements is nested inside another statement:
def show_sum(x, y):
 z = x + y
 print z

3.3 Execution Model
Here are a few rules:

1. Python evaluates Python code from the top of a module down to the bottom of a
module.

2. Binding statements at top level create names (and bind values to those names) as
Python evaluates code. Further more, a name is not created until it is bound to a
value/object.

3. A nested reference to a name (for example, inside a function definition or in the
nested block of an if statement) is not used until that nested code is evaluated.

Exercises:

1. Will the following code produce an error?
show_version()
def show_version():
 print 'Version 1.0a'

2. Will the following code produce an error?
def test():
 show_version()

def show_version():
 print 'Version 1.0a'

test()

3. Will the following code produce an error? Assume that show_config is not
defined:

x = 3

Page 169

A Python Book

if x > 5:
 show_config()

Solutions:

1. Answer: Yes, it generates an error. The name show_version would not be
created and bound to a value until the def function definition statement binds a
function object to it. That is done after the attempt to use (call) that object.

2. Answer: No. The function test() does call the function show_version(),
but since test() is not called until after show_version() is defined, that is
OK.

3. Answer: No. It's bad code, but in this case will not generate an error. Since x is
less than 5, the body of the if statement is not evaluated.
N.B. This example shows why it is important during testing that every line of
code in your Python program be evaluated. Here is good Pythonic advice: "If it's
not tested, it's broken."

3.4 Builtin Data Types
Each of the subsections in this section on builtin data types will have a similar structure:

1. A brief description of the data type and its uses.
2. Representation and construction How to represent an instance of the data type.

How to code a literal representation that creates and defines an instance. How to
create an instance of the builtin type.

3. Operators that are applicable to the data type.
4. Methods implemented and supported by the data type.

3.4.1 Numbers
The numbers you will use most commonly are likely to be integers and floats. Python
also has long integers and complex numbers.

A few facts about numbers (in Python):

● Python will convert to using a long integer automatically when needed. You do
not need to worry about exceeding the size of a (standard) integer.

● The size of the largest integer in your version of Python is in sys.maxint. To
learn what it is, do:

>>> import sys
>>> print sys.maxint
9223372036854775807

The above show the maximum size of an integer on a 64bit version of Python.
● You can convert from integer to float by using the float constructor. Example:

Page 170

A Python Book

>>> x = 25
>>> y = float(x)
>>> print y
25.0

● Python does "mixed arithmetic". You can add, multiply, and divide integers and
floats. When you do, Python "promotes" the result to a float.

3.4.1.1 Literal representations of numbers

An integer is constructed with a series of digits or the integer constructor (int(x)). Be
aware that a sequence of digits beginning with zero represents an octal value. Examples:

>>> x1 = 1234
>>> x2 = int('1234')
>>> x3 = 25
>>> x1
1234
>>> x2
1234
>>> x3
25

A float is constructed either with digits and a dot (example, 12.345) or with
engineering/scientific notation or with the float constructor (float(x)). Examples:

>>> x1 = 2.0e3
>>> x1 = 1.234
>>> x2 = 1.234
>>> x3 = float('1.234')
>>> x4 = 2.0e3
>>> x5 = 2.0e3
>>> print x1, x2, x3, x4, x5
1.234 1.234 1.234 2000.0 0.002

Exercises:

Construct these numeric values:

1. Integer zero
2. Floating point zero
3. Integer one hundred and one
4. Floating point one thousand
5. Floating point one thousand using scientific notation
6. Create a positive integer, a negative integer, and zero. Assign them to variables
7. Write several arithmetic expressions. Bind the values to variables. Use a variety

of operators, e.g. +, , /, *, etc. Use parentheses to control operator scope.
8. Create several floats and assign them to variables.
9. Write several arithmetic expressions containing your float variables.

Page 171

A Python Book

10. Write several expressions using mixed arithmetic (integers and floats). Obtain a
float as a result of division of one integer by another; do so by explicitly
converting one integer to a float.

Solutions:

1. 0
2. 0.0, 0., or .0
3. 101
4. 1000.0
5. 1e3 or 1.0e3
6. Asigning integer values to variables:

In [7]: value1 = 23
In [8]: value2 = 14
In [9]: value3 = 0
In [10]: value1
Out[10]: 23
In [11]: value2
Out[11]: 14
In [12]: value3
Out[12]: 0

7. Assigning expression values to variables:
value1 = 4 * (3 + 5)
value2 = (value1 / 3.0) 2

8. Assigning floats to variables:
value1 = 0.01
value2 = 3.0
value3 = 3e4

9. Assigning expressions containing varialbes:
value4 = value1 * (value2 value3)
value4 = value1 + value2 + value3 value4

10. Mixed arithmetic:
x = 5
y = 8
z = float(x) / y

You can also construct integers and floats using the class. Calling a class (using
parentheses after a class name, for example) produces an instance of the class.

Exercises:

1. Construct an integer from the string "123".
2. Construct a float from the integer 123.
3. Construct an integer from the float 12.345.

Solutions:

Page 172

A Python Book

1. Use the int data type to construct an integer instance from a string:
int("123")

2. Use the float data type to construct a float instance from an integer:
float(123)

3. Use the int data type to construct an integer instance from a float:
int(12.345) # > 12

Notice that the result is truncated to the integer part.

3.4.1.2 Operators for numbers

You can use most of the familiar operators with numbers, for example:

+ * ** / // %
<< >> & | ^ ~
< > <= >= == != <>

Look here for an explanation of these operators when applied to numbers: Numeric
Types int, float, long, complex http://docs.python.org/lib/typesnumeric.html.

Some operators take precedence over others. The table in the Web page just referenced
above also shows that order of priority.

Here is a bit of that table:

All numeric types (except complex) support the following operations,
sorted by ascending priority (operations in the same box have the
same
priority; all numeric operations have a higher priority than
comparison
operations):

Operation Result

x + y sum of x and y
x y difference of x and y
x * y product of x and y
x / y quotient of x and y
x // y (floored) quotient of x and y
x % y remainder of x / y
x x negated
+x x unchanged
abs(x) absolute value or magnitude of x
int(x) x converted to integer
long(x) x converted to long integer
float(x) x converted to floating point
complex(re,im) a complex number with real part re, imaginary part
 im. im defaults to zero.
c.conjugate() conjugate of the complex number c

Page 173

A Python Book

divmod(x, y) the pair (x // y, x % y)
pow(x, y) x to the power y
x ** y x to the power y

Notice also that the same operator may perform a different function depending on the
data type of the value to which it is applied.

Exercises:

1. Add the numbers 3, 4, and 5.
2. Add 2 to the result of multiplying 3 by 4.
3. Add 2 plus 3 and multiply the result by 4.

Solutions:

1. Arithmetic expressions are follow standard infix algebraic syntax:
3 + 4 + 5

2. Use another infix expression:
2 + 3 * 4

Or:
2 + (3 * 4)

But, in this case the parentheses are not necessary because the * operator binds
more tightly than the + operator.

3. Use parentheses to control order of evaluation:
(2 + 3) * 4

Note that the * operator has precedence over (binds tighter than) the + operator,
so the parentheses are needed.

Python does mixed arithemetic. When you apply an operation to an integer and a float, it
promotes the result to the "higher" data type, a float.

If you need to perform an operation on several integers, but want use a floating point
operation, first convert one of the integers to a float using float(x), which effectively
creates an instance of class float.

Try the following at your Python interactive prompt:

1. 1.0 + 2
2. 2 / 3 Notice that the result is truncated.
3. float(2) / 3 Notice that the result is not truncated.

Exercises:

1. Given the following assignments:
x = 20
y = 50

Page 174

A Python Book

Divide x by y giving a float result.
Solutions:

1. Promote one of the integers to float before performing the division:
z = float(x) / y

3.4.1.3 Methods on numbers

Most of the methods implemented by the data types (classes) int and float are special
methods that are called through the use of operators. Special methods often have names
that begin and end with a double underscore. To see a list of the special names and a bit
of an indication of when each is called, do any of the following at the Python interactive
prompt:

>>> help(int)
>>> help(32)
>>> help(float)
>>> help(1.23)
>>> dir(1)
>>> dir(1.2)

3.4.2 Lists
Lists are a container data type that acts as a dynamic array. That is to say, a list is a
sequence that can be indexed into and that can grow and shrink.

A tuple is an indexable container, like a list, except that a tuple is immutable.

A few characteristics of lists and tuples:

● A list has a (current) length Get the length of a list with len(mylist).
● A list has an order The items in a list are ordered, and you can think of that

order as going from left to right.
● A list is heterogeneous You can insert different types of objects into the same

list.
● Lists are mutable, but tuples are not. Thus, the following are true of lists, but not

of tuples:
○ You can extended or add to a list.
○ You can shrink a list by deleting items from it.
○ You can insert items into the middle of a list or at the beginning of a list. You

can add items to the end of a list.
○ You can change which item is at a given position in a list.

Page 175

A Python Book

3.4.2.1 Literal representation of lists

The literal representation of a list is square brackets containing zero or more items
separated by commas.

Examples:

1. Try these at the Python interactive prompt:
>>> [11, 22, 33]
>>> ['aa', 'bb', 'cc',]
>>> [100, 'apple', 200, 'banana',] # The last comma
is
>>> optional.

2. A list can contain lists. In fact a list can contain any kind of object:
>>> [1, [2, 3], 4, [5, 6, 7,], 8]

3. Lists are heterogenous, that is, different kinds of objects can be in the same list.
Here is a list that contains a number, a string, and another list:

>>> [123, 'abc', [456, 789]]

Exercises:

1. Create (define) the following tuples and lists using a literal:
1. A tuple of integers
2. A tuple of strings
3. A list of integers
4. A list of strings
5. A list of tuples or tuple of lists
6. A list of integers and strings and tuples
7. A tuple containing exactly one item
8. An empty tuple

2. Do each of the following:
1. Print the length of a list.
2. Print each item in the list Iterate over the items in one of your lists. Print

each item.
3. Append an item to a list.
4. Insert an item at the beginning of a list. Insert an item in the middle of a list.
5. Add two lists together. Do so by using both the extend method and the plus

(+) operator. What is the difference between extending a list and adding two
lists?

6. Retrieve the 2nd item from one of your tuples or lists.
7. Retrieve the 2nd, 3rd, and 4th items (a slice) from one of your tuples or lists.
8. Retrieve the last (rightmost) item in one of your lists.
9. Replace an item in a list with a new item.

Page 176

A Python Book

10. Pop one item off the end of your list.
11. Delete an item from a list.
12. Do the following list manipulations:

1. Write a function that takes two arguments, a list and an item, and that
appends the item to the list.

2. Create an empty list,
3. Call your function several times to append items to the list.
4. Then, print out each item in the list.

Solutions:

1. We can define list literals at the Python or IPython interactive prompt:
1. Create a tuple using commas, optionally with parentheses:

In [1]: a1 = (11, 22, 33,)
In [2]: a1
Out[2]: (11, 22, 33)

2. Quoted characters separated by commas create a tuple of strings:
In [3]: a2 = ('aaa', 'bbb', 'ccc')
In [4]: a2
Out[4]: ('aaa', 'bbb', 'ccc')

3. Items separated by commas inside square brackets create a list:
In [26]: a3 = [100, 200, 300,]
In [27]: a3
Out[27]: [100, 200, 300]

4. Strings separated by commas inside square brackets create a list of strings:
In [5]: a3 = ['basil', 'parsley', 'coriander']
In [6]: a3
Out[6]: ['basil', 'parsley', 'coriander']
In [7]:

5. A tuple or a list can contain tuples and lists:
In [8]: a5 = [(11, 22), (33, 44), (55,)]
In [9]: a5
Out[9]: [(11, 22), (33, 44), (55,)]

6. A list or tuple can contain items of different types:
In [10]: a6 = [101, 102, 'abc', "def", (201, 202),
('ghi', 'jkl')]
In [11]: a6
Out[11]: [101, 102, 'abc', 'def', (201, 202),
('ghi', 'jkl')]

7. In order to create a tuple containing exactly one item, we must use a comma:
In [13]: a7 = (6,)
In [14]: a7

Page 177

A Python Book

Out[14]: (6,)

8. In order to create an empty tuple, use the tuple class/type to create an instance
of a empty tuple:

In [21]: a = tuple()
In [22]: a
Out[22]: ()
In [23]: type(a)
Out[23]: <type 'tuple'>

3.4.2.2 Operators on lists

There are several operators that are applicable to lists. Here is how to find out about
them:

● Do dir([]) or dir(any_list_instance). Some of the items with
special names (leading and training double underscores) will give you clues about
operators implemented by the list type.

● Do help([]) or help(list) at the Python interactive prompt.
● Do help(any_list_instance.some_method), where some_method

is one of the items listed using dir(any_list_instance).
● See Sequence Types str, unicode, list, tuple, buffer, xrange

http://docs.python.org/lib/typesseq.html
Exercises:

1. Concatenate (add) two lists together.
2. Create a single list that contains the items in an initial list repeated 3 times.
3. Compare two lists.

Solutions:

1. The plus operator, applied to two lists produces a new list that is a concatenation
of two lists:

>>> [11, 22] + ['aa', 'bb']

2. Multiplying a list by an integer n creates a new list that repeats the original list n
times:

>>> [11, 'abc', 4.5] * 3

3. The comparison operators can be used to compare lists:
>>> [11, 22] == [11, 22]
>>> [11, 22] < [11, 33]

3.4.2.3 Methods on lists

Again, use dir() and help() to learn about the methods supported by lists.

Page 178

A Python Book

Examples:

1. Create two (small) lists. Extend the first list with the items in the second.
2. Append several individual items to the end of a list.
3. (a) Insert a item at the beginning of a list. (b) Insert an item somewhere in the

middle of a list.
4. Pop an item off the end of a list.

Solutions:

1. The extend method adds elements from another list, or other iterable:
>>> a = [11, 22, 33, 44,]
>>> b = [55, 66]
>>> a.extend(b)
>>> a
[11, 22, 33, 44, 55, 66]

2. Use the append method on a list to add/append an item to the end of a list:
>>> a = ['aa', 11]
>>> a.append('bb')
>>> a.append(22)
>>> a
['aa', 11, 'bb', 22]

3. The insert method on a list enables us to insert items at a given position in a
list:

>>> a = [11, 22, 33, 44,]
>>> a.insert(0, 'aa')
>>> a
['aa', 11, 22, 33, 44]
>>> a.insert(2, 'bb')
>>> a
['aa', 11, 'bb', 22, 33, 44]

But, note that we use append to add items at the end of a list.
4. The pop method on a list returns the "rightmost" item from a list and removes

that item from the list:
>>> a = [11, 22, 33, 44,]
>>>
>>> b = a.pop()
>>> a
[11, 22, 33]
>>> b
44
>>> b = a.pop()
>>> a
[11, 22]
>>> b
33

Page 179

A Python Book

Note that the append and pop methods taken together can be used to implement
a stack, that is a LIFO (last in first out) data structure.

3.4.2.4 List comprehensions

A list comprehension is a convenient way to produce a list from an iterable (a sequence
or other object that can be iterated over).

In its simplest form, a list comprehension resembles the header line of a for statement
inside square brackets. However, in a list comprehension, the for statement header is
prefixed with an expression and surrounded by square brackets. Here is a template:

[expr(x) for x in iterable]

where:

● expr(x) is an expression, usually, but not always, containing x.
● iterable is some iterable. An iterable may be a sequence (for example, a list, a

string, a tuple) or an unordered collection or an iterator (something over which we
can iterate or apply a for statement to).

Here is an example:

>>> a = [11, 22, 33, 44]
>>> b = [x * 2 for x in a]
>>> b
[22, 44, 66, 88]

Exercises:

1. Given the following list of strings:
names = ['alice', 'bertrand', 'charlene']

produce the following lists: (1) a list of all upper case names; (2) a list of
capitalized (first letter upper case);

2. Given the following function which calculates the factorial of a number:
def t(n):
 if n <= 1:
 return n
 else:
 return n * t(n 1)

and the following list of numbers:
numbers = [2, 3, 4, 5]

create a list of the factorials of each of the numbers in the list.
Solutions:

1. For our expression in a list comprehension, use the upper and capitalize

Page 180

A Python Book

methods:
>>> names = ['alice', 'bertrand', 'charlene']
>>> [name.upper() for name in names]
['ALICE', 'BERTRAND', 'CHARLENE']
>>> [name.capitalize() for name in names]
['Alice', 'Bertrand', 'Charlene']

2. The expression in our list comprehension calls the factorial function:
def t(n):
 if n <= 1:
 return n
 else:
 return n * t(n 1)

def test():
 numbers = [2, 3, 4, 5]
 factorials = [t(n) for n in numbers]
 print 'factorials:', factorials

if __name__ == '__main__':
 test()

A list comprehension can also contain an if clause. Here is a template:

[expr(x) for x in iterable if pred(x)]

where:

● pred(x) is an expression that evaluates to a true/false value. Values that count
as false are numeric zero, False, None, and any empty collection. All other
values count as true.

Only values for which the if clause evaluates to true are included in creating the resulting
list.

Examples:

>>> a = [11, 22, 33, 44]
>>> b = [x * 3 for x in a if x % 2 == 0]
>>> b
[66, 132]

Exercises:

1. Given two lists, generate a list of all the strings in the first list that are not in the
second list. Here are two sample lists:

names1 = ['alice', 'bertrand', 'charlene', 'daniel']
names2 = ['bertrand', 'charlene']

Solutions:

1. The if clause of our list comprehension checks for containment in the list names2:

Page 181

A Python Book

def test():
 names1 = ['alice', 'bertrand', 'charlene',
'daniel']
 names2 = ['bertrand', 'charlene']
 names3 = [name for name in names1 if name not in
names2]
 print 'names3:', names3

if __name__ == '__main__':
 test()

When run, this script prints out the following:
names3: ['alice', 'daniel']

3.4.3 Strings
A string is an ordered sequence of characters. Here are a few characteristics of strings:

● A string has a length. Get the length with the len() builtin function.
● A string is indexable. Get a single character at a position in a string with the

square bracket operator, for example mystring[5].
● You can retrieve a slice (substring) of a string with a slice operation, for example

mystring[5:8].
Create strings with single quotes or double quotes. You can put single quotes inside
double quotes and you can put double quotes inside single quotes. You can also escape
characters with a backslash.

Exercises:

1. Create a string containing a single quote.
2. Create a string containing a double quote.
3. Create a string containing both a single quote a double quote.

Solutions:

1. Create a string with double quotes to include single quotes inside the string:
>>> str1 = "that is jerry's ball"

2. Create a string enclosed with single quotes in order to include double quotes
inside the string:

>>> str1 = 'say "goodbye", bullwinkle'

3. Take your choice. Escape either the single quotes or the double quotes with a
backslash:

>>> str1 = 'say "hello" to jerry\'s mom'
>>> str2 = "say \"hello\" to jerry's mom"
>>> str1
'say "hello" to jerry\'s mom'

Page 182

A Python Book

>>> str2
'say "hello" to jerry\'s mom'

Triple quotes enable you to create a string that spans multiple lines. Use three single
quotes or three double quotes to create a single quoted string.

Examples:

1. Create a triple quoted string that contains single and double quotes.
Solutions:

1. Use triple single quotes or triple double quotes to create multiline strings:
String1 = '''This string extends
across several lines. And, so it has
endofline characters in it.
'''

String2 = """
This string begins and ends with an endofline
character. It can have both 'single'
quotes and "double" quotes in it.
"""

def test():
 print String1
 print String2

if __name__ == '__main__':
 test()

3.4.3.1 Characters

Python does not have a distinct character type. In Python, a character is a string of length
1. You can use the ord() and chr() builtin functions to convert from character to
integer and back.

