
Intel® Hyper-Threading technology

technology brief

Abstract.. 2
Introduction... 2
Hyper-Threading.. 2

Need for the technology ... 2
What is Hyper-Threading? .. 3
Inside the technology.. 3
Compatibility... 4

Issues with Hyper-Threading.. 4
Applications .. 4
OS... 5
Licensing... 5

Performance gains ... 6
Conclusion.. 7
For more information.. 8
Call to action .. 8

Abstract
Intel’s introduction of Hyper-Threading technology represents a significant improvement in processor
utilization and performance. This technology boosts system performance without going to a higher
clock rate or adding more processors. This improvement is achieved by making multiple instruction
streams, called threads, internally available to a single processor at the same time. These threads
allow the processor the opportunity to better schedule the use of internal resources and improve
utilization.

HP servers offer this new technology by making use of Intel® Xeon processors, which incorporate
Hyper-Threading. This technology brief describes the Hyper-Threading concept, as well as its benefits
and limitations for the user. Some HP performance test results are also included to show the
improvement seen by the use of Hyper-Threading.

Introduction
Managers of today’s enterprise environments continually face the need to lower costs and improve
performance. A straightforward means to improve performance has always been to increase
processor speeds, but this typically comes at a higher cost. To find a solution that attacks both cost
and performance at the same time requires an improvement in the utilization of existing resources.

One of Intel’s solutions in this regard was to focus on threading at the system level through software.
Using parallel threads of instructions has worked well in multiprocessor systems, since different
processors can simultaneously operate on different threads. Taking this a step further, Intel’s Hyper-
Threading solution offers a unique approach by providing thread-level parallelism on each individual
processor.

This technology brief discusses the need for Hyper-Threading, the basics of the concept, the benefits it
provides, issues that have arisen in regard to software licensing, and some results that HP has seen in
laboratory tests.

Hyper-Threading
This new technology from Intel enables multi-threaded applications to execute threads in parallel on
each individual processor. Available on Intel Xeon processors, Hyper-Threading provides the user
with increased computing power to meet the needs of today’s server applications.

Need for the technology
Improving processor utilization has been an industry goal for years. Processor speeds have advanced
until a typical processor today can run at frequencies over 2 gigahertz, but much of the rest of the
system is not capable of running at that speed. To enable performance improvements, memory caches
have been integrated into the processor to minimize the long delays that can result from accessing
main memory. Xeon processors, for example, now include three cache levels on the die.

Large server-based applications tend to be memory intensive due to the difficulty of predicting access
patterns. The working data sets are also quite large. These two things can create bottlenecks,
regardless of memory prefetching techniques. Latency due to these bottlenecks only gets worse when
pointer-intensive applications are executed. Any mistake in prediction can force a pipeline to be
cleared, incurring a delay to refill this data.

It is this latency that drives processor utilization down. Despite improvements in application
development and parallel processing implementations, reaching higher utilization rates remained an
unmet goal.

2

What is Hyper-Threading?
Hyper-Threading Technology enables one physical processor to execute two separate threads at the
same time. To achieve this, Intel designed the Xeon processor with the usual processor core, but with
two Architectural State devices (see Figure 1). Each Architectural State (AS) tracks the flow of a
thread being executed by core resources.

After power-up and initialization, these two internal Architectural States define two logical processors.
Individually they can be halted, interrupted, or can execute a specific thread independently of the
other logical processor. Each AS has an instruction pointer, advanced programmable interrupt
controller (APIC) registers, general-purpose registers, and machine state registers.

The two logical processors then share the remaining physical execution resources. An application or
operating system (OS) can submit threads to two different logical processors just as it would in a
traditional multiprocessor system.

Figure 1. Conceptual illustration of Hyper-Threading

IA-32 processor with
Hyper-Thread technology

traditional
dual-processor (DP) system

two logical
processors
share a single
processor
core

logical
processor

two separate
physical processors

system bus system bus

processor core processor core processor core

ASASAS1 AS2

Inside the technology
Looking inside the processor we find that the core contains subsystems to enhance performance.
These subsystems control program execution, perform instruction fetching, integrate the on-die cache,
and handle all the instruction reordering and retiring.

As threads are passed to the processor, the instruction fetching and reordering systems allocate
resources to the incoming threads. The instructions in these threads are then sent to the execution
system in an alternating fashion from the level 1 cache. This continues until one of the logical
processors no longer needs information from the level 1 cache and then the entire cache resource is
allocated to the other logical processor.

