
Fundamentals of Algorithms
CS502-Spring 2011

 SOLUTION ASSIGNMENT #3
Deadline

Your assignment must be uploaded/submitted at or before 15th June 2011

Uploading instructions

Please view the assignment submission process document provided to you by

the Virtual University to upload the assignment.

Rules for Marking

It should be clear that your assignment will not get any credit if:

oThe assignment is submitted after due date.

oThe submitted assignment does not compile or run.

oThe assignment is copied.

Objectives

This assignment will help you to understand the concepts of Knapsack Problem and
Chain matrix Multiplication which results in efficient calculation time wise.

Guidelines
1. In order to attempt this assignment you should have full command on Lecture # 19 to

Lecture # 26

2. In order to solve this assignment you have strong concepts about following topics

 Chain Matrix Multiplication
 Knapsack Problem

Recommended book for solving assignment

Cormen, Leiserson, Rivest, and Stein (CLRS) 2001, Introduction to Algorithms, (2nd ed.)
McGraw Hill.

Estimated Time 4 hours

To understand the theme of both questions 90 minutes.Question1 solution
implementation maximum time is 90 minutes and for Question2 solution implementation
maximum time is one hour. It all depends upon your sheer concentration and devotion
towards your lecture listening.

Question# 1 (10)
Consider the chain matrix multiplication for 4 matrices:
 A1 . A2 . A3 . A4
 (5×6) (6×3) (3×7) (7×10)

Compute the cost table m in the dynamic programming algorithm for the chain matrix
multiplication

Solution 1
Basic Points toward solution:
 Following Recursive formulation will be used to device the solution:

Main diagonal will be filled with the base case

0

 0

 0

 0

First super diagonal
 m[1,2]=m[1,1] + m[2,2] + p0.p1.p2 = 0+0+5.6.3 = 90
 m[2,3]=m[2,2] + m[3,3] + p1.p2.p3 = 0+0+6.3.7 = 126
 m[3,4]=m[3,3] + m[4,4] + p2.p3.p4 = 0+0+3.7.10 = 210

0 90

 0 126

 0 210

 0

Second super diagonal
 m[1,3]=m[1,1] + m[2,3] + p0.p1.p3 = 0+126+5*6*7 = 336
 m[1,3]=m[1,2] + m[3,3] + p0.p2.p3 = 90+0+5*3*7 = 195
 Minimum [1,3] = 160

 for m[2,4]
 m[2,4]=m[2,2] + m[3,4] + p1.p2.p4 = 0+210+6*3*10 =390
 m[2,4]=m[2,3] + m[4,4] + p1.p3.p4 = 126+0+6*7.*10 = 546
 Minimum for m[2,4] = 390

0 90 195

 0 126 390

 0 210

 0

Third super diagonal
 m[1,4]=m[1,1] + m[2,4] + p0.p1.p4 = 0+390+5*6*10 = 690
 m[1,4]=m[1,2] + m[3,4] + p0.p2.p4 = 90+210+5*3*10 = 450
 m[1,4]=m[1,3] + m[4,4] + p0.p3.p4 = 160+0+5*7*10 =510
 Minimum for m[1,4] = 450
Resultant is,

0 90 195 450

 0 126 390

 0 210

 0

Question# 2 (10)
Recall that a dynamic programming solution to the 0-1 knapsack problem can be derived
from the following recurrence formula for c[i,w], the value of the solution for items 1, . .
. , i and maximum weight w.

In the following example the inputs are n = 9,W = 15, with values vi and weights wi:
i 1 2 3 4 5 6 7 8 9
vi 15 13 12 18 20 8 13 19 22
wi 2 3 2 3 3 1 5 2 5

Run knapsack algorithm on this table to determine the maximum value that thief may
take, also mention which items the thief should take to achieve the maximum value

Solution2
Some basic thinking points to solve smoothly:
First of all here one assumption is taken for clarity purpose:
In recurrence “wi” is current weight under consideration and second “w”in recurrence is
replaced as “J” just to make the idea clear and to make difference between two. More
here J/w represents the capacity of knapsack. At end J=W means maximum capacity
which we have here it is “15”.
First think about the recurrence which is maximizing our profit at each cell as we are
making optimized decision to fill the cell. First case in recurrence is trivial as nothing to
select for weight “0” and capacity “0”. Second case is again not difficult; if weight under
consideration “wi” is greater than capacity “J “you have to pick the very last row value in
the same column calculated already .Last case of recurrence is selecting the maximum
value from two .In which first value is in same column very last row and second value is
calculated by adding the current value to the value which is actually at very last row
having column index =J-wi which is the core point here to understand and
“maximum value of two” will be selected for the cell.

Simple hint : You are maximizing at each cell which ever you have up to Jth
Limit/capacity of your knapsack .We have maximum J=W=15 so at end we are
interested in to find the maximum profit for J=W=15 capacity that is our goal .

Calculation Table :

Weight
Limit (J)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 w1 = 2 v1
=15

0 0 15 15 15 15 15 15 15 15 15 15 15 15 15 15

 w2 = 3
v2 =13

0 0 15 15 15 28 28 28 28 28 28 28 28 28 28 28
 w3 = 2
v3=12

0 0 15 15 27 28 28 40 40 40 40 40 40 40 40 40
 w4 = 3
v4=18

0 0 15 18 27 33 33 45 46 46 58 58 58 58 58 58
 w5 = 3
v5=20

0 0 15 20 27 35 38 47 53 53 65 66 66 78 78 78
 w6 = 1
v6 =8

0 8 15 23 28 35 43 47 55 61 65 73 74 78 86 86
 w7 = 5
v7=13

0 8 15 23 28 35 43 47 55 61 65 73 74 78 86 86
 w8 = 2
v8 =19

0 8 19 27 34 42 47 54 62 66 74 80 84 92 93 97
 w9= 5
v9=22

0 8 19 27 34 42 47 54 62 66 74 80 84 92 93 97

Selected Items (1, 2, 3, 4, 5, 8) =>w1+w2+w3+w4+w5+w8=15=W and value 97;
which is maximum.