Exercises:

1. Create a character "a".
2. Create a character, then obtain its integer representation.

Solutions:

1. The character "a" is a plain string of length 1:
>>> x = 'a'

2. The integer equivalent of the letter "A":
>>> x = "A"
>>> ord(x)
65

Page 183

A Python Book

3.4.3.2 Operators on strings

You can concatenate strings with the "+" operator.

You can create multiple concatenated copies of a string with the "*" operator.

And, augmented assignment (+= and *=) also work.

Examples:

>>> 'cat' + ' and ' + 'dog'
'cat and dog'
>>> '#' * 40
'##'
>>>
>>> s1 = 'flower'
>>> s1 += 's'
>>> s1
'flowers'

Exercises:

1. Given these strings:
>>> s1 = 'abcd'
>>> s2 = 'efgh'

create a new string composed of the first string followed by (concatenated with)
the second.

2. Create a single string containing 5 copies of the string 'abc'.
3. Use the multiplication operator to create a "line" of 50 dashes.
4. Here are the components of a path to a file on the file system: "home",

"myusername", "Workdir", "notes.txt". Concatenate these together separating
them with the path separator to form a complete path to that file. (Note that if you
use the backslash to separate components of the path, you will need to use a
double backslash, because the backslash is the escape character in strings.

Solutions:

1. The plus (+) operator applied to a string can be used to concatenate strings:
>>> s3 = s1 + s2
>>> s3
'abcdefgh'

2. The multiplication operator (*) applied to a string creates a new string that
concatenates a string with itself some number of times:

>>> s1 = 'abc' * 5
>>> s1
'abcabcabcabcabc'

3. The multiplication operator (*) applied to a string can be used to create a

Page 184

A Python Book

"horizontal divider line":
>>> s1 = '' * 50
>>> print s1

4. The sep member of the os module gives us a platform independent way to
construct paths:

>>> import os
>>>
>>> a = ["home", "myusername", "Workdir", "notes.txt"]
>>> path = a[0] + os.sep + a[1] + os.sep + a[2] +
os.sep + a[3]
>>> path
'home/myusername/Workdir/notes.txt'

And, a more concise solution:
>>> import os
>>> a = ["home", "myusername", "Workdir", "notes.txt"]
>>> os.sep.join(a)
'home/myusername/Workdir/notes.txt'

Notes:
○ Note that importing the os module and then using os.sep from that module

gives us a platform independent solution.
○ If you do decide to code the path separator character explicitly and if you are

on MS Windows where the path separator is the backslash, then you will need
to use a double backslash, because that character is the escape character.

3.4.3.3 Methods on strings

String support a variety of operations. You can obtain a list of these methods by using the
dir() builtin function on any string:

>>> dir("")
['__add__', '__class__', '__contains__', '__delattr__', '__doc__',
'__eq__', '__ge__', '__getattribute__', '__getitem__',
'__getnewargs__', '__getslice__', '__gt__', '__hash__', '__init__',
'__le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__',
'__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmod__',
'__rmul__', '__setattr__', '__str__', 'capitalize', 'center',
'count', 'decode', 'encode', 'endswith', 'expandtabs', 'find',
'index', 'isalnum', 'isalpha', 'isdigit', 'islower', 'isspace',
'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip',
'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition',
'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip',
'swapcase', 'title', 'translate', 'upper', 'zfill']

And, you can get help on any specific method by using the help() builtin function.
Here is an example:

Page 185

A Python Book

>>> help("".strip)
Help on builtin function strip:

strip(...)
 S.strip([chars]) > string or unicode

 Return a copy of the string S with leading and trailing
 whitespace removed.
 If chars is given and not None, remove characters in chars
instead.
 If chars is unicode, S will be converted to unicode before
stripping

Exercises:

1. Strip all the whitespace characters off the right end of a string.
2. Center a short string within a longer string, that is, pad a short string with blank

characters on both right and left to center it.
3. Convert a string to all upper case.
4. Split a string into a list of "words".
5. (a) Join the strings in a list of strings to form a single string. (b) Ditto, but put a

newline character between each original string.
Solutions:

1. The rstrip() method strips whitespace off the right side of a string:
>>> s1 = 'some text \n'
>>> s1
'some text \n'
>>> s2 = s1.rstrip()
>>> s2
'some text'

2. The center(n) method centers a string within a padded string of width n:
>>> s1 = 'Dave'
>>> s2 = s1.center(20)
>>> s2
' Dave '

3. The upper() method produces a new string that converts all alpha characters in
the original to upper case:

>>> s1 = 'Banana'
>>> s1
'Banana'
>>> s2 = s1.upper()
>>> s2
'BANANA'

4. The split(sep) method produces a list of strings that are separated by sep in
the original string. If sep is omitted, whitespace is treated as the separator:

Page 186

A Python Book

>>> s1 = """how does it feel
... to be on your own
... no directions known
... like a rolling stone
... """
>>> words = s1.split()
>>> words
['how', 'does', 'it', 'feel', 'to', 'be', 'on', 'your',
'own', 'no',
'directions', 'known', 'like', 'a', 'rolling', 'stone']

Note that the split() function in the re (regular expression) module is useful
when the separator is more complex than whitespace or a single character.

5. The join() method concatenates strings from a list of strings to form a single
string:

>>> lines = []
>>> lines.append('how does it feel')
>>> lines.append('to be on your own')
>>> lines.append('no directions known')
>>> lines.append('like a rolling stone')
>>> lines
['how does it feel', 'to be on your own', 'no
directions known',
 'like a rolling stone']
>>> s1 = ''.join(lines)
>>> s2 = ' '.join(lines)
>>> s3 = '\n'.join(lines)
>>> s1
'how does it feelto be on your ownno directions
knownlike a rolling stone'
>>> s2
'how does it feel to be on your own no directions known
like a rolling stone'
>>> s3
'how does it feel\nto be on your own\nno directions
known\nlike a rolling stone'
>>> print s3
how does it feel
to be on your own
no directions known
like a rolling stone

3.4.3.4 Raw strings

Raw strings give us a convenient way to include the backslash character in a string
without escaping (with an additional backslash). Raw strings look like plain literal
strings, but are prefixed with an "r" or "R". See String literals
http://docs.python.org/reference/lexical_analysis.html#stringliterals

Excercises:

Page 187

A Python Book

1. Create a string that contains a backslash character using both plain literal string
and a raw string.

Solutions:

1. We use an "r" prefix to define a raw string:
>>> print 'abc \\ def'
abc \ def
>>> print r'abc \ def'
abc \ def

3.4.3.5 Unicode strings

Unicode strings give us a consistent way to process character data from a variety of
character encodings.

Excercises:

1. Create several unicode strings. Use both the unicode prefix character ("u") and the
unicode type (unicode(some_string)).

2. Convert a string (possibly from another nonascii encoding) to unicode.
3. Convert a unicode string to another encoding, for example, utf8.
4. Test a string to determine if it is unicode.
5. Create a string that contains a unicode character, that is, a character outside the

ascii character set.
Solutions:

1. We can represent unicode string with either the "u" prefix or with a call to the
unicode type:

def exercise1():
 a = u'abcd'
 print a
 b = unicode('efgh')
 print b

2. We convert a string from another character encoding into unicode with the
decode() string method:

import sys

def exercise2():
 a = 'abcd'.decode('utf8')
 print a
 b = 'abcd'.decode(sys.getdefaultencoding())
 print b

3. We can convert a unicode string to another character encoding with the
encode() string method:

import sys

Page 188

A Python Book

def exercise3():
 a = u'abcd'
 print a.encode('utf8')
 print a.encode(sys.getdefaultencoding())

4. Here are two ways to check the type of a string:
import types

def exercise4():
 a = u'abcd'
 print type(a) is types.UnicodeType
 print type(a) is type(u'')

5. We can encode unicode characters in a string in several ways, for example, (1) by
defining a utf8 string and converting it to unicode or (2) defining a string with an
embedded unicode character or (3) concatenating a unicode characher into a
string:

def exercise5():
 utf8_string = 'Ivan Krsti\xc4\x87'
 unicode_string = utf8_string.decode('utf8')
 print unicode_string.encode('utf8')
 print len(utf8_string)
 print len(unicode_string)
 unicode_string = u'aa\u0107bb'
 print unicode_string.encode('utf8')
 unicode_string = 'aa' + unichr(263) + 'bb'
 print unicode_string.encode('utf8')

Guidance for use of encodings and unicode:

1. Convert/decode from an external encoding to unicode early:
my_source_string.decode(encoding)

2. Do your work (Python processing) in unicode.
3. Convert/encode to an external encoding late (for example, just before saving to an

external file):
my_unicode_string.encode(encoding)

For more information, see:

● Unicode In Python, Completely Demystified http://farmdev.com/talks/unicode/
● Unicode Howto http://www.amk.ca/python/howto/unicode.
● PEP 100: Python Unicode Integration

http://www.python.org/dev/peps/pep0100/
● 4.8 codecs Codec registry and base classes

http://docs.python.org/lib/modulecodecs.html
● 4.8.2 Encodings and Unicode

Page 189

A Python Book

http://docs.python.org/lib/encodingsoverview.html
● 4.8.3 Standard Encodings http://docs.python.org/lib/standardencodings.html
● Converting Unicode Strings to 8bit Strings

http://effbot.org/zone/unicodeconvert.htm

3.4.4 Dictionaries
A dictionary is an unordered collection of keyvalue pairs.

A dictionary has a length, specifically the number of keyvalue pairs.

A dictionary provides fast look up by key.

The keys must be immutable object types.

3.4.4.1 Literal representation of dictionaries

Curley brackets are used to represent a dictionary. Each pair in the dictionary is
represented by a key and value separated by a colon. Multiple pairs are separated by
comas. For example, here is an empty dictionary and several dictionaries containing
key/value pairs:

In [4]: d1 = {}
In [5]: d2 = {'width': 8.5, 'height': 11}
In [6]: d3 = {1: 'RED', 2: 'GREEN', 3: 'BLUE', }
In [7]: d1
Out[7]: {}
In [8]: d2
Out[8]: {'height': 11, 'width': 8.5}
In [9]: d3
Out[9]: {1: 'RED', 2: 'GREEN', 3: 'BLUE'}

Notes:

● A comma after the last pair is optional. See the REDGREENBLUE example
above.

● Strings and integers work as keys, since they are immutable. You might also want
to think about the use of tuples of integers as keys in a dictionary used to
represent a sparse array.

Exercises:

1. Define a dictionary that has the following keyvalue pairs:
2. Define a dictionary to represent the "enum" days of the week: Sunday, Monday,

Tuesday, ...
Solutions:

1. A dictionary whose keys and values are strings can be used to represent this table:

Page 190

A Python Book

vegetables = {
 'Eggplant': 'Purple',
 'Tomato': 'Red',
 'Parsley': 'Green',
 'Lemon': 'Yellow',
 'Pepper': 'Green',
 }

Note that the open curly bracket enables us to continue this statement across
multiple lines without using a backslash.

2. We might use strings for the names of the days of the week as keys:
DAYS = {
 'Sunday': 1,
 'Monday': 2,
 'Tuesday': 3,
 'Wednesday': 4,
 'Thrusday': 5,
 'Friday': 6,
 'Saturday': 7,
 }

3.4.4.2 Operators on dictionaries

Dictionaries support the following "operators":

● Length len(d) returns the number of pairs in a dictionary.
● Indexing You can both set and get the value associated with a key by using the

indexing operator []. Examples:
In [12]: d3[2]
Out[12]: 'GREEN'
In [13]: d3[0] = 'WHITE'
In [14]: d3[0]
Out[14]: 'WHITE'

● Test for key The in operator tests for the existence of a key in a dictionary.
Example:

In [6]: trees = {'poplar': 'deciduous', 'cedar':
'evergreen'}
In [7]: if 'cedar' in trees:
 ...: print 'The cedar is %s' %
(trees['cedar'],)
 ...:
The cedar is evergreen

Exercises:

1. Create an empty dictionary, then use the indexing operator [] to in sert the
following namevalue pairs:

"red" "255:0:0"

Page 191

A Python Book

"green" "0:255:0"
"blue" "0:0:255"

2. Print out the number of items in your dictionary.
Solutions:

1. We can use "[]" to set the value of a key in a dictionary:
def test():
 colors = {}
 colors["red"] = "255:0:0"
 colors["green"] = "0:255:0"
 colors["blue"] = "0:0:255"
 print 'The value of red is "%s"' %
(colors['red'],)
 print 'The colors dictionary contains %d items.' %
(len(colors),)

test()

When we run this, we see:
The value of red is "255:0:0"
The colors dictionary contains 3 items.

2. The len() builtin function gives us the number of items in a dictionary. See the
previous solution for an example of this.

3.4.4.3 Methods on dictionaries

Here is a table that describes the methods applicable to dictionarys:

Operation Result
len(a) the number of items in a

a[k] the item of a with key k

a[k] = v set a[k] to v

del a[k] remove a[k] from a

a.clear() remove all items from a

a.copy() a (shallow) copy of a

k in a True if a has a key k, else False

k not in a equivalent to not k in a

a.has_key(k) equivalent to k in a, use that form in new code

a.items() a copy of a's list of (key, value) pair

Page 192

A Python Book

Operation Result

a.keys() a copy of a's list of keys

a.update([b]) updates a with key/value pairs from b, overwriting existing
keys, returns None

a.fromkeys(seq[, value]) creates a new dictionary with keys from seq and values set to
value

a.values() a copy of a's list of values

a.get(k[, x]) a[k] if k in a, else x)

a.setdefault(k[, x]) a[k] if k in a, else x (also setting it)

a.pop(k[, x]) a[k] if k in a, else x (and remove k) (8)

a.popitem() remove and return an arbitrary (key, value) pair

a.iteritems() return an iterator over (key, value) pairs

a.iterkeys() return an iterator over the mapping's keys

a.itervalues() return an iterator over the mapping's values

You can also find this table at the standard documentation Web site in the "Python
Library Reference": Mapping Types dict http://docs.python.org/lib/typesmapping.html

Exercises:

1. Print the keys and values in the above "vegetable" dictionary.
2. Print the keys and values in the above "vegetable" dictionary with the keys in

alphabetical order.
3. Test for the occurance of a key in a dictionary.

Solutions:

1. We can use the d.items() method to retrieve a list of tuples containing
keyvalue pairs, then use unpacking to capture the key and value:

Vegetables = {
 'Eggplant': 'Purple',
 'Tomato': 'Red',
 'Parsley': 'Green',
 'Lemon': 'Yellow',
 'Pepper': 'Green',
 }

Page 193

A Python Book

def test():
 for key, value in Vegetables.items():
 print 'key:', key, ' value:', value

test()

2. We retrieve a list of keys with the keys() method, the sort it with the list
sort() method:

Vegetables = {
 'Eggplant': 'Purple',
 'Tomato': 'Red',
 'Parsley': 'Green',
 'Lemon': 'Yellow',
 'Pepper': 'Green',
 }

def test():
 keys = Vegetables.keys()
 keys.sort()
 for key in keys:
 print 'key:', key, ' value:', Vegetables[key]

test()

3. To test for the existence of a key in a dictionary, we can use either the in
operator (preferred) or the d.has_key() method (old style):

Vegetables = {
 'Eggplant': 'Purple',
 'Tomato': 'Red',
 'Parsley': 'Green',
 'Lemon': 'Yellow',
 'Pepper': 'Green',
 }

def test():
 if 'Eggplant' in Vegetables:
 print 'we have %s egplants' %
Vegetables['Eggplant']
 if 'Banana' not in Vegetables:
 print 'yes we have no bananas'
 if Vegetables.has_key('Parsley'):
 print 'we have leafy, %s parsley' %
Vegetables['Parsley']

test()

Which will print out:
we have Purple egplants
yes we have no bananas
we have leafy, Green parsley

Page 194

A Python Book

3.4.5 Files
A Python file object represents a file on a file system.

A file object open for reading a text file is iterable. When we iterate over it, it produces
the lines in the file.

A file may be opened in these modes:

● 'r' read mode. The file must exist.
● 'w' write mode. The file is created; an existing file is overwritten.
● 'a' append mode. An existing file is opened for writing (at the end of the file). A

file is created if it does not exist.
The open() builtin function is used to create a file object. For example, the following
code (1) opens a file for writing, then (2) for reading, then (3) for appending, and finally
(4) for reading again:

def test(infilename):
 # 1. Open the file in write mode, which creates the file.
 outfile = open(infilename, 'w')
 outfile.write('line 1\n')
 outfile.write('line 2\n')
 outfile.write('line 3\n')
 outfile.close()
 # 2. Open the file for reading.
 infile = open(infilename, 'r')
 for line in infile:
 print 'Line:', line.rstrip()
 infile.close()
 # 3. Open the file in append mode, and add a line to the end of
 # the file.
 outfile = open(infilename, 'a')
 outfile.write('line 4\n')
 outfile.close()
 print '' * 40
 # 4. Open the file in read mode once more.
 infile = open(infilename, 'r')
 for line in infile:
 print 'Line:', line.rstrip()
 infile.close()

test('tmp.txt')

Exercises:

1. Open a text file for reading, then read the entire file as a single string, and then
split the content on newline characters.

2. Open a text file for reading, then read the entire file as a list of strings, where each
string is one line in the file.

3. Open a text file for reading, then iterate of each line in the file and print it out.

Page 195

A Python Book

Solutions:

1. Use the open() builtin function to open the file and create a file object. Use the
read() method on the file object to read the entire file. Use the split() or
splitlines() methods to split the file into lines:

>>> infile = open('tmp.txt', 'r')
>>> content = infile.read()
>>> infile.close()
>>> lines = content.splitlines()
>>> print lines
['line 1', 'line 2', 'line 3', '']

2. The f.readlines() method returns a list of lines in a file:
>>> infile = open('tmp.txt', 'r')
>>> lines = infile.readlines()
>>> infile.close()
>>> print lines
['line 1\n', 'line 2\n', 'line 3\n']

3. Since a file object (open for reading) is itself an iterator, we can iterate over it in a
for statement:

"""
Test iteration over a text file.
Usage:
 python test.py in_file_name
"""

import sys

def test(infilename):
 infile = open(infilename, 'r')
 for line in infile:
 # Strip off the newline character and any
whitespace on
 # the right.
 line = line.rstrip()
 # Print only nonblank lines.
 if line:
 print line
 infile.close()

def main():
 args = sys.argv[1:]
 if len(args) != 1:
 print __doc__
 sys.exit(1)
 infilename = args[0]
 test(infilename)

if __name__ == '__main__':
 main()

Page 196

A Python Book

Notes:
○ The last two lines of this solution check the __name__ attribute of the

module itself so that the module will run as a script but will not run when the
module is imported by another module.

○ The __doc__ attribute of the module gives us the module's docstring, which
is the string defined at the top of the module.

○ sys.argv gives us the command line. And, sys.argv[1:] chops off the
program name, leaving us with the comman line arguments.

3.4.6 A few miscellaneous data types

3.4.6.1 None

None is a singleton. There is only one instance of None. Use this value to indicate the
absence of any other "real" value.

Test for None with the identity operator is.

Exercises:

1. Create a list, some of whose elements are None. Then write a for loop that
counts the number of occurances of None in the list.

