
Fundamentals of Algorithms
CS502-Spring 2011

 SOLUTION ASSIGNMENT1

Deadline

Your assignment must be uploaded/submitted at or before 18th April 2011.

Uploading instructions

Please view the assignment submission process document provided to you by

the Virtual University to upload the assignment.

Rules for Marking

It should be clear that your assignment will not get any credit if:

oThe assignment is submitted after due date.

oThe submitted assignment does not compile or run.

oThe assignment is copied.

Objectives

This assignment will help you to understand the concepts of Asymptotic Growth, making
analysis of pseudo code, recurrence relation development, asymptotic function
understanding and iterative solutions for recurrences.

Guidelines

RULES FOR CALCULATING TIME COMPLEXITY AND BIG-OH

Rule 00
Normally these formulas are very handy:

If zx y = then zy xlog=
Also,

)(
2 1

1
n

n

i
i aana +=∑

=
)1(

21
+=∑

=

nni
n

i
 r

rr
mm

k

k

−
−

=
+

=
∑ 1

1 1

0

1)nfor (
6

)12)(1(
1

2 >=
++

=∑
=

nnni
n

i

Rule 0
The condition that stops a loop executes ONE MORE time than the loop itself
(the last time is when it is evaluated false)

Rule 1
for (i=0;i<n;i=i+k) Anything inside the loop will run approximately n/k times

Rule 2
for (i=n;i>0;i=i-k) Anything inside the loop will run approximately n/k times

Rule 3
for (i=1;i<n;i=i*k) Anything inside the loop will run approximately logkn times

Rule 4
for(i=1;i<=n;++i)

for (j=1;j<=i;++j)
 The above nested loop approximately runs ½ n(n+1) times.
 The variable j depends upon the value of i

Rule 5
for(i=1;i<=n;i=i*2)

for (j=1;j<=i;++j)
 The statements in the above nested loop approximately run
2n-1 times.
 The variable j depends upon the value of i

Rule 6
If the loop variables are independent then the total times a statement inside a
nested loop is executed is equal to the product of the times the individual loops
run
e.g. for (i=0;i<n;++i)
 for (j=0;j<m;++j)
 A statement inside the above nested loop will run n*m times
Other Guidelines
While loop related information
 Complexity of “while” loop depend upon the initial entrance condition if it remains
true for “n” iterations it will be “n+1”; Note here “1” will be added for the last time
check of the condition .Here this will be clear to you if the some logical conditions
are checked other then counters then all complexity will be based on scenario of
the problem and nature of the logical condition.

Function Growth rate concept
If some function f1(x)>f2(x) for positive values of x then the function f1(x) is said to have
greater growth rate then f2(x). For example f1(x)=x5 and f2(x)= x6 it is obvious that f1(x)
has greater growth rate (26 > 25).This concept relate to complexity of algorithm ,an
algorithm having greater growth rate function means the algorithm has greater
complexity here f2(x) is more complex then f1(x).

Estimated Time 2.5 hour
 For Q1 maximum time is 1.25 hour and for Q2 maximum time is 1.25 hour. It all
depends upon your sheer concentration.

Question 1 (10)
Find the running time complexity of the following piece of code and show
your working step by step.

1. y=0;
2. x=0;
3. for(i=m; i>-2; i=i-2)
4. { x++; }

5. for (i=n; i>0;i=i-1)
6. { y=y+1;}

7. for (i=1;i<=n;i=i*5)
8. { for (j=1;j<=5n;++j)
9. {

a. for(k=0;k<n; k=k+4)
i. {
ii. x=x+5;
iii. }

10. }
11. }

12. While(i<=z)
13. {
14. i++;

15. }

Solution Q1
Cod
e
Line

 Time taken Comments

1 y=0 1 Constant time
2 x=0 1
3 for (i=m; i>-2;i=i-2)

(m/2+1)+1 Outer independent

loop1 ;
apply rule 2 mentioned
above in guidelines as
here step size is “2” so
value of k=2 and “m”
will control the
number of iterations
and rule gives you m/2
and base limit is “-2”
that’s why we added
“1” more here.
Note here”1” time
more then “m/2+1”is
for condition checking
at end to exit from
loop.