The execution core processes instructions in an order determined by dependencies in the data and
availability. The processor is allowed to execute instructions out of order, that is, in a different order
than the order in which they arrived. This means instructions can be executed in the order that will

3

yield the best overall performance. Schedulers inside the execution system handle the mapping and
ordering, and they may send multiple instructions from one processor before executing instructions
from the other.

The cache system provides data to the execution system at high speeds and with larger cache lines
than previous processors used. The cache operates at the same speed as the execution core so that
future versions of the processor will continue to operate at correspondingly faster rates. The Xeon MP,
intended for systems with four or more processors, is equipped with an integrated third-level cache to
reduce the competition for shared resources between processors in the same system.

Both of the logical processors inside the physical processor share all the internal caches. The cache
design implements a high-level of set-associativity to minimize the possibility of the logical processors
constantly throwing each other’s data out of the cache to make room for their own data. In some
cases, one processor may be able to fetch instructions or data into the cache for the benefit of the
other processor in order to improve overall execution rates.

The instruction reordering and retiring system eventually completes all the out-of-sequence instructions
that were executed, and then retires them in the original program order. Upon completion, instructions
are retired much the way they were originally sent, with the logical processor taking turns.

Compatibility
Hyper-Threading on Xeon processors is fully backward compatible with current operating systems and
applications. Legacy operating systems with multiprocessor capability can run unmodified on Xeon-
based HP systems. Some legacy systems, such as Windows NT, may not recognize the additional
logical processors, and therefore cannot take advantage of Hyper-Threading Technology.

Operating systems such as Windows 2000 Server, Linux, and Novell NetWare can recognize both
of the logical processors and take advantage of Hyper-Threading Technology, depending on OS
license configurations. Some of these same operating systems are expected to include optimizations
for Hyper-Threading so they can distinguish between logical and alternate processors, enabling them
to optimize scheduling and improve idle loops to maximize performance gains. For example,
Windows 2003 Server (formerly referred to as Windows .NET) has this capability.

A recent paper published by Microsoft on the topic of software compatibility stated that, “Although
Windows 2000 is compatible with Hyper-Threading Technology, we expect customers will get the
best performance from Hyper-Threading Technology using Windows .NET Server. This is because the
Windows .NET Server Family is engineered to take full advantage of the logical processors created
by Hyper-Threading Technology. Microsoft expects to see positive performance gains with Windows
.NET Server and Hyper-Threading Technology, while Windows 2000 performance gains are
expected to be more modest.”

Issues with Hyper-Threading
Reducing latency in a system by providing dual paths to an underutilized processor core should
improve system performance. Still, there are some potential issues that should be examined, though
these issues do not affect everyone.

Applications
Hyper-Threading Technology can actually produce a performance loss if the load at the logical
processors is not balanced. Two logical processors share resources at the execution core and as a
result no single processor is able to use all the resources that would normally be available to a single
processor that did not implement Hyper-Threading. If one thread of an application were working and
the other thread were waiting (spinning), the operating thread would still have less than 100 percent

4

of the resources. An effective load balance for a Hyper-Threading system is imperative to reduce the
chances that only one thread will be active.

With two logical processors sharing execution resources, the effective size of the cache with which
each can operate is approximately half the actual cache size. Applications written for multithreading
should therefore expect to have only half the cache available for each thread. When considering
code size optimization, for example, excessive loop unrolling should be avoided. Although cache
sharing may be an issue for some applications, it does provide better cache locality for other
applications. For example, an application might use one logical processor to fetch data into the
shared caches to reduce latency for the other logical processor.

OS
Operating systems use logical processors on a Hyper-Thread processor just as they do any other
processor, by scheduling threads to operate on each. For optimal performance in a Hyper-Threading
system, the OS should provide these optimizations:

• Idle-loop and HALT: A logical processor that continually checks to see if work is available will
needlessly consume resources. The OS should HALT the inactive processor so that executions
resources are freed up for the logical processor operating.

• Thread scheduling: The OS should allocate threads to one logical processor in each physical
location before assigning additional threads to the alternate logical processors. This will allow
threads to execute with full resources when they are available.

Licensing
HP server platforms based on Hyper-Threading have implemented the required BIOS changes to
recognize the logical processors so that this information can be passed to the OS or application.

During system boot and initialization, the multiprocessor system BIOS records only the first logical
processor on each physical processor in the system and records that information in the Multiprocessor
Specification (MPS) table to preserve backward compatibility. This aids any legacy OS that only uses
the MPS for determining system configuration and is not capable of using the alternate logical
processors.