Solutions:

1. The identity operators is and is not can be used to test for None:
>>> a = [11, None, 'abc', None, {}]
>>> a
[11, None, 'abc', None, {}]
>>> count = 0
>>> for item in a:
... if item is None:
... count += 1
...
>>>
>>> print count
2

3.4.6.2 The booleans True and False

Python has the two boolean values True and False. Many comparison operators return
True and False.

Examples:

1. What value is returned by 3 > 2?
Answer: The boolean value True.

2. Given these variable definitions:

Page 197

A Python Book

x = 3
y = 4
z = 5

What does the following print out:
print y > x and z > y

Answer Prints out "True"

3.5 Statements

3.5.1 Assignment statement
The assignment statement uses the assignment operator =.

The assignment statement is a binding statement: it binds a value to a name within a
namespace.

Exercises:

1. Bind the value "eggplant" to the variable vegetable.
Solutions:

1. The = operator is an assignment statement that binds a value to a variable:

>>> vegetable = "eggplant"

There is also augmented assignment using the operators +=, =, *=, /=, etc.

Exercises:

1. Use augmented assignment to increment the value of an integer.
2. Use augmented assignment to append characters to the end of a string.
3. Use augmented assignment to append the items in one list to another.
4. Use augmented assignment to decrement a variable containing an integer by 1.

Solutions:

1. The += operator increments the value of an integer:
>>> count = 0
>>> count += 1
>>> count
1
>>> count += 1
>>> count
2

2. The += operator appends characters to the end of a string:
>>> buffer = 'abcde'
>>> buffer += 'fgh'

Page 198

A Python Book

>>> buffer
'abcdefgh'

3. The += operator appends items in one list to another:
In [20]: a = [11, 22, 33]
In [21]: b = [44, 55]
In [22]: a += b
In [23]: a
Out[23]: [11, 22, 33, 44, 55]

1. The = operator decrements the value of an integer:
>>> count = 5
>>> count
5
>>> count = 1
>>> count
4

You can also assign a value to (1) an element of a list, (2) an item in a dictionary, (3) an
attribute of an object, etc.

Exercises:

1. Create a list of three items, then assign a new value to the 2nd element in the list.
2. Create a dictionary, then assign values to the keys "vegetable" and "fruit" in that

dictionary.
3. Use the following code to create an instance of a class:

class A(object):
 pass
a = A()

Then assign values to an attribue named category in that instance.
Solutions:

1. Assignment with the indexing operator [] assigns a value to an element in a list:
>>> trees = ['pine', 'oak', 'elm']
>>> trees
['pine', 'oak', 'elm']
>>> trees[1] = 'cedar'
>>> trees
['pine', 'cedar', 'elm']

2. Assignment with the indexing operator [] assigns a value to an item (a keyvalue
pair) in a dictionary:

>>> foods = {}
>>> foods
{}
>>> foods['vegetable'] = 'green beans'
>>> foods['fruit'] = 'nectarine'
>>> foods

Page 199

A Python Book

{'vegetable': 'green beans', 'fruit': 'nectarine'}

3. Assignment along with the dereferencing operator . (dot) enables us to assign a
value to an attribute of an object:

>>> class A(object):
... pass
...
>>> a = A()
>>> a.category = 25
>>> a.__dict__
{'category': 25}
>>> a.category
25

3.5.2 print statement
Warning: Be aware that the print statement will go away in Python version 3.0. It will
be replaced by the builtin print() function.

The print statement sends output to standard output. It provides a somewhat more
convenient way of producing output than using sys.stdout.write().

The print statement takes a series of zero or more objects separated by commas. Zero
objects produces a blank line.

The print statement normally adds a newline at the end of its output. To eliminate that,
add a comma at the end.

Exercises:

1. Print a single string.
2. Print three strings using a single print statement.
3. Given a variable name containing a string, print out the string My name is

"xxxx"., where xxxx is replace by the value of name. Use the string formatting
operator.

Solutions:

1. We can print a literal string:
>>> print 'Hello, there'
Hello, there

2. We can print literals and the value of variables:
>>> description = 'cute'
>>> print 'I am a', description, 'kid.'
I am a cute kid.

3. The string formatting operator gives more control over formatting output:
>>> name = 'Alice'

Page 200

A Python Book

>>> print 'My name is "%s".' % (name,)
My name is "Alice".

3.5.3 if: statement exercises
The if statement is a compound statement that enables us to conditionally execute
blocks of code.

The if statement also has optional elif: and else: clauses.

The condition in an if: or elif: clause can be any Python expression, in other words,
something that returns a value (even if that value is None).

In the condition in an if: or elif: clause, the following values count as "false":

● False
● None
● Numeric zero
● An empty collection, for example an empty list or dictionary
● An empty string (a string of length zero)

All other values count as true.

Exercises:

1. Given the following list:
>>> bananas = ['banana1', 'banana2', 'banana3',]

Print one message if it is an empty list and another messge if it is not.
2. Here is one way of defining a Python equivalent of an "enum":

NO_COLOR, RED, GREEN, BLUE = range(4)

Write an if: statement which implements the effect of a "switch" statement in
Python. Print out a unique message for each color.

Solutions:

1. We can test for an empty or nonempty list:
>>> bananas = ['banana1', 'banana2', 'banana3',]
>>> if not bananas:
... print 'yes, we have no bananas'
... else:
... print 'yes, we have bananas'
...
yes, we have bananas

2. We can simulate a "switch" statement using if:elif: ...:
NO_COLOR, RED, GREEN, BLUE = range(4)

def test(color):

Page 201

A Python Book

 if color == RED:
 print "It's red."
 elif color == GREEN:
 print "It's green."
 elif color == BLUE:
 print "It's blue."

def main():
 color = BLUE
 test(color)

if __name__ == '__main__':
 main()

Which, when run prints out the following:
It's blue.

3.5.4 for: statement exercises
The for: statement is the Python way to iterate over and process the elements of a
collection or other iterable.

The basic form of the for: statement is the following:

for X in Y:
 statement
 o
 o
 o

where:

● X is something that can be assigned to. It is something to which Python can bind a
value.

● Y is some collection or other iterable.
Exercises:

1. Create a list of integers. Use a for: statement to print out each integer in the list.
2. Create a string. print out each character in the string.

Solutions:

1. The for: statement can iterate over the items in a list:
In [13]: a = [11, 22, 33,]
In [14]: for value in a:
 : print 'value: %d' % value
 :
 :
value: 11
value: 22
value: 33

Page 202

A Python Book

2. The for: statement can iterate over the characters in a string:
In [16]: b = 'chocolate'
In [17]: for chr1 in b:
 : print 'character: %s' % chr1
 :
 :
character: c
character: h
character: o
character: c
character: o
character: l
character: a
character: t
character: e

Notes:
○ In the solution, I used the variable name chr1 rather than chr so as not to

overwrite the name of the builtin function chr().
When we need a sequential index, we can use the range() builtin function to create a
list of integers. And, the xrange() builtin function produces an interator that produces
a sequence of integers without creating the entire list. To iterate over a large sequence of
integers, use xrange() instead of range().

Exercises:

1. Print out the integers from 0 to 5 in sequence.
2. Compute the sum of all the integers from 0 to 99999.
3. Given the following generator function:

import urllib

Urls = [
 'http://yahoo.com',
 'http://python.org',
 'http://gimp.org', # The GNU image manipulation
program
]

def walk(url_list):
 for url in url_list:
 f = urllib.urlopen(url)
 stuff = f.read()
 f.close()
 yield stuff

Write a for: statement that uses this iterator generator to print the lengths of the
content at each of the Web pages in that list.

Solutions:

1. The range() builtin function gives us a sequence to iterate over:

Page 203

A Python Book

In [5]: for idx in range(6):
 ...: print 'idx: %d' % idx
 ...:
 ...:
idx: 0
idx: 1
idx: 2
idx: 3
idx: 4
idx: 5

2. Since that sequence is a bit large, we'll use xrange() instead of range():
In [8]: count = 0
In [9]: for n in xrange(100000):
 ...: count += n
 ...:
 ...:
In [10]: count
Out[10]: 4999950000

3. The for: statement enables us to iterate over iterables as well as collections:
import urllib

Urls = [
 'http://yahoo.com',
 'http://python.org',
 'http://gimp.org', # The GNU image manipulation
program
]

def walk(url_list):
 for url in url_list:
 f = urllib.urlopen(url)
 stuff = f.read()
 f.close()
 yield stuff

def test():
 for url in walk(Urls):
 print 'length: %d' % (len(url),)

if __name__ == '__main__':
 test()

When I ran this script, it prints the following:
length: 9562
length: 16341
length: 12343

If you need an index while iterating over a sequence, consider using the enumerate()
builtin function.

Page 204

A Python Book

Exercises:

1. Given the following two lists of integers of the same length:
a = [1, 2, 3, 4, 5]
b = [100, 200, 300, 400, 500]

Add the values in the first list to the corresponding values in the second list.
Solutions:

1. The enumerate() builtin function gives us an index and values from a
sequence. Since enumerate() gives us an interator that produces a sequence of
twotuples, we can unpack those tuples into index and value variables in the
header line of the for statement:

In [13]: a = [1, 2, 3, 4, 5]
In [14]: b = [100, 200, 300, 400, 500]
In [15]:
In [16]: for idx, value in enumerate(a):
 : b[idx] += value
 :
 :
In [17]: b
Out[17]: [101, 202, 303, 404, 505]

3.5.5 while: statement exercises
A while: statement executes a block of code repeatedly as long as a condition is true.

Here is a template for the while: statement:

while condition:
 statement
 o
 o
 o

Where:

● condition is an expression. The expression is something that returns a value
which can be interpreted as true or false.

Exercises:

1. Write a while: loop that doubles all the values in a list of integers.
Solutions:

1. A while: loop with an index variable can be used to modify each element of a
list:

def test_while():
 numbers = [11, 22, 33, 44,]
 print 'before: %s' % (numbers,)

Page 205

A Python Book

 idx = 0
 while idx < len(numbers):
 numbers[idx] *= 2
 idx += 1
 print 'after: %s' % (numbers,)

But, notice that this task is easier using the for: statement and the builtin
enumerate() function:

def test_for():
 numbers = [11, 22, 33, 44,]
 print 'before: %s' % (numbers,)
 for idx, item in enumerate(numbers):
 numbers[idx] *= 2
 print 'after: %s' % (numbers,)

3.5.6 break and continue statements
The continue statement skips the remainder of the statements in the body of a loop
and starts immediately at the top of the loop again.

A break statement in the body of a loop terminates the loop. It exits from the
immediately containing loop.

break and continue can be used in both for: and while: statements.

Exercises:

1. Write a for: loop that takes a list of integers and triples each integer that is even.
Use the continue statement.

2. Write a loop that takes a list of integers and computes the sum of all the integers
up until a zero is found in the list. Use the break statement.

Solutions:

1. The continue statement enables us to "skip" items that satisfy a condition or
test:

def test():
 numbers = [11, 22, 33, 44, 55, 66,]
 print 'before: %s' % (numbers,)
 for idx, item in enumerate(numbers):
 if item % 2 != 0:
 continue
 numbers[idx] *= 3
 print 'after: %s' % (numbers,)

test()

2. The break statement enables us to exit from a loop when we find a zero:
def test():
 numbers = [11, 22, 33, 0, 44, 55, 66,]

Page 206

A Python Book

 print 'numbers: %s' % (numbers,)
 sum = 0
 for item in numbers:
 if item == 0:
 break
 sum += item
 print 'sum: %d' % (sum,)

test()

3.5.7 Exceptions and the try:except: and raise statements
The try:except: statement enables us to catch an exception that is thrown from
within a block of code, or from code called from any depth withing that block.

The raise statement enables us to throw an exception.

An exception is a class or an instance of an exception class. If an exception is not caught,
it results in a traceback and termination of the program.

There is a set of standard exceptions. You can learn about them here: Builtin Exceptions
 http://docs.python.org/lib/moduleexceptions.html.

You can define your own exception classes. To do so, create an empty subclass of the
class Exception. Defining your own exception will enable you (or others) to throw
and then catch that specific exception type while ignore others exceptions.

Exercises:

1. Write a try:except: statement that attempts to open a file for reading and
catches the exception thrown when the file does not exist.
Question: How do you find out the name of the exception that is thrown for an
input/output error such as the failure to open a file?

2. Define an exception class. Then write a try:except: statement in which you
throw and catch that specific exception.

3. Define an exception class and use it to implement a multilevel break from an
inner loop, bypassing an outer loop.

Solutions:

1. Use the Python interactive interpreter to learn the exception type thrown when a
I/O error occurs. Example:

>>> infile = open('xx_nothing__yy.txt', 'r')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IOError: [Errno 2] No such file or directory:
'xx_nothing__yy.txt'
>>>

Page 207

A Python Book

In this case, the exception type is IOError.
Now, write a try:except: block which catches that exception:

def test():
 infilename = 'nothing_noplace.txt'
 try:
 infile = open(infilename, 'r')
 for line in infile:
 print line
 except IOError, exp:
 print 'cannot open file "%s"' % infilename

test()

2. We define a exception class as a subclass of class Exception, then throw it
(with the raise statement) and catch it (with a try:except: statement):

class SizeError(Exception):
 pass

def test_exception(size):
 try:
 if size <= 0:
 raise SizeError, 'size must be greater than
zero'
 # Produce a different error to show that it
will not be caught.
 x = y
 except SizeError, exp:
 print '%s' % (exp,)
 print 'goodbye'

def test():
 test_exception(1)
 print '' * 40
 test_exception(1)

test()

When we run this script, it produces the following output:
$ python workbook027.py
size must be greater than zero
goodbye

Traceback (most recent call last):
 File "workbook027.py", line 20, in <module>
 test()
 File "workbook027.py", line 18, in test
 test_exception(1)
 File "workbook027.py", line 10, in test_exception
 x = y
NameError: global name 'y' is not defined

Page 208

A Python Book

Notes:
○ Our except: clause caught the SizeError, but allowed the NameError

to be uncaught.
3. We define a subclass of of class Exception, then raise it in an inner loop and

catch it outside of an outer loop:
class BreakException1(Exception):
 pass

def test():
 a = [11, 22, 33, 44, 55, 66,]
 b = [111, 222, 333, 444, 555, 666,]
 try:
 for x in a:
 print 'outer x: %d' % x
 for y in b:
 if x > 22 and y > 444:
 raise BreakException1('leaving
inner loop')
 print 'inner y: %d' % y
 print 'outer after'
 print '' * 40
 except BreakException1, exp:
 print 'out of loop exp: %s' % exp

test()

Here is what this prints out when run:
outer x: 11
inner y: 111
inner y: 222
inner y: 333
inner y: 444
inner y: 555
inner y: 666
outer after

outer x: 22
inner y: 111
inner y: 222
inner y: 333
inner y: 444
inner y: 555
inner y: 666
outer after

outer x: 33
inner y: 111
inner y: 222
inner y: 333
inner y: 444
out of loop exp: leaving inner loop

Page 209

A Python Book

3.6 Functions
A function has these characteristics:

● It groups a block of code together so that we can call it by name.
● It enables us to pass values into the the function when we call it.
● It can returns a value (even if None).
● When a function is called, it has its own namespace. Variables in the function are

local to the function (and disappear when the function exits).
A function is defined with the def: statement. Here is a simple example/template:

def function_name(arg1, arg2):
 local_var1 = arg1 + 1
 local_var2 = arg2 * 2
 return local_var1 + local_var2

And, here is an example of calling this function:

result = function_name(1, 2)

Here are a few notes of explanation:

● The above defines a function whose name is function_name.
● The function function_name has two arguments. That means that we can and

must pass in exactly two values when we call it.
● This function has two local variables, local_var1 and local_var2. These

variables are local in the sense that after we call this function, these two variables
are not available in the location of the caller.

● When we call this function, it returns one value, specifically the sum of
local_var1 and local_var2.

Exercises:

1. Write a function that takes a list of integers as an argument, and returns the sum
of the integers in that list.

Solutions:

1. The return statement enables us to return a value from a function:
def list_sum(values):
 sum = 0
 for value in values:
 sum += value
 return sum

def test():
 a = [11, 22, 33, 44,]
 print list_sum(a)

if __name__ == '__main__':

Page 210

A Python Book

 test()

3.6.1 Optional arguments and default values
You can provide a default value for an argument to a function.

If you do, that argument is optional (when the function is called).

Here are a few things to learn about optional arguments:

● Provide a default value with an equal sign and a value. Example:
def sample_func(arg1, arg2, arg3='empty', arg4=0):

● All parameters with default values must be after (to the right of) normal
parameters.

● Do not use a mutable object as a default value. Because the def: statement is
evaluated only once and not each time the function is called, the mutable object
might be shared across multiple calls to the function. Do not do this:

def sample_func(arg1, arg2=[]):

Instead, do this:
def sample_func(arg1, arg2=None):
 if arg2 is None:
 arg2 = []

Here is an example that illustrates how this might go wrong:
def adder(a, b=[]):
 b.append(a)
 return b

def test():
 print adder('aaa')
 print adder('bbb')
 print adder('ccc')

test()

Which, when executed, displays the following:
['aaa']
['aaa', 'bbb']
['aaa', 'bbb', 'ccc']

Exercises:

1. Write a function that writes a string to a file. The function takes two arguments:
(1) a file that is open for output and (2) a string. Give the second argument (the
string) a default value so that when the second argument is omitted, an empty,
blank line is written to the file.

Page 211

A Python Book

2. Write a function that takes the following arguments: (1) a name, (2) a value, and
(3) and optional dictionary. The function adds the value to the dictionary using the
name as a key in the dictionary.

Solutions:

1. We can pass a file as we would any other object. And, we can use a newline
character as a default parameter value:

import sys

def writer(outfile, msg='\n'):
 outfile.write(msg)

def test():
 writer(sys.stdout, 'aaaaa\n')
 writer(sys.stdout)
 writer(sys.stdout, 'bbbbb\n')

test()

When run from the command line, this prints out the following:
aaaaa

bbbbb

2. In this solution we are careful not to use a mutable object as a default value:

def add_to_dict(name, value, dic=None):
 if dic is None:
 dic = {}
 dic[name] = value
 return dic

def test():
 dic1 = {'albert': 'cute', }
 print add_to_dict('barry', 'funny', dic1)
 print add_to_dict('charlene', 'smart', dic1)
 print add_to_dict('darryl', 'outrageous')
 print add_to_dict('eddie', 'friendly')

test()

If we run this script, we see:
{'barry': 'funny', 'albert': 'cute'}
{'barry': 'funny', 'albert': 'cute', 'charlene':
'smart'}
{'darryl': 'outrageous'}
{'eddie': 'friendly'}

Notes:
○ It's important that the default value for the dictionary is None rather than an

empty dictionary, for example ({}). Remember that the def: statement is

Page 212

A Python Book

evaluated only once, which results in a single dictionary, which would be
shared by all callers that do not provide a dictionary as an argument.

3.6.2 Passing functions as arguments
A function, like any other object, can be passed as an argument to a function. This is due
the the fact that almost all (maybe all) objects in Python are "first class objects". A first
class object is one which we can:

1. Store in a data structure (e.g. a list, a dictionary, ...).
2. Pass to a function.
3. Return from a function.

Exercises:

1. Write a function that takes three arguments: (1) an input file, (2) an output file,
and (3) a filter function:
○ Argument 1 is a file opened for reading.
○ Argument 2 is a file opened for writing.
○ Argument 3 is a function that takes a single argument (a string), performs a

transformation on that string, and returns the transformed string.
The above function should read each line in the input text file, pass that line
through the filter function, then write that (possibly) transformed line to the
output file.
Now, write one or more "filter functions" that can be passed to the function
described above.

