
Operating System- CS604 

Solution Assignment # 1 
Spring 2011 

                                                               Marks: 20 

Due Date 

Your assignment must be uploaded before or on April 18, 2011    

Objective  

The objective of this assignment is to familiarize with the system calls. 

 

Instructions 

 Avoid Plagiarism. No marks will be given in case of cheating or copying from the 
internet or from other students. 

 Submit the assignment through your account on VULMS. No assignment will be 
accepted through email after the due date.   

 If you have any problem related to assignment, feel free to discuss it by email at 
cs604@vu.edu.pk  

Question # 1:  

Read the following program carefully and write the output of the program. Explain each 
line of code according to given numbering. 

Output: 
 

I have no child: 0 

I AM VU: 0 

I have no child: 1 

I AM VU: 1 

I have no child: 2 

I AM VU: 2 

I have no child: 3 

I AM VU: 3 

I have no child: 4 

I AM VU: 4 
 

Comment: 
 
#include <stdio.h>    
#include <unistd.h>   



#include <stdlib.h>   
#include <errno.h>   
  
 1………………… int main (void)  
 
The main function starts the program execution and returns int data type. 
 { 
   pid_t  pid; 
 2………………… pid = fork(); 
 
Fork ( ) method is the system call and returns the integer value in the pid variable. 
Generate a clone of the existing process. 
 
 3…………………    if (pid > 0)  
 
Condition will be only true when fork returned the vale greater than zero. Means 
fork is successful, a new process has been generated and parent process execution 
starts. 
   int i; 
 4…………………      for (i = 0; i < 5; i++)  
 
Loop starts and from 0 to 4, loop run 5 times. 
 
   { 
 5…………………         printf("I AM VU: %d\n", i);  
 
Prints “I AM VU” message on the screen and also print the value of variable “i”. 
 
 6…………………        sleep(1);  
 
Sleep function suspend the execution for one second each time. 
 
  } 
  exit(0); 
  } 
 7…………………   else if (pid == 0)  
 
When fork () returns 0 in child process. The execution of the child process starts. 
  { 
  int j; 
    for (j = 0; j < 5; j++) 
  { 
 8…………………         printf("I have no child: %d\n", j);  
 
A message “I have no child” is printed on the screen and also print the value of 
variable “j”. 



  sleep(1); 
 } 
   _exit(0);   
  }  
    else 
  {    
 9…………………          fprintf(stderr, "can't fork, error %d\n", errno);  
 
This means fork has failed , (due to standard error ,so it has returned -1. it print 
message “can't fork, error” and print the error number. 
 
 
 10…………………         exit (EXIT_FAILURE);  
 
System call terminates the process abnormally as it fails. Exit function indicates 
unsuccessful program completion. Using the macro Exit_Failure 
 
  } 
 } 



#include <stdio.h>   /* printf, stderr, fprintf */ 
#include <unistd.h>  /* _exit, fork */ 
#include <stdlib.h>  /* exit */ 
#include <errno.h>   /* errno */ 
  
int main(void) 
{ 
   pid_t  pid; 
  
   /* Output from both the child and the parent process 
    * will be written to the standard output, 
    * as they both run at the same time. 
    */ 
   pid = fork(); 
   if (pid == 0) 
   { 
      /* Child process: 
       * When fork() returns 0, we are in 
       * the child process. 
       * Here we count up to ten, one each second. 
       */ 
      int j; 
      for (j = 0; j < 10; j++) 
      { 
         printf("child: %d\n", j); 
         sleep(1); 
      } 
      _exit(0);  /* Note that we do not use exit() */ 
   } 
   else if (pid > 0) 
   {  
      /* Parent process: 
       * When fork() returns a positive number, we are in the parent 
process 
       * (the fork return value is the PID of the newly-created child 
process). 
       * Again we count up to ten. 
       */ 
      int i; 
      for (i = 0; i < 10; i++) 
      { 
         printf("parent: %d\n", i); 
         sleep(1); 
      } 
      exit(0); 
   } 
   else 
   {    
      /* Error: 
       * When fork() returns a negative number, an error happened 
       * (for example, number of processes reached the limit). 
       */ 
      fprintf(stderr, "can't fork, error %d\n", errno); 
      exit(EXIT_FAILURE); 
   } 
} 



 


