

CS606 Compiler Constructions

Assignment #3

Instructions:

Your assignment must be uploaded/submitted before or on 8th June 2011.

- Your assignment must be in .doc format.(Any other formats like scan images, PDF, Zip, rar, bmp, docx etc will not be accepted)
- Save your assignment with your ID (e.g. bc020400600.doc).
- No assignment will be accepted through email.

It should be clear that your assignment will not get any credit if:

- The assignment is submitted after due date.
- The submitted assignment does not open or file is corrupted.
- Your assignment is copied from internet, handouts or from any other student (Strict disciplinary action will be taken in this case).

Question 1: [10]

Write an algorithm for constructing the canonical LR parsing table where the input and output of this algorithm will be as follows:

Input: An augmented grammar G'

Output: The canonical LR parsing table functions action and goto for G'

Solution:

Method:

- 1. Construct $C = \{l_0, l_1, \dots, l_n\}$, the collection of the sets of LR(1) items for G'.
- 2. State i of the parser is constructed from l_i. The parsing actions for state i are determined as follows:
 - a) If $[A \rightarrow \alpha \ a\beta, b]$ is in l_i and goto $(l_i, a) = l_j$, then set action [i, a] to "shift j" Here, a is required to be a terminal.
 - b) If $[A \rightarrow \alpha, a]$ is in li, $A \neq S'$, then set action [i, a] to reduce $A \rightarrow \alpha$.
 - c) If $[S' \rightarrow S, \$]$ is in li, then set action [i, \$] to "accept".

If a conflict results from the above rules, the grammar is said not to be LR (1), and the algorithm is said to fail.

- 3. The goto transitions for state i are determined as follows: If goto $(l_i, A) = l_i$ then goto [i, A] = j.
- 4. All entries not defined by rules (2) and (3) are made "error".
- 5. The initial state of the parser is the one constructed from the set containing item $[S' \rightarrow S, \$]$.

Question 2: [10]

Apply your algorithm and construct the canonical parsing table for the following grammar without showing the intermediate steps e.g. goto graph.

 $S \rightarrow aABe$ $A \rightarrow Abc \mid b$ $B \rightarrow d$

Solution:

STATE		actions			goto
	c	d	\$	S	C
0	s3	s4		1	2
1			acc		
2	s6	s7			5
3	s3	s4			8
4	r3	r3			
5			r1		
6	s6	s7			9
7			r3		
8	r2	r2			
9			r2		

Note:

- Your answer must follow the below given specifications. Marks will be deducted if you do not follow these instructions.
 - Font style: "Times New Roman"
 - Font color: "Black"
 - Font size: "12"
 - **Bold** for heading only.
 - Font in *Italic* is not allowed at all.
- You should consult recommended books to clarify your concepts.
- It's better for you to submit the assignment well before the deadline.
- Do not put any query at MDB about this assignment, if you have any query then email at CS606@vu.edu.pk