Solutions:

1. This script adds or removes comment characters to the lines of a file:
import sys

def filter(infile, outfile, filterfunc):
 for line in infile:
 line = filterfunc(line)
 outfile.write(line)

def add_comment(line):
 line = '## %s' % (line,)
 return line

def remove_comment(line):
 if line.startswith('## '):
 line = line[3:]
 return line

def main():
 filter(sys.stdin, sys.stdout, add_comment)

Page 213

A Python Book

if __name__ == '__main__':
 main()

Running this might produce something like the following (note for MS Windows
users: use type instead of cat):

$ cat tmp.txt
line 1
line 2
line 3
$ cat tmp.txt | python workbook005.py
line 1
line 2
line 3

3.6.3 Extra args and keyword args
Additional positional arguments passed to a function that are not specified in the function
definition (the def: statement``), are collected in an argument preceded by a single
asterisk. Keyword arguments passed to a function that are not specified in the function
definition can be collected in a dictionary and passed to an argument preceded by a
double asterisk.

Examples:

1. Write a function that takes one positional argument, one argument with a default
value, and also extra args and keyword args.

2. Write a function that passes all its arguments, no matter how many, to a call to
another function.

Solutions:

1. We use *args and **kwargs to collect extra arguments and extra keyword
arguments:

def show_args(x, y=1, *args, **kwargs):
 print '' * 40
 print 'x:', x
 print 'y:', y
 print 'args:', args
 print 'kwargs:', kwargs

def test():
 show_args(1)
 show_args(x=2, y=3)
 show_args(y=5, x=4)
 show_args(4, 5, 6, 7, 8)
 show_args(11, y=44, a=55, b=66)

test()

Page 214

A Python Book

Running this script produces the following:
$ python workbook006.py

x: 1
y: 1
args: ()
kwargs: {}

x: 2
y: 3
args: ()
kwargs: {}

x: 4
y: 5
args: ()
kwargs: {}

x: 4
y: 5
args: (6, 7, 8)
kwargs: {}

x: 11
y: 44
args: ()
kwargs: {'a': 55, 'b': 66}

Notes:
○ The spelling of args and kwargs is not fixed, but the

2. We use args and kwargs to catch and pass on all arguments:
def func1(*args, **kwargs):
 print 'args: %s' % (args,)
 print 'kwargs: %s' % (kwargs,)

def func2(*args, **kwargs):
 print 'before'
 func1(*args, **kwargs)
 print 'after'

def test():
 func2('aaa', 'bbb', 'ccc', arg1='ddd', arg2='eee')

test()

When we run this, it prints the following:
before
args: ('aaa', 'bbb', 'ccc')
kwargs: {'arg1': 'ddd', 'arg2': 'eee'}
after

Page 215

A Python Book

Notes:
○ In a function call, the * operator unrolls a list into individual positional

arguments, and the ** operator unrolls a dictionary into individual keyword
arguments.

3.6.3.1 Order of arguments (positional, extra, and keyword args)

In a function definition, arguments must appear in the following order, from left to right:

1. Positional (normal, plain) arguments
2. Arguments with default values, if any
3. Extra arguments parameter (proceded by single asterisk), if present
4. Keyword arguments parameter (proceded by double asterisk), if present

In a function call, arguments must appear in the following order, from left to right:

1. Positional (plain) arguments
2. Extra arguments, if present
3. Keyword arguments, if present

3.6.4 Functions and ducktyping and polymorphism
If the arguments and return value of a function satisfy some description, then we can say
that the function is polymorphic with respect to that description.

If the some of the methods of an object satisfy some description, then we can say that the
object is polymorphic with respect to that description.

Basically, what this does is to enable us to use a function or an object anywhere that
function satisfies the requirements given by a description.

Exercises:

1. Implement a function that takes two arguments: a function and an object. It
applies the function argument to the object.

2. Implement a function that takes two arguments: a list of functions and an object.
It applies each function in the list to the argument.

Solutions:

1. We can pass a function as an argument to a function:
def fancy(obj):
 print 'fancy fancy %s fancy fancy' % (obj,)

def plain(obj):
 print 'plain %s plain' % (obj,)

def show(func, obj):
 func(obj)

Page 216

A Python Book

def main():
 a = {'aa': 11, 'bb': 22, }
 show(fancy, a)
 show(plain, a)

if __name__ == '__main__':
 main()

2. We can also put functions (function objects) in a data structure (for example, a
list), and then pass that data structure to a function:

def fancy(obj):
 print 'fancy fancy %s fancy fancy' % (obj,)

def plain(obj):
 print 'plain %s plain' % (obj,)

Func_list = [fancy, plain,]

def show(funcs, obj):
 for func in funcs:
 func(obj)

def main():
 a = {'aa': 11, 'bb': 22, }
 show(Func_list, a)

if __name__ == '__main__':
 main()

Notice that Python supports polymorphism (with or) without inheritance. This type of
polymorphism is enabled by what is called ducktyping. For more on this see: Duck
typing http://en.wikipedia.org/wiki/Duck_typing at Wikipedia.

3.6.5 Recursive functions
A recursive function is a function that calls itself.

A recursive function must have a limiting condition, or else it will loop endlessly.

Each recursive call consumes space on the function call stack. Therefore, the number of
recursions must have some reasonable upper bound.

Exercises:

1. Write a recursive function that prints information about each node in the
following treestructure data structure:

Tree = {
 'name': 'animals',
 'left_branch': {

Page 217

A Python Book

 'name': 'birds',
 'left_branch': {
 'name': 'seed eaters',
 'left_branch': {
 'name': 'house finch',
 'left_branch': None,
 'right_branch': None,
 },
 'right_branch': {
 'name': 'white crowned sparrow',
 'left_branch': None,
 'right_branch': None,
 },
 },
 'right_branch': {
 'name': 'insect eaters',
 'left_branch': {
 'name': 'hermit thrush',
 'left_branch': None,
 'right_branch': None,
 },
 'right_branch': {
 'name': 'black headed phoebe',
 'left_branch': None,
 'right_branch': None,
 },
 },
 },
 'right_branch': None,
}

Solutions:

1. We write a recursive function to walk the whole tree. The recursive function calls
itself to process each child of a node in the tree:

Tree = {
 'name': 'animals',
 'left_branch': {
 'name': 'birds',
 'left_branch': {
 'name': 'seed eaters',
 'left_branch': {
 'name': 'house finch',
 'left_branch': None,
 'right_branch': None,
 },
 'right_branch': {
 'name': 'white crowned sparrow',
 'left_branch': None,
 'right_branch': None,
 },
 },

Page 218

A Python Book

 'right_branch': {
 'name': 'insect eaters',
 'left_branch': {
 'name': 'hermit thrush',
 'left_branch': None,
 'right_branch': None,
 },
 'right_branch': {
 'name': 'black headed phoebe',
 'left_branch': None,
 'right_branch': None,
 },
 },
 },
 'right_branch': None,
}

Indents = [' ' * idx for idx in range(10)]

def walk_and_show(node, level=0):
 if node is None:
 return
 print '%sname: %s' % (Indents[level], node['name'],
)
 level += 1
 walk_and_show(node['left_branch'], level)
 walk_and_show(node['right_branch'], level)

def test():
 walk_and_show(Tree)

if __name__ == '__main__':
 test()

Notes:
○ Later, you will learn how to create equivalent data structures using classes and

OOP (objectoriented programming). For more on that see Recursive calls to
methods in this document.

3.6.6 Generators and iterators
The "iterator protocol" defines what an iterator object must do in order to be usable in an
"iterator context" such as a for statement. The iterator protocol is described in the
standard library reference: Iterator Types http://docs.python.org/lib/typeiter.html

An easy way to define an object that obeys the iterator protocol is to write a generator
function. A generator function is a function that contains one or more yield statements.
If a function contains at least one yield statement, then that function when called,
returns generator iterator, which is an object that obeys the iterator protocol, i.e. it's an
iterator object.

Page 219

A Python Book

Note that in recent versions of Python, yield is an expression. This enables the consumer
to communicate back with the producer (the generator iterator). For more on this, see
PEP: 342 Coroutines via Enhanced Generators
http://www.python.org/dev/peps/pep0342/.

Exercises:

1. Implement a generator function The generator produced should yield all
values from a list/iterable that satisfy a predicate. It should apply the transforms
before return each value. The function takes these arguments:
1. values A list of values. Actually, it could be any iterable.
2. predicate A function that takes a single argument, performs a test on

that value, and returns True or False.
3. transforms (optional) A list of functions. Apply each function in this list

and returns the resulting value. So, for example, if the function is called like
this:

result = transforms([11, 22], p, [f, g])

then the resulting generator might return:
g(f(11))

2. Implement a generator function that takes a list of URLs as its argument and
generates the contents of each Web page, one by one (that is, it produces a
sequence of strings, the HTML page contents).

Solutions:

1. Here is the implementation of a function which contains yield, and, therefore,
produces a generator:

#!/usr/bin/env python
"""
filter_and_transform

filter_and_transform(content, test_func,
transforms=None)

Return a generator that returns items from content
after applying
the functions in transforms if the item satisfies
test_func .

Arguments:

 1. ``values`` A list of values

 2. ``predicate`` A function that takes a single
argument,
 performs a test on that value, and returns True

Page 220

A Python Book

or False.

 3. ``transforms`` (optional) A list of functions.
Apply each
 function in this list and returns the resulting
value. So,
 for example, if the function is called like
this::

 result = filter_and_transforms([11, 22], p, [f,
g])

 then the resulting generator might return::

 g(f(11))
"""

def filter_and_transform(content, test_func,
transforms=None):
 for x in content:
 if test_func(x):
 if transforms is None:
 yield x
 elif isiterable(transforms):
 for func in transforms:
 x = func(x)
 yield x
 else:
 yield transforms(x)

def isiterable(x):
 flag = True
 try:
 x = iter(x)
 except TypeError, exp:
 flag = False
 return flag

def iseven(n):
 return n % 2 == 0

def f(n):
 return n * 2

def g(n):
 return n ** 2

def test():
 data1 = [11, 22, 33, 44, 55, 66, 77,]
 for val in filter_and_transform(data1, iseven, f):
 print 'val: %d' % (val,)
 print '' * 40
 for val in filter_and_transform(data1, iseven, [f,

Page 221

A Python Book

g]):
 print 'val: %d' % (val,)
 print '' * 40
 for val in filter_and_transform(data1, iseven):
 print 'val: %d' % (val,)

if __name__ == '__main__':
 test()

Notes:
○ Because function filter_and_transform contains yield, when

called, it returns an iterator object, which we can use in a for statement.
○ The second parameter of function filter_and_transform takes any

function which takes a single argument and returns True or False. This is an
example of polymorphism and "duck typing" (see Duck Typing
http://en.wikipedia.org/wiki/Duck_typing). An analogous claim can be made
about the third parameter.

2. The following function uses the urllib module and the yield function to
generate the contents of a sequence of Web pages:

import urllib

Urls = [
 'http://yahoo.com',
 'http://python.org',
 'http://gimp.org', # The GNU image manipulation
program
]

def walk(url_list):
 for url in url_list:
 f = urllib.urlopen(url)
 stuff = f.read()
 f.close()
 yield stuff

def test():
 for x in walk(Urls):
 print 'length: %d' % (len(x),)

if __name__ == '__main__':
 test()

When I run this, I see:
$ python generator_example.py
length: 9554
length: 16748
length: 11487

Page 222

A Python Book

3.7 Objectoriented programming and classes
Classes provide Python's way to define new data types and to do OOP (objectoriented
programming).

If you have made it this far, you have already used lots of objects. You have been a
"consumer" of objects and their services. Now, you will learn how to define and
implement new kinds of objects. You will become a "producer" of objects. You will
define new classes and you will implement the capabilities (methods) of each new class.

A class is defined with the class statement. The first line of a class statement is a
header (it has a colon at the end), and it specifies the name of the class being defined and
an (optional) superclass. And that header introduces a compound statement: specifically,
the body of the class statement which contains indented, nested statements,
importantly, def statements that define the methods that can be called on instances of the
objects implemented by this class.

Exercises:

1. Define a class with one method show. That method should print out "Hello".
Then, create an instance of your class, and call the show method.

Solutions:

1. A simple instance method can have the self parameter and no others:
class Demo(object):
 def show(self):
 print 'hello'

def test():
 a = Demo()
 a.show()

test()

Notes:
○ Notice that we use object as a superclass, because we want to define an

"newstyle" class and because there is no other class that we want as a
superclass. See the following for more information on newstyle classes:
Newstyle Classes http://www.python.org/doc/newstyle/.

○ In Python, we create an instance of a class by calling the class, that is, we
apply the function call operator (parentheses) to the class.

3.7.1 The constructor
A class can define methods with special names. You have seem some of these before.
These names begin and end with a double underscore.

Page 223

A Python Book

One important special name is __init__. It's the constructor for a class. It is called
each time an instance of the class is created. Implementing this method in a class gives us
a chance to initialize each instance of our class.

Exercises:

1. Implement a class named Plant that has a constructor which initializes two
instance variables: name and size. Also, in this class, implement a method
named show that prints out the values of these instance variables. Create several
instances of your class and "show" them.

2. Implement a class name Node that has two instance variables: data and
children, where data is any, arbitrary object and children is a list of child
Nodes. Also implement a method named show that recursively displays the
nodes in a "tree". Create an instance of your class that contains several child
instances of your class. Call the show method on the root (top most) object to
show the tree.

Solutions:

1. The constructor for a class is a method with the special name __init__:
class Plant(object):
 def __init__(self, name, size):
 self.name = name
 self.size = size
 def show(self):
 print 'name: "%s" size: %d' % (self.name,
self.size,)

def test():
 p1 = Plant('Eggplant', 25)
 p2 = Plant('Tomato', 36)
 plants = [p1, p2,]
 for plant in plants:
 plant.show()

test()

Notes:
○ Our constructor takes two arguments: name and size. It saves those two

values as instance variables, that is in attributes of the instance.
○ The show() method prints out the value of those two instance variables.

2. It is a good idea to initialize all instance variables in the constructor. That enables
someone reading our code to learn about all the instance variables of a class by
looking in a single location:

simple_node.py

Indents = [' ' * n for n in range(10)]

Page 224

A Python Book

class Node(object):
 def __init__(self, name=None, children=None):
 self.name = name
 if children is None:
 self.children = []
 else:
 self.children = children
 def show_name(self, indent):
 print '%sname: "%s"' % (Indents[indent],
self.name,)
 def show(self, indent=0):
 self.show_name(indent)
 indent += 1
 for child in self.children:
 child.show(indent)

def test():
 n1 = Node('N1')
 n2 = Node('N2')
 n3 = Node('N3')
 n4 = Node('N4')
 n5 = Node('N5', [n1, n2,])
 n6 = Node('N6', [n3, n4,])
 n7 = Node('N7', [n5, n6,])
 n7.show()

if __name__ == '__main__':
 test()

Notes:
○ Notice that we do not use the constructor for a list ([]) as a default value for

the children parameter of the constructor. A list is mutable and would be
created only once (when the class statement is executed) and would be shared.

3.7.2 Inheritance Implementing a subclass
A subclass extends or specializes a superclass by adding additional methods to the
superclass and by overriding methods (with the same name) that already exist in the
superclass.

Exercises:

1. Extend your Node exercise above by adding two additional subclasses of the
Node class, one named Plant and the other named Animal. The Plant class
also has a height instance variable and the Animal class also has a color
instance variable.

Solutions:

1. We can import our previous Node script, then implement classes that have the
Node class as a superclass:

Page 225

A Python Book

from simple_node import Node, Indents

class Plant(Node):
 def __init__(self, name, height=1, children=None):
 Node.__init__(self, name, children)
 self.height = height
 def show(self, indent=0):
 self.show_name(indent)
 print '%sheight: %s' % (Indents[indent],
self.height,)
 indent += 1
 for child in self.children:
 child.show(indent)

class Animal(Node):
 def __init__(self, name, color='no color',
children=None):
 Node.__init__(self, name, children)
 self.color = color
 def show(self, indent=0):
 self.show_name(indent)
 print '%scolor: "%s"' % (Indents[indent],
self.color,)
 indent += 1
 for child in self.children:
 child.show(indent)

def test():
 n1 = Animal('scrubjay', 'gray blue')
 n2 = Animal('raven', 'black')
 n3 = Animal('american kestrel', 'brown')
 n4 = Animal('redshouldered hawk', 'brown and
gray')
 n5 = Animal('corvid', 'none', [n1, n2,])
 n6 = Animal('raptor', children=[n3, n4,])
 n7a = Animal('bird', children=[n5, n6,])
 n1 = Plant('valley oak', 50)
 n2 = Plant('canyon live oak', 40)
 n3 = Plant('jeffery pine', 120)
 n4 = Plant('ponderosa pine', 140)
 n5 = Plant('oak', children=[n1, n2,])
 n6 = Plant('conifer', children=[n3, n4,])
 n7b = Plant('tree', children=[n5, n6,])
 n8 = Node('birds and trees', [n7a, n7b,])
 n8.show()

if __name__ == '__main__':
 test()

Notes:
○ The show method in class Plant calls the show_name method in its

superclass using self.show_name(...). Python searches up the

Page 226

A Python Book

inheritance tree to find the show_name method in class Node.
○ The constructor (__init__) in classes Plant and Animal each call the

constructor in the superclass by using the name of the superclass. Why the
difference? Because, if (in the Plant class, for example) it used
self.__init__(...) it would be calling the __init__ in the Plant
class, itself. So, it bypasses itself by referencing the constructor in the
superclass directly.

○ This exercise also demonstrates "polymorphism" The show method is
called a number of times, but which implementation executes depends on
which instance it is called on. Calling on the show method on an instance of
class Plant results in a call to Plant.show. Calling the show method on
an instance of class Animal results in a call to Animal.show. And so on. It
is important that each show method takes the correct number of arguments.

3.7.3 Classes and polymorphism
Python also supports classbased polymorphism, which was, by the way, demonstrated in
the previous example.

Exercises:

1. Write three classes, each of which implement a show() method that takes one
argument, a string. The show method should print out the name of the class and
the message. Then create a list of instances and call the show() method on each
object in the list.

Solution:

1. We implement three simple classes and then create a list of instances of these
classes:

class A(object):
 def show(self, msg):
 print 'class A msg: "%s"' % (msg,)

class B(object):
 def show(self, msg):
 print 'class B msg: "%s"' % (msg,)

class C(object):
 def show(self, msg):
 print 'class C msg: "%s"' % (msg,)

def test():
 objs = [A(), B(), C(), A(),]
 for idx, obj in enumerate(objs):
 msg = 'message # %d' % (idx + 1,)
 obj.show(msg)

Page 227

A Python Book

if __name__ == '__main__':
 test()

Notes:
○ We can call the show() method in any object in the list objs as long as we

pass in a single parameter, that is, as long as we obey the requirements of
ducktyping. We can do this because all objects in that list implement a
show() method.

○ In a statically typed language, that is a language where the type is (also)
present in the variable, all the instances in example would have to descend
from a common superclass and that superclass would have to implement a
show() method. Python does not impose this restriction. And, because
variables are not not typed in Python, perhaps that would not even possible.

○ Notice that this example of polymorphism works even though these three
classes (A, B, and C) are not related (for example, in a class hierarchy). All
that is required for polymorphism to work in Python is for the method names
to be the same and the arguments to be compatible.

3.7.4 Recursive calls to methods
A method in a class can recusively call itself. This is very similar to the way in which we
implemented recursive functions see: Recursive functions.