Next, the BIOS records each of the alternate logical processors into the Advanced Configuration and
Power Interface (ACPI) table. This allows an OS that uses the ACPI table to see and schedule threads
for all of the logical processors. It is critical that the BIOS record the first logical processor of each
physical processor before recording any alternates.

Windows 2000 Server does not distinguish between physical and logical processors on systems
enabled with Hyper-Threading Technology; Windows 2000 simply fills out the license limit using the
first processors counted by the BIOS. For example, when Windows 2000 Server (4-CPU limit) is
launched on a four-way system enabled with Hyper-Threading Technology, Windows will use the first
logical processor on each of the four physical processors; the second logical processor on each
physical processor will remain unused, because of the 4-CPU license limit. (This statement assumes
that the BIOS was written according to Intel specifications. Windows uses the processor count and
sequence indicated by the BIOS.)

However, when Windows 2000 Advanced Server (8-CPU limit) is launched on a four-way system
enabled with Hyper-Threading Technology, the OS will use all eight logical processors. Although the
OS will recognize all eight logical processors in this example, in most cases performance would be
better using eight physical processors.

When examining the processor count provided by the BIOS, Windows 2003 Server distinguishes
between logical and physical processors, regardless of how they are counted by the BIOS. This

5

provides a powerful advantage over Windows 2000, in that Windows 2003 Server counts only
physical processors against the license limit. For example, if Windows 2003 Standard Server (2-CPU
limit) is launched on a two-processor system enabled with Hyper-Threading Technology, the OS will
use all four logical processors. 1

Performance gains
Intel Hyper-Threading Technology enables simultaneous multi-threading at the processor level. In the
current implementation the two logical processors on each physical processor share most execution
resources but maintain separate architectural states.

Tests run thus far in HP labs substantiate the expected performance gains for Hyper-Threading (Figures
2 and 3). For the standard workload of WebBench, the Hyper-Threading Technology showed a peak
performance advantage of 12 percent in a dual processor server and a 44 percent performance
advantage with a single processor. The differences observed in these cases are due entirely to the
Hyper-Threading Technology, since the processors and systems were otherwise identical.

Figure 2. WebBench test results as a function of the number of physical clients (engines)

hp confidential - preliminary hp ProLiant DL380 G3

1 Microsoft Windows-Based Servers and Intel Hyper-Threading Technology, John Borozan, Microsoft Corporation, February 2002

WebBenchTM 5.0 - Ecommerce_cgi_win2k Script

0

1000

2000

3000

4000

5000

6000

7000

1

 requests per second

 2x2.8GHz / HT On

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
number of engines

2x2.8GHz / HT Off
 1x2.8GHz / HT On

1x2.8GHz / HT Off

6

Figure 3. WebBench test results as a function of the number of processors

hp ProLiant DL380 G3
WebBenchTM 5.0 - Ecommerce_cgi_win2k Script

0

1000

2000

3000

4000

5000

6000

7000

2 processors 1 processor

re
qu

es
ts

pe
r s

ec
on

d

Hyper-Threading On Hyper-Threading Off

hp confidential - preliminary

Performance results depend on many factors, of course, including installed memory, the application in
use and the memory footprint it requires, as well as the number of simulated clients. Other tests results
that were not ready in time for publication of this paper indicated that the performance gain was
smaller in the on-line transaction processing application space, where the observed performance delta
was between 5 and 14 percent.

Conclusion
Tests performed in HP labs indicate that Hyper-Threading fulfills much of its promise, as substantial
performance gains were seen when using Xeon processors that incorporate Hyper-Threading. The
gains reported from using Hyper-Threading ranged from as little as 5 percent in a multi-processor
OLTP test to as high as 44 percent in a single-processor system running the WebBench benchmark
test. This wide range emphasizes that performance is highly dependent on the type of application and
other factors. As with any processor metric, actual performance benefits in the field will vary with
system implementation choices such as installed memory, cache size, application type, and the
memory footprint used by that application.

7

For more information
For additional information, refer to the HP ProLiant server website at www.hp.com/go/proliant.

Call to action
Send comments about this paper to: TechCom@HP.com.

© 2003 Hewlett-Packard Development Company, L.P. The information contained
herein is subject to change without notice. The only warranties for HP products and
services are set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an
additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft
Corporation.

TC030306TB, 03/2003

http://www.hp.com/go/proliant
mailto:TechCom@HP.com

	Abstract
	Introduction
	Hyper-Threading
	Need for the technology
	What is Hyper-Threading?
	Inside the technology
	Compatibility

	Issues with Hyper-Threading
	Applications
	OS
	Licensing

	Performance gains
	Conclusion
	For more information
	Call to action