4 x=x+1 m/2+1 As entrance in loop is
“m/2+1” time

5 for (i=n; i>0;i=i-1)

(n/1)+1=n+1 Outer independent
loop2 ; again
apply rule 2 here step
size is “1” so value of
k=1.
Other logic is same as
in above statement “3”
only difference is of
“m” and “n” .

6 { y=y+1;} n As entrance in loop is

 “n” times
7 for(i=1;i<=n;i=i*5)

Log5n+1 As step size is

multiplied by five
that’s why log to the
base 5 (rule 3)

8 for(j=1;j<=5n;++j)

5n(log5n)+1 As for each iteration
of outer loop this loop
will execute for 5n
times

9 a for(k=0;k<n;k=k+4)

(n/4)5n(log5n)+1=(5n2
log5n)/4+1

As this is the inner
most loop and for each
above two loops it will
execute n/4 times (rule
1)

9 a i x=x+5;

(n/4)5n(log5n)=(5n2
log5n)/4

This statement is
under the second inner
loop.

12 While(i<=z)

z+1 As this is simple
independent loop with
upper limit “z” and
step size is increasing
“1” each time.

14 i++;

z As entrance in loop is
“z” times

From above explanation over all time will be summed up to take
final one.
T(n)=1+1+(m/2+1)+1+m/2+1+n+1+n+log5n+1+5n(log5n)+1+(5n2
log5n) /4+1+(5n2 log5n) /4+z+1+z
=10+2m/2+ 2n +log5n +5n (log5n) +
(10n2log5n)/4+2z 2

5(n log n+(m+z))∈Θ as the leading term is
(10n2 log5n)/4 and “m” and “z” also effect for large values so these
terms will also consider; thus we can asymptotically bound the
code run time by this. 2

5(n log n+(m+z))Θ

Question 2 (10)

Arrange the following in the Most to Least complexity order. Here “n “is the input size
for the some complexity function and k< j and j & k are numbers greater than 2.Every
function is separated by “comma” and note these are 20 functions to arrange.

2

2 84

5 6

j/2/ 2 n nn, n , n , nlgn, n , 1,100, 2 , lgn, n!,(n!) / ,

/ ,n! log / , / log ,10000,n / , (log) ,

n / , (log) ,1000

k n n n

n n n n n n n n n n n

n n n n

Hints to fast your logics to arrange:
• Think other way around i.e. the function which is less complex and more efficient

pick it first and go ahead and then and at end reverse the order to get final
arrangement ;e.g. less complex function is 1, 100, etc(Note these are constant
functions that’s why these are only judged on their constant value and they fall in
same class because of having constant values) Other less complex and more
efficient functions are simple “log” as these functions reduce the answer for large
values of “n” ; then nth root means square root cube root etc ; then linear
functions are efficient and so on the logic is build .

• If you feel difficulty for comparison then judge for lager inputs say 10010 etc.

• Note n2 and n! are both complex but you can judge that n! is more complex by
putting values of larger “n” and one more thing is nn will be more complex then
n! as by definition n! =n (n-1)(n-2)………..2.3.1.

 But when you put the lager value in each place in above you get
 n(n)(n)……………n= nn which will obviously beat n!

Given Order Most to Least Complexity

Arrangements

Hints

n

nn

/ 2nk

2(n!) /n n n = n! n

At reducing we get the value

note here n is larger factor

then “logn” so it will be more

complex then very next in

below cell

j/2 n

2n! log / n!logn n n n=

nlgn

n!

nn

n2

1

j/2n

As j>k and note here what

ever the value of “j” or “k”

will be taken it will become

constant then the variable “n”

for very large values of “n”

you can compare the

complexities of these with

other functions.

100

/ 2nk

n2

6(log)n n n

lgn

 8(log)n n n

n!

 nlgn

2(n!) /n n n

n

/n n

/ logn n

Here is interesting point arise

as when you divide by smaller

values the answer becomes

more so this is more complex

then below one functions

.Convince yourself by putting

810 in this function as well

as in the following cells.

Note one thing here “log “has

base “2”.

2n! log /n n n

5n / n

/ logn n

4n / n

10000

/n n

4n / n

lgn

8(log)n n n

10000

5n / n

1000

6(log)n n n

100

1000

1

BEST OF LUCK

THINK BEYOND THE BOUNDRIES