Exercises:

1. Reimplement the binary tree of animals and birds described in Recursive
functions, but this time, use a class to represent each node in the tree.

2. Solve the same problem, but this time implement a tree in which each node can
have any number of children (rather than exactly 2 children).

Solutions:

1. We implement a class with three instance variables: (1) name, (2) left branch, and
(3) right branch. Then, we implement a show() method that displays the name
and calls itself to show the children in each subtree:

Indents = [' ' * idx for idx in range(10)]

class AnimalNode(object):

 def __init__(self, name, left_branch=None,
right_branch=None):
 self.name = name
 self.left_branch = left_branch
 self.right_branch = right_branch

 def show(self, level=0):
 print '%sname: %s' % (Indents[level],

Page 228

A Python Book

self.name,)
 level += 1
 if self.left_branch is not None:
 self.left_branch.show(level)
 if self.right_branch is not None:
 self.right_branch.show(level)

Tree = AnimalNode('animals',
 AnimalNode('birds',
 AnimalNode('seed eaters',
 AnimalNode('house finch'),
 AnimalNode('white crowned sparrow'),
),
 AnimalNode('insect eaters',
 AnimalNode('hermit thrush'),
 AnimalNode('black headed phoebe'),
),
),
 None,
)

def test():
 Tree.show()

if __name__ == '__main__':
 test()

2. Instead of using a left branch and a right branch, in this solution we use a list to
represent the children of a node:

class AnimalNode(object):
 def __init__(self, data, children=None):
 self.data = data
 if children is None:
 self.children = []
 else:
 self.children = children

 def show(self, level=''):
 print '%sdata: %s' % (level, self.data,)
 level += ' '
 for child in self.children:
 child.show(level)

Tree = AnimalNode('animals', [
 AnimalNode('birds', [
 AnimalNode('seed eaters', [
 AnimalNode('house finch'),
 AnimalNode('white crowned sparrow'),
 AnimalNode('lesser gold finch'),
]),
 AnimalNode('insect eaters', [
 AnimalNode('hermit thrush'),

Page 229

A Python Book

 AnimalNode('black headed phoebe'),
]),
])
])

def test():
 Tree.show()

if __name__ == '__main__':
 test()

Notes:
○ We represent the children of a node as a list. Each node "hasa" list of

children.
○ Notice that because a list is mutable, we do not use a list constructor ([]) in

the initializer of the method header. Instead, we use None, then construct an
empty list in the body of the method if necessary. See section Optional
arguments and default values for more on this.

○ We (recursively) call the show method for each node in the children list.
Since a node which has no children (a leaf node) will have an empty
children list, this provides a limit condition for our recursion.

3.7.5 Class variables, class methods, and static methods
A class variable is one whose single value is shared by all instances of the class and, in
fact, is shared by all who have access to the class (object).

"Normal" methods are instance methods. An instance method receives the instance as its
first argument. A instance method is defined by using the def statement in the body of a
class statement.

A class method receives the class as its first argument. A class method is defined by
defining a normal/instance method, then using the classmethod builtin function. For
example:

class ASimpleClass(object):
 description = 'a simple class'
 def show_class(cls, msg):
 print '%s: %s' % (cls.description , msg,)
 show_class = classmethod(show_class)

A static method does not receive anything special as its first argument. A static method is
defined by defining a normal/instance method, then using the staticmethod builtin
function. For example:

class ASimpleClass(object):
 description = 'a simple class'
 def show_class(msg):

Page 230

A Python Book

 print '%s: %s' % (ASimpleClass.description , msg,)
 show_class = staticmethod(show_class)

In effect, both class methods and static methods are defined by creating a normal
(instance) method, then creating a wrapper object (a class method or static method) using
the classmethod or staticmethod builtin function.

Exercises:

1. Implement a class that keeps a running total of the number of instances created.
2. Implement another solution to the same problem (a class that keeps a running

total of the number of instances), but this time use a static method instead of a
class method.

Solutions:

1. We use a class variable named instance_count, rather than an instance
variable, to keep a running total of instances. Then, we increment that variable
each time an instance is created:

class CountInstances(object):

 instance_count = 0

 def __init__(self, name='no name'):
 self.name = name
 CountInstances.instance_count += 1

 def show(self):
 print 'name: "%s"' % (self.name,)

 def show_instance_count(cls):
 print 'instance count: %d' %
(cls.instance_count,)
 show_instance_count =
classmethod(show_instance_count)

def test():
 instances = []
 instances.append(CountInstances('apple'))
 instances.append(CountInstances('banana'))
 instances.append(CountInstances('cherry'))
 instances.append(CountInstances())
 for instance in instances:
 instance.show()
 CountInstances.show_instance_count()

if __name__ == '__main__':
 test()

Notes:

Page 231

A Python Book

○ When we run this script, it prints out the following:
name: "apple"
name: "banana"
name: "cherry"
name: "no name"
instance count: 4

○ The call to the classmethod builtin function effectively wraps the
show_instance_count method in a class method, that is, in a method
that takes a class object as its first argument rather than an instance object. To
read more about classmethod, go to Builtin Functions
http://docs.python.org/lib/builtinfuncs.html and search for "classmethod".

2. A static method takes neither an instance (self) nor a class as its first
paramenter. And, static method is created with the staticmethod() builtin
function (rather than with the classmethod() builtin):

class CountInstances(object):

 instance_count = 0

 def __init__(self, name='no name'):
 self.name = name
 CountInstances.instance_count += 1

 def show(self):
 print 'name: "%s"' % (self.name,)

 def show_instance_count():
 print 'instance count: %d' % (
 CountInstances.instance_count,)
 show_instance_count =
staticmethod(show_instance_count)

def test():
 instances = []
 instances.append(CountInstances('apple'))
 instances.append(CountInstances('banana'))
 instances.append(CountInstances('cherry'))
 instances.append(CountInstances())
 for instance in instances:
 instance.show()
 CountInstances.show_instance_count()

if __name__ == '__main__':
 test()

3.7.5.1 Decorators for classmethod and staticmethod

A decorator enables us to do what we did in the previous example with a somewhat
simpler syntax.

Page 232

A Python Book

For simple cases, the decorator syntax enables us to do this:

@functionwrapper
def method1(self):
 o
 o
 o

instead of this:

def method1(self):
 o
 o
 o
method1 = functionwrapper(method1)

So, we can write this:

@classmethod
def method1(self):
 o
 o
 o

instead of this:

def method1(self):
 o
 o
 o
method1 = classmethod(method1)

Exercises:

1. Implement the CountInstances example above, but use a decorator rather
than the explicit call to classmethod.

Solutions:

1. A decorator is an easier and cleaner way to define a class method (or a static
method):

class CountInstances(object):

 instance_count = 0

 def __init__(self, name='no name'):
 self.name = name
 CountInstances.instance_count += 1

 def show(self):
 print 'name: "%s"' % (self.name,)

 @classmethod

Page 233

A Python Book

 def show_instance_count(cls):
 print 'instance count: %d' %
(cls.instance_count,)
 # Note that the following line has been replaced by
 # the classmethod decorator, above.
 # show_instance_count =
classmethod(show_instance_count)

def test():
 instances = []
 instances.append(CountInstances('apple'))
 instances.append(CountInstances('banana'))
 instances.append(CountInstances('cherry'))
 instances.append(CountInstances())
 for instance in instances:
 instance.show()
 CountInstances.show_instance_count()

if __name__ == '__main__':
 test()

3.8 Additional and Advanced Topics

3.8.1 Decorators and how to implement them
Decorators can be used to "wrap" a function with another function.

When implementing a decorator, it is helpful to remember that the following decorator
application:

@dec
def func(arg1, arg2):
 pass

is equivalent to:

def func(arg1, arg2):
 pass
func = dec(func)

Therefore, to implement a decorator, we write a function that returns a function object,
since we replace the value originally bound to the function with this new function object.
It may be helpful to take the view that we are creating a function that is a wrapper for the
original function.

Exercises:

1. Write a decorator that writes a message before and after executing a function.
Solutions:

Page 234

A Python Book

1. A function that contains and returns an inner function can be used to wrap a
function:

def trace(func):
 def inner(*args, **kwargs):
 print '>>'
 func(*args, **kwargs)
 print '<<'
 return inner

@trace
def func1(x, y):
 print 'x:', x, 'y:', y
 func2((x, y))

@trace
def func2(content):
 print 'content:', content

def test():
 func1('aa', 'bb')

test()

Notes:
○ Your inner function can use *args and **kwargs to enable it to call

functions with any number of arguments.

3.8.1.1 Decorators with arguments

Decorators can also take arguments.

The following decorator with arguments:

@dec(argA, argB)
def func(arg1, arg2):
 pass

is equivalent to:

def func(arg1, arg2):
 pass
func = dec(argA, argB)(func)

Because the decorator's arguments are passed to the result of calling the decorator on the
decorated function, you may find it useful to implement a decorator with arguments using
a function inside a function inside a function.

Exercises:

1. Write and test a decorator that takes one argument. The decorator prints a
message along with the value of the argument before and after entering the

Page 235

A Python Book

decorated function.
Solutions:

1. Implement this decorator that takes arguments with a function containing a nested
function which in turn contains a nested function:

def trace(msg):
 def inner1(func):
 def inner2(*args, **kwargs):
 print '>> [%s]' % (msg,)
 retval = func(*args, **kwargs)
 print '<< [%s]' % (msg,)
 return retval
 return inner2
 return inner1

@trace('tracing func1')
def func1(x, y):
 print 'x:', x, 'y:', y
 result = func2((x, y))
 return result

@trace('tracing func2')
def func2(content):
 print 'content:', content
 return content * 3

def test():
 result = func1('aa', 'bb')
 print 'result:', result

test()

3.8.1.2 Stacked decorators

Decorators can be "stacked".

The following stacked decorators:

@dec2
@dec1
def func(arg1, arg2, ...):
 pass

are equivalent to:

def func(arg1, arg2, ...):
 pass
func = dec2(dec1(func))

Exercises:

1. Implement a decorator (as above) that traces calls to a decorated function. Then

Page 236

A Python Book

"stack" that with another decorator that prints a horizontal line of dashes before
and after calling the function.

2. Modify your solution to the above exercise so that the decorator that prints the
horizontal line takes one argument: a character (or characters) that can be repeated
to produce a horizontal line/separator.

Solutions:

1. Reuse your tracing function from the previous exercise, then write a simple
decorator that prints a row of dashes:

def trace(msg):
 def inner1(func):
 def inner2(*args, **kwargs):
 print '>> [%s]' % (msg,)
 retval = func(*args, **kwargs)
 print '<< [%s]' % (msg,)
 return retval
 return inner2
 return inner1

def horizontal_line(func):
 def inner(*args, **kwargs):
 print '' * 50
 retval = func(*args, **kwargs)
 print '' * 50
 return retval
 return inner

@trace('tracing func1')
def func1(x, y):
 print 'x:', x, 'y:', y
 result = func2((x, y))
 return result

@horizontal_line
@trace('tracing func2')
def func2(content):
 print 'content:', content
 return content * 3

def test():
 result = func1('aa', 'bb')
 print 'result:', result

test()

2. Once again, a decorator with arguments can be implemented with a function
nested inside a function which is nested inside a function. This remains the same
whether the decorator is used as a stacked decorator or not. Here is a solution:

def trace(msg):

Page 237

A Python Book

 def inner1(func):
 def inner2(*args, **kwargs):
 print '>> [%s]' % (msg,)
 retval = func(*args, **kwargs)
 print '<< [%s]' % (msg,)
 return retval
 return inner2
 return inner1

def horizontal_line(line_chr):
 def inner1(func):
 def inner2(*args, **kwargs):
 print line_chr * 15
 retval = func(*args, **kwargs)
 print line_chr * 15
 return retval
 return inner2
 return inner1

@trace('tracing func1')
def func1(x, y):
 print 'x:', x, 'y:', y
 result = func2((x, y))
 return result

@horizontal_line('<**>')
@trace('tracing func2')
def func2(content):
 print 'content:', content
 return content * 3

def test():
 result = func1('aa', 'bb')
 print 'result:', result

test()

3.8.1.3 More help with decorators

There is more about decorators here:

● Python syntax and semantics
http://en.wikipedia.org/wiki/Python_syntax_and_semantics#Decorators at
Wikipedia.

● PythonDecoratorLibrary http://wiki.python.org/moin/PythonDecoratorLibrary
at the Python Wiki has lots of sample code.

● PEP 318 Decorators for Functions and Methods
http://www.python.org/dev/peps/pep0318/ is the formal proposal and
specification for Python decorators.

Page 238

A Python Book

3.8.2 Iterables

3.8.2.1 A few preliminaries on Iterables

Definition: iterable (adjective) that which can be iterated over.

A good test of whether something is iterable is whether it can be used in a for:
statement. For example, if we can write for item in X:, then X is iterable. Here is
another simple test:

def isiterable(x):
 try:
 y = iter(x)
 except TypeError, exp:
 return False
 return True

Some kinds of iterables:

● Containers We can iterate over lists, tuples, dictionaries, sets, strings, and other
containers.

● Some builtin (noncontainer) types Examples:
○ A text file open in read mode is iterable: it iterates over the lines in the file.
○ The xrange type See XRange Type

http://docs.python.org/lib/typesseqxrange.html. It's useful when you want a
large sequence of integers to iterate over.

● Instances of classes that obey the iterator protocol. For a description of the iterator
protocol, see Iterator Types http://docs.python.org/lib/typeiter.html. Hint: Type
dir(obj) and look for "__iter__" and "next".

● Generators An object returned by any function or method that contains yield.
Exercises:

1. Implement a class whose instances are interable. The constructor takes a list of
URLs as its argument. An instance of this class, when iterated over, generates the
content of the Web page at that address.

Solutions:

1. We implement a class that has __iter__() and next() methods:
import urllib

class WebPages(object):
 def __init__(self, urls):
 self.urls = urls
 self.current_index = 0
 def __iter__(self):
 self.current_index = 0
 return self

Page 239

A Python Book

 def next(self):
 if self.current_index >= len(self.urls):
 raise StopIteration
 url = self.urls[self.current_index]
 self.current_index += 1
 f = urllib.urlopen(url)
 content = f.read()
 f.close()
 return content

def test():
 urls = [
 'http://www.python.org',
 'http://en.wikipedia.org/',

'http://en.wikipedia.org/wiki/Python_(programming_langu
age)',
]
 pages = WebPages(urls)
 for page in pages:
 print 'length: %d' % (len(page),)
 pages = WebPages(urls)
 print '' * 50
 page = pages.next()
 print 'length: %d' % (len(page),)
 page = pages.next()
 print 'length: %d' % (len(page),)
 page = pages.next()
 print 'length: %d' % (len(page),)
 page = pages.next()
 print 'length: %d' % (len(page),)

test()

3.8.2.2 More help with iterables

The itertools module in the Python standard library has helpers for iterators:
http://docs.python.org/library/itertools.html#moduleitertools

3.9 Applications and Recipes

3.9.1 XML SAX, minidom, ElementTree, Lxml
Exercises:

1. SAX Parse an XML document with SAX, then show some information (tag,
attributes, character data) for each element.

2. Minidom Parse an XML document with minidom, then walk the DOM tree
and show some information (tag, attributes, character data) for each element.

Page 240

A Python Book

Here is a sample XML document that you can use for input:
<?xml version="1.0"?>
<people>
 <person id="1" value="abcd" ratio="3.2">
 <name>Alberta</name>
 <interest>gardening</interest>
 <interest>reading</interest>
 <category>5</category>
 </person>
 <person id="2">
 <name>Bernardo</name>
 <interest>programming</interest>
 <category></category>
 <agent>
 <firstname>Darren</firstname>
 <lastname>Diddly</lastname>
 </agent>
 </person>
 <person id="3" value="efgh">
 <name>Charlie</name>
 <interest>people</interest>
 <interest>cats</interest>
 <interest>dogs</interest>
 <category>8</category>
 <promoter>
 <firstname>David</firstname>
 <lastname>Donaldson</lastname>
 <client>
 <fullname>Arnold Applebee</fullname>
 <refid>10001</refid>
 </client>
 </promoter>
 <promoter>
 <firstname>Edward</firstname>
 <lastname>Eddleberry</lastname>
 <client>
 <fullname>Arnold Applebee</fullname>
 <refid>10001</refid>
 </client>
 </promoter>
 </person>
</people>

3. ElementTree Parse an XML document with ElementTree, then walk the DOM
tree and show some information (tag, attributes, character data) for each element.

4. lxml Parse an XML document with lxml, then walk the DOM tree and show
some information (tag, attributes, character data) for each element.

5. Modify document with ElementTree Use ElementTree to read a document, then
modify the tree. Show the contents of the tree, and then write out the modified
document.

6. XPath lxml supports XPath. Use the XPath support in lxml to address each of

Page 241

A Python Book

the following in the above XML instance document:
○ The text in all the name elements
○ The values of all the id attributes

Solutions:

1. We can use the SAX support in the Python standard library:
#!/usr/bin/env python

"""
Parse and XML with SAX. Display info about each
element.

Usage:
 python test_sax.py infilename
Examples:
 python test_sax.py people.xml
"""

import sys
from xml.sax import make_parser, handler

class TestHandler(handler.ContentHandler):
 def __init__(self):
 self.level = 0

 def show_with_level(self, value):
 print '%s%s' % (' ' * self.level, value,)

 def startDocument(self):
 self.show_with_level('Document start')
 self.level += 1

 def endDocument(self):
 self.level = 1
 self.show_with_level('Document end')

 def startElement(self, name, attrs):
 self.show_with_level('start element name:
"%s"' % (name,))
 self.level += 1

 def endElement(self, name):
 self.level = 1
 self.show_with_level('end element name:
"%s"' % (name,))

 def characters(self, content):
 content = content.strip()
 if content:
 self.show_with_level('characters: "%s"' %
(content,))

Page 242

A Python Book

def test(infilename):
 parser = make_parser()
 handler = TestHandler()
 parser.setContentHandler(handler)
 parser.parse(infilename)

def usage():
 print __doc__
 sys.exit(1)

def main():
 args = sys.argv[1:]
 if len(args) != 1:
 usage()
 infilename = args[0]
 test(infilename)

if __name__ == '__main__':
 main()

2. The minidom module contains a parse() function that enables us to read an
XML document and create a DOM tree:

#!/usr/bin/env python

"""Process an XML document with minidom.

Show the document tree.

Usage:
 python minidom_walk.py [options] infilename
"""

import sys
from xml.dom import minidom

def show_tree(doc):
 root = doc.documentElement
 show_node(root, 0)

def show_node(node, level):
 count = 0
 if node.nodeType == minidom.Node.ELEMENT_NODE:
 show_level(level)
 print 'tag: %s' % (node.nodeName,)
 for key in node.attributes.keys():
 attr = node.attributes.get(key)
 show_level(level + 1)
 print ' attribute name: %s value: "%s"' %
(attr.name,
 attr.value,)
 if (len(node.childNodes) == 1 and
 node.childNodes[0].nodeType ==

Page 243

A Python Book

minidom.Node.TEXT_NODE):
 show_level(level + 1)
 print ' data: "%s"' %
(node.childNodes[0].data,)
 for child in node.childNodes:
 count += 1
 show_node(child, level + 1)
 return count

def show_level(level):
 for x in range(level):
 print ' ',

def test():
 args = sys.argv[1:]
 if len(args) != 1:
 print __doc__
 sys.exit(1)
 docname = args[0]
 doc = minidom.parse(docname)
 show_tree(doc)

if __name__ == '__main__':
 #import pdb; pdb.set_trace()
 test()

3. ElementTree enables us to parse an XML document and create a DOM tree:
#!/usr/bin/env python

"""Process an XML document with elementtree.

