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 SOLUTION  ASSIGNMENT #3 
Deadline 
 
Your assignment must be uploaded/submitted at or before 15th   June 2011 

Uploading instructions 
 
Please view the assignment submission process document provided to you by 

the Virtual University to upload the assignment. 

Rules for Marking 
 
It should be clear that your assignment will not get any credit if: 

 

oThe assignment is submitted after due date. 

oThe submitted assignment does not compile or run.  

oThe assignment is copied. 

Objectives 
 
This assignment will help you to understand the concepts of Knapsack Problem and 
Chain matrix Multiplication which results in efficient calculation time wise. 

Guidelines 
1. In order to attempt this assignment you should have full command on Lecture # 19 to 

Lecture # 26 

2. In order to solve this assignment you have strong concepts about following topics 

 Chain Matrix Multiplication 
 Knapsack Problem 

 
 
 
 
 
 



Recommended book for solving assignment 

Cormen, Leiserson, Rivest, and Stein (CLRS) 2001, Introduction to Algorithms, (2nd ed.) 
McGraw  Hill. 

 
Estimated Time    4  hours 
 
To understand the theme of both questions 90 minutes.Question1 solution 
implementation maximum time is 90 minutes and for Question2 solution implementation 
maximum time is one hour. It all depends upon your sheer concentration and devotion 
towards your lecture listening.    
 
Question# 1                   (10) 
Consider the chain matrix multiplication for 4 matrices:  
    A1    .    A2    .   A3   .    A4 
 (5×6)     (6×3)    (3×7)  (7×10)  
 
Compute the cost table m in the dynamic programming algorithm for the chain matrix 
multiplication 
 
Solution 1 
Basic Points toward solution: 
 Following Recursive formulation will be used to device the solution: 

  
Main diagonal will be filled with the base case  
 

0    

 0   

  0  

   0 

 
 
 
 
First super diagonal 
 m[1,2]=m[1,1] + m[2,2] + p0.p1.p2 = 0+0+5.6.3 = 90 
 m[2,3]=m[2,2] + m[3,3] + p1.p2.p3 = 0+0+6.3.7 = 126 
 m[3,4]=m[3,3] + m[4,4] + p2.p3.p4 = 0+0+3.7.10 = 210 



 
0 90   

 0 126  

  0 210

   0 

 
 
 
Second super diagonal 
 m[1,3]=m[1,1] + m[2,3] + p0.p1.p3 = 0+126+5*6*7 = 336 
 m[1,3]=m[1,2] + m[3,3] + p0.p2.p3 = 90+0+5*3*7 = 195 
  Minimum  [1,3] = 160 
 
           for m[2,4] 
 m[2,4]=m[2,2] + m[3,4] + p1.p2.p4 = 0+210+6*3*10 =390 
 m[2,4]=m[2,3] + m[4,4] + p1.p3.p4 = 126+0+6*7.*10 = 546 
   Minimum for  m[2,4] = 390 
 

0 90 195  

 0 126 390

  0 210

   0 

 
 
Third super diagonal 
 m[1,4]=m[1,1] + m[2,4] + p0.p1.p4 = 0+390+5*6*10 = 690 
 m[1,4]=m[1,2] + m[3,4] + p0.p2.p4 = 90+210+5*3*10 = 450 
 m[1,4]=m[1,3] + m[4,4] + p0.p3.p4 = 160+0+5*7*10 =510 
  Minimum for m[1,4] = 450 
Resultant is, 
  

0 90 195 450

 0 126 390

  0 210

   0 

  
 
 



 
Question# 2                   (10) 
Recall that a dynamic programming solution to the 0-1 knapsack problem can be derived 
from the following recurrence formula for c[i,w], the value of the solution for items 1, . . 
. , i and maximum weight w. 

 
In the following example the inputs are n = 9,W = 15, with values vi and weights wi: 
i 1 2 3 4 5 6 7 8 9 
vi 15 13 12 18 20 8 13 19 22 
wi 2 3 2 3 3 1 5 2 5 
 
 

 
Run knapsack algorithm on this table to determine the maximum value that thief may 
take, also mention which items the thief should take to achieve the maximum value 
 
Solution2  
Some basic thinking points to solve smoothly: 
First of all here one assumption is taken for clarity purpose: 
In recurrence “wi” is current weight under consideration and second “w”in recurrence is 
replaced as “J” just to make the idea clear and to make difference between two. More 
here J/w represents the capacity of knapsack. At end J=W means maximum capacity 
which we have here it is “15”. 
First think about the recurrence which is maximizing our profit at each cell as we are 
making optimized decision to fill the cell. First case in recurrence is trivial as nothing to 
select for weight “0” and capacity “0”. Second case is again not difficult; if weight under 
consideration “wi” is greater than capacity “J “you have to pick the very last row value in 
the same column calculated already .Last case of recurrence is selecting the maximum 
value from two .In which first value is in same column very last row   and second value is 
calculated by adding the current value to the value which is actually at very last row 
having column index =J-wi   which is the core point here to understand and 
“maximum value of two” will be selected for the cell. 
 
Simple hint : You are maximizing at each cell which ever you have up to Jth 
Limit/capacity of your knapsack .We have maximum J=W=15 so at end we are 
interested in to find the maximum profit for J=W=15 capacity that is our goal . 
 
 
 
 



Calculation Table : 
 
Weight 
Limit (J) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 w1  =  2  v1 
=15 

0 0 15 15 15 15 15 15 15 15 15 15 15 15 15 15

 w2  =   3    
v2 =13 

0 0 15 15 15 28 28 28 28 28 28 28 28 28 28 28
 w3 =     2  
v3=12 

0 0 15 15 27 28 28 40 40 40 40 40 40 40 40 40
 w4  =   3     
v4=18 

0 0 15 18 27 33 33 45 46 46 58 58 58 58 58 58
 w5 =  3    
v5=20 

0 0 15 20 27 35 38 47 53 53 65 66 66 78 78 78
 w6  =   1    
v6 =8 

0 8 15 23 28 35 43 47 55 61 65 73 74 78 86 86
 w7  =  5   
v7=13 

0 8 15 23 28 35 43 47 55 61 65 73 74 78 86 86
 w8  =  2     
v8 =19 

0 8 19 27 34 42 47 54 62 66 74 80 84 92 93 97
 w9=    5   
v9=22 

0 8 19 27 34 42 47 54 62 66 74 80 84 92 93 97

 
Selected Items (1, 2, 3, 4, 5, 8) =>w1+w2+w3+w4+w5+w8=15=W and value 97; 
which is maximum. 
 
 