Show the document tree.

Usage:
 python elementtree_walk.py [options] infilename
"""

import sys
from xml.etree import ElementTree as etree

def show_tree(doc):
 root = doc.getroot()
 show_node(root, 0)

def show_node(node, level):
 show_level(level)
 print 'tag: %s' % (node.tag,)
 for key, value in node.attrib.iteritems():
 show_level(level + 1)
 print ' attribute name: %s value: "%s"' %
(key, value,)
 if node.text:
 text = node.text.strip()

Page 244

A Python Book

 show_level(level + 1)
 print ' text: "%s"' % (node.text,)
 if node.tail:
 tail = node.tail.strip()
 show_level(level + 1)
 print ' tail: "%s"' % (tail,)
 for child in node.getchildren():
 show_node(child, level + 1)

def show_level(level):
 for x in range(level):
 print ' ',

def test():
 args = sys.argv[1:]
 if len(args) != 1:
 print __doc__
 sys.exit(1)
 docname = args[0]
 doc = etree.parse(docname)
 show_tree(doc)

if __name__ == '__main__':
 #import pdb; pdb.set_trace()
 test()

4. lxml enables us to parse an XML document and create a DOM tree. In fact, since
lxml attempts to mimic the ElementTree API, our code is very similar to that in
the solution to the ElementTree exercise:

#!/usr/bin/env python

"""Process an XML document with elementtree.

Show the document tree.

Usage:
 python lxml_walk.py [options] infilename
"""

#
Imports:
import sys
from lxml import etree

def show_tree(doc):
 root = doc.getroot()
 show_node(root, 0)

def show_node(node, level):
 show_level(level)
 print 'tag: %s' % (node.tag,)
 for key, value in node.attrib.iteritems():

Page 245

A Python Book

 show_level(level + 1)
 print ' attribute name: %s value: "%s"' %
(key, value,)
 if node.text:
 text = node.text.strip()
 show_level(level + 1)
 print ' text: "%s"' % (node.text,)
 if node.tail:
 tail = node.tail.strip()
 show_level(level + 1)
 print ' tail: "%s"' % (tail,)
 for child in node.getchildren():
 show_node(child, level + 1)

def show_level(level):
 for x in range(level):
 print ' ',

def test():
 args = sys.argv[1:]
 if len(args) != 1:
 print __doc__
 sys.exit(1)
 docname = args[0]
 doc = etree.parse(docname)
 show_tree(doc)

if __name__ == '__main__':
 #import pdb; pdb.set_trace()
 test()

5. We can modify the DOM tree and write it out to a new file:
#!/usr/bin/env python

"""Process an XML document with elementtree.

Show the document tree.
Modify the document tree and then show it again.
Write the modified XML tree to a new file.

Usage:
 python elementtree_walk.py [options] infilename
outfilename
Options:
 h, help Display this help message.
Example:
 python elementtree_walk.py myxmldoc.xml
myotherxmldoc.xml
"""

import sys
import os
import getopt

Page 246

A Python Book

import time

Use ElementTree.
from xml.etree import ElementTree as etree
Or uncomment to use Lxml.
#from lxml import etree

def show_tree(doc):
 root = doc.getroot()
 show_node(root, 0)

def show_node(node, level):
 show_level(level)
 print 'tag: %s' % (node.tag,)
 for key, value in node.attrib.iteritems():
 show_level(level + 1)
 print ' attribute name: %s value: "%s"' %
(key, value,)
 if node.text:
 text = node.text.strip()
 show_level(level + 1)
 print ' text: "%s"' % (node.text,)
 if node.tail:
 tail = node.tail.strip()
 show_level(level + 1)
 print ' tail: "%s"' % (tail,)
 for child in node.getchildren():
 show_node(child, level + 1)

def show_level(level):
 for x in range(level):
 print ' ',

def modify_tree(doc, tag, attrname, attrvalue):
 root = doc.getroot()
 modify_node(root, tag, attrname, attrvalue)

def modify_node(node, tag, attrname, attrvalue):
 if node.tag == tag:
 node.attrib[attrname] = attrvalue
 for child in node.getchildren():
 modify_node(child, tag, attrname, attrvalue)

def test(indocname, outdocname):
 doc = etree.parse(indocname)
 show_tree(doc)
 print '' * 50
 date = time.ctime()
 modify_tree(doc, 'person', 'date', date)
 show_tree(doc)
 write_output = False
 if os.path.exists(outdocname):
 response = raw_input('Output file (%s) exists.

Page 247

A Python Book

Overwrite? (y/n): ' %
 outdocname)
 if response == 'y':
 write_output = True
 else:
 write_output = True
 if write_output:
 doc.write(outdocname)
 print 'Wrote modified XML tree to %s' %
outdocname
 else:
 print 'Did not write output file.'

def usage():
 print __doc__
 sys.exit(1)

def main():
 args = sys.argv[1:]
 try:
 opts, args = getopt.getopt(args, 'h', ['help',
])
 except:
 usage()
 for opt, val in opts:
 if opt in ('h', 'help'):
 usage()
 if len(args) != 2:
 usage()
 indocname = args[0]
 outdocname = args[1]
 test(indocname, outdocname)

if __name__ == '__main__':
 #import pdb; pdb.set_trace()
 main()

Notes:
○ The above solution contains an import statement for ElementTree and

another for lxml. The one for lxml is commented out, but you could change
that if you wish to use lxml instead of ElementTree. This solution will work
the same way with either ElementTree or lxml.

6. When we parse and XML document with lxml, each element (node) has an
xpath() method.

test_xpath.py

from lxml import etree

def test():
 doc = etree.parse('people.xml')
 root = doc.getroot()

Page 248

A Python Book

 print root.xpath("//name/text()")
 print root.xpath("//@id")

test()

And, when we run the above code, here is what we see:
$ python test_xpath.py
['Alberta', 'Bernardo', 'Charlie']
['1', '2', '3']

For more on XPath see: XML Path Language (XPath)
http://www.w3.org/TR/xpath

3.9.2 Relational database access
You can find information about database programming in Python here: Database
Programming http://wiki.python.org/moin/DatabaseProgramming/.

For database access we use the Python Database API. You can find information about it
here: Python Database API Specification v2.0
http://www.python.org/dev/peps/pep0249/.

To use the database API we do the following:

1. Use the database interface module to create a connection object.
2. Use the connection object to create a cursor object.
3. Use the cursor object to execute an SQL query.
4. Retrieve rows from the cursor object, if needed.
5. Optionally, commit results to the database.
6. Close the connection object.

Our examples use the gadfly database, which is written in Python. If you want to use
gadfly, you can find it here: http://gadfly.sourceforge.net/. gadfly is a reasonable
choice if you want an easy to use database on your local machine.

Another reasonable choice for a local database is sqlite3, which is in the Python
standard library. Here is a descriptive quote from the SQLite Web site:

"SQLite is a software library that implements a selfcontained,
serverless, zeroconfiguration, transactional SQL database engine.
SQLite is the most widely deployed SQL database engine in the world.
The source code for SQLite is in the public domain."

You can learn about it here:

● sqlite3 DBAPI 2.0 interface for SQLite databases
http://docs.python.org/library/sqlite3.html

● SQLite home page http://www.sqlite.org/

Page 249

A Python Book

● The pysqlite web page http://oss.itsystementwicklung.de/trac/pysqlite/
If you want or need to use another, enterprise class database, for example PostgreSQL,
MySQL, Oracle, etc., you will need an interface module for your specific database. You
can find information about database interface modules here: Database interfaces
http://wiki.python.org/moin/DatabaseInterfaces

Excercises:

1. Write a script that retrieves all the rows in a table and prints each row.
2. Write a script that retrieves all the rows in a table, then uses the cursor as an

iterator to print each row.
3. Write a script that uses the cursor's description attribute to print out the name

and value of each field in each row.
4. Write a script that performs several of the above tasks, but uses sqlite3 instead

of gadfly.
Solutions:

1. We can execute a SQL query and then retrieve all the rows with
fetchall():

import gadfly

def test():
 connection = gadfly.connect("dbtest1",
"plantsdbdir")
 cur = connection.cursor()
 cur.execute('select * from plantsdb order by
p_name')
 rows = cur.fetchall()
 for row in rows:
 print '2. row:', row
 connection.close()

test()

2. The cursor itself is an iterator. It iterates over the rows returned by a query. So,
we execute a SQL query and then we use the cursor in a for: statement:

import gadfly

def test():
 connection = gadfly.connect("dbtest1",
"plantsdbdir")
 cur = connection.cursor()
 cur.execute('select * from plantsdb order by
p_name')
 for row in cur:
 print row
 connection.close()

Page 250

A Python Book

test()

3. The description attribute in the cursor is a container that has an item describing
each field:

import gadfly

def test():
 cur.execute('select * from plantsdb order by
p_name')
 for field in cur.description:
 print 'field:', field
 rows = cur.fetchall()
 for row in rows:
 for idx, field in enumerate(row):
 content = '%s: "%s"' %
(cur.description[idx][0], field,)
 print content,
 print
 connection.close()

test()

Notes:
○ The comma at the end of the print statement tells Python not to print a

newline.
○ The cur.description is a sequence containing an item for each field.

After the query, we can extract a description of each field.
4. The solutions using sqlite3 are very similar to those using gadfly. For

information on sqlite3, see: sqlite3 — DBAPI 2.0 interface for SQLite
databases http://docs.python.org/library/sqlite3.html#modulesqlite3.

#!/usr/bin/env python

"""
Perform operations on sqlite3 (plants) database.

Usage:
 python py_db_api.py command [arg1, ...]
Commands:
 create create new database.
 show show contents of database.
 add add row to database. Requires 3 args (name,
descrip, rating).
 delete remove row from database. Requires 1 arg
(name).
Examples:
 python test1.py create
 python test1.py show
 python test1.py add crenshaw "The most succulent
melon" 10
 python test1.py delete lemon

Page 251

A Python Book

"""

import sys
import sqlite3

Values = [
 ('lemon', 'bright and yellow', '7'),
 ('peach', 'succulent', '9'),
 ('banana', 'smooth and creamy', '8'),
 ('nectarine', 'tangy and tasty', '9'),
 ('orange', 'sweet and tangy', '8'),
]

Field_defs = [
 'p_name varchar',
 'p_descrip varchar',
 #'p_rating integer',
 'p_rating varchar',
]

def createdb():
 connection = sqlite3.connect('sqlite3plantsdb')
 cursor = connection.cursor()
 q1 = "create table plantsdb (%s)" % (',
'.join(Field_defs))
 print 'create q1: %s' % q1
 cursor.execute(q1)
 q1 = "create index index1 on plantsdb(p_name)"
 cursor.execute(q1)
 q1 = "insert into plantsdb (p_name, p_descrip,
p_rating) values ('%s', '%s', %s)"
 for spec in Values:
 q2 = q1 % spec
 print 'q2: "%s"' % q2
 cursor.execute(q2)
 connection.commit()
 showdb1(cursor)
 connection.close()

def showdb():
 connection, cursor = opendb()
 showdb1(cursor)
 connection.close()

def showdb1(cursor):
 cursor.execute("select * from plantsdb order by
p_name")
 hr()
 description = cursor.description

Page 252

A Python Book

 print description
 print 'description:'
 for rowdescription in description:
 print ' %s' % (rowdescription,)
 hr()
 rows = cursor.fetchall()
 print rows
 print 'rows:'
 for row in rows:
 print ' %s' % (row,)
 hr()
 print 'content:'
 for row in rows:
 descrip = row[1]
 name = row[0]
 rating = '%s' % row[2]
 print ' %s%s%s' % (
 name.ljust(12), descrip.ljust(30),
rating.rjust(4),)

def addtodb(name, descrip, rating):
 try:
 rating = int(rating)
 except ValueError, exp:
 print 'Error: rating must be integer.'
 return
 connection, cursor = opendb()
 cursor.execute("select * from plantsdb where p_name
= '%s'" % name)
 rows = cursor.fetchall()
 if len(rows) > 0:
 ql = "update plantsdb set p_descrip='%s',
p_rating='%s' where p_name='%s'" % (
 descrip, rating, name,)
 print 'ql:', ql
 cursor.execute(ql)
 connection.commit()
 print 'Updated'
 else:
 cursor.execute("insert into plantsdb values
('%s', '%s', '%s')" % (
 name, descrip, rating))
 connection.commit()
 print 'Added'
 showdb1(cursor)
 connection.close()

def deletefromdb(name):
 connection, cursor = opendb()
 cursor.execute("select * from plantsdb where p_name
= '%s'" % name)

Page 253

A Python Book

 rows = cursor.fetchall()
 if len(rows) > 0:
 cursor.execute("delete from plantsdb where
p_name='%s'" % name)
 connection.commit()
 print 'Plant (%s) deleted.' % name
 else:
 print 'Plant (%s) does not exist.' % name
 showdb1(cursor)
 connection.close()

def opendb():
 connection = sqlite3.connect("sqlite3plantsdb")
 cursor = connection.cursor()
 return connection, cursor

def hr():
 print '' * 60

def usage():
 print __doc__
 sys.exit(1)

def main():
 args = sys.argv[1:]
 if len(args) < 1:
 usage()
 cmd = args[0]
 if cmd == 'create':
 if len(args) != 1:
 usage()
 createdb()
 elif cmd == 'show':
 if len(args) != 1:
 usage()
 showdb()
 elif cmd == 'add':
 if len(args) < 4:
 usage()
 name = args[1]
 descrip = args[2]
 rating = args[3]
 addtodb(name, descrip, rating)
 elif cmd == 'delete':
 if len(args) < 2:
 usage()
 name = args[1]
 deletefromdb(name)
 else:

Page 254

A Python Book

 usage()

if __name__ == '__main__':
 main()

3.9.3 CSV comma separated value files
There is support for parsing and generating CSV files in the Python standard library. See:
csv — CSV File Reading and Writing
http://docs.python.org/library/csv.html#modulecsv.

Exercises:

1. Read a CSV file and print the fields in columns. Here is a sample file to use as
input:

name description rating
Lemon,Bright yellow and tart,5
Eggplant,Purple and shiny,6
Tangerine,Succulent,8

Solutions:

1. Use the CSV module in the Python standard library to read a CSV file:
"""
Read a CSV file and print the contents in columns.
"""

import csv

def test(infilename):
 infile = open(infilename)
 reader = csv.reader(infile)
 print '==== ===========
======'
 print 'Name Description
Rating'
 print '==== ===========
======'
 for fields in reader:
 if len(fields) == 3:
 line = '%s %s %s' % (fields[0].ljust(20),
 fields[1].ljust(40),
fields[2].ljust(4))
 print line
 infile.close()

def main():
 infilename = 'csv_report.csv'
 test(infilename)

Page 255

A Python Book

if __name__ == '__main__':
 main()

And, when run, here is what it displays:
==== ===========
======
Name Description
Rating
==== ===========
======
Lemon Bright yellow and tart
5
Eggplant Purple and shiny
6
Tangerine Succulent
8

3.9.4 YAML and PyYAML
YAML is a structured text data representation format. It uses indentation to indicate
nesting. Here is a description from the YAML Web site:

"YAML: YAML Ain't Markup Language

"What It Is: YAML is a human friendly data serialization standard for
all programming languages."

You can learn more about YAML and PyYAML here:

● The Official YAML Web Site http://yaml.org/
● PyYAML.org the home of various YAML implementations for Python

http://pyyaml.org/
● The YAML 1.2 specification http://yaml.org/spec/1.2/

Exercises:

1. Read the following sample YAML document. Print out the information in it:
american:
 Boston Red Sox
 Detroit Tigers
 New York Yankees
national:
 New York Mets
 Chicago Cubs
 Atlanta Braves

2. Load the YAML data used in the previous exercise, then make a modification (for
example, add "San Francisco Giants" to the National League), then dump the
modified data to a new file.

Solutions:

Page 256

A Python Book

1. Printing out information from YAML is as "simple" as printing out a Python data
structure. In this solution, we use the pretty printer from the Python standard
library:

import yaml
import pprint

def test():
 infile = open('test1.yaml')
 data = yaml.load(infile)
 infile.close()
 pprint.pprint(data)

test()

We could, alternatively, read in and then "load" from a string:
import yaml
import pprint

def test():
 infile = open('test1.yaml')
 data_str = infile.read()
 infile.close()
 data = yaml.load(data_str)
 pprint.pprint(data)

test()

2. The YAML dump() function enables us to dump data to a file:
import yaml
import pprint

def test():
 infile = open('test1.yaml', 'r')
 data = yaml.load(infile)
 infile.close()
 data['national'].append('San Francisco Giants')
 outfile = open('test1_new.yaml', 'w')
 yaml.dump(data, outfile)
 outfile.close()

test()

Notes:
○ If we want to produce the standard YAML "block" style rather than the "flow"

format, then we could use:
yaml.dump(data, outfile, default_flow_style=False)

Page 257

A Python Book

3.9.5 Json
Here is a quote from Wikipedia entry for Json:

"JSON (pronounced 'Jason'), short for JavaScript Object Notation, is a
lightweight computer data interchange format. It is a textbased,
humanreadable format for representing simple data structures and
associative arrays (called objects)."

The Json text representation looks very similar to Python literal representation of Python
builtin data types (for example, lists, dictionaries, numbers, and strings).

Learn more about Json and Python support for Json here:

● Introducing JSON http://json.org/
● Json at Wikipedia http://en.wikipedia.org/wiki/Json
● pythonjson http://pypi.python.org/pypi/pythonjson
● simplejson http://pypi.python.org/pypi/simplejson

Excercises:

1. Write a Python script, using your favorite Python Json implementation (for
example pythonjson or simplejson), that dumps the following data
structure to a file:

Data = {
 'rock and roll':
 ['Elis', 'The Beatles', 'The Rolling Stones',],
 'country':
 ['Willie Nelson', 'Hank Williams',]
 }

2. Write a Python script that reads Json data from a file and loads it into Python data
structures.

Solutions:

1. This solution uses simplejson to store a Python data structure encoded as Json
in a file:

import simplejson as json

Data = {
 'rock and roll':
 ['Elis', 'The Beatles', 'The Rolling Stones',],
 'country':
 ['Willie Nelson', 'Hank Williams',]
 }

def test():
 fout = open('tmpdata.json', 'w')
 content = json.dumps(Data)
 fout.write(content)

Page 258

A Python Book

 fout.write('\n')
 fout.close()

test()

2. We can read the file into a string, then decode it from Json:
import simplejson as json

def test():
 fin = open('tmpdata.json', 'r')
 content = fin.read()
 fin.close()
 data = json.loads(content)
 print data

test()

Note that you may want some control over indentation, character encoding, etc. For
simplejson, you can learn about that here: simplejson JSON encoder and decoder
http://simplejson.googlecode.com/svn/tags/simplejson2.0.1/docs/index.html.

Page 259

A Python Book

4 Part 4 Generating Python Bindings for XML
This section discusses a specific Python tool, specifically a Python code generator that
generates Python bindings for XML files.

Thus, this section will help you in the following ways:

1. It will help you learn to use a specific tool, namely generateDS.py, that
generates Python code to be used to process XML instance documents of a
particular document type.

2. It will help you gain more experience with reading, modifying and using Python
code.

4.1 Introduction
Additional information:

● If you plan to work through this tutorial, you may find it helpful to look at the
sample code that accompanies this tutorial. You can find it in the distribution
under:

tutorial/
tutorial/Code/

● You can find additional information about generateDS.py here:
http://http://www.davekuhlman.org/#generatedspy

That documentation is also included in the distribution.
generateDS.py generates Python data structures (for example, class definitions) from
an XML schema document. These data structures represent the elements in an XML
document described by the XML schema. generateDS.py also generates parsers that
load an XML document into those data structures. In addition, a separate file containing
subclasses (stubs) is optionally generated. The user can add methods to the subclasses in
order to process the contents of an XML document.

The generated Python code contains:

● A class definition for each element defined in the XML schema document.
● A main and driver function that can be used to test the generated code.
● A parser that will read an XML document which satisfies the XML schema from

which the parser was generated. The parser creates and populates a tree structure
of instances of the generated Python classes.

● Methods in each class to export the instance back out to XML (method export)
and to export the instance to a literal representing the Python data structure

Page 260

A Python Book

(method exportLiteral).
Each generated class contains the following:

● A constructor method (__init__), with member variable initializers.
● Methods with names get_xyz and set_xyz for each member variable "xyz"

or, if the member variable is defined with maxOccurs="unbounded",
methods with names get_xyz, set_xyz, add_xyz, and insert_xyz.
(Note: If you use the useoldgettersetter, then you will get
methods with names like getXyz and setXyz.)

● A build method that can be used to populate an instance of the class from a
node in an ElementTree or Lxml tree.

● An export method that will write the instance (and any nested subinstances) to
a file object as XML text.

● An exportLiteral method that will write the instance (and any nested
subinstances) to a file object as Python literals (text).

The generated subclass file contains one (sub)class definition for each data
representation class. If the subclass file is used, then the parser creates instances of the
subclasses (instead of creating instances of the superclasses). This enables the user to
extend the subclasses with "tree walk" methods, for example, that process the contents of
the XML file. The user can also generate and extend multiple subclass files which use a
single, common superclass file, thus implementing a number of different processes on the
same XML document type.

This document introduces the user to generateDS.py and walks the user through
several examples that show how to generate Python code and how to use that generated
code.

4.2 Generating the code
Note: The sample files used below are under the tutorial/Code/ directory.

Use the following to get help:

$ generateDS.py help

I'll assume that generateDS.py is in a directory on your path. If not, you should do
whatever is necessary to make it accessible and executable.

Here is a simple XML schema document:

And, here is how you might generate classes and subclasses that provide data bindings (a
Python API) for the definitions in that schema:

$ generateDS.py o people_api.py s people_sub.py people.xsd

Page 261

A Python Book

And, if you want to automatically overwrite the generated Python files, use the f
command line flag to force overwrite without asking:

$ generateDS.py f o people_api.py s people_sub.py people.xsd

And, to hardwire the subclass file so that it imports the API module, use the super
command line file. Example:

$ generateDS.py o people_api.py people.xsd
$ generateDS.py s people_appl1.py super=people_api people.xsd

Or, do both at the same time with the following:

$ generateDS.py o people_api.py s people_appl1.py
super=people_api people.xsd

And, for your second application:

$ generateDS.py s people_appl2.py super=people_api people.xsd

If you take a look inside these two "application" files, you will see and import statement
like the following:

import ??? as supermod

If you had not used the super command line option when generating the
"application" files, then you could modify that statement yourself. The super
command line option does this for you.

You can also use the The graphical frontend to configure options and save them in a
session file, then use that session file with generateDS.py to specify your command
line options. For example:

$ generateDS.py session=test01.session

You can test the generated code by running it. Try something like the following:

$ python people_api.py people.xml

or:

$ python people_appl1.py people.xml

Why does this work? Why can we run the generated code as a Python script? If you
look at the generated code, down near the end of the file you'll find a main() function
that calls a function named parse(). The parse function does the following:

1. Parses your XML instance document.
2. Uses your generated API to build a tree of instances of the generated classes.
3. Uses the export() methods in that tree of instances to print out (export) XML

Page 262

A Python Book

that represents your generated tree of instances.
Except for some indentation (ignorable whitespace), this exported XML should be the
same as the original XML document. So, that gives you a reasonably thorough test of
your generated code.

And, the code in that parse() function gives you a hint of how you might build your
own applicationspecific code that uses the generated API (those generated Python
classes).

4.3 Using the generated code to parse and export an XML document
Now that you have generated code for your data model, you can test it by running it as an
application. Suppose that you have an XML instance document people1.xml that
satisfies your schema. Then you can parse that instance document and export it (print it
out) with something like the following:

$ python people_api.py people1.xml

And, if you have used the super command line option, as I have above, to connect
your subclass file with the superclass (API) file, then you could use the following to do
the same thing:

$ python people_appl1.py people1.xml

4.4 Some command line options you might want to know
You may want to merely skim this section for now, then later refer back to it when some
of these options are are used later in this tutorial. Also, remember that you can get
information about more command line options used by generateDS.py by typing:

$ python generateDS.py help

and by reading the document at http://www.davekuhlman.org/#generatedspy

o

Generate the superclass module. This is the module that contains the implementation
of each class for each element type. So, you can think of this as the implementation of
the "data bindings" or the API for XML documents of the type defined by your XML
schema.

s

Generate the subclass module. You might or might not need these. If you intend to
write some applicationspecific code, you might want to consider starting with these
skeleton classes and add your application code there.

Page 263

A Python Book

super

This option inserts the name of the superclass module into an import statement in
the subclass file (generated with "s"). If you know the name of the superclass file in
advance, you can use this option to enable the subclass file to import the superclass
module automatically. If you do not use this option, you will need to edit the subclass
module with your text editor and modify the import statement near the top.

rootelement="elementname"

Use this option to tell generateDS.py which of the elements defined in your XM
schema is the "root" element. The root element is the outermost (toplevel) element
in XML instance documents defined by this schema. In effect, this tells your
generated modules which element to use as the root element when parsing and
exporting documents.

generateDS.py attempts to guess the root element, usually the first element
defined in your XML schema. Use this option when that default is not what you want.

memberspecs=list|dict

Suppose you want to write some code that can be generically applied to elements of
different kinds (element types implemented by several different generated classes. If
so, it might be helpful to have a list or dictionary specifying information about each
member data item in each class. This option does that by generating a list or a
dictionary (with the member data item name as key) in each generated class. Take a
look at the generated code to learn about it. In particular, look at the generated list or
dictionary in a class for any element type and also at the definition of the class
_MemberSpec generated near the top of the API module.

version

Ask generateDS.py to tell you what version it is. This is helpful when you want
to ask about a problem, for example at the generatedsusers email list
(https://lists.sourceforge.net/lists/listinfo/generatedsusers), and want to specify which
version you are using.

4.5 The graphical frontend
There is also a pointandclick way to run generateDS. It enables you to specify the
options needed by generateDS.py through a graphical interface, then to run
generateDS.py with those options. It also

You can run it, if you have installed generateDS, by typing the following at a
command line:

Page 264

A Python Book

$ generateds_gui.py

After configuring options, you can save those options in a "session" file, which can be
loaded later. Look under the File menu for save and load commands and also consider
using the "session" command line option.

Also note that generateDS.py itself supports a "session" command line option that
enables you to run generateDS.py with the options that you specified and saved with
the graphical frontend.

4.6 Adding applicationspecific behavior
generateDS.py generates Python code which, with no modification, will parse and
then export an XML document defined by your schema. However, you are likely to want
to go beyond that. In many situations you will want to construct a custom application that
processes your XML documents using the generated code.

4.6.1 Implementing custom subclasses
One strategy is to generate a subclass file and to add your applicationspecific code to
that. Generate the subclass file with the "s" command line flag:

$ generateDS.py s myapp.py people.xsd

Now add some applicationspecific code to myapp.py, for example, if you are using the
included "people" sample files:

class peopleTypeSub(supermod.people):
 def __init__(self, comments=None, person=None, programmer=None,
 python_programmer=None, java_programmer=None):
 supermod.people.__init__(self, comments, person, programmer,
python_programmer,
 java_programmer)
 def fancyexport(self, outfile):
 outfile.write('Starting fancy export')
 for person in self.get_person():
 person.fancyexport(outfile)
supermod.people.subclass = peopleTypeSub
end class peopleTypeSub

class personTypeSub(supermod.person):
 def __init__(self, vegetable=None, fruit=None, ratio=None,
id=None, value=None,
 name=None, interest=None, category=None, agent=None,
promoter=None,
 description=None):
 supermod.person.__init__(self, vegetable, fruit, ratio, id,
value,

Page 265

A Python Book

 name, interest, category, agent, promoter, description)
 def fancyexport(self, outfile):
 outfile.write('Fancy person export name: %s' %
 self.get_name(),)
supermod.person.subclass = personTypeSub
end class personTypeSub

4.6.2 Using the generated "API" from your application
In this approach you might do things like the following:

● import your generated classes.
● Create instances of those classes.
● Link those instances, for example put "children" inside of a parent, or add one or

more instances to a parent that can contain a list of objects (think "maxOccurs"
greater than 1 in your schema)

Get to know the generated export API by inspecting the generated code in the superclass
file. That's the file generated with the "o" command line flag.

What to look for:

● Look at the arguments to the constructor (__init__) to learn how to initialize
an instance.

● Look at the "getters" and "setters" (methods name getxxx and setxxx, to learn
how to modify member variables.

● Look for a method named addxxx for members that are lists. These correspond
to members defined with maxOccurs="n", where n > 1.

● Look at the build methods: build, buildChildren, and
buildAttributes. These will give you information about how to construct
each of the members of a given element/class.

Now, you can import your generated API module, and use it to construct and manipulate
objects. Here is an example using code generated with the "people" schema:

import sys
import people_api as api

def test(names):
 people = api.peopleType()
 for count, name in enumerate(names):
 id = '%d' % (count + 1,)
 person = api.personType(name=name, id=id)
 people.add_person(person)
 people.export(sys.stdout, 0)

test(['albert', 'betsy', 'charlie'])

Run this and you might see something like the following:

Page 266

A Python Book

$ python tmp.py
<people >
 <person id="1">
 <name>albert</name>
 </person>
 <person id="2">
 <name>betsy</name>
 </person>
 <person id="3">
 <name>charlie</name>
 </person>
</people>

4.6.3 A combined approach
Note: You can find examples of the code in this section in these files:

tutorial/Code/upcase_names.py
tutorial/Code/upcase_names_appl.py

Here are the relevant, modified subclasses (upcase_names_appl.py):

import people_api as supermod

class peopleTypeSub(supermod.peopleType):
 def __init__(self, comments=None, person=None,
specialperson=None, programmer=None, python_programmer=None,
java_programmer=None):
 super(peopleTypeSub, self).__init__(comments, person,
specialperson, programmer, python_programmer, java_programmer,)
 def upcase_names(self):
 for person in self.get_person():
 person.upcase_names()
supermod.peopleType.subclass = peopleTypeSub
end class peopleTypeSub

class personTypeSub(supermod.personType):
 def __init__(self, vegetable=None, fruit=None, ratio=None,
id=None, value=None, name=None, interest=None, category=None,
agent=None, promoter=None, description=None, range_=None,
extensiontype_=None):
 super(personTypeSub, self).__init__(vegetable, fruit, ratio,
id, value, name, interest, category, agent, promoter, description,
range_, extensiontype_,)
 def upcase_names(self):
 self.set_name(self.get_name().upper())
supermod.personType.subclass = personTypeSub
end class personTypeSub

Notes:

● These classes were generated with the "s" command line option. They are

Page 267

A Python Book

subclasses of classes in the module people_api, which was generated with the
"o" command line option.

● The only modification to the skeleton subclasses is the addition of the two
methods named upcase_names().

● In the subclass peopleTypeSub, the method upcase_names() merely walk
over its immediate children.

● In the subclass personTypeSub, the method upcase_names() just converts
the value of its "name" member to upper case.

Here is the application itself (upcase_names.py):

import sys
import upcase_names_appl as appl

def create_people(names):
 people = appl.peopleTypeSub()
 for count, name in enumerate(names):
 id = '%d' % (count + 1,)
 person = appl.personTypeSub(name=name, id=id)
 people.add_person(person)
 return people

def main():
 names = ['albert', 'betsy', 'charlie']
 people = create_people(names)
 print 'Before:'
 people.export(sys.stdout, 1)
 people.upcase_names()
 print '' * 50
 print 'After:'
 people.export(sys.stdout, 1)

main()

Notes:

● The create_people() function creates a peopleTypeSub instance with
several personTypeSub instances inside it.

And, when you run this miniapplication, here is what you might see:

$ python upcase_names.py
Before:
 <people >
 <person id="1">
 <name>albert</name>
 </person>
 <person id="2">
 <name>betsy</name>
 </person>
 <person id="3">
 <name>charlie</name>

Page 268

A Python Book

 </person>
 </people>

After:
 <people >
 <person id="1">
 <name>ALBERT</name>
 </person>
 <person id="2">
 <name>BETSY</name>
 </person>
 <person id="3">
 <name>CHARLIE</name>
 </person>
 </people>

4.7 Special situations and uses

4.7.1 Generic, typeindependent processing
There are times when you would like to implement a function or method that can perform
operations on a variety of members and that needs type information about each member.

You can get help with this by generating your code with the "memberspecs" command
line option. When you use this option, generateDS.py add a list or a dictionary
containing an item for each member. If you want a list, then use "memberspecs=list",
and if you want a dictionary, with member names as keys, then use
"memberspecs=dict".

Here is an example In this example, we walk the document/instance tree and convert
all string simple types to upper case.

Here is a schema (Code/member_specs.xsd):

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="contactlist" type="contactlistType" />

 <xs:complexType name="contactlistType">
 <xs:sequence>
 <xs:element name="description" type="xs:string" />
 <xs:element name="contact" type="contactType"
maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="locator" type="xs:string" />
 </xs:complexType>

 <xs:complexType name="contactType">

Page 269

A Python Book

 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 <xs:element name="interest" type="xs:string"
maxOccurs="unbounded" />
 <xs:element name="category" type="xs:integer"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:integer" />
 <xs:attribute name="priority" type="xs:float" />
 <xs:attribute name="colorcode" type="xs:string" />
 </xs:complexType>

</xs:schema>

4.7.1.1 Step 1 generate the bindings

We generate code with the following command line:

$ generateDS.py f \
 o member_specs_api.py \
 s member_specs_upper.py \
 super=member_specs_api \
 memberspecs=list \
 member_specs.xsd

Notes:

● We generate the member specifications as a list with the command line option
memberspecs=list.

● We generate an "application" module with the s command line option. We'll put
our application specific code in member_specs_upper.py.

4.7.1.2 Step 2 add applicationspecific code

And, here is the subclass file (member_specs_upper.py, generated with the "s"
command line option), to which we have added a bit of code that converts any stringtype
members to upper case. You can think of this module as a special "application" of the
generated classes.

#!/usr/bin/env python

#
member_specs_upper.py
#

#
Generated Tue Nov 9 15:54:47 2010 by generateDS.py version 2.2a.
#

import sys

Page 270

A Python Book

import member_specs_api as supermod

etree_ = None
Verbose_import_ = False
(XMLParser_import_none, XMLParser_import_lxml,
 XMLParser_import_elementtree
) = range(3)
XMLParser_import_library = None
try:
 # lxml
 from lxml import etree as etree_
 XMLParser_import_library = XMLParser_import_lxml
 if Verbose_import_:
 print("running with lxml.etree")
except ImportError:
 try:
 # cElementTree from Python 2.5+
 import xml.etree.cElementTree as etree_
 XMLParser_import_library = XMLParser_import_elementtree
 if Verbose_import_:
 print("running with cElementTree on Python 2.5+")
 except ImportError:
 try:
 # ElementTree from Python 2.5+
 import xml.etree.ElementTree as etree_
 XMLParser_import_library = XMLParser_import_elementtree
 if Verbose_import_:
 print("running with ElementTree on Python 2.5+")
 except ImportError:
 try:
 # normal cElementTree install
 import cElementTree as etree_
 XMLParser_import_library =
XMLParser_import_elementtree
 if Verbose_import_:
 print("running with cElementTree")
 except ImportError:
 try:
 # normal ElementTree install
 import elementtree.ElementTree as etree_
 XMLParser_import_library =
XMLParser_import_elementtree
 if Verbose_import_:
 print("running with ElementTree")
 except ImportError:
 raise ImportError("Failed to import ElementTree
from any known place")

def parsexml_(*args, **kwargs):
 if (XMLParser_import_library == XMLParser_import_lxml and
 'parser' not in kwargs):
 # Use the lxml ElementTree compatible parser so that, e.g.,

Page 271

A Python Book

 # we ignore comments.
 kwargs['parser'] = etree_.ETCompatXMLParser()
 doc = etree_.parse(*args, **kwargs)
 return doc

#
Globals
#

ExternalEncoding = 'ascii'

#
Utility funtions needed in each generated class.
#

def upper_elements(obj):
 for item in obj.member_data_items_:
 if item.get_data_type() == 'xs:string':
 name = remap(item.get_name())
 val1 = getattr(obj, name)
 if isinstance(val1, list):
 for idx, val2 in enumerate(val1):
 val1[idx] = val2.upper()
 else:
 setattr(obj, name, val1.upper())

def remap(name):
 newname = name.replace('', '_')
 return newname

#
Data representation classes
#

class contactlistTypeSub(supermod.contactlistType):
 def __init__(self, locator=None, description=None, contact=None):
 super(contactlistTypeSub, self).__init__(locator,
description, contact,)
 def upper(self):
 upper_elements(self)
 for child in self.get_contact():
 child.upper()
supermod.contactlistType.subclass = contactlistTypeSub
end class contactlistTypeSub

class contactTypeSub(supermod.contactType):
 def __init__(self, priority=None, color_code=None, id=None,
first_name=None, last_name=None, interest=None, category=None):
 super(contactTypeSub, self).__init__(priority, color_code,
id, first_name, last_name, interest, category,)
 def upper(self):

Page 272

A Python Book

 upper_elements(self)
supermod.contactType.subclass = contactTypeSub
end class contactTypeSub

def get_root_tag(node):
 tag = supermod.Tag_pattern_.match(node.tag).groups()[1]
 rootClass = None
 if hasattr(supermod, tag):
 rootClass = getattr(supermod, tag)
 return tag, rootClass

def parse(inFilename):
 doc = parsexml_(inFilename)
 rootNode = doc.getroot()
 rootTag, rootClass = get_root_tag(rootNode)
 if rootClass is None:
 rootTag = 'contactlist'
 rootClass = supermod.contactlistType
 rootObj = rootClass.factory()
 rootObj.build(rootNode)
 # Enable Python to collect the space used by the DOM.
 doc = None
 sys.stdout.write('<?xml version="1.0" ?>\n')
 rootObj.export(sys.stdout, 0, name_=rootTag,
 namespacedef_='')
 doc = None
 return rootObj

def parseString(inString):
 from StringIO import StringIO
 doc = parsexml_(StringIO(inString))
 rootNode = doc.getroot()
 rootTag, rootClass = get_root_tag(rootNode)
 if rootClass is None:
 rootTag = 'contactlist'
 rootClass = supermod.contactlistType
 rootObj = rootClass.factory()
 rootObj.build(rootNode)
 # Enable Python to collect the space used by the DOM.
 doc = None
 sys.stdout.write('<?xml version="1.0" ?>\n')
 rootObj.export(sys.stdout, 0, name_=rootTag,
 namespacedef_='')
 return rootObj

def parseLiteral(inFilename):
 doc = parsexml_(inFilename)
 rootNode = doc.getroot()
 rootTag, rootClass = get_root_tag(rootNode)

Page 273

A Python Book

 if rootClass is None:
 rootTag = 'contactlist'
 rootClass = supermod.contactlistType
 rootObj = rootClass.factory()
 rootObj.build(rootNode)
 # Enable Python to collect the space used by the DOM.
 doc = None
 sys.stdout.write('#from member_specs_api import *\n\n')
 sys.stdout.write('import member_specs_api as model_\n\n')
 sys.stdout.write('rootObj = model_.contact_list(\n')
 rootObj.exportLiteral(sys.stdout, 0, name_="contact_list")
 sys.stdout.write(')\n')
 return rootObj

USAGE_TEXT = """
Usage: python ???.py <infilename>
"""

def usage():
 print USAGE_TEXT
 sys.exit(1)

def main():
 args = sys.argv[1:]
 if len(args) != 1:
 usage()
 infilename = args[0]
 root = parse(infilename)

if __name__ == '__main__':
 #import pdb; pdb.set_trace()
 main()

Notes:

● We add the functions upper_elements and remap that we use in each
generated class.

● Notice how the function upper_elements calls the function remap only on
those members whose type is xs:string.

● In each generated (sub)class, we add the methods that walk the DOM tree and
apply the method (upper) that transforms each xs:string value.

4.7.1.3 Step 3 write a test/driver harness

Here is a test driver (member_specs_test.py) for our (mini) application:

#!/usr/bin/env python

Page 274

A Python Book

#
member_specs_test.py
#

import sys
import member_specs_api as supermod
import member_specs_upper

def process(inFilename):
 doc = supermod.parsexml_(inFilename)
 rootNode = doc.getroot()
 rootClass = member_specs_upper.contactlistTypeSub
 rootObj = rootClass.factory()
 rootObj.build(rootNode)
 # Enable Python to collect the space used by the DOM.
 doc = None
 sys.stdout.write('<?xml version="1.0" ?>\n')
 rootObj.export(sys.stdout, 0, name_="contactlist",
 namespacedef_='')
 rootObj.upper()
 sys.stdout.write('' * 60)
 sys.stdout.write('\n')
 rootObj.export(sys.stdout, 0, name_="contactlist",
 namespacedef_='')
 return rootObj

USAGE_MSG = """\
Synopsis:
 Sample application using classes and subclasses generated by
generateDS.py
Usage:
 python member_specs_test.py infilename
"""

def usage():
 print USAGE_MSG
 sys.exit(1)

def main():
 args = sys.argv[1:]
 if len(args) != 1:
 usage()
 infilename = args[0]
 process(infilename)

if __name__ == '__main__':
 main()

Notes:

● We copy the function parse() from our generated code to serve as a model for

Page 275

A Python Book

our function process().
● After parsing and displaying the XML instance document, we call method

upper() in the generated class contactlistTypeSub in order to walk the
DOM tree and transform each xs:string to uppercase.

4.7.1.4 Step 4 run the test application

We can use the following command line to run our application:

$ python member_specs_test.py member_specs_data.xml

When we run our application, here is the output:

$ python member_specs_test.py member_specs_data.xml
<?xml version="1.0" ?>
<contactlist locator="http://www.rexx.com/~dkuhlman">
 <description>My list of contacts</description>
 <contact priority="0.050000" colorcode="red" id="1">
 <firstname>arlene</firstname>
 <lastname>Allen</lastname>
 <interest>traveling</interest>
 <category>2</category>
 </contact>
</contactlist>

<contactlist locator="HTTP://WWW.REXX.COM/~DKUHLMAN">
 <description>MY LIST OF CONTACTS</description>
 <contact priority="0.050000" colorcode="RED" id="1">
 <firstname>ARLENE</firstname>
 <lastname>ALLEN</lastname>
 <interest>TRAVELING</interest>
 <category>2</category>
 </contact>
</contactlist>

Notes:

● The output above shows both before and afterversion of exporting the parsed
XML instance document.

4.8 Some hints
The following hints are offered for convenience. You can discover them for yourself
rather easily by inspecting the generated code.

4.8.1 Children defined with maxOccurs greater than 1
If a child element is defined in the XML schema with maxOccurs="unbounded" or
a value of maxOccurs greater than 1, then access to the child is through a list.

Page 276

A Python Book

4.8.2 Children defined with simple numeric types
If a child element is defined as a numeric type such as xs:integer, xs:float, or
xs:double or as a simple type that is (ultimately) based on a numeric type, then the
value is stored (in the Python object) as a Python data type (int, float, etc).

4.8.3 The type of an element's character content
But, when the element itself is defined as mixed="true" or the element a restriction of
and has a simple (numeric) as a base, then the valueOf_ instance variable holds the
character content and it is always a string, that is it is not converted.

4.8.4 Constructors and their default values
All parameters to the constructors of generated classes have default parameters.
Therefore, you can create an "empty" instance of any element by calling the constructor
with no parameters.

For example, suppose we have the following XML schema:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="plantlist" type="PlantList" />

 <xs:complexType name="PlantType">
 <xs:sequence>
 <xs:element name="description" type="xs:string" />
 <xs:element name="catagory" type="xs:integer" />
 <xs:element name="fertilizer" type="FertilizerType"
maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="identifier" type="xs:string" />
 </xs:complexType>

 <xs:complexType name="FertilizerType">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="description" type="xs:string"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:integer" />
 </xs:complexType>

</xs:schema>

And, suppose we generate a module with the following command line:

$./generateDS.py o garden_api.py garden.xsd

Page 277

A Python Book

Then, for the element named PlantType in the generated module named
garden_api.py, you can create an instance as follows:

>>> import garden_api
>>> plant = garden_api.PlantType()
>>> import sys
>>> plant.export(sys.stdout, 0)
<PlantType/>

Page 278

	1-9
	1-9(a)
	1-9(b)
	Table of Contents
	I. Welcome to Next-Generation Sequencing
	a. The Evolution of Genomic Science
	b. The Basics of NGS Chemistry
	c. Advances in Sequencing Technology
	Paired-End Sequencing
	Tunable Coverage and Unlimited Dynamic Range
	Advances in Library Preparation
	Multiplexing
	Flexible, Scalable Instrumentation

	II. NGS Methods
	a. Genomics
	Whole-Genome Sequencing
	Exome Sequencing
	De novo Sequencing
	Targeted Sequencing

	b. Transcriptomics
	Total RNA and mRNA Sequencing
	Targeted RNA Sequencing
	Small RNA and Noncoding RNASequencing

	c. Epigenomics
	Methylation Sequencing
	ChIP Sequencing
	Ribosome Profiling

	III. Illumina DNA-to-Data NGS Solutions
	a. The Illumina NGS Workflow
	b. Integrated Data Analysis
	IV. Glossary
	V. References

	20-34
	62-64
	62-64(a)
	65-67
	65-67(a)
	65-67(b)
	grf.lshtm.ac.uk
	Genome Resource Facility

	71-73
	71-78
	1 Introduction
	1.1 Functions
	1.2 SDK

	2 License Management
	2.1 Graphical License Manager Tool
	List all installed license keys
	Add and delete license keys
	Display the properties of a license
	Select between different license keys for a single product

	2.2 Command Line License Manager Tool
	List all installed license keys
	Add and delete license keys
	Select between different license keys for a single product

	2.3 License Key Storage
	Windows
	Mac OS X
	Unix / Linux

	2.4 Setting the License Key via the API

	3 Object Model
	4 Processing Model
	5 Language Bindings
	6 Getting Started
	6.1 Create a Document from Scratch
	6.2 Add Content to an Existing Input File

	7 Output PDF Creation
	7.1 Set the PDF Version
	7.2 Encryption
	7.3 Disable Stream Compression
	7.4 Font Renaming
	7.5 Error Handling
	7.6 Open a PDF File for Input
	7.7 Attach an Input File
	7.8 Accessing the Current Input File
	7.9 Set the Page Size and Orientation
	7.10 Set the Crop Box
	7.11 Adding a New Page
	7.12 Accessing the Current Header or Background Content Layer

	8 Retrieving File Information
	8.1 Obtain the PDF Version
	8.2 Obtain the File Name
	8.3 Obtain the Keys List
	8.4 Obtain Document Attributes
	8.5 Get Meta Data
	8.6 Get the Name and Current Data of a Form Field
	8.7 Get the Position of a Form Field
	8.8 Get Information about Pages
	8.9 Retrieve Text from a PDF File
	8.10 Retrieve Bookmarks from a PDF File
	8.11 Retrieve Annotations from a PDF File
	8.12 Retrieve the Border Style from Annotations
	8.13 Get List of Fonts
	8.14 Get Color Information
	8.15 Save File Attachment
	8.16 Close the File
	8.17 Get UserUnit
	8.18 Set the Font for Text Output
	8.19 Set Text Spacing
	8.20 Set the Gray Level for Lines and Filling
	8.21 Set the Color for Lines
	8.22 Set the Color for Filling
	8.23 Set the Alpha Transparency for Filling and Stroking
	8.24 Using Color Spaces
	8.25 Placement of Character Strings
	8.26 Placement of a Logo
	8.27 Placement of an Image
	8.28 Embedding any PDF Text Operator
	8.29 Set the Spacing of Text Lines
	8.30 Set the Text Matrix
	8.31 Set a Relative Starting Position for Text (Tab)
	8.32 Calculate the Width for a Character String
	8.33 Text Tables
	8.34 Draw a Line or Polygon
	8.35 Draw a Rectangle
	8.36 Draw Curves
	8.37 Area Filling and Clipping
	8.38 Embedding any PDF Non-Text Commands

	9 Form Fields, Annotations
	9.1 Set the Data
	9.2 Define a Custom Font
	9.3 Get a Font Name
	9.4 Delete a Form Field
	9.5 Add a Text Form Field
	9.6 Copy a Form Field
	9.7 Form Flattening
	9.8 Add a Text Annotations
	9.9 Delete an Annotation
	9.10 Delete Viewer Extension Rights
	9.11 Add an Image Annotation
	9.12 Set the Line Spacing in a Form Field
	9.13 Get the Name of the Font in a Form Field

	10 Generate Output
	10.1 Create Another Page
	10.2 Copy Pages from the Input File
	10.3 Copy Color Spaces from the Input File
	10.4 Copy Named Destinations from the Input File
	10.5 Copy Custom Objects from the Input File
	10.6 Copy All Objects from the Input File
	10.7 Import Bitmap Images
	10.8 Add Page Numbers
	10.9 Change the Header or Background
	10.10 Add Bookmarks
	10.11 Add Links
	10.12 Add File Attachments
	10.13 Add Destination
	10.14 Set Document Action
	10.15 Set Form Fontsize Range
	10.16 Document Open Settings
	10.17 Set Document Information Attributes
	10.18 Set Document Metadata
	10.19 Close the Output File
	10.20 Set the license key at runtime

	11 Linearization
	12 Return Codes C

	74-75
	82-102
	1 Part 1 -- Beginning Python
	1.1 Introductions Etc
	1.1.1 Resources
	1.1.2 A general description of Python
	1.1.3 Interactive Python

	1.2 Lexical matters
	1.2.1 Lines
	1.2.2 Comments
	1.2.3 Names and tokens
	1.2.4 Blocks and indentation
	1.2.5 Doc strings
	1.2.6 Program structure
	1.2.7 Operators
	1.2.8 Also see
	1.2.9 Code evaluation

	1.3 Statements and inspection -- preliminaries
	1.4 Built-in data-types
	1.4.1 Numeric types
	1.4.2 Tuples and lists
	1.4.3 Strings
	1.4.3.1 The new string.format method
	1.4.3.2 Unicode strings

	1.4.4 Dictionaries
	1.4.5 Files
	1.4.6 Other built-in types
	1.4.6.1 The None value/type
	1.4.6.2 Boolean values
	1.4.6.3 Sets and frozensets

	1.5 Functions and Classes -- A Preview
	1.6 Statements
	1.6.1 Assignment statement
	1.6.2 import statement
	1.6.3 print statement
	1.6.4 if: elif: else: statement
	1.6.5 for: statement
	1.6.6 while: statement
	1.6.7 continue and break statements
	1.6.8 try: except: statement
	1.6.9 raise statement
	1.6.10 with: statement
	1.6.10.1 Writing a context manager
	1.6.10.2 Using the with: statement

	1.6.11 del
	1.6.12 case statement

	1.7 Functions, Modules, Packages, and Debugging
	1.7.1 Functions
	1.7.1.1 The def statement
	1.7.1.2 Returning values
	1.7.1.3 Parameters
	1.7.1.4 Arguments
	1.7.1.5 Local variables
	1.7.1.6 Other things to know about functions
	1.7.1.7 Global variables and the global statement
	1.7.1.8 Doc strings for functions
	1.7.1.9 Decorators for functions

	1.7.2 lambda
	1.7.3 Iterators and generators
	1.7.4 Modules
	1.7.4.1 Doc strings for modules

	1.7.5 Packages

	1.8 Classes
	1.8.1 A simple class
	1.8.2 Defining methods
	1.8.3 The constructor
	1.8.4 Member variables
	1.8.5 Calling methods
	1.8.6 Adding inheritance
	1.8.7 Class variables
	1.8.8 Class methods and static methods
	1.8.9 Properties
	1.8.10 Interfaces
	1.8.11 New-style classes
	1.8.12 Doc strings for classes
	1.8.13 Private members

	1.9 Special Tasks
	1.9.1 Debugging tools
	1.9.2 File input and output
	1.9.3 Unit tests
	1.9.3.1 A simple example
	1.9.3.2 Unit test suites
	1.9.3.3 Additional unittest features
	1.9.3.4 Guidance on Unit Testing

	1.9.4 doctest
	1.9.5 The Python database API
	1.9.6 Installing Python packages

	1.10 More Python Features and Exercises

	2 Part 2 -- Advanced Python
	2.1 Introduction -- Python 201 -- (Slightly) Advanced Python Topics
	2.2 Regular Expressions
	2.2.1 Defining regular expressions
	2.2.2 Compiling regular expressions
	2.2.3 Using regular expressions
	2.2.4 Using match objects to extract a value
	2.2.5 Extracting multiple items
	2.2.6 Replacing multiple items

	2.3 Iterator Objects
	2.3.1 Example - A generator function
	2.3.2 Example - A class containing a generator method
	2.3.3 Example - An iterator class
	2.3.4 Example - An iterator class that uses yield
	2.3.5 Example - A list comprehension
	2.3.6 Example - A generator expression

	2.4 Unit Tests
	2.4.1 Defining unit tests
	2.4.1.1 Create a test class.

	2.5 Extending and embedding Python
	2.5.1 Introduction and concepts
	2.5.2 Extension modules
	2.5.3 SWIG
	2.5.4 Pyrex
	2.5.5 SWIG vs. Pyrex
	2.5.6 Cython
	2.5.7 Extension types
	2.5.8 Extension classes

	2.6 Parsing
	2.6.1 Special purpose parsers
	2.6.2 Writing a recursive descent parser by hand
	2.6.3 Creating a lexer/tokenizer with Plex
	2.6.4 A survey of existing tools
	2.6.5 Creating a parser with PLY
	2.6.6 Creating a parser with pyparsing
	2.6.6.1 Parsing comma-delimited lines
	2.6.6.2 Parsing functors
	2.6.6.3 Parsing names, phone numbers, etc.
	2.6.6.4 A more complex example

	2.7 GUI Applications
	2.7.1 Introduction
	2.7.2 PyGtk
	2.7.2.1 A simple message dialog box
	2.7.2.2 A simple text input dialog box
	2.7.2.3 A file selection dialog box

	2.7.3 EasyGUI
	2.7.3.1 A simple EasyGUI example
	2.7.3.2 An EasyGUI file open dialog example

	2.8 Guidance on Packages and Modules
	2.8.1 Introduction
	2.8.2 Implementing Packages
	2.8.3 Using Packages
	2.8.4 Distributing and Installing Packages

	2.9 End Matter
	2.9.1 Acknowledgements and Thanks
	2.9.2 See Also

	3 Part 3 -- Python Workbook
	3.1 Introduction
	3.2 Lexical Structures
	3.2.1 Variables and names
	3.2.2 Line structure
	3.2.3 Indentation and program structure

	3.3 Execution Model
	3.4 Built-in Data Types
	3.4.1 Numbers
	3.4.1.1 Literal representations of numbers
	3.4.1.2 Operators for numbers
	3.4.1.3 Methods on numbers

	3.4.2 Lists
	3.4.2.1 Literal representation of lists
	3.4.2.2 Operators on lists
	3.4.2.3 Methods on lists
	3.4.2.4 List comprehensions

	3.4.3 Strings
	3.4.3.1 Characters
	3.4.3.2 Operators on strings
	3.4.3.3 Methods on strings
	3.4.3.4 Raw strings
	3.4.3.5 Unicode strings

	3.4.4 Dictionaries
	3.4.4.1 Literal representation of dictionaries
	3.4.4.2 Operators on dictionaries
	3.4.4.3 Methods on dictionaries

	3.4.5 Files
	3.4.6 A few miscellaneous data types
	3.4.6.1 None
	3.4.6.2 The booleans True and False

	3.5 Statements
	3.5.1 Assignment statement
	3.5.2 print statement
	3.5.3 if: statement exercises
	3.5.4 for: statement exercises
	3.5.5 while: statement exercises
	3.5.6 break and continue statements
	3.5.7 Exceptions and the try:except: and raise statements

	3.6 Functions
	3.6.1 Optional arguments and default values
	3.6.2 Passing functions as arguments
	3.6.3 Extra args and keyword args
	3.6.3.1 Order of arguments (positional, extra, and keyword args)

	3.6.4 Functions and duck-typing and polymorphism
	3.6.5 Recursive functions
	3.6.6 Generators and iterators

	3.7 Object-oriented programming and classes
	3.7.1 The constructor
	3.7.2 Inheritance -- Implementing a subclass
	3.7.3 Classes and polymorphism
	3.7.4 Recursive calls to methods
	3.7.5 Class variables, class methods, and static methods
	3.7.5.1 Decorators for classmethod and staticmethod

	3.8 Additional and Advanced Topics
	3.8.1 Decorators and how to implement them
	3.8.1.1 Decorators with arguments
	3.8.1.2 Stacked decorators
	3.8.1.3 More help with decorators

	3.8.2 Iterables
	3.8.2.1 A few preliminaries on Iterables
	3.8.2.2 More help with iterables

	3.9 Applications and Recipes
	3.9.1 XML -- SAX, minidom, ElementTree, Lxml
	3.9.2 Relational database access
	3.9.3 CSV -- comma separated value files
	3.9.4 YAML and PyYAML
	3.9.5 Json

	4 Part 4 -- Generating Python Bindings for XML
	4.1 Introduction
	4.2 Generating the code
	4.3 Using the generated code to parse and export an XML document
	4.4 Some command line options you might want to know
	4.5 The graphical front-end
	4.6 Adding application-specific behavior
	4.6.1 Implementing custom subclasses
	4.6.2 Using the generated "API" from your application
	4.6.3 A combined approach

	4.7 Special situations and uses
	4.7.1 Generic, type-independent processing
	4.7.1.1 Step 1 -- generate the bindings
	4.7.1.2 Step 2 -- add application-specific code
	4.7.1.3 Step 3 -- write a test/driver harness
	4.7.1.4 Step 4 -- run the test application

	4.8 Some hints
	4.8.1 Children defined with maxOccurs greater than 1
	4.8.2 Children defined with simple numeric types
	4.8.3 The type of an element's character content
	4.8.4 Constructors and their default values

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